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Abstract
We show that the Thurston seminorms of all finite covers of an aspherical 3-manifold deter-
mine whether it is a graph manifold, a mixed 3-manifold or hyperbolic.

1. Introduction

Let N be a 3-manifold. (Here, and throughout the paper all 3-manifolds are understood to
be compact, orientable, connected, aspherical and with empty or toroidal boundary.) Given
a surface X with connected components X1, . .., X its complexity is defined to be

k
X-(2):= ) max{—x(Z),0}.
i=1

Given a 3-manifold N and ¢ € H'(N;Z) the Thurston norm is defined as
xy(¢) ;= min{y_(X)|Z C N is a properly embedded surface, dual to ¢}.

Thurston [20] showed that xy is a seminorm on H'(N;Z). It follows from standard argu-
ments that xy extends to a seminorm on H'(N;R). If N is hyperbolic, then N is in particular
atoroidal which implies easily that xy is a norm. On the other hand, the seminorm is de-
generate whenever there is a non-separating torus, e.g. if N = S' x T where X is a surface
of genus g > 1. Given any seminorm x on a vector space V the set {v € V|x(v) = O} is a
subspace that we refer to as the kernel ker(x) of x.

In this paper we study to which degree the Thurston norm of all finite covers of a 3-
manifold determines the type of the JSJ-decomposition of the 3-manifold. Hereby we
distinguish the following three mutually exclusive types of JSJ-decompositions a prime 3-
manifold N can have:

(1) The 3-manifold N is hyperbolic.

(2) The 3-manifold N is a graph manifold, i.e. all its JSJ-components are Seifert fibered
spaces.

(3) Following [18] we say that N is mixed if it is if the JSJ-decomposition is non-trivial
and if it contains at least one hyperbolic JSJ-component.

This question is related to the general study of properties or invariants of a 3-manifold that
can be determined from its finite covers, see for example [5], [6], [16] [21], [23].

In order to state our first result we introduce a few more definitions. Given a 3-manifold
N we write
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52 M. BoiLEAU AND S. FrIEDL

bi(N) := dimg(H(N;R)),
k(N) := dimg(ker(xy)),
0, if bi(N) =0,
r(N) := .
&) { Sk, if bi(N) > 0.
Furthermore we write
C(N) := the class of all finite regular covers N of N,
and
T(N) := sup F(N).
NeC(N)

The following proposition is well-known to the experts.

Proposition 1.1. Let N be an aspherical 3-manifold with empty or toroidal boundary.
Then N is hyperbolic if and only if 7(N) = 0.

Proof. If N is hyperbolic, then all its finite covers are hyperbolic, and as we pointed out
above, in this case the seminorm is always a norm. On the other hand, if N is not hyperbolic
and aspherical, then by standard arguments, see e.g. [4, (C.10)-(C.15)] there exists a finite
regular cover N with a homologically essential torus. In particular r (N) > 0. |

It is harder to distinguish graph manifolds from manifolds with a non-trivial JSJ-
decomposition that contain at least one hyperbolic JSJ-component. In order to distinguish
these two classes of 3-manifolds, we need to consider a wider class of finite coverings,
which we call subregular, since they correspond to subnormal subgroups of the fundamental
groups. We say that a covering f: N - Nis subregular if the covering f can be written as
a composition of coverings f;: N; = Ni_j,i = 1,...,k with N} = N and Ny = N, such that
each f; is regular.

For a 3-manifold N we define:

C**’(N) := the class of all finite subregular covers Nof N ,
p(N) = _inf r(N),
NGC"“b(N) _
p(N) := sup p(N).
NeC(N)

The following is the main result of this paper. It characterizes graph manifolds N in term
of the invariant p (N). It also gives a characterization of manifolds with non vanishing sim-
plicial volume (i.e. with at least one hyperbolic JSJ-component). This characterization is
analogous to the one for hyperbolic manifolds in Proposition 1.1, but this time we use the
invariant p (N) instead of r (N).

Theorem 1.2. Let N be an aspherical 3-manifold with empty or toroidal boundary.
(1) If N is a graph manifold, then p (N) = 1.
(2) If N is not a graph manifold, i.e. if N admits a hyperbolic piece in its JSJ-
decomposition, then p (N) = 0.

