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The Visibility Complex

(Extended Abstract)

Michel Pocchiola”

Abstract

We introduce the visibility complex of a collection

D of n pairwise disjoint convex objects in the plane.

This 2–dimensional cell complex may be considered as

a generalization of the tangent visibility graph of 0.

Its space complexity k is proportional to the size of

the tangent visibility graph. We give an O(n log n+k)

algorithm for its construction. Furthermore we show

how the visibility complex can be used to compute

the view from a point or a convex object with respect

to O in O(rn log n) time, where m is the size of the

view. The view from a point is a generalization of the

visibility polygon of that point with respect to O.

1 Introduction

Consider a collection O of pairwise disjoint objects

in the plane. We are interested in problems in which

these objects arise m obstacles, either in connection

with visibility problems where they can block the

view from an other geometric object, or in motion

planning, where these objects may prevent a mov-

ing object from moving along a straight line path.

The visibility graph is a central object in the context

of these problems. For polygonal obstacles the ver-

tices of these polygons are the nodes of the visibility

graph, and two nodes are connected by an arc if the

corresponding vertices can see each other. [We185] de-
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scribes the first non-trivial algorithm for computing

the visibility graph of a polygonal scene with a total

of n vertices in 0(n2) time. [GM91] presents an opti-

mal O(n log n + k) algorithm, where k is the number

of arcs of the visibility graph. A related problem con-

cerns the computation of the view (visibility polygon)

of a point amidst polygonal obstacles. There are sev-

eral output sensitive algorithms for a single shot com-

putation, see [HM91] and the references given there.

Due to its discrete structure the visibility graph is

not rich enough to maintain the view of a moving

point in a continuously varying direction. To cope

with this and similar problems we introduce the vis-

ibilit y complex of a set of pairwise disjoint convex

objects O, a 2–dimensional cell complex that can be

considered as a subdivision of the set of rays emanat-

ing from these objects. Faces correspond to collec-

tions of rays of ‘constant visibility’.

Similar ideas have been used in earlier work on vis-

ibility, shortest paths and motion planning amidst

polygonal obstacles, see e.g. [CG89, Poc90, Veg90,

Veg91]. Here the space of directed lines, endowed

wit h a part it ion generated by the set of obstacles, is

regarded as the main structure, instead of the scene

of obstacles itself.

Unless otherwise stated we assume that the convex

objects have complexity 0(1 ), so we can compute the

tangents from a point to a convex object, as well as

the common tangents of two objects in O(1) time.

Then the space complexity of the visibility complex is

proportional to the size of the tangent visibility graph

(TVG) of 0. The set of vertices of the latter graph is

O. Furthermore any common tangent of two objects

01,02 E O whose endpoints can see each other cor-

respond to an edge {01, 02} of the TVG. (Note that

there are at most 4 edges between two vertices.) We

show that the visibility complex can be computed in

optimal O(n log n + k) time. Here k is the complexity

of the visibility complex, or, equivalently, the number

of arcs of the tangent visibility graph.
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The visibility complex contains sufficient informa-

tion to maintain the view along a moving ray, Such

a continuously moving ray corresponds to a curve in

the visibility complex. Positions of the ray at which

the visibility changes correspond to intersections of

the curve with edges of the visibility complex. In

particular if the moving ray rotates around its origin,

maintaining the visibility boils down to computing

the visibility polygon (or: the view) of this origin.

We show how to compute the view from a point in

O(h log n) time, where h is the size of the view. This

is the main result of section 2.

2 The Visibility Complex

Terminology

First we introduce some terminology. Consider a col-

lection O of pairwise disjoint convex obstacles. [Jnless

otherwise stated each obstacle is strictly convex, and

has a smooth boundary. As mentioned in the intro-

duction the complexity of each object is 0(1). For

the sake of convenience we assume that the object-

s in 0 are in general position, in the sense that no

three objects share a common tangent line. To facil-

itate a uniform description of the visibility complex

we introduce an object Om at infinity, which can be

viewed as a sufficiently large circle that encloses the

collection of obstacles. The complement $ of the u-

nion of the set of obstacles in the disc enclosed by

0~ will be called free space.

Any finite sequence of points on the boundary of a

convex object O subdivides the boundary into curved

segments, called arcs. A bitangent is a free line :seg-

ment that is tangent to two objects at its endpoints.

