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Abstract

True video understanding requires making sense of non-

lambertian scenes where the color of light arriving at the

camera sensor encodes information about not just the last

object it collided with, but about multiple mediums – col-

ored windows, dirty mirrors, smoke or rain. Layered video

representations have the potential of accurately modelling

realistic scenes but have so far required stringent assump-

tions on motion, lighting and shape. Here we propose a

learning-based approach for multi-layered video represen-

tation: we introduce novel uncertainty-capturing 3D con-

volutional architectures and train them to separate blended

videos. We show that these models then generalize to single

videos, where they exhibit interesting abilities: color con-

stancy, factoring out shadows and separating reflections.

We present quantitative and qualitative results on real world

videos.

1. Introduction

Vision could be easy and require little more than math-

ematical modelling: the brightness constancy constraint for

optical flow, sobel-filtering and perspective equations for

3D object recognition, or lambertian reflectance for shape-

from-shading. However, the messiness of the real world

has long proved the assumptions made by these models in-

adequate: even simple natural scenes are riddled with shad-

ows, reflections and colored lights that bounce off surfaces

of different materials and mix in complex ways. Robust sys-

tems for scene understanding that can be safely deployed in

the wild (e.g. robots, self-driving cars) will probably require

not just tolerance to these factors, as current deep learning

based systems have; they will require factoring out these

variables in their visual representations, such that they do

not get rattled by giant (reflected) trees growing out of pot-

holes in the road, or even their own shadow or reflection.

A natural framework for handling these factors is to

model them as layers that compose into an overall video.

∗Equal contribution.

Figure 1: Top, input video showing someone driving a car

through the country side, with trees reflecting in its windscreen.

Bottom, two videos output by our visual centrifuge1. In this paper

we learn models that can, in the spirit of a centrifuge, separate a

single video into multiple layers, e.g. to consider the interior of the

car or the shapes of the reflected trees in isolation. We do so using

few assumptions, by simply training models to separate multiple

blended videos – a task for which training data can be obtained in

abundance.

Layered models trace back to the foundations of computer

vision [42] but assumed particular models of motion [26],

scene shapes or illumination. Layered models are also often

tailored to particular goals – such as shadow or specularity

removal, or reflection separation [39] and rarely accomo-

date for non-rigidity other than for very specialized domains

(e.g. faces [31]).

In this paper we aim to learn a video representation that

teases apart a video into layers in a more general data-driven

way that does away with explicit assumptions about shape,

1See https://youtu.be/u8QwiSa6L0Q for a video version of

the figure.
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motion or illumination. Our approach is to train a neural

network that, in the spirit of a visual centrifuge, separates

pairs of videos that we first blend together using uniformly

weighted averaging. Related ideas have been pursued in

the audio domain [2, 14, 47], where signals are waves that

really combine additively by superposition. In the visual

domain this approximation is accurate when dealing with

some reflections but not necessarily in other cases of inter-

est such as shadows or extremely specular surfaces such as

mirrors. However, we hope that by mixing a sufficiently

large and diverse set of videos these cases will also be spo-

radically synthesized and the model can learn to separate

them (e.g. a shadow from one video will darken the blended

video, and needs to be factored out to reconstruct the second

video).

How is it possible for the network to separate the mix-

ture into its constituent videos? There are two principal

cues that can be used: the different motion fields of the two

videos, and the semantic content, e.g. picking out a car in

one video and a cow in another. There are also more subtle

cues such as one ‘layer’ may be more blurred or have differ-

ent colors. We show that our model, after being trained on

blended pairs of videos from Kinetics-600 [8, 27], a large

video dataset with around 400k 10-second clips of human

actions, can indeed spontaneously separate natural reflec-

tions and shadows as well as remove color filters from new

individual (non-blended) videos as shown in Fig. 1.

While our model is not necessarily more accurate than

existing ones on individual niche tasks in constrained

settings, although it has comparable performance, it can

also succeed on a variety of layer separation tasks in totally

unconstrained settings where previous models fail (e.g.

with people moving around and shaky cameras).

Contributions. Our contributions are threefold; (i) we pro-

pose novel architectures for multi-layered video modelling,

(ii) we show that these models can be learned without

supervision, by just separating synthetically blended videos

and, (iii) we observe that these models exhibit color con-

stancy abilities and can factor out shadows and reflections

on real world videos.

