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Abstract

A theoretical and experimental study is presented of the viscoplastic version of
the Stokes problem, in which a oscillating wall sets an overlying fluid layer into
one-dimensional motion. For the theory, the fluid is taken to be described by the
Herschel-Bulkley constitutive law, and the flow problem is analogous to an unusal
type of Stefan problem. In the theory, when the driving oscillations are relatively
weak, the overlying viscoplastic layer moves rigidly with the plate. For sufficiently
strong oscillations, the fluid yields and numerical solutions illustrate how localized
plug regions coexist with sheared regions and migrate vertically through the fluid
layer. For the experiments, a layer of kaolin slurry in a rectangular tank is driven
sinusoidally back and forth. The experiments confirm the threshold for shearing
flow, equivalent to a balance between inertia and yield-stress. Although kaolin is
well described by a Herschel-Buckley rheology, the layer dynamics notably differs
between theory and experiments, revealing rheological behaviour not captured by
the steady flow rule.
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1 Introduction

The Stokes layer (the development of motion in a viscous fluid adjacent to an
oscillating wall) is a classical problem in fluid mechanics, and appears in most
textbooks on the subject (e.g. [1]; the oscillating plate problem is sometimes
referred to as Stokes’ second problem). The fluid dynamics is simplified sig-
nificantly in this problem by virtue of the one-dimensionality of the flow, and
general solutions can be given for viscous fluids even when the wall motion
is arbitrary (although the solution takes an integral form). The most recent
literature on the Stokes problem is directed towards the flow instabilities that
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Fig. 1. The set-up of the problem. On the left we sketch the flow field expected for
the Newtonian problem (with the spatial oscillations emphasized); the picture to
the right suggests how this flow field might be modified by the introduction of a
yield stress.

occur at higher Reynolds number [2], applications in microfluidics [3] or to its
extensions for viscoelastic fluids [4,5].

For a viscous layer of thickness, h, adjacent to an oscillating wall with fre-
quency, ω, and speed, −U cos ωt, the surface speed of the fluid in the labora-
tory frame, V (t), can be shown to satisfy (over times sufficiently long that the
solution converges to a periodic signal)

V

U
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√

2) cos(H/
√

2) + sin ωt sinh(H/
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2) sin(H/
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where H = h/l, l =
√

η/ρω is the Stokes penetration depth, η is the dynamic
viscosity and ρ is the density. When the thickness of the fluid layer is small
compared with the Stokes length (small thickness, low frequency or high vis-
cosity), the surface speed reduces to the base speed, whereas for H → ∞
the surface speed becomes exponentially small. For arbitrary H , the velocity
profile oscillates across the layer as sketched in figure 1 (left).

The purpose of the present article is to explore the viscoplastic version of the
Stokes problem. The existence of a yield stress introduces a strong nonlin-
earity into the problem that, for most flow problems, significantly affects the
dynamics. The most obvious difference with a viscous fluid is that for suffi-
ciently gentle oscillations, the shear stress developed across the layer never
reaches the yield stress and one expects the material to move rigidly with the
base. On the other hand, there should also be a critical acceleration above
which the shear stress at the base exceeds the yield stress, resulting in inter-
nal shearing and flow. This behavior is reminiscent of the motion of a rigid
block sliding frictionally over a moving plate. For such a system, the block is
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Fig. 2. Periodic solutions to the sliding block model with µg/(ωU) = 2/3 (dotted
line) or 1/4 (dashed line). The solid line is the dimensionless plate speed, − cos t.
The stars show the moments of the µg/(ωU) = 2/3 cycle where the block locks onto
or unlocks from the plate. The circles show the instants of acceleration reversal for
the µg/(ωU) = 1/4 cycle as the relative speed of the plate and block switches sign.

frictionally locked to the plate if

| sin ωt| <
µg

ωU
−→ V = −U cos ωt; (2)

otherwise the block slides according to the equation of motion,

dV

dt
= −µg sgn(V + U cos ωt), (3)

where µ is the friction coefficient (no distinction is made between static and
dynamic friction) and g is gravity. For µg > ωU , friction is always sufficient to
hold the block in place throughout the oscillation of the plate. When µg < ωU ,
however, friction cannot hold the block in place for at least part of the cycle.
Two types of behaviour then result. For higher friction, the block slides for only
part of the cycle, and there is period of locking. At lower friction, the block
slides for the whole cycle and executes an orbit with a sawtooth oscillation in
V (t), as illustrated in figure 2.