A chain is a simple curve consisting of an alternat-

ing sequence SI, . . ., s~ of bitangents and arcs, such

that Si and si+l share an endpoint, at which the bi-

tangent is tangent to the arc. Such a chain is called

convex if connecting its endpoints by a line segment

yields a simple closed curve that bounds a convex re-

gion. A maximal (minimal) point of a convex chain

is a boundary point at which the tangent, line to the

boundary is horizontal, such that the chain lies below

(above) this tangent line. An ea:tremul point is either

a maximal or a minimal point. A pseudo-triangle is

a simply connected subset R of Y such that (i) the

boundary 8R is a sequence of three convex chains,

that are tangent at their endpoints, and (ii) R is con-

tained in the triangle formed by the three endpoints

of these convex chains (also see Figure 7).

The underlying space

For a point p c 7 we are interested in the object that

we can see from p in a certain direction u E S1. Dlote

that this view from p in the direction u is the same as

the view from p. in the direction u, where pu E 83 is

the first obstacle point that is hit when moving from

p in the direction –u. So if we are able to determine

PU for any pair (p, u) e ~ x Sl itsuffices to know

the view from p. in the direction u. Furthermore the

point we see from p is of the form p + m, for some

positive scalar r. If we see a point on the object at

infinity we have r = co.

These simple observations motivate the following

more formal definition. Let V. c 87 x S1 x R be

the set defined by (z, u, r) c V. iff. (i) r ;> O and (ii)

z, z + ru E 8F and (iii) (z, z + rw) C F. ‘The closure

of V. as a subspace of R2 x S1 x R is denoted by VI.

With ~ = (x, u, r) c V1 we associate the closed line

segment seg(.$) defined by seg(~) = [z, x -+ ru]. Note

that for a pair (z, u) c 6’F x Sl there is at most one

positive r & R such that (z, u, r) G V.. Therefore V.,

and hence VI, is a 2–dimensional set.

Recall that one of our goals is to maintain the view

from a continuously moving point p(t) in a contin-

uously changing direction u(t), i.e. we are interest-

ed in the view associated with a continuous curve

7 : t w (p(t), u(t)). Note that with -y we can

associate-more or less naturally—the curve ~ : tI-+

(Pu(t)(t), u(t), r(t)) C VI, such that the view from p(t)

in the direction u(t)is the point pU(t)(t) + r(t)u(t).

The curve ~ is not continuous in general. Consider

e.g. figure 1, where pu (t) ranges over the curve y. in

the plane, and u(t) = U. c Sl is the vertically upward

direction. Here t ~ r(t) is discontinuous at positions

where the line p(t) + Flu. is tangent to an obstacle.

Furthermore pu(t) is discontinuous when p(f)+ Ruo is

tangent to 01.

To associate a continuous curve with -y we identify

certain points of V1. More precizely for (I, (2 G V1,

with & = (zi, Ui, ri), we say that ~1 = ~Z iff. rl, rz >

0 and UI = uz and seg(<l) C seg(&) o:r seg(&) C

seg(~l ). The transitive closure of this relation is an

equivalence relation on VI, which we again denote by

=. Finally V is the quotient space of VI with respect

to s, endowed with the quotient topology. The set V

is the underlying set of the visibility complex. If we

fix a direction U. c Sl the set V (l {u = Uo} is locally

a one-dimensional set (except at a finite number of

points). We shall refer to this set as the cross section

of the visibility complex at u = U.. A representation

of this set for a configuration of three obstacles is

depicted in Figure 1 below. Note that tlhe image of

the curve ~ under the quotient map q : V1 ~ V is a

continuous curve in V.

The combinatorial structure

We shall now turn V into a two-dimensional cell-
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Figure 1: a. A configuration of three obstacles in the

plane; b. The set V n {u = uo }, where uo c S1 is directed

vertically upward.

complex. The corresponding incidence structure will

be the basis for our choice of a data structure repre-

senting the visibility complex.

Let q : VI * V be the quotient map as defined

in the previous subsection. A ~ace (edge, vertex) is

a connected component of the set of points x E V

for which the number of points in q-l(z) is equal to

1 (3, more than 3, respectively). Note that an edge

corresponds to a set of line segments whose endpoints

are on obstacle boundaries, whereas the segments are

tangent to the same obstacle. Similarly a vertex cor-

responds to a line segment that is tangent to two

obstacles,

If the obstacles are in general position (as we as-

sume in this paper) every edge is incident to three

faces, and two vertices. Furthermore every vertex is

incident to four edges and six faces. To see this con-

sider Figure 2, where we depict the topology of the

visibility complex near a vertex corresponding to a

bitangent of two objects 01 and 02. Let L90 be its

slope, and let uo c S1 (u; G S1) have slope 190 (OO +6,

for some small positive c). It is not hard to assemble

the cross-sections of the visibility complex at u = u;,

u = U. and U$ into the configuration of 4 edges and

6 faces near the vertex.