The proof of Theorem 1.2 relies on the work of Agol [1, 2], Przytycki—Wise [18] and
Wise [24, 25, 26].
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The next corollary is a consequence of the combination of Proposition 1.1 and Theo-
rem 1.2:

Corollary 1.3. Let N be an aspherical 3-manifold with empty or toroidal boundary. Then
the Thurston norms of all finite subregular covers of N determine into which of the following
three categories N falls:

(1) graph manifold if and only if o (N) = 1,
(2) mixed manifold if and only if ¥(N) >p(N) =0,
(3) hyperbolic manifold if and only if 7(N) = 0.

Convention. Unless it says specifically otherwise, all 3-manifolds are assumed to be
compact, orientable, connected, and with empty or toroidal boundary. Furthermore all sur-
faces are assumed to be compact and orientable. Finally, all subsurfaces of a 3-manifold are
assumed to be properly embedded.

2. The calculation of p for graph manifolds

The following theorem immediately implies Theorem 1.2 (1).

Theorem 2.1. Let N be an aspherical graph manifold. Then given any € > 0O there exists
a finite regular cover N of N such that for any finite cover N of N we have r (N) > 1 — €.

The proof of Theorem 2.1 will require the remainder of this section. Given a compact
manifold X we write

c(X) := dimg (coker{H(0X;R) — H{(X;R)}).
On several occasions we will need the following lemma.
Lemma 2.2. Let p: X > Xbea finite covering of a manifold X. Then e(X) > e(X).

Proof. We consider the following commutative diagram of exact sequences

Hi(0X;R) — H;(X;R) — coker{H;(X;R) — H;(X;R)} —=0

lp* lp* ll’*
H;(0X;R) —— H{(X;R) —— coker{H(0X;R) —» H;(X;R)} ——= 0.

For the left two vertical maps we also have the transfer maps p* going from the bottom to
the top. These maps have the property that the compositions p, o p* are multiplication by
[X : X], in particular the transfer maps are injective. Furthermore, the transfer maps give
rise to a commutative diagram on the left. A straightforward diagram chase shows that the
right vertical map also has a transfer map p* such that the composition p, o p* is injective.

O

The next lemma is an immediate consequence of the Kiinneth Theorem.

Lemma 2.3. For any surface X we have c¢(S' X X) = c(2).

We say that a graph manifold N is of product type if each JSJ-component N, is a product
S! x X, where X, is a surface with y(Z,) < 0 and with at least two boundary components.
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Proposition 2.4. Let N be a graph manifold that is not a Seifert fibered space and that is
not finitely covered by a torus bundle. Let C > 0. Then N is covered by a graph manifold N
of product type such that for each JSJ-component N, of N we have c(N,) > C.

Proof. Let N be a graph manifold that is not a Seifert fibered space and that is not finitely
covered by a torus bundle. Let C > 0. By [3, Section 4.3] (see also [4, (C.10)] and [15])
there exists a finite cover N’ that is of product type.

Furthermore, by [3, Proposition 5.22] there exists a prime p > C and a finite cover N”" of
N’ such that for each JSJ-component N/’ = S'! x X/ the map H(N”; F,) — Hi(N";F,) is
injective. We denote by N the finite cover of N”’ that corresponds to the kernel of 7;(N"") —
H{(N";Z) — H(N";Fp). In light of Lemma 2.3 it suffices to prove the following claim.

Cram. Each JSJ-component of N is of the form S ! xX where ¥ is a surface with cX)>C.

By Proposition 1.9.2 and Theorem 1.9.3 of [4] the JSJ-decomposition of N is the pull-
back of the JSJ-decomposition of N”. It follows from this fact and the above discussion
of the chosen group homomorphism that each JSJ-component of N is the finite cover of a
manifold of the form S ! x X, where X is a surface with at least two boundary components and
with y(X) < 0, and where we consider the cover corresponding to the kernel of the group
homomorphism 7;(S! x £) — H(S! x Z; F,). Note that this cover is of the form SIxS

where T is the finite cover of = corresponding to the kernel of the group homomorphism
mi(Z) = Hi(Z;Fp). We write d = |H,(Z; F),)|. Since y(X) < 0 we have d > p*. We make the
following observations:

(1) By definition of ‘product type’ the surface X has at least two boundary components.
It follows that every boundary component of X has image of order precisely p in
H{(Z;F,). Therefore

by(d%) = % - by(AT).
(2) By the multiplicativity of the Euler characteristic we have
hi@-1=d- by - 1.
(3) For any surface X we have
bo(0X) = b1(0%) < bi(2) + L.