Although a viscoplastic fluid may behave like a sliding block close to the
threshold, the dynamics is enriched by the ability of the material to yield
and shear within the bulk and not just at the base. In particular, within the
viscoplastic Stokes layer there may be a complicated structure to the yield
surfaces that divide sheared flow from unyielded plugs. Notably, the dynamics
of Newtonian Stokes layers corresponds to viscous diffusion, and the steady
response to an oscillating wall takes the form of a velocity field that decays
exponentially and oscillates in space as one ascends through the fluid (figure 1,
left). The oscillatory signal emphasizes how the shear rate passes periodically
through zero, a situation that leads one to suspect that a yield stress will
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generate a sequence of localized plugs over the low-shear-rate regions. The
sketch on the right of figure 1 illustrates the notion.

Our goal in the present article is to bring out these features of the viscoplastic
Stokes layer. A main aim is to explore whether the configuration can actu-
ally be used as a useful rheometer, much as has been suggested for granular
layers [6]. To this end, we explore the problem both theoretically and ex-
perimentally. The theory solves the one-dimensional flow problem, using the
Herschel-Bulkley model to represent the viscoplastic rheology (section 2). The
experiment involves driving back and forth a tank filled with an aqueous con-
centrated suspension of kaolin (section 3).

2 Theory

2.1 Governing equations

We solve the unsteady, one dimensional flow problem sketched in figure 1: a
plate lying along the x−axis of a two-dimensional coordinate system oscillates
sinusoidally with speed, −U cos ωt, and frequency, ω. The flow field induced
in the fluid, u(y, t), satisfies

ρ
∂u

∂t
=

∂τ

∂y
, (4)

where ρ is density and τ is the shear stress, which is related to the shear rate
uy by a viscoplastic constitutive law,

uy = 0, |τ | < τY ,

τ = ηuy + τY sgn(uy), |τ | ≥ τY ,
(5)

with η the viscosity and τY the yield stress. We consider the Herschel-Bulkley
model for illustration: η = K|uy|n−1, where K and n represent material con-
stants.

The upper surface of the fluid, located at y = h, is free, implying that τ(h, t) =
0, and no-slip on the plate demands u(0, t) = −U cos ωt. The initial condition
has the fluid moving rigidly with the plate, u(y, 0) = −U .
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2.2 Dimensional considerations

The preceding formulation contains five dimensional quantities with dimen-
sions involving space and time: U , ω, h, τy/ρ and a characteristic kinematic
viscosity, η∗/ρ (where η∗ is the usual viscosity for the Bingham model with
n = 1; when n 6= 1, an analogous characteristic viscosity can be built from
K and the other constants). At first sight, one might imagine that this would
imply that there are three dimensionless groups, plus n, which control the flow
dynamics. In particular, since η∗/ρ and ω can be used to construct the Stokes
length,

ℓ =

√

η∗
ρω

≡
(

K

ρω

)2/(n+1)

U (n−1)/(n+1) (6)

(with a suitable definition of η∗), there is a length ratio and “Bingham num-
ber”,

H =
h

ℓ
and B =

τY

ρωℓU
. (7)

The third dimensional grouping can be taken to be the speed ratio, ωℓ/U .
However, in the one-dimensional problem under consideration, the amplitude
of the horizontal velocity component (u) is unrelated to the characteristic
speed with which viscous diffusion operates, ωℓ. Consequently, the flow dy-
namics are independent of this third dimensionless parameter, and only H , B
and n are relevant.

We now remove dimensions from the problem by defining the dimensionless
variables,

t̂ = ωt, ŷ =
y

ℓ
, H =

h

ℓ
, û =

u

U
, τ̂ =

τ

ρωUℓ
, (8)

where ℓ is a characteristic lengthscale. With these choices, using the shear
stress as the main dependent variable, and after dropping the hat decoration,
we arrive at

∂

∂t
γ̇(τ) = τyy, τy(0, t) = sin t, τ(H, t) = 0, τ(y, 0) = 0, (9)

where γ̇(τ) is the shear rate written in terms of τ ; i.e the inverse of the
constitutive law,

uy = γ̇(τ) = [Max(0, |τ | − B)]1/n sgn(τ). (10)
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A formulation using τ has the advantage of expressing the shear rate unam-
biguously in terms of a single-valued function of the shear stress, and comprises
a generalized type of Stefan problem [7]. We solve (9) and (10) numerically
using the methods outlined in the Appendix.