Definition 1 The two–dimensional cell-complex de-

fined above is called the visibility complex of the set

of obstacles 0.

The planar subcomplex of an obstacle

9
it

6’

Figure 2: A neighborhood of a vertex of the visibility

complex.

With each obstacle O in O U {Om } we associate a

sub complex in the following way.

Consider the set VO(0) = {(z, u, r) c V. I z E 6’0},

which is a closed subset of V.. In fact this subset may

be identified with the set of rays emanating from the

boundary of O and pointing into free space. There-

fore the quotient map q : V1 * V maps it onto a

subset V(0) of V, that has the structure of a planar

subcomplex of the visibility complex, which we shall

denote by P(O).

In the situation of figure 2 the faces labeled 1, 2

and 3 belong to the subcomplex 7(00), those labeled

5 and 6 to P(O1 ) and face 4 belongs to 7(02). Note

that each edge ‘belongs’ to two subcomplexes, and

each vertex to three.

To describe the sub complex ?(0)in more detail

(and to see that is planar) we shall endow V(0) with

global coordinates, thereby mapping it onto a subset

of the plane.

First recall that a convenient parametrization of

the set of directed lines in the plane is given by the

polar coordinates of a directed line: we identify this

set of lines with the cylinder [0, 27r) x R using the

bijection which maps the pair (0, u) on the directed

line y cos 13– x sin 0 – u = O with slope 9 and signed

distance u to the origin.

Since there is a 1: l–correspondence between the set

of rays emanating from 80 that point into free space

and the set Lo of directed lines intersecting O, we

obtain global coordinates on V(0) by passing to the

polar coordinates on LO.

Convention In the sequel we restrict to the set of

lines whose slope lies in the range [0, m], unless stated
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otherwise. So non–horizontal lines will be directed

upward. For a point a in the plane the horizontal

lines through a with slopes O and m will be denoted

by h. and ~., respectively.

Example 2 Consider a convex object O with min-

imal point nzo and maximal point ml. The region

corresponding to the set of lines emanating from this

object and pointing into free space is depicted in .Fig-

ure 3a. The upper boundary of this region is a curve

/‘b
,/’

“$,9

\“.
..........

P..........

h o=7r
m,

ha
-—

hm

h mo “&-

.—
Iim ~

e=o

Figure 3: The set of directed lines intersecting (a) a con-

vex object and (b) bounded segment.

with endpoints hml and &.

Example 3 Consider a face in the sub complex

P(Om ), see Figure 4. It is bounded by edges e~,

1 < i ~ 5, each corresponding to a set of directed

lines tangent to Oi. The minimal (maximal) vertex

lmin (lma$) corresponds to a common tangent of 05

and 04 (03 and 04). In the example two successive

edges correspond to lines tangent to distinct objects.

However this need not be true if the shaded region

cent ains more than one object visible from 04. If

there are m tangent risibilities in this region, then

edge e4, incident upon lmaz, is subdivided into m + 1

subedges. We shall call the union of these edges (e4

in our example) a ~at edge. During traversal of the

visibility complex special care must be taken if we

pass a fat edge, see section 3.

The minimal and maximal vertices subdivide the

boundary of a face into two chains, called the right

and lefi boundary of this face. In our example these

chains are el, e2, e3 and e4, e5, respectively.

lm~
‘m.ax

Figure 4: A face of P(Om).

In the sequel we shall represent the visibility com-

plex by the collection of planar sub complexes 7(0),

O c O U {Om }, where each edge is augmented with

a pointer to the other edge with which it has to be

identified. In this way we can access the faces and

vertices incident upon a given edge in 0(1) time.

Extension: convex chains

We will often deal with sets of rays emanating from

a (convex) chain. To determine the subregion corre-

sponding to the set of rays emanating from the con-

vex chain with endpoints a and b, and pointing in to

free space, note that the set of upward directed rays

through a emanating from the object is a curve .C. in

this region. It connects the tangent line ta at a with

ha or ~., depending on whether the object lies to the

left (as in Figure 3a) or to the right of t=. The curves

La and Lb bound a region (shaded in Figure 3a) cor-

responding to the set of lines intersecting the chain

amlb.

