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Summary. The ecology of pathogenic viruses can be considered both in the
context of survival in the macro-environments of nature, the theme pursued gen-
erally by epidemiologists, and in the micro-environments of the infected host.
The long-lived, complex, higher vertebrates have evolved specialized, adaptive
immune systems designed to minimise the consequences of such parasitism.
Through evolutionary time, the differential selective pressures exerted variously
by the need for virus and host survival have shaped both the “one-host” viruses
and vertebrate immunity. With the development of vaccines to protect us from
many of our most familiar parasites, the most dangerous pathogens threatening
us now tend to be those “emerging”, or adventitious, infectious agents that
sporadically enter human populations from avian or other wild-life reservoirs.
Such incursions must, of course, have been happening through the millenia, and
are likely to have led to the extraordinary diversity of recognition molecules, the
breadth in effector functions, and the persistent memory that distinguishes the
vertebrate, adaptive immune system from the innate response mechanisms that
operate more widely through animal biology. Both are important to contemporary
humans and, particularly in the period immediately following infection, we still
rely heavily on an immediate response capacity, elements of which are shared
with much simpler, and more primitive organisms. Perhaps we will now move
forward to develop useful therapies that exploit, or mimic, such responses. At
this stage, however, most of our hopes for minimizing the threat posed by viruses
still focus on the manipulation of the more precisely targeted, adaptive immune
system.

Introduction

Vertebrates are large, complex multi-cellular, multi-organ systems. In nature, each
of us functions as sets of ecological niches for the support of simpler life forms.
Our most intimate passengers are the viruses, which only replicate in living cells.
Many commensal organisms live in balance on skin and mucosal surfaces. Some
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of these apparently innocuous companions are clearly held in check by specific
host response mechanisms, as they will invade and cause disease and death
when the capacity to mount an effective T cell response is compromised by, for
example, HIV/AIDS . This is also true for highly adapted pathogens like Epstein
Barr virus (EBV), which may cause infectious mononucleosis following initial
exposure, then persists as a substantially latent infection that can drive oncogenesis
subsequent to loss of immune control [83]. Clearly, EBV has developed molecular
strategies through evolutionary time that facilitate both spread and long-term
carriage [69].

It is, in fact, reasonable to think that the current character of the human immune
system has been partly shaped by the continuing relationship with EBV and the
other herpesviruses that persist in our lymphoid cells and neurons. There can
be little doubt that the evolution of adaptive immunity, which first appears with
the jawed fishes about 350 × 106 years ago [93], has been driven by the need to
deal with infection [34, 68]. The molecular mimics of, for instance, cytokine
and chemokine receptors that are found in the large, complex, DNA viruses
indicates that the reverse may also be true for many one-host pathogens [94,
116]. Such stable parasitism reflects reciprocal relationships developed through
the long march of phylogeny.

Emergence and persistence in macro and micro environments

Pathogens that grow in a variety of hosts are less likely to have achieved a long-term
interaction with us and can thus be very dangerous when encountered for the first
time. Much of Bob Shope’s research career [109, 110] focused on arboviruses that
are maintained in wildlife reservoirs and cause only incidental infection of humans.
Many totally new viruses were discovered as a consequence of, for example, the
Rockefeller Foundation-funded programs of 1950–1970. Some, like Ross River
virus [41] were only found to be causative agents of human disease by retrospective
analysis of stored serum samples.The arbovirology community of this era included
many who were as at home in tropical rain forests as in the laboratory.

Unlike the human herpesviruses, the mosquito-borne viruses that are normally
maintained in (for example) birds have been under no selective pressure to ac-
commodate to human immune response mechanisms. The same may be true for
many of the “emerging” pathogens that impact on humans and domestic animals
suddenly, or sporadically, as a consequence of changes in culture, behaviour and/or
environment. The need to deal effectively with this enormous spectrum of novel
infectious agents is likely to have been one factor driving the extreme diversity of
both the B cell (immunoglobulin) and T cell receptor (TCR) families [1, 7, 42].
Another may be the rapid variation associated with the error-prone copying mech-
anisms of some RNA viruses. Furthermore, as the T cells focus on complexes
(epitopes) formed by the binding of processed viral peptides to major histocompat-
ibility complex (MHC) molecules [131], the extreme polymorphism of the MHC
[34, 92] can also be considered to reflect the evolutionary need to attach previously
un-encountered spectra of peptides to one or another MHC glycoprotein.
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The characteristics of viral emergence and persistence can thus be considered
in two independent, though not necessarily unrelated, contexts. The first is in the
broad environmental sense that considers such factors as climate, rainfall, forest
management, vector and reservoir distribution, changing demographic profiles
and so forth. The second concerns the environment within, whether “within”
be infected cells and organs in arthropods, vertebrates or humans. Some deter-
mining factors are virus growth characteristics, virus escape mechanisms, im-
mune receptor (antibody or TCR) specificity and diversity, immune selective
pressure, antigen presentation characteristics, lymphocyte proliferation rates and
the quality of immune effector function, both at the cell and the molecular level.
When it comes to the practical consideration of developing protective vaccines,
it is also necessary to think about the nature and durability of immune memory
[21, 40, 115].