‘We now obtain that

) = dimg (coker(H,(9%;R) - H\(Z:R)})
> bi(T) - bi(32)
> d(bi()— 1) + 1 - by(dx)
> dbi(D) - D+ 1-90bi(2) + 1)
= dbiD)-D+1-4bi(x) -1 - %
> —(d- ()
> d-9.

Hereby the first equality is given by definition, the following inequality is obvious, the next
inequality is given by (2) and the fact that the boundary components of a surface are circles,
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the following equality stems from (1) and (3), the next equality is purely algebraic, the
following inequality is a consequence of y(X) = by(Z) — b;(X) and d > p?, and the final
inequality comes from y(X) < —1.

Summarizing we have shown that c(f) >d- %. But since d > p* we see that the last term

is at least p > C. Thus we have shown that c(fl) >C. m]

For the record we also mention the following elementary lemma.

Lemma 2.5. If f: N> Nisa finite covering of a 3-manifold, then there exists a finite
regular covering g: N — N that factors through f.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let N be an aspherical graph manifold and let € > 0.

If N is covered by a torus bundle, then there exists a finite regular cover N with vanishing
Thurston norm and with b;(N) > 1. In particular there exists a finite regular cover N with
r(N) = 1.

If N is Seifert fibered, then there exists a finite regular cover N that is an S '-bundle over
a surface X. (See [3, Section 4.3] and [15] for details.) Since N is aspherical we know that £
is not a sphere. The Thurston norm evidently vanishes if X is a disk, or if it is an annulus, or
if it is a torus, i.e. in these cases we have r (ﬁ) = 1. Thus we can now suppose that y(X) < 0.

If N is a non-trivial S !-bundle over X, then ¥ is closed and it follows from x@) <0, that
b1(N) > 1. Furthermore it is straightforward to see that all homology classes are represented
by tori, thus k(N) = b;(N) and we see that r (N) = 1.

On the other hand, if N is a trivial S !-bundle over X, then N = S! x X. In that case it is
well-known that k(S' x £) = b;(Z). Since y(X) < 0 there exists a cover S' x T of §! x X
with 7 (S! X Z) > 1 — €. Furthermore, using Lemma 2.5 we can arrange that S x T is in fact
a regular cover of N.

For the remainder of the proof we can now assume that N is neither covered by a torus
bundle nor is it Seifert fibered. It follows from Proposition 2.4 and Lemmas 2.2 and 2.5
that there exists a finite regular cover N of N such that N is of product type and such such
that for each JSJ-component N, of N we have c(N,) > é Now let N be a finite cover of N.
As above, the JSJ-decomposition of N is induced by the JSJ-decomposition of N. It is thus
again of product type.

We denote the JSJ-components of N by N, = §' x Z,, v € V. It follows from Lemma 2.2
and from the above that for each JSJ-component N, we have ¢(N,) > % For each v we
denote by f, € H,(N;Z) the element determined by the S '-factor.

It follows from [8, Proposition 3.5] and the standard calculation of the Thurston norm for
products §' x X that for any ¢ € H'(N;R) the Thurston norm is given by

(@) = D10 x-(Z0).

veV

In particular, the Thurston norm vanishes if ¢ vanishes on all elements f,,v € V. We thus
see that

k(N) > by(N) - |V|.

On the other hand, it follows from the Mayer—Vietoris sequence corresponding to the de-
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composition of N along the JSJ-tori into the JSJ-components that

— — — 1
bi(N) > " dimg (coker{Hi(0N,;R) — Hi(Ny;R))) > = - V],
€
veV
Putting the last two inequalities together we see that
bi(N) = k(N) <V
— <1 =€
bi(N) =V

1-r(N)<

3. The calculation of p for non-graph manifolds

The goal of this section is to prove the following theorem, which together with Theo-
rem 2.1 implies Theorem 1.2, since the property of being aspherical and not being a graph
manifold is preserved by going to finite covers.