As a special case consider the set of lines inter-

secting a straight line segment pq supported by an

upwardly directed line t.This set consists of two re-

gions, corresponding to the set of lines intersecting pq

from left to right and from right to left, respectively,

see Figure 3b.

Example 4 Consider a pseudo–triangle aoal a2, see

Figure 5. There is a well–defined tangent ray ti at ai.

Let ~i be the side opposite vertex ai. The set of rays

emanating from side U2, pointing into the interior of

the pseudo-triangle, is depicted in the rightmost part
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ao

Figure 5: A pseudo-triangle and the set of rays emanat-

ing from a side (az ) pointing into its interior.

of Figure 5. Note that it is similar to the shaded

region in Figure 3a. It is however subdivided into two

parts by the set of tangents to the sides aO and al.

These parts correspond to the sets of rays, emanating

from C2, along which we can see co or al, as indicated

by the labels in Figure 5.

Remark 5 The curve La, introduced above, will be

called the canonical image of a. The canonical image

of a curve is the set of its directed tangent lines.

3 Computing views

We show how the visibility complex can be used to

compute the view from a free convex object y with

respect to the set of obstacles. If the obstacles are

polygons and the object is a point this amounts to

computing the visibility polygon of the point. For

simplicity we only consider the case in which the ob-

ject -y lies outside the convex hull of the set of obsta-

cles. We refer to the full paper for general results. We

shall compute the tangencies in the view of y in po-

lar order, starting with the counterclockwise tangent

t of -y with slope O. When I ranges over the set of all

counterclockwise tangents of 7 it describes a curve T

in the sub complex T(Om ). If y lies outside the con-

vex hull of O then ~ intersects the boundary of a face

in P(OW ) in at most two points. The sequence of

intersections of ~ with edges of T(Om ) corresponds

to the view of ~.

Using a trivial auxiliary data structure we can com-

pute the first tangency of the view in O(log n) time.

So suppose t is the current intersection of ~ with an

edge of ~(om ), lying in the right boundary of face

?. A simple way to find the other intersection of T

with the (left) boundary of ~ is to do a binary search

on the sequence of edges in the boundary of f. This

takes O(log n) time for each intersection. We refer to

this approach as crossing faces.

We can also find the next intersection by walking

along the left boundary starting at the minimal ver-

tex, until we find an edge containing a line 1’ that

is tangent to ~. Obviously 1’ is the next intersection

of ~ with an edge of 7(0~ ). The sequence of edges

traversed is called the visible zone of y. Although we

may need to spend O(n) time to find a single tangen-

cy in the view of y, the amortized complexity is much

better, as we shall show presently.

If 1’ lies on a fat edge (which is then the last edge of

the left boundary) we proceed differently. This proce-

dure is quite involved (see the full paper for details).

Let us denote by B7 the total time for crossing these

fat edges when computing the view of ~. Obviously

BT = O(k log n), if the view of y consists of k tan-

gencies and we cross the faces of the visible zone, In

general we have:

Theorem 6 Consider a convex object Y lying outside

the convex hull of the set of obstacles, whose view

consists of k tangencies. The total time needed to

compute this view is

(i) O(k log n), if we use the method of crossing faces;

(ii) O(log n + k + B7), if we traverse the visible zone

Ofy.

Proof (Sketch of ii) Consider the set F of faces

intersected by the canonical image of y. Let E be

the set of edges passed during a traversal lying in

the left boundary of a face in F. We shall prove

E = O(k). To this end consider edge e E E in the left

boundary of f. c F. Let 1 be its maximal endpoint.

The maximal free line segment corresponding to 1 is

tangent to two objects, 01 and 02 say, at PI and P2,

respect ively. Let 1 be directed from PI to p2. If e is

not the last edge we traverse in the left boundary of

f,, then it is not hard to see that PZ is visible from

y along some ray r. We charge the cost of traversing

e to the face f containing r. Note that f ~ F. In

this scheme every face of F is charged at most once,

Since (i) vertex 1 is the minimal vertex of f, so it

defines f uniquely, and (ii) 1 is the maxima{ endpoint

of two edges, of which only one belongs to E. Also

cf. [CG89] for a similar argument. •1

Remark 7 The standing hypothesis still is that con-

vex objects have complexity 0(1). However, if the

convex object ~ consists of m arcs and line segments,

we can prove that the view of 7 can be determined

in O(log n + k + m + By) time, again provided ~ lies

outside the convex hull. This extension will be used

in section 4.
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4 Computing the Visibility

Complex

Surgery on subdivisions

We present an example of a very simple situation, in

which we explain the crucial step of the construction.