This brief discussion concentrates on adaptive immunity, the spectrum of
precisely targeted host response mechanisms that maintain the functional integrity
of the environment “within” subsequent to virus challenge. It ignores the innate
immune system, which may be of great importance in the early stage of infection
with some viruses, particularly the herpesviruses [71], but is neither conventionally
antigen specific nor capable of generating the long-term memory that is the basis
of immunization. Of course, both aspects of immunity work together. The themes
of cytotoxic effector function [30] and localized cytokine production [95, 103],
particularly γ-interferon (IFN-γ) and tumor necrosis factor-α (TNF-α), are shared
by the cells of the innate and adaptive systems.

Plasma cells,B lymphocytes and antibodies

Antibody has been the traditional focus of virologists interested in the immediately
practical concern of making effective vaccines. Techniques for generating strong
serum antibody response to pathogens, or their products, were known through
much of the 20th century, and provided our first opportunity to exploit immunother-
apy with products like antitoxins and antivenenes. Many of the first immunologists
were, in fact, called serologists. Early pioneering work on the immune system,
including the discovery of the role of the plasma cell in antibody production
[44] by Astrid Fagraeus (1913–1993), was done, for example, at the State Serum
Institute in Copenhagen.

Measurement of serum neutralizing antibody is still the best correlate of
vaccine-induced immunity for many viruses. In the main, the protective, virus-
specific immunoglobulin (Ig) molecules are targeted to tertiary, conformed
determinants of glycoproteins expressed on the surface of the virion [76]. Such
pre-existing Ig may not completely block infection at (for example) mucosal
surfaces [99], but it does prevent the systemic spread of blood-born virus to distal
sites of potential pathology such as the large motor neurons in poliomyelitis. One
of the challenges for immunologists is to develop strategies for maintaining high
levels of mucosal antibody [72]. Can we hope to vaccinate against HIV if the virus
cannot be stopped at the initial site of entry?



20 P. C. Doherty and S. J. Turner

Antibody-mediated selection pressure drives the diversification of the in-
fluenza A viruses manifested as antigenic drift in the broader ecological context
[46, 127], while the continuing emergence of antibody escape variants within an
infected individual is a depressingly familiar characteristic [54, 63] of pathogens
like HIV and hepatitis C virus (HCV). Recent strategies for developing neutraliz-
ing antibody response to (for example) the M2 channel protein that is expressed
on the surface of the influenza A viruses [84] suggest that it may be possible to
generate protective antibodies directed at conserved determinants expressed on
molecular structures that have little, if any, capacity to vary. This would, of course,
be the “holy grail” for HIV research [23].

Serum antibody is often detected indefinitely after vaccination or primary
infection. Recent experiments have shown that B lymphocytes specific for vac-
cinia virus may be circulating in peripheral blood for as long as 50 years after
exposure to the DryVax vaccine [31]. Vaccinia virus is not present in the normal
human environment, and it is unlikely that (at least) most urban dwellers will
have encountered even a distantly related poxvirus that infects, for example,
domestic animals. Memory in the B cell/plasma cell compartment can apparently
be maintained in the very long term without further challenge by the inducing
antigen.

Antibody production is a property of plasma cells, the terminally-differentiated
stage of the B cell lineage. During the acute phase of an infectious process,
activated B cells/plasmablasts circulate in the blood and localize to various distal
sites. In the viral encephalitides, for instance, B cells/plasmablasts can be seen
to transit [32] from the blood to the central nervous system (CNS), where they
become plasma cells and continue local antibody production in the long term
[52, 98]. Persistent infection with a defective variant of measles virus in subacute
sclerosing panencephalitis is characterized by massive, long-term local antibody
production [114]. Subclinical infection of the CNS with an encephalitic virus
can also lead to the sustained presence of neutralizing Ig in cerebrospinal fluid
(CSF) at titers that are clearly discordant with levels in serum, providing a clear
indication of local Ig synthesis in the brain [98].