2. Related work

Image layer composition. Many different layer composi-

tion types have been developed that model the image gen-

eration process. Intrinsic image approaches [3, 17, 19, 38,

40, 44] aim to factorize illumination, surface reflectance and

shape. Deconvolution algorithms, such as blind deblurring,

model the image as a superposition of multiple copies of

an original (unblurred) image [11, 18, 25, 37, 45, 48]. A

related problem is the one of color constancy [4, 5], where

the goal is to infer the color of the light illuminating a scene

in order to remove it.

Reflection removal. Reflections in natural images are a

particular case of layer composition, where two or more lay-

ers are mixed together through simple addition in order to

form the final image. Most successful classical methods for

removing reflections assume access to a sequence of images

where the reflection and the background layer have different

motions [6, 22, 29, 33, 39, 46]. By recovering the two dom-

inant motions, these methods can recover the original layers

through temporal filtering. The work by Xue et al. [46] no-

tably proposes an optimization procedure which alternates

between estimating dense optical flow fields encoding the

motions of the reflection and the background layers and re-

covering the layers themselves, which leads to impressive

results on images containing natural reflections. However,

all these methods rely on the assumption that the two lay-

ers have distinctive and almost constant motions [22, 46]

and cannot handle cases where multiple objects are moving

with independent motions inside the layers.

Recently, Fan et al. [16] proposed a deep learning ar-

chitecture to suppress reflections given a single image only.

The advantage of this and related approaches [10, 50, 51] is

that they are very flexible – given appropriate data they can

in principle operate in unconstrained settings.

Video layer decomposition. All previously mentioned

approaches are designed to output results for one image.

We focus instead on recovering layers composing a whole

video [26, 28]. As observed in [33], simple extensions

of the previous techniques to videos, such as applying the

methods in a frame by frame fashion followed by tempo-

ral filtering is not satisfactory as it leads to strong tempo-

ral flickering, incomplete recovery of the layers and often

blurs the objects present in the video. To alleviate these

issues, [33] propose an extension of the work of [46] but

where they adapt both the initialization strategy and the op-

timization objective in order to take into account the tempo-

ral dimension. The proposed approach strongly alleviates

the temporal flickering issue. However, the method still

relies on strong assumptions concerning the relative mo-

tions of the two layers and might notably suffer from objects

moving fast inside one of the layers. Differently from [33],

we want to rely on semantic cues whenever motion cues are

not sufficient.

Permutation invariant losses. We want to recover the lay-

ers composing the image in a blind manner, i.e. without

making assumptions about the different layers nor giving

external cues that could indicate which layer we want to

reconstruct. This is challenging as it relates to the label per-

mutation problem [47]. One solution to this problem pro-

posed in the audio domain is to make use of permutation

invariant losses [47]. Here we employ a similar strategy by

adapting this principle to video reconstruction. This is also
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(a) Video generation (3.1) (b) Model architecture (3.2) (c) Permutation invariant loss (3.3)

Figure 2: Illustration of the general idea, described in full detail in section 3. Two videos are blended together into a single

video and this video is passed through a neural network which is trained to separate it back into the two original videos. The

hope is that the underlying learned representation captures the concept of natural video layers and that it will then generalize

when processing standard videos. Real separation results shown.

related to the problem of uncertainty inherent to the fact that

multiple solutions are possible for the layer decomposition,

a situation that can be handled by designing a network to

generate multiple hypotheses, with an appropriate loss to

reward only one for each training sample [20, 30, 36]. In

this work we propose to use permutation invariant losses in

the context of emiting multiple hypotheses for the layers.

Audio separation. Additive layer composition is particu-

larly suitable for modeling how different audio sources are

assembled to form a sound. That is why our work also re-

lates to the audio separation domain – in particular to ‘blind

source separation’. However, much of the literature on blind

audio separation, such as for the well known ‘Cocktail Party

problem’, requires multiple audio channels (microphones)

as input [12], which is not the situation we consider in this

work. Though deep learning has brought fresh interest in

the single audio channel case, e.g. [15, 43]. Recent work

has revisited the cocktail party problem while also using vi-

sual cues [2, 14, 21].

Layers beyond graphics. Others have also investigated the

use of image layers composition for other purposes than

computers graphic applications. For example, recent work

explores additive layer composition as a data augmentation

technique for image level classification [23, 41, 49]. Inter-

estingly, [49] shows that simply mixing images and labels

in an additive fashion improves generalization and robust-

ness to adversarial examples as well as stabilizes training

of generative models. Such techniques have not yet been

extended to the video domain as we do in this work.