The situation is defined mainly by pictures. Rlgorcms

definitions are given later.

Consider three convex objects 01, 02 and 03, such

that 03 lies outside the convex hull CI+(O1 U OZ) of

01 U 02, see Figure 6a. The convex chain U. is the

boundary of the convex hull of 01 U 02, cut at its

minimal point m.. The sub complex T(ao) is depict-

ed in Figure 6b. There are two faces, whose points

correspond to upward rays emanating from uo along

which we see either 03 or ‘the blue sky’ Ow.

The idea behind the construction of the visibility

complex is to extend free space by adding pseudo-

triangles. In our example we start with free space be-

ing the complement of C’17(01 U 02) U 03. We then

add the pseudo–triangle aoal az, see Figure 6b. Tl~is

amounts to removing the bitangent s = aoal. The

sides aoa2 and al a2 then become part of the bourLd-

ary of free space. Before removing s the subcomplex

of chain aoaz consists of two patches, see Figure 6b.

(Here tij is the line supporting aiaj. Also compare

with example 4.) Due to the removal of s the patch

labeled s will change: along rays corresponding to

points of this region we either see 03 or the blue sky

Ow.
Upon removal ofs chain a. is split into two parts.

The part with endpoint a. is concatenated to chain

aoa2 to form a new chain rnoa2, see Figure 6c. The

sub complex associated wit h this new chain is ccm-

structed from P(uo) and T(aoa2) by srmgery. Mc)re

precizely we cut P(uo) along the canonical image of

chains aoa2 and azal into two pieces. Piece ?1 corre-

sponds to the set of lines that intersect either (i) a2a.

and s (in this order), or (ii), or moao. Lines charac-

terized by (i) form the shaded patch of PI. Consid-

ered as rays emanating from a2ao they belong to the

shaded patch of 7’(a2ao), see Figure 6b. Therefc)re

the subcomplex of chain moa2 is obtained by replac-

ing the shaded patch of T(aoa2), labeled s in figure 6,

with piece 71 of ~(ao ).

This example introduces many of the features

of our method. First we introduce pseudo-

triangulations of free space. The initial visibility com-

plex is the collection of subcomplexes of the sides

of the pseudo–triangle (cf. example 4). Processing

a pseudo-triangle amounts to updating the visibility

complex. We do this in two passes. In the first pass

we update the sub complex of the sides of the pseuclo-

triangle. This amounts to updating the view along

-m.

(a) A,chain uo and its subcomplex ‘P(ao).

L
\J

o02 a’;
/\
/\
/\
/\

o‘h,’
ao

a2 4

(b) Subcomplex of side aI = aOaZ of pseudo-triangle

aoalaz.

t 01

\ ,+?.3

o02 :

/\
l\

/\/

14

/ ‘\

n01 ‘

“k
v

h%
‘i,

42 ,“’
70 ‘.. -....’

‘%

Figure 6: (c) Cutting the subcomplex P(CO) into patches

‘PI and PZ along the curve that is the canonical image of

the sides aoal and al az of pseudo–triangle aoal az. The

subcomplex of chain moml az is obtained by replacing the

patch labeled s (the shaded patch in part b) of P(aI ) with

patch PI (the shaded patch in part c).
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rays in free space that leave the pseudo–triangle, as

in the example above. In the second pass we update

the view along rays that enter the pseudo-triangle.

We did not consider this part in the example above,

but it involves e.g. updating the subcomplex of 03.

Starting with empty free space, we add these pseudo–

triangles in a specific order, that allows for efficient

update of the visibility complex. A triangulation that

admits such an order is called admissible, a concept

to be defined in the next subsection.

Admissible pseudo-triangulations

A pseudo-triangulation of the set of convex obstacles

is a subdivision of the convex hull of the set of obsta-

cles, such that every region is either the interior of an

obstacle or a pseudo-triangle.

Our construction of the visibility complex starts

with a special kind of pseudo–triangulation T. For a

non-horizontal line segment t let Tt be the sequence of

pseudo–triangles intersected by t,ordered according

to increasing y-coordinate.

Definition 8 An admissible pseudo-triangulation is

a pair (7, d), consisting of a pseudo–triangulation T

and a linear order 4 on the set of pseudo –tn”angles

of T satisfying the following conditions.

(i) For any free non-horizontal line segment t the se-

quence ~ is unimodal with respect to a: it is an

increasing prejix followed by a decreasing sufix.