Theorem 3.1. Let N be an aspherical 3-manifold with empty or toroidal boundary that
is not a graph manifold. Then given any € > 0, there exists a finite subregular cover N of N
such that r (N) < €. In particular p (N) = 0.

We introduce the following definitions:

(1) Let N be a 3-manifold. An integral class ¢ € H'(N;Z) = Hom(m(N),Z) is called
fibered if there exists a fibration p: N — S! with ¢ = p,: m1;(N) — Z. We say N is
fibered if N admits a fibered class.

(2) We say that a homomorphism ¢: m — Z is large if ¢ is non-trivial and if it factors
through an epimorphism from 7 onto a non-cyclic free group.

In the following proofs we will several times make use of the followings facts:

(A) If p: M — M is a finite cover and ¢ € H'(M;Z) is a fibered class, then p*¢ €
H 1(1\71 ; Z) is also fibered. In particular, if M is fibered, then M is also fibered.

B) If p: M — M is a finite cover and ¢: 1 (M) — Z is large, then the composition
¢op.:m (M) — Zis also large.

Here the first statement is obvious and the second statement follows from the fact that any
finite-index subgroup of a non-cyclic free group is again a non-cyclic free group.

One key ingredient in the proof of Theorem 3.1 is the Virtual Fibering theorem for non-
graph manifolds that is due to Agol [1, 2], Przytycki-Wise [18] and Wise [24, 25, 26]. We
refer to [4] for precise references. (See also [11, 13] and [9] for alternative proofs.)

Theorem 3.2 (Virtual Fibering Theorem). Any aspherical 3-manifold that is not a graph
manifold admits a finite regular cover that is fibered.

Before we continue we want to clarify our language for the JSJ-decomposition. Let N be
an aspherical 3-manifold.
(1) We refer to the collection of the JSJ-tori together with the boundary tori as the
characteristic tori of N.
(2) Given an aspherical 3-manifold N with boundary tori S+, ..., S, and JSJ-tori T, ...,
T; we pick disjoint tubular neighborhoods S; x [-1,0],i=1,...,kand T; x [-1, 1],
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i =1,...,1 and we refer to the components of
k !
N\ __UISiX(—%,O] \ __UlTiX -3.3)

as the JSJ-components of N. In particular, the complement of the union of the JSJ-
components consists of tubular neighborhoods of all the characteristic tori.

On two occasions we will make use of the following lemma.

Lemma 3.3. Let N be a 3-manifold and let N, be a JSJ-component of N. If N, isa finite
cover of N,, then there exists a finite regular covering p: N’ — N such that each component
of p~Y(N,) is a finite covering of N,.

For closed 3-manifolds this is a result of Wilton—Zalesskii [22, Theorem A]. The case of
3-manifolds with non-trivial boundary can easily be reduced to the closed case (see e.g. [4,
(C.35)] for details).

We continue with the following lemma.

Lemma 3.4. Let N be a 3-manifold that is not a graph manifold. Then N admits a finite
regular cover N such that there exists a hyperbolic JSJ-component N, with ¢(N;) > 0.

Proof. Let Nj, be a a hyperbolic JSJ-component of N. It follows from the work of Agol [2]
and Wise [24, 25, 26] (see also [4, Flowchart 4] for details) that 71(N,) is large, i.e. 71 (N,)
admits a finite index subgroup that surjects onto a non-cyclic free subgroup. This implies,
see e.g. [4, (C.17)], that N, admits a finite-index cover ﬁh with c(ﬁ;,) > 0. Thus the lemma
is an immediate consequence of Lemmas 2.2 and 3.3. |

We also have the following lemma which might be of independent interest.

Lemma 3.5. Let N be a 3-manifold and let ¢ € H'(N;Z) be a non-trivial non-fibered
class. Then there exists a finite regular covering p: N' — N such that the composition
¢op.: 1 (N")— Zis large.