2.3 The superficial plug and the shear-flow threshold

The stress-free surface boundary condition, τ(H, t) = 0, implies that the
stresses within the viscoplastic Stokes layer must always fall below the yield
value sufficiently close to the surface. If we denote y = Y (t) as the yield
level immediately beneath the surface, then the momentum equation, ut = τy,
integrated over the superficial plug implies that

(H − Y )
dV

dt
= [τ ]y=H

y=Y ≡ −B sgn[τ(Y, t)], (11)

where u(y, t) ≡ V (t) is the surface and plug speed. Equation (11) also implies
the conditions,

|τ(Y, t)| = B, τy(Y, t) = −B sgn[τ(Y, t)]

H − Y
; (12)

above z = Y , the stress solution takes the relatively simple form,

τ = B
(

1 − y

H

)

sgn[τ(Y, t)]. (13)

Equation (13) implies that the stress increases linearly with depth until it
reaches the yield value at y = Y . In fact, the basal shear stress must exceed
the yield stress at some moment during the cycle in order that the fluid yield at
all. When the whole layer is rigid, the stress distribution is τ = (1−y/H) sin t,
which is always below the yield stress if B > H, i.e. ρhωU < τY . In other
words, the layer behaves like a rigid block if the inertial force on the entire layer
is smaller than the yield stress. Above this threshold, the fluid must yield for
at least part of the cycle, and over at least part of its depth. However, without
solving the equations we cannot gauge the degree of yielding, or its spatial
structure as there may be multiple interlaced yielded zones and plugs.

Note that either of the relations in (12) can be used to reduce the size of
the computational domain: in principle, the first could be used in conjunction
with a front-tracking scheme to avoid computing the overlying plug zone. The
second allows one to place an artifical boundary inside the plug at a level
which is well below the surface. The first approach must still cope with any
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Fig. 3. Initial-value problem beginning with the unstressed state (τ(y, 0) = 0 and
u(y, 0) = −1), for H = 10, B = 1. Panel (a) shows contours of constant u(y, t)
(increments of 0.1333 from −1 to 1), with the yielded zones shaded. Panel (b)
displays the basal and surface speeds, u(0, t) and u(H, t), as well as the basal shear
stress, τ(0, t).

other yield surfaces and so we have not proceeded down that pathway; the
second scheme proves useful when considering very deep layers.

2.4 Results for the Bingham fluid (n = 1)

A sample solution to the initial-value problem beginning with the unstressed
state (τ(y, 0) = 0) is shown in figure 3. The whole fluid layer initially moves
rigidly with the plate, but soon afterwards the bottom regions yield locally
as the basal acceleration increases. The yielded zone grows with time until
shortly after the plate reverses direction, whereafter it shrinks and eventually
disappears near t = 5. By that moment, however, a new yielded zone has
spawned near the plate which grows to continue the cycle. Eventually the
solution converges to a periodic orbit, further details of which are shown in
figure 4; the yielded zones are localized in both space and time, and two
distinct plug regions coexist during part of the cycle. Note the discontinuous
change in the shear stress at the moments that a yielded zone collapses (as
predicted in a related analysis [8]).
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Fig. 4. The final periodic solution for H = 10, B = 1. Panels (a) and (b) show the
speed, u, and shear stress, τ , as densities on the (t, y)−plane (with the yielded zone
indicated). Panel (c) shows 13 equally spaced snapshots of u(y, t) through half of
its cycle. Panel (d) displays the basal and surface speeds, u(0, t) and u(H, t), as well
as the basal shear stress, τ(0, t).