(ii) If both endpoints oft are tangent to some obsta-

cle, then Tt is decreasing with respect to d.

(iii) Among the pseudo-triangles incident upon a conv-

ex obstacle O there are two pseudo–triangles RO and

RI such that going along the boundary of O from R.

to R1 we pass a sequence of pseudo-triangles that is

increasing with respect to ~, irrespective of whether

we go clockwise or counterclockwise . (More precize -

ly, R. (Rl) is the pseudo-triangle preceding the first

counterclockwise tangent we meet when walking in

counterclockwise direction along 80, starting at the

maximal (minima!) point of O.)

Figure 7 shows an admissible pseudo-triangulation.

It is intuitively clear that conditions (i) and (i-

i) are satisfied. The sequences referred to in

condition (iii) associated with e.g. object 01 are

R2, R6 (clockwise) and R2, R3, R4, R5, R6 (counter-

clockwise). Conditions (i) and (ii) give us control

over the order in which the vertices of the visibility

complex are computed, Condition (iii) is essential for

achieving the optimal time bound. Without proof we

state:

Proposition 9 Any pseudo-triangulation of a scene

of n convex obstacles in general position has 2n – 2

‘u
\ R5 ‘,

&
\

\
\

b

\

\
\

----
\---

---
-.

Figure 7: An admissible pseudtitriangulation. The se-

quence I?I, ..., & corresponds to the linear order d.

pseudo-triangles. There are 3n – 3 bitangents. There

is an admissible pseudo-tm”angulation (T, d ), that

can be constructed in O(n log n) time.

The initial visibility complex

After the construction of an admissible pseudo-

triangulation the algorithm sets up the sub complex-

es associated with the chains forming the boundaries

of the pseudo-triangles. These sub complexes will be

augmented by patches corresponding to rays ema-

nating from a chain along which a bitangent in the

boundary of the pseudo–triangle can be seen.

To be more precize consider a pseudo-triangle R

with vertices a., al and a2. The sub complex T(aoal ),

associated with chain aoal, is depicted in Figure 8b.

Also compare Figure 5.

Let SO,. . . ,sh-1 and .$h,-.., sk _ 1 be the counter-

clockwise sequences of bitangents cent ained in a. a2

and a2a1, respectively. Elements of these sequences

will be called facing lefl and facing m“ght, respective-

ly. Let Ii be the directed line supporting si, a tangent

line of either aoa2 or a2a1. The sequence 10, . . . . lk_ ~

is ordered according to decreasing slope, so it cor-

responds to a decreasing sequence of points on the

canonical image of aoa2 and a2a1, that can be deter-

mined in time O(k).

If s; is facing right (left) then Ui and vi are the

lines of smallest (largest) slope through the (coun-

terclockwise successive) endpoints of s; that intersect

the chain aoal. The sequence Uo, VO,. . . . uk-1, wk-1 is

ordered according to increasing slope, with the pos-

sible exception of a prefix consisting of lines of slope

O or a suffix consisting of lines of slope r. Therefore

it corresponds to an increasing sequence of points on

the canonical image of the chains aoa2 and a2a1, ex-
——

tended by the vertical segments h=Ohm and hm hal,
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triangulation, can be constructed in O(n) time.

Figure 8: The initial subcomplex of chain aoal of p,seu-

do-triangle aoal az.

see Figure 8. This sequence can also be determined

in O(k) time.

Patches P(so), ..., l’(s~-l) of the subcomplex of

aoal correspond to rays along which we can see the

right facing bitangents so, . . . . 8h_ 1. They are subsets

of the leftmost region of P(aoal ), and are constructed

by introducing a sequence of pairwise disjoint edges

?.@ll),I&, . . . , u~_l/~_l, ‘Vh_l/&l in this leftmOSt re-

gion of P(aOal). Patch P(s~), O < i < h, is the region

bounded by edges u~l~ and v~li and the boundary of

P(aoal). Note that edge UO/O may coincide with a

boundary edge of T(aoal ) if so is tangent to aoal,

in which case U. = hao and 10 = to. Similarly edge

Vh_ 1lh_ 1 may be degenerate: if .$&1 is tangent to

aoaz we have Vh_l = /h_l = tz. In this case ~(s~,_l)

is a ‘digonal’ patch.

Patches P(sh), . . . . P(sk_l), corresponding to the

lefl facing bit angents sh, . . . . sk _ ~, lie in the right-

most region of P(aoal) and are constructed similarly.