Other B cells/plasmablasts find their home in the bone marrow (BM), a process
that is clearly independent of antigen [60, 111] localization to that site. Long term
Ig production seems, in fact, to be a function of the BM compartment [112]. The
mammalian BM functions to provide continuous replacements for cells in the
hemopoietic lineages, including naïve B cell precursors. Perhaps the spectrum of
growth and differentiation factors that are required for this purpose also act to
sustain the antibody-producing plasma cells [26].

Though we have been studying antibodies for a very long time, there are still
big gaps in our understanding of topics like virus neutralization. The traditional
neutralization assay done in tissue culture does not, for example, take account
of the possible role of complement activation [132], or of opsonization and
destruction by macrophages, mechanisms that are likely to be operational in the
in vivo situation. The possible role of enhancing antibodies as a mechanism for
promoting virus growth and damage in macrophages and epithelial cells has been
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a major focus for those interested in hemorrhagic dengue [55]. Similar questions
have been raised for HIV, though more in the context of promoting virus growth
and persistence [80].The structural basis of antibody neutralization is clearly an
important focus [8]. More research is being done on antibody neutralization,
particularly as attempts are made to develop immunization strategies to limit the
ravages of the AIDS pandemic [23, 70].

Helper and effector CD4+ T cells

No long-term, protective antibody response is generated in the absence of CD4+
helper T cell function. Viruses can promote some IgM production, but even the
generation of substantial IgM titers depends on the involvement of helper T cells
[104]. In general, the requirement is for “cognate help”: the two categories of
lymphocytes must interact directly via TCR-mediated CD4+ T cell recognition of
viral peptide in the binding site of the appropriate MHC class II glycoprotein on
the surface of the B cell. Early IgA production may break this rule [105], but there
is still an absolute requirement for the concurrent stimulation of CD4+ T cells
by other antigen presenting cells, particularly dendritic cells (DCs). The possible
mechanism is that the T cells promote IgA production by B cells that have bound
viral components via surface Ig and are in sufficient proximity to be stimulated by
secreted lymphokines and cytokines. However, this is likely to be an exceptional
situation.

Though a concurrent CD4+ T cell response does not seem to be required for
the development of an effective CD8+ T cell response [14], it is clear that both the
qualitative and quantitative character of virus-specific CD8+ T cell memory may
be compromised in the absence of concurrent CD4+ T help [13]. This applies
to both the generation and the recall of memory CD8+ T cells. Unlike the B
cell/antibody response, CD4+ T help for the CD8+ responders is thought to operate
via the DCs, with the role of the CD4+ T cells being to activate the DCs to be
more effective antigen presenting cells [15, 100]. High-level virus persistence in
the absence of CD4+ T help is also associated with a progressive loss of functional
capacity by CD8+ T cell effectors [79, 82, 133]. This “immune exhaustion” effect
is seen most clearly with LCMV, and is less apparent for persistent infections that
are characterized by less fulminant antigen production [75, 117].

Activated CD4+ T cells play a very important role as direct mediators of
immune control in the host response to intracellular bacteria [67] and herpesviruses
[81]. In general, a primary requirement for these CD4+ T cell effectors [28] is
the production of IFN-γ. Mice that are CD4+ T cell deficient as a consequence of
disruption of the H2I-Ab gene can only partially limit the lytic phase of murine
γ herpesvirus 68 (γ HV68) infection, and succumb after about 100 days with a
late-onset, wasting disease [25]. Experiments with the influenza A viruses suggest
that CD4+ T cells promote recovery by providing help for the antibody response
[121], though there is other evidence that they can function directly in the site of
pathology [136]. Selective priming of CD4+ T cell memory can lead to a more
rapid antibody response to Sendai virus, to greater localization of CD4+ T cells to
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the infected lung and to more rapid virus clearance [136]. Recent evidence with
the mouse hepatitis coronavirus neurological disease model suggests that CD4+ T
cells can mediate virus clearance in the absence of antibody, but with substantially
delayed kinetics (S. Perlman, personal communication).