Convenient diagnostics of the dynamics can be extracted from the surface
speed, V (t) = u(H, t); see figure 5. For the smaller layer depths, the fluid
remains rigid throughout its depth for a significant fraction of the cycle, and
the surface speed is frozen to the plate forcing. For the larger values of H ,
the yielded regions expand such that the fluid is yielded somewhere for each
instant during the cycle, and V (t) is never locked to the plate. Instead, V (t)
begins to resemble a sawtooth profile, despite the sinusoidal forcing, much like
the sliding block described in the Introduction. This feature can be rationalized
from (11) which implies that, if the plug zone is relatively deep, H ≫ Y and

dV

dt
≈ B

H
−→ V ≈ V0 ±

tB

H
, (14)

for some integration constant, V0. Moreover, since the cycle period must be
2π, it immediately follows that the peak surface speed is

Vmax ≈ πB

2H
. (15)
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Fig. 5. Surface speed, V (t), against time for B = 1 and five values of H (1/2, 2, 3,
4 and 5). The dashed curve shows the sinusoidal oscillation of the base plate.
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Fig. 6. Plots of the maximum surface speed and the maximum of the departure of
that speed from the basal speed, Max(|V + cos t|), for B = 1. Also indicated is the
prediction (15) and the phases of the cycle at which the two maxima occur.

Further details of the surface speed diagnostic for B = 1 and varying H are
shown in figure 6. This picture displays how the maximum values of |V (t)|
and |V (t) + cos t| (the basal-surface velocity difference) vary with H , and
also indicates the phase of the cycle at which the maxima occur. For lower
H , the speed maximum occurs when the layer is rigid, giving a maximum of
unity at zero phase. For larger H , the peak value converges to that expected
for the sawtooth, and the phase approaches π/2. For the velocity difference,
the maximum occurs near π/2 for small H − B, which is the phase of the
cycle where the acceleration is largest. As H becomes large, the phase of
the maximum velocity difference approaches π, corresponding to the phase of
maximum basal speed, which dominates the surface speed in this limit.
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Fig. 7. Flow curves for the kaolin slurries (◦ 48%, • 50 %, × 54 % of kaolin particles
in mass) obtained by decreasing the shear rate after an initial preshear (log-ramp
in the range 100 s−1 - 10−2 s−1, for waiting time in the range 1 s - 100 s). The lines
correspond to the Herschel-Bulkley fit.

3 Experiments

3.1 Set-up and procedure

To compare with the theory, we perform experiments using kaolin slurries
(natural clay) as model viscoplastic fluids. This material is well-known to
exhibit a yield stress and its rheological properties can be tuned by changing
the concentration of kaolin particles in water (e.g. [9]). Another advantage
of kaolin slurry in our oscillating configuration is that it is relatively stiff
compared with other, softer yield-stress fluids such as Carbopol or Laponite,
and so elastic effects are likely minimized. Three different fluid samples were
prepared by mixing 48%, 50% and 54% of kaolin (by mass) into distilled
water at ambient temperature (T = 24◦C). The rheological behaviour of each
solution was measured in a cone-and-plate geometry (Anton-Paar MCR 501)
using slightly roughened surfaces and special care was taken in order to prevent
evaporation during the tests. Figure 7 shows that, for each sample, the steady-
state flow curve can be approximated by a Herschel-Bulkley fit (see table 1),
suggesting that kaolin slurry is a good choice to compare with the theory.
Nevertheless, deviations from the ideal viscoplastic behavior exist, particularly
close to the flow threshold, where creeping, aging and hysteresis are observed.
We will return to this point below.

The experimental set-up is sketched in figure 8. It consists of a transparent
rectangular box made of Plexiglass with a bottom roughened with sandpaper
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#Run % of clay (in mass) τc (Pa) K (Pa.sn) n ρ (g/cm3) h(cm)

1 48 16 ± 2 15.5 0.32 1.4 ± 0.1 2.2 ± 0.1

2 48 16 ± 2 15.5 0.32 1.4 ± 0.1 1.1 ± 0.1

3 50 20 ± 3 17 0.3 1.4 ± 0.1 1.45 ± 0.1

4 54 40 ± 5 36.4 0.35 1.6 ± 0.1 1 ± 0.1

Table 1

Different experimental conditions used in the experiments. τc, K and n are
the parameters of the Herschel-Bulkley fit.

Fig. 8. Sketch of the experimental set-up.

(length 20 cm, width 8 cm, height 4 cm), which is partially filled with a uniform
layer of kaolin slurry and enclosed with a transparent film to prevent evap-
oration. The box is constrained to move horizontally and driven sinusoidally
by an electromagnetic shaker with an amplitude, A (0.1 cm< A < 1cm), and
a frequency, ω (1 Hz< ω/2π < 15 Hz). Efforts were made to produce a clean
sinusoidal signal, as the dynamics of the mud layer is entirely controlled by
the acceleration of the box, which in turn is sensitive to small imperfections
in displacement. The motion of the fluid surface is measured by tracking with
a high-speed camera (1000 fps) the position of a 5 mm diameter tracer. The
motion of the box is recorded simultaneously using a reference marker rigidly
fixed to the box (figure 8). The position of the tracer on the fluid free surface,
X(t), is obtained to within a precision of 50 µm. We checked that the motion
of the free-surface is not affected by the side-walls, except close to the edges
where a thin boundary layer of order h existed. All measurements are made
at the centre of the box.