Since the sequence of edges bounding these patch-

es is ordered we can construct these patches in

O(k) time. There are O(n) bitangents in the

pseudo-triangulation, each giving rise to O(1) patch-

es. Therefore the overall time needed for the con-

struction of the subcomplexes of all chains in the

pseudo–triangulation is O(n). Hence we have proved:

Lemma 10 Given an admissible pseudo-iriangula-

tion of a set of n convex obstacles, the initial vis-

ibility complex, consisting of the collection of aug-

mented subcompiezes of all chains in the pseudo-

Pass 1

As announced in the previous section we process

the pseudo–triangles in the admissible order. Let

the current pseudo–triangle be R = aoal a2, and let

so, ..., sh_ 1 again be the counterclockwise sequence

of bitangents contained in aoa2 and a2a1, see Fig-

ure 8. Let Ri be the pseudo-triangle sharing Si with

R. In this first pass we show how to ‘fill in’ patches

P(si) of P(aoal), ?’(a1a2) and P(a2ao) for values of

i such that & precedes R.

Consider patch P(si) of P(aoal) corresponding to

such a bitangent Si, see Figure 8. First consider the

case in which Si is not tangent to aoal (so i # O in

the situation of Figure 8). The subcomplex Pi of the

chain containing Si is depicted in Figure 9. Here pi

and gi are the endpoints of Si. (In our e]cample Si is

a chain by itself, but it might be a proper subset of

a chain if the tangent at a2 contains Si.) As in the

h

Figure 9: The subcomplex Pi and the canonical image ~:

of aoal and al a2. Region li~iv: (shaded) replaces region

.P(~i) = [:~i~: of P(aoal ), see Figure 8. Region hpi~ivih~,

replaces a similar region in P(al az ).

example of section 4 we do surgery on Pi by cutting

it along the canonical image vi of aoal and a2a1. The

cut is bounded by u~ and vi, and passes several faces

of the subcomplex, see Figure 9. The points of in-

tersect ion of 7i and edges of Pi are ‘new’ vertices of

the visibility complex (arcs of the tangent visibility

graph).

The crucial observation is that all vertices of the

visibility complex, corresponding to an upwardly di-

rected free bitangent (and hence an arc of the tangent

visibility graph) emanating from a side of the current

pseudo-triangle R, are detected during pass 1 when

processing R. This is an obvious consequence of the

fact that the pseudo-triangulation we start with is

admissible.
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Note that y~ represents a segment of the view of containing pq. The lower endpoint ofs is p, the upper.
aoal and azal, bounded by rays ui and vi. Therefore

the intersection of -yi and the subdivision Pi is deter-

mined in exactly the same way as we found the view

of an object outside the convex hull, see section 3,

provided we can efficiently determine the initial inter-

section, viz. the first intersection when starting from

Ui. To this end we store the sequences of edges of

the pair of ‘outer’ faces, viz. the faces incident upon’

the boundary of Pi, in a concatenable queue. This

enables us to find the first intersection in O(log n)

time. Moreover these data structures can be main-

tained after surgery in O(log n) time as well. It is

easy to see that this O(log n) cost is paid 0(1) time

per bitangent si of the pseudo–triangulation, adding

up to O(n log n) time overall. Note that aoal and

al az do not necessarily have complexity 0(1). How-

ever, in view of theorem 6 and remark 7, the time

needed to find the other intersections is proportional

to the number of new vertices lying on -yi, plus the

number of arcs in aoal and azal, plus the time need-

ed to cross ‘fat’ edges. The total number of arcs in

the initial pseudo–triangulation is O(n), however, so

this contribution does not dominate the total time

complexity.

Finally consider the situation in which si is tangent

to aoal, say at ao (so i = O). Let so belong to a chain

U. that extends beyond a.. As in the example of

section 4 this chain is split by removing so, and the

part that ends at a. is concatenated to ala. to form

a new chain, q say. We find ?(~) again by cutting

‘P(ao) along the canonical image To of aoal and a2a1.

(In the situation of figure 8 -yO is bounded by h~

and V.. ) Subsequently we replace the region P(so) of

P(aoal) with one of the pieces of ‘P(uO). Note that

processing so is completely similar to processing s in

the example of section 4.

Summarizing the previous discussion we have

proved

Lemma 11 The total time needed to perform pass 1

on all pseudo–triangles is O(I1 log n + k + B), where

k is the number of arcs of the tangent visibility graph

and B is the time needed to cross the ‘fat’ edges.