Cytokine production by CD4+ T cells can also have profound deleterious
effects. Mice that lack CD8+ T cells as a consequence of disruption of the β2-
microgloubulin (β2-m) light chain of the MHC class I glycoprotein fail to clear
lymphocytic choriomeningitis virus (LCMV) and develop a chronic, wasting
disease [37]. This was shown to reflect the persistent stimulation of CD4+ T
cells by the otherwise non-pathogenic LCMV. Also, if mice acutely infected with
LCMV (or with an influenza A virus) are dosed with a “superantigen” (staphy-
lococcal enterotoxin B), the resultant, massive, cytokine “dump” by highly acti-
vated, virus-specific CD4+ T cells can lead to death from TNFα-mediated shock
[106, 134]. It is also possible that cross-reactive CD4+ memory T cell stimulation
[77] and the resultant cytokine release could be a factor in the hemorrhagic
syndrome that can follow secondary infection with heterologous dengue viruses
[87].

The great majority of autoimmune disease that are though to be T cell mediated
have been associated with CD4+ [16] rather than CD8+ T cell response, though
this perception may be changing [73]. Such syndromes may, of course, reflect the
breaking of self-tolerance by exposure to molecular mimics of self-components
expressed by invading viruses or bacteria [88, 108]. The broad alternative is that
this apparent autoimmunity is directed at persistent, but as yet uncharacterised,
viruses [114].

CD8+ effector T cells

The CD8+ T cell is the primary mediator of virus clearance in the acute phase
of most infections, and can act in the absence of CD4+ T help and antibody
production to deal with at least some lytic viruses that lack a persistent phenotype
[39, 126]. Though activated, virus-specific CD8+ T cells are potent producers of
cytokines [113], particularly IFN-γ and TNF-α, the principal effector mechanism
in many infectious processes is thought to be cell-mediated cytotoxicity.Activated
CD8+ cytotoxic T lymphocytes (CTL) contain large intracytoplasmic granules
that express the pore-forming protein, perforin, and a range of serine esterases,
or granzymes [62, 74]. These discharge their contents at the “immunological
synapse” that forms at the interface between the “killer” lymphocyte, and the
infected cell, with the perforin and granzymes then acting synergistically to trigger
the classical apoptosis pathway [45].

Apoptotic elimination can, if the perforin/granzyme pathway is disrupted,
also be induced via the interaction of Fas ligand on the CTL with Fas expressed
on the infected cell [120]. The latter mechanism may, however, be less precisely
constrained by TCR/epitope recognition, and thus more likely to induce bystander
killing of other cells that happened to have increased Fas expression [122]. Even in
the absence of such “promiscuous” lysis, some immunopathology is an inevitable
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consequence of any virus-specific CTL response [33, 90, 128]. The simultaneous
elimination of large numbers of infected cells in (particularly) sensitive sites like
the CNS can lead to massive functional impairment and even death.

The nature of the infectious process can determine the relative significance
of different CD8+ T cell effector mechanisms. While IFN-γ seems to play (at
most) an ancillary role in the control of influenza pneumonia [50, 96], local
production of IFN-γ by CD8+ T cells is clearly important for the clearance of
respiratory syncytial virus from the lung [90]. Another situation where IFN-γ
produced by the CD8+ T cell is the primary mediator of virus control is in the
transgenic mouse, human hepatitis model studied by F. Chisari and colleagues
[53]. Production of IFN-γ by CD8+ T cells is also central to the limitation
of alphavirus [18, 19] and enterovirus infections [101] in the central nervous
system. Though inflammation may alter the normal profile [24, 97], neurons do
not generally express MHC class I glycoproteins [124]. Any T cell-mediated
control of neuronal infection is thus likely to work via locally secreted factors
rather than by the precisely targeted, direct T cell/target contact that is required
for cytotoxic elimination.

What we learned through the 1990’s from experiments with genetically dis-
rupted, “knockout” mice is that disabling molecular mechanisms that are thought
to constitute the primary mode of virus control often serves simply to reveal the
existence of potent, alternative, effector functions [36]. In the phylogenetic sense,
it is easy to see the reason for this divergence. The large DNA viruses, such as
the herpesviruses [49] and poxviruses [86], have evolved a number of strategies
for defeating cell-mediated immunity. It is important, both for the survival of the
host and the parasite in the evolutionary sense, that there should always be an
alternative means of control, at least to the level that allows for some persistent
virus production, or reactivation from latency.

T cell memory and the recall response

The development of FACS staining approaches utilizing tetrameric complexes
[2] of MHC class I glycoprotein + peptide (tetramers) has greatly facilitated the
analysis of both the effector and memory phases of virus-specific CD8+ T cell
responses [20, 40]. This technology has moved more slowly for the CD4+ T cell
subset [5, 6, 58], partly because the comparable MHC class II + peptide reagents
are more difficult to produce [129], and partly because CD4+ T cell responses can
tend to be both more diverse and smaller in magnitude.