3.2 Results

We first studied the onset of motion of the mud layer. In the theory, the
threshold is controlled by a single dimensionless number, H/B = ρωhU/τc =
1. As a first test, we consider a given slurry with one depth (run 1 in table 1),
and vary the amplitude of the box motion, A = U/ω, for different frequencies.
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Fig. 9. Maximum displacement of the surface relative to the forcing,
∆X = Max(X) − A, over the Stokes length l, as a function of H/B. Data ob-
tained for run 1 by increasing A at different frequencies. Inset: corresponding phase
difference.

Figure 9 shows how the maximum surface displacement and its phase relative
to the base motion vary with H/B, computed using the Fourier transform of
the displacement, X(t). At low forcing amplitudes (or H/B), the fluid layer
oscillates in solid motion with the box, and the maximum displacements are
equal and occur at the same phase. At higher amplitudes, the free-surface
displacement reaches a different maximum compared to the base amplitude
and a phase lag arises, indicating that the fluid is now sheared. Although the
critical driving amplitude for the flow threshold depends upon frequency, each
threshold corresponds to H/B = 1, as shown by figure 9. The same result is
obtained when both the layer depth and the yield-stress are varied, as shown
in figure 10. In all cases, the mud layer is rigid below H/B = 1 and start to
flow for H/B > 1.

Typical time series of the free-surface speed are displayed in figure 11 for
different values of H/B. Close to the flow onset (Fig. 11a), the fluid motion is
characterized by a stick-and-slip motion, which can be highlighted on plotting
the relative speed between the mud surface and the base (inset of 11a). As we
move further from the threshold, the sticking phase disappears and a phase
lag arises between the two signals (Figs. 11b and c). Note that during the
cycle, the mud surface reaches speeds that are higher than the base speeds.
This effect occurs close to the flow threshold, but disappears at larger driving
amplitudes (Figs 11d and e). The overshoot is systematically observed for all
the flow conditions we have tested, as shown by Figure 12 where the ratio of
the maximum surface speed and U is plotted versus H/B.
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3.3 Comparison

The experimental observations are in partial agreement with the visco-plastic
theory developed in section 2. First, the flow threshold is well reproduced
by the criterion, H/B = 1, and the slurry behaves like a rigid block below
this threshold. Second, just above the flow threshold, a stick-slip regime is
observed in both experiment and theory. Third, the observed surface speed
decreases at large driving, as predicted by the theory. Despite this, the theory
fails to qualitatively capture the detailed dynamics observed experimentally,
even though the flow curves measured in the rheometer are well described by
the Herschel-Bulkley fit. In particular, the time series of the observed sur-
face speeds shown in Fig. 11 are qualitatively different in shape from their
theoretical counterparts (included in the same figure); at larger driving, the-
ory predicts a sawtooth-like variation whereas the observations display more
structure. More strikingly, the theory always predicts that U > |V (t)|, whereas
close to the threshold, the mud surface speed is observed to be systematically
larger than U (fig. 12).

The fact that the surface speed overshoots the forcing close to the flow thresh-
old could suggest that some sort of resonance is taking place. Two possibilities
present themselves: resonance with an elastic standing wave or a seiche-like
normal mode. An elastic origin, however, does not seem plausible in view of the
fact that below the threshold, no relative motion between the free surface and
the base is detectable, indicating that elastic deformations are insignificant.
Moreover, one can estimate a characteristic resonance frequency based on the

time taken for an elastic wave to traverse a layer of depth h: tel = h/
√

E/ρ,
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where E is Young’s modulus. With measurements of E = 104 Pa, based on
oscillatory tests in a rheometer, we estimate tel = 4 ms, which is much smaller
than any of the experimental oscillation periods. Likewise, we can also dismiss
resonance with a surface gravity wave since the dynamics is unaltered when
we used different depths, lengths and widths (which should change the seiche
frequency).