Although at first glance we can’t beat 1? = O(k log n),

we shall sketch in section ?? how to amortize the

total cost of traversing the ‘fat’ edges in such a way

that B = O(n).

Pass 2

Let R again be the current pseudo–triangle, sharing

a bitangent s = pq with a pseudo–triangle R’ which

has already been processed, and therefore precedes it

in the admissible order. Let uo be the chain in dR

endpoint is q. We assume that s is facing right, see

Figure 10. Let cl be the chain in the boundary of

t’;,

‘~

\
o?-n

4---

U(J I?

d
R

P

Figure 10: Pass 2 of processing triangle R. We distin-

guish whether R and the obstacle containing p lie on the

same side or on different sides of the line t supporting

.9 = pg.

the region on the other side ofs from which s can be

seen along horizontal rays arbitrarily near p. Due to

the removal of s the sub complex P(al ) needs to be

updated. As in pass this is done by surgery on the

sub complex P(uo). However, in the present situation

the surgery is simpler, since there are no upwardly

directed free bitangents that intersect s from left to

right. In other words: we don’t find new vertices in

this pass, we merely move them from one sub complex,

P(uo) in this case, to an other one, P(uI ).

Lemma 12 The canonical image of p in ?(crl) is a

curve, bounded by points corresponding to t and 3P,

that lies in a single face Of T(Ul).

Proof. Suppose there is an edge of ‘P(uI) that

intersects the canonical image of p in a point corre-

sponding to a line / through p. Obviously p is not an

endpoint of al, so we are in the situation depicted in

the left part of figure 10. But then a slight perturba-

tion of 1 yields a free line segment /’ that is tangent to

two objects on different sides of s, but intersects R’

before R. This contradicts the fact that the pseudo–
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triangulation is admissible, cf. definition 8(ii), which

proves the lemma. •1

Let y be the curve in P(al ) that is the lower bound-

ary of the face containing the canonical image of p.

Let m be the extremal point that is hit first when

moving a horizontal ray connecting a. and s in up-

ward direction from p. If no such point exists we take

m = q. Then 7 is a curve connecting t with &. Let

(7) be the corresponding curve in ‘F’(uo): its points

are rays emanating from s that arise when we extend

rays corresponding to points of 7.

Lemma 13 (i) The line t corresponds to a point in

the boundary of ’P(uo).

(ii) The curve 7 iies in a single face of P(uo).

The proof is similar to that of lemma 12. It is not

hard to see that the piece of P(u1 ) between -y and the

canonical image of p can be updated by surgery: cut

P(ao) along ~, and insert it into P(al ) by identifying

points of the cut Y with the corresponding point:~ of

-y. Lemma 13(i) guarantees that this surgery yields

two pieces, while (ii) shows that we can perform this

surgery in O(log n) time by splitting the boundary of

the face containing Y at t. If U2 is the chain from

which q can be seen along a horizontal ray with slope

ir we update T(u2) near the canonical image of q in

a completely similar fashion. There are O(n) bit an-

gents in an admissible pseudo-triangulation, so:

Lemma 14 The total time needed to execute pass 2

for all pseudo-triangles is O(n logn).

Complexity of the algorithm

In view of proposition 9 and lemma’s 10, 11 and 14 we

see that the total time complexity of our construction

is O(n log n + k), provided we can prove that the tc]tal

time B needed to cross the ‘fat’ edges is O(n). Due

to lack of space we merely mention that a complete-

ly similar problem, although in a different disguise,

occurs in [G M91]. Here a clever use of a split-j?nd

data structure invented by Gabow and Tarjan yield-

s an amortization scheme with B = O(n). In this

version we merely mention that the technical condi-

tion (iii) in definition 8 is crucial for this approach.

Summarizing we have proved:

Theorem 15 The visibility complex P of a collection

of n pairwise disjoint convex obstacles can be con-

structed in O(n log n + k) time, where k is the size of

P (or, equivalently, of the tangent visibility graph).

5 Conclusion

We expect that our methods can be used to solve var-

ious other geometric problems, like e.g. planning the

motion of a rod amidst convex obstacles, cf. [Veg9 1],

ray shooting (this will require a persistent data struc-

ture for the visibility complex, cf. [Poc90], and-the

computation of a sector of the visibility polygon. An-

other interesting question is concerned with classifi-

cation: although some partial results are known a

complete classification of visibility graphs still seems

to be lacking. Due to the richer structure it might

give more insight into the problem of classifying cell

complexes that are visibility complexes.
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