The proof of the lemma is closely related to the proof of the main theorems of [10] and
of [7] and to [17, Proof of Theorem 3.2.4].

Proof. We start out with a simple observation. Let X be a surface (not necessarily con-
nected) in a 3-manifold dual to a class ¥ € H'(M;Z) = Hom(r; (M), Z). We denote by I'(X)
the graph whose vertices are precisely the components of M cut along X and whose edges
are the components of £ with the obvious maps from the edges to the vertices. Then the map
Wi m (M) — Z factors through the canonical epimorphism (M) — m(I'(2)).

Now we turn to the proof of the lemma. It is clear that it suffices to prove the lemma
for primitive classes. We pick a Thurston norm minimizing surface X dual to ¢ that has the
minimal number of components among all Thurston norm minimizing surfaces dual to ¢.
In particular £ has no components that are separating. It follows easily that y(I'(X)) < 0. If
xT'(®)) <0, then we are done by the above observation.

Now suppose that y(I'(X)) = 0. Since ¢ is primitive and since X has the minimal number
of components it follows from the argument on [7, p. 73] that X is connected. By Przytycki—
Wise [19, Theorem 1.1] the subgroup m1(X) C (M) is separable, i.e. given any g ¢ m1(X)
there exists a homomorphism a: m1(M) — G onto a finite group such that a(g) ¢ a(m(X)).
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Since X is not a fiber there exists by [14, Theorem 10.5] a g € (M \ X X (0, 1)) that does
not come from (X X {0}). It now follows from a standard argument, see e.g. [4, (C.15)] or
[17, Proof of Theorem 3.2.4], that applying subgroup separability to this g allows to build
an epimorphism of 7; (M) onto a free product with amalgamation of finite groups. The fact
that the target group is virtually a free group of rank two gives the desired statement. |

Lemma 3.6. Let N be a hyperbolic 3-manifold and let a, 8 € H'(N;Z) be linearly inde-
pendent. Then there exist p,q € Z \ {0} such that pa + qf is not fibered.

Proof. We say that a rational class ¢ € H'(N;Q) is fibered if some integral multiple
ng € H'(N;Z), n € N is fibered. We denote by

B:={p e H'(N;Q)|xn(¢) < 1}

the norm ball of the Thurston seminorm. Since xy is a seminorm the set B is convex and
non-degenerate, the latter meaning that it is not contained in a lower-dimensional subspace
of H'(N;Q). By assumption N is hyperbolic, this implies that the Thurston seminorm on
H'(N;Q) is in fact a norm, i.e. B is compact. Thurston [20] showed that B is a polyhedron
with rational vertices. Furthermore he showed that the set of fibered classes is given by the
union of cones on certain open top-dimensional faces of the polyhedron B.

Now we denote by V the subspace of H'(N; Q) spanned by @ and 8. By assumption V
is 2-dimensional. The intersection B N V is a compact polytope in V with rational vertices.
Since the polytope BNV is compact and non-degenerate it has at least three vertices. By the
aforementioned result of Thurston any class in the cone of any of the vertices is not fibered.
Since a and S are linearly independent and since there are at least three vertices, and since
the vertices are rational we can find non-zero p, g € Z\ {0} such that pa + gp lies in the cone
of one of the vertices, in particular it is not fibered. |

In the following we will on several occasions make use of the following lemma which is
a straightforward consequence of Proposition 1.9.2 and Theorem 1.9.3 in [4].

Lemma 3.7. Let N be a prime 3-manifold and let Nj, be a hyperbolic JSJ-component of
N. Then for each finite cover p: N' — N all the components of p~'(N,) are hyperbolic
JSJ-components of N’.

Lemma 3.8. Let N be a mixed 3-manifold. Then there exists a finite regular cover N’ of
N, a hyperbolic JSJ-component N, and a class ¢ € H Y(N"; Z) such the restriction of ¢ to N,
is non-fibered but such that the restriction of ¢ to N \ N, is fibered.