We conclude that the origin of the discrepancy lies in the unsteady rheolog-
ical properties of the kaolin slurry. Thixotropy, which is known to occur in
natural clays, could be the explanation [10]. However, the relevant time scales
in our problem are relatively rapid in comparison to the relaxation times
normally considered to characterize thixotropy in slurries. Perhaps the visco-
plastic stokes layer provides a sensitive probe into thixotropic effects over short
timescales.

4 Conclusions

We have presented a theoretical and experimental exploration into the effect of
viscoplasticity on the dynamics of the Stokes layer. Theoretically, we find that
the yield stress introduces a complicated spatio-temporal pattern of yielded
zones and plugs within the fluid layer. However, overall, and as anticipated,
the dynamics interpolates between the viscous Stokes layer and a sliding rigid
block as the effect of the yield stress is increased.

Rather surprisingly, although in the experiment we use a fluid that is seemingly
well described by the Herschel-Buckley flow rule, we discover qualitative dis-
agreement between theory and experiment. More specifically, we have found
that shaking a kaolin slurry leads to an excitation of fluid activity that is
both more pronounced and richer than expected. We suspect that this reflects
some significant relaxational dynamics in the fluid which is not captured by
the steady flow rule. Our flow is highly unsteady with a shear rate that changes
sign periodically; therefore its dynamics could be highly coupled to internal
relaxation modes, such as thixotropic and microstructure orientation effects
[11].

We set out in this study with the hope that the viscoplastic Stokes layer might
prove to be a valuable rheological device. Although we leave the reader with
an unsatisfying disagreement between theory and experiment, this hope seems
to have been bourne out: unexpected dynamical features have been revealed
by the viscoplastic Stokes layer, that could serve as a test to probe more
elaborated rheological models [12].
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A Solution method

We solve (9) and (10) numerically using a standard implicit or a simpler
semi-implicit scheme in time. Spatial derivatives are dealt with via either
second-order-accurate finite differences on either a fixed or moving grid (the
latter adapted from [13]). The implicit time integrators are based around the
differential-algebraic solver DASSL [14]. In principle, a fully implicit scheme
can deal with a yield surface moving across the grid. However, most state-of-
the-art implicit solvers also require iteration to the solution, which is prob-
lematic in the current problem at the instants when spatially localized yielded
regions or plugs collapse (yield surfaces collide; see section 2). At that instant,
the stress solution is formally discontinuous, which makes any iterative scheme
fail to converge. On the other hand, a scheme that suspends the iteration or
proceeds explicitly will jump across the moment of discontinuity and thereby
incur error. We avoid the problem in the iterative schemes by “regularizing”
the problem and smoothing out the function, γ̇(τ), using the convenient (but
rather arbitrary) construction:

∂

∂t
γ̇(τ) = γ̇′(τ)τt ≡ τt



1 +
τ 2 − B2

√

ε2 + (τ 2 − B2)2



 , (A.1)

with ε chosen to be as small as possible (typically less than 10−6, and no
greater than 10−4 in the worst cases).

The simpler finite-difference, non-iterative, semi-implicit scheme is formulated
as follows (Pailha & Pouliquen, in preparation)

γ̇t ≈
γ̇n+1

j − γ̇n
j

dt
≈ τn

j+1 + τn
j−1 − 2τn+1

j

dx2
(A.2)

where j refers to the jth grid point and n to the nth time step, and dt and dx are
the time step and grid spacing (with appropriate modifications to incorporate
the end points). In other words, the second derivative is dealt with semi-
implicity in such a way that we may write an equation for the evolved shear
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stress:

τn+1
j +

2dx2

dt
γ̇n+1

j =
1

2
(τn

j+1 + τn
j−1) +

2dx2

dt
γ̇n

j ≡ Jn
j . (A.3)

If |Jn
j | < B or µ1(1− y/H), the jth grid point is unyielded and we set τn+1

J =

Jn
j ; otherwise we include γ̇n+1

j and solve algebraically for τn+1
j . This solver

needs no regularization. However, the semi-implicit fashion in which the second
derivative is dealt with has the disadvantage of additional smoothing, which
acts much the same as the regularization of the implicit schemes.

We verified that the various schemes gave identical results for the compu-
tations reported in the main text. However, a better procedure would be to
integrate forwards upto and not beyond the moment that the yielded zone
disappears. The integration could then be restarted with the jump in τ taken
into account [8].
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