The most useful techniques for analysing CD4+ T cell memory depend on the
measurement of IFN-γ production by peptide-stimulated lymphocytes, measured
either in a flow cytometric assay or by ELISpot analysis after 24–48 hours of
in vitro culture [66]. Persistent CD4+ T cell memory is, for example, found for
adenoviruses in healthy humans [89]. Lack of progression to AIDS has been
correlated with the continued presence of more HIV-specific IFN-γ than IL-
10-producing CD4+T cells in the peripheral circulation [91]. Priming CD4+ T
cell memory to a prominent Sendai virus epitope led to a more rapid antibody
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response and enhanced virus clearance [136]. Low-level γHV68 persistence
induced continuing CD4+ and CD8+ T cell responses that substantially prevented
the establishment of further lytic, but not latent, infection following respiratory
challenge of antibody-negative, µMT mice with the same virus [4]. Immune CD4+
and CD8+ T cells contributed to this protective effect in an additive way. Though
adoptively-transferred CD4+ and CD8+ T cells promoted the recovery of µMT
mice from influenza virus infection, the CD8+ set was clearly more effective in
this regard [51]. In general, we understand less about CD4+ than CD8+ T cell
memory.

Persistent CD8+ T cell memory can be demonstrated in both mice and humans
following a single exposure to an inducing virus [38, 56, 61, 65, 78]. These
long-lived T cells and their progeny express high levels of telomerase activity
[57] though, under conditions of continuing antigen stimulation, telomere length
may be shortened to the extent that clonal survival is impaired [102, 125]. The
maintenance of CD8+ T cell memory reflects the survival of clontotypes expanded
during the initial, antigen driven phase of the host response [123], but does not
seem to require either the persistence of the inducing epitope or even the continued
presence of MHC class I glycoprotein [59, 85]. What does seem to be important
is exposure to the cytokines IL-7 and IL-15, both during the acute response phase
and in the long term. [17, 64, 107, 119, 135].

The recall of CD8+ T cell memory can certainly provide a measure of pro-
tection against virus challenge [27], a possibility that is particularly attractive
for viruses that vary their surface glycoproteins as a consequence of antibody-
mediated selection pressure. Virus-specific CD8+ T cell responses tend to be
directed at peptides derived from conserved, internal proteins [12, 130], a situation
that may be quite different from that found with CD4+ T cell responses [22]. This
cross-reactivity is, for instance, a good reason for thinking about the use of live
influenza vaccines, combined with other mechanisms for boosting CTL memory
[29, 43].

The problem with relying on the recall of CD8+ T cell memory for protection
is that, though the injection of peptide-pulsed cells is generally associated with
rapid elimination [9], the recall of effective CD8+ T cell memory to a distal site of
virus growth is substantially delayed [35, 47]. When memory T cell numbers are
at what might be thought of as physiological levels, there is a clear necessity for
further proliferation in the lymphoid tissue, followed by emigration into the blood
and localization to the target organ [48]. Even when memory T cell numbers are
very high in, for example, the lung, a rapidly growing influenza A virus will still
become fully established before CD8+ T cell effectors operate to eliminate the
infected cells and control the growth of the pathogen [29].

Thus, though vaccines directed at promoting CD8+ T cell memory can limit
the damage done by lytic viruses that do not have a capacity for persistence, they
seem unable to prevent the establishment of persistent infections [4, 118]. This
has been clearly demonstrated for monkeys primed with candidate HIV vaccines
[3, 10]. The T cells function for a time to limit the extent of virus replication, but
escape variants eventually emerge [11].
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Conclusions

Some virus infections may be controlled by either an effective CD8+ T cell re-
sponse, or by a high quality B cell/antibody response that depends on CD4+ T help.
In general, however, the host response is optimally mediated by all three categories
of immune lymphocyte operating together. This is clearly the case for the large
DNA viruses, particularly the herpesviruses, which also require the involvement
of cytokine-producing CD4+ effector T cells [28]. Most of our successful vaccines
to date depend on the capacity of a persistent neutralizing antibody response to
limit systemic spread to distal sites of virus growth. Memory CD8+ T cells may
not prevent the establishment of an infectious process, though the more rapid
recall of CTL effector function is likely to ameliorate the severity of pathology
and consequent clinical impairment by speeding virus clearance [29]. Again,
with viruses that have the capacity to persist, the available evidence suggests
that an optimal vaccine will prime all the components of adaptive immunity
[3].
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