Proof. By Theorem 3.2, Lemmas 2.5 and 3.4 and Observation (A) there exists a finite
regular cover N’ of N that admits a fibered class ¢ € H'(N’;Z) and that admits a hyperbolic
JSJ-component N; with the property that ¢(N;) > 0. This implies that there exists a non-
trivial homomorphism ;,: H{(N;;Z) — Z that is trivial on the image of any boundary
component of N;. In particular ¢, factors through H{(N’,N’; Z). We denote the resulting
homomorphism

H\(N';Z) > Hi(N', N\ Nj;Z) = Hy(N},0N};2) 25 2

by .
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We denote by ¢, the restriction of ¢ to N;. The classes ¢;, and ¢, in H 1(N;Z) are linearly
independent since the former, as a fibered class is non-trivial on each boundary component of
N, whereas the latter is by construction trivial on each boundary component. By Lemma 3.6
there exist p, g € Z\ {0} such that p¢;, + g, is a non-fibered class in H'(N/;Z). On the other
hand, the restriction of pg;, + q, to N \ N, equals the restriction of pg, to N\ N;. Since
p # 0 this is a fibered class. ]

Lemma 3.9. Let N be a mixed 3-manifold. Then there exists a finite subregular cover
N’ of N, hyperbolic JSJ-components N{,...,N;, k > 1 of N’, and a homomorphism ¢ €
Hom(H(N’;Z),7Z) = H'(N’;Z) such that the restriction of ¢ to each N’ is large but such
that the restriction of ¢ to N’ \ (N] U --- U N)) is fibered.

Proof. In light of Lemma 3.8 we can without loss of generality assume that there exists a
hyperbolic JSJ-component N, of N and a class ¢ € H'(N’; Z) such the restriction of ¢ to N},
is non-fibered but such that the restriction of ¢ to N \ NV, is fibered.

By Lemmas 3.5 and 3.3 and Observation (B) there exists a finite regular cover p: N — N
such that for one (and hence all) components N7, ..., N; of p~1(N},) the map po¢: m(N, -
m1(Ny) — Z factors through an epimorphism onto a non-cyclic free group.

On the other hand it follows from Observation (A) that the restriction of p*¢ to
N\ (NjU---UN)) = p~'(N'\ Ny) is fibered. o

Let N be a 3-manifold. We have the following notations:
(1) Given ¢ € H'(N;Z) = Hom(m(N),Z) and n € N we denote by ¢,: m(N) — Z,
the homomorphism that is given by the composition of ¢ with the projection map
7 — Zy.
(2) Given a homomorphism a: 7;(N) — G we denote by N, the corresponding cover.
If « is not surjective, then N, consists of | coker(a)| copies of the finite cover of N
corresponding to ker(a).

We recall the following well-known lemma.

Lemma 3.10. Let N be a 3-manifold and let ¢ € H'(N;Z) = Hom(r;(N), Z) be a fibered
class. Then for all but finitely many primes p we have

b](N¢p) <3+ xn(9).

Proof. Let ¢ be a fibered class. We write ¢ = diy where ¢ is a primitive class and d € N.
It is well-known that ¢ is again fibered with xy(¢) = dxy(¥). We denote by S the fiber
of the surface bundle corresponding to . Surthermore we denote by ¢: 71(S) — m1(S)
the corresponding monodromy. Also, given any automorphism y of m;(S) we denote by
Z <, m1(S) the corresponding semidirect product.

Now let n € N. It is straightforward to see that

Hi(Ny,;Z) = Hi(nZ,n(S);Z)
H{(Z =g m(S);Z) =Z® H((S;2)/(¢" —1id).

IR

It follows that

bi(Ny,) <tankz(Z® Hi(S;Z2)/(¢" —id)) < 1 + b1(S) < 3 + xy(¥).
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Now let p be a prime that is coprime to d. It follows that the map
d-y=¢
m(N) — dZ - Z,
is surjective. In particular Ny, = Ny, and we thus see from the above that

bl(N(pp) = bl(Nl//P) < 3 + xN(¢) < 3 + XN(¢)-

The following is the last lemma that we will need for the proof of Theorem 3.1.

Lemma 3.11. Let N be a 3-manifold and let ¢: m(N) — Z be a large homomorphism
such that the restriction of ¢ to all boundary-components of N is non-trivial. Then for all
but finitely many primes p we have

c(Ng) = p = 1 = 2by(ON).

Proof. Let N be a 3-manifold and let ¢: 71(N) — Z be a non-trivial homomorphism that
factors through an epimorphism a: m;(N) — F onto a non-cyclic free group F and such
that the restriction of ¢ to all boundary-components of N is non-trivial. By a slight abuse of
notation we denote the induced homomorphism F — Z by ¢ as well.

We denote the boundary components of N by T, ...,T. Foreachi € {1,...,k} we define
d; € N by the condition that ¢(711(T;)) = d;Z. Similarly we define d by ¢(n1(N)) = dZ. By
our hypothesis we know that d and all the d; are non-zero.

Now let p be any prime that is coprime to d and to di,...,d;. This choice of p im-
plies that the restriction of ¢, to each boundary component is surjective. Furthermore the
homomorphism ¢, : F — Z, is surjective. We deduce that

bi1(Ny,) = rank(ker(¢,: F —Z,)) > p—1.

Since the restriction of ¢, to each boundary component is surjective we see that the induced
covering of each boundary component is connected. Put differently, Ny, has precisely k
boundary components, each of which is a torus. We conclude that

c(Ng,) rank (coker{H1 (ONy,; Z) — Hi(Ny,; Z)})

bl(N¢1,) - b1(8N¢p) > p—1-2by(ON).

\%

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let N be an aspherical 3-manifold that is not a graph manifold.
We need to show that given any e > 0, there exists a finite subregular cover N of N such that
r(N) <e.

So let N be an aspherical 3-manifold that is not a graph manifold and let € > 0. If N is
hyperbolic then it follows from Proposition 1.1 that already r (N) = 0. Thus henceforth we
can restrict ourselves to the case that &V is not hyperbolic, i.e. N is a mixed manifold.

By Lemma 3.9 we can without loss of generality assume that there exists k > 1 hyperbolic
JSJ-components Ny, ..., N; of N and a homomorphism ¢ € H'(N;Z) = Hom(H,(N;Z),Z)
such the restriction of ¢ to each N;, i = 1,.. .,k is large but such that the restriction of ¢ to
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M =N\ (N;U---UNy)is fibered.

By our definition of JSJ-components we see that M contains all characteristic tori of
N. Since ¢l is fibered it follows from [8, Section 4] that the restriction of ¢ to a tubular
neighborhood of each characteristic torus is a fibered class. It follows in particular that the
restriction of ¢ to each characteristic torus is non-zero. This in turn implies that for almost
all primes p the restriction of ¢, to each characteristic torus is an epimorphism.

We write C := 3 + x(d|yr). We denote by j the number of JSJ-tori of N and we denote
by b the number of boundary tori of N. By the above and by Lemmas 3.10 and 3.11 there
exists a prime p such that the covering map f: N — N corresponding to the homomorphism
¢,: m1(N) — Z, has the following properties:

(1) The restriction of ¢, to each characteristic torus and to each JSJ-component is an
epimorphism. In particular the preimages of the JSJ-tori and the JSJ-components
under f are connected.

(2) Foreachi € {1,...,k} we have c(f~'(N)) > S92,

(3) We have b (f~1(M)) < C.

We claim that N has the desired property.

It follows from the Mayer—Vietoris sequence applied to the decomposition of N along the

Jj tori that are given by the preimages of the JSJ-tori of N and from (3) that

k

k
DN < biN) S C+2j+ Y bi(fT (N)).
i=1

i=1

The union of the f~'(V;), i = 1,...,k has at most 2j + b boundary tori. It follows easily that

k k
DTN < 4j+2b+ ) (T N
i=1 i=1

Putting the above two inequalities together we obtain that

k

k
DN < bi(N) < C+6j+2b+ ) c(f (N)).

i=1 i=1
On the other hand, it follows from the same Mayer—Vietoris sequence together with the fact
that the Thurston seminorm is in fact a norm on hyperbolic 3-manifolds that

k

KN) < bi(N) = ) e(f~ (N

i=1

The combination of the last two inequalities together with (2) shows that

k(N) . _C+6j+2b

riN) = —= < = <e
biN) By e(f~ (i)
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