3. Deep layer separation by synthetic training

In this section we describe our model which is trained

end-to-end to reconstruct layers composing an input video.

We generate the training data synthetically using a simple

additive layer composition as explained in section 3.1. In

section 3.2, we describe the model architecture to tackle

our problem. Finally, we motivate our choice of loss in sec-

tion 3.3. Fig. 2 summarizes our approach.

3.1. Video generation process

Real videos with ground truth layer decomposition are

hard to get at scale. To be able to train a neural network

for this task, we instead generate artificial videos for which

we have easily access to ground truth. In practice, we av-

erage two videos with various coefficients, a simple strat-

egy already proposed in [39] to evaluate image decompo-

sition models. More formally, given two videos V 1, V 2 ∈
R

T×H×W×3, where T is the total number of frames, H and

W the frame’s height and width and 3 corresponds to the

standard RGB channels, we generate a training video V as

follows:

V = (1− α) · V 1 + α · V 2, (1)

where α ∈ [0, 1] is a variable mixing parameter. This pro-

cess is illustrated in Fig. 2a.

Despite this apparent simple data generation scheme, we

show in section 5 that this is sufficient to train a model that

can generalize to real videos with layer composition includ-

ing shadows and reflections.

3.2. Model architecture

We use an encoder-decoder type architecture that, given

an input mixed video, outputs two or more videos aiming

at recovering the original layers composing the input (see

Fig. 2b). We denote by V the input video and by O the n

outputs of the network, where Oi corresponds to the i-th

outputed video. Below, we give details about our particular

design choices.

3D ConvNet. As demonstrated by previous work [46], mo-

tion is a major cue to reconstruct the composing layers. For

this reason, we leverage a 3D ConvNet architecture able

to capture both appearance and motion patterns at multi-

ple temporal scales to succeed at the task. For the encoder,

we use the I3D architecture [9] which has proven to be ef-

fective for video classification. For the decoder, we propose
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a simple architecture which consists of a succession of 3D

Transposed Convolutions [13] that we detail in the extended

version of the paper [1].

U-Net. To improve the quality of reconstruction, we fol-

low the U-Net architecture [35] that has proved its worth

in many dense reconstruction tasks, e.g. [24], and add skip

connections between the encoder and the decoder (see the

extended version of the paper [1] for details).

Output layers. Although our synthetic video are composed

by mixing only two videos, we found it helpful to allow our

models to produce more than two outputs. This is to alle-

viate the problem of uncertainty [36] inherent to our task,

i.e. multiple solutions for the layers are often possible and

satisfactory to reconstruct the input. To output n videos,

we simply increase the number of channels at the output of

the network; given a video V ∈ R
T×H×W×3, the network

is designed to output O ∈ R
T×H×W×3n. This means that

the separation of the outputs only happens at the end of the

network, which makes it possible for it to perform quality

verification along the way (e.g. check that the outputs sum

correctly to the input). Although introducing multiple alter-

native outputs may lower applicability in some cases, sim-

ple strategies can be adopted to automatically choose two

outputs out of n at test time, such as selecting the two most

dissimilar video layers (which we do by selecting the most

distant outputs in pixel space).

Predictor-Corrector. We also give the model the possi-

bility to further correct its initial predictions by stacking a

second encoder-decoder network after the first one. This

is inspired by the success of iterative computation architec-

tures [7, 34] used in the context of human pose estimation.

Given an initial input mixed video V ∈ R
T×H×W×3 and n

target output layers, the first network, the predictor, outputs

an initial guess for the reconstruction Õ ∈ R
T×H×W×3n.

The second network, the corrector, takes Õ as input and

outputs ∆ ∈ R
T×H×W×3n such that the final output of the

network is defined as O = Õ+∆. Because the role of these

two networks are different, they do not share weights. We

train the two networks end-to-end from scratch without any

specific two-stage training procedure.

3.3. Permutation invariant loss

One challenge of our approach lies in the fact that we

do not have any a priori information about of the order of

the input video layers. Therefore it is hard to enforce the

network to output a given layer at a specific position. This

challenge is usually refered as the permutation label prob-

lem [47].

To overcome this problem, we define a training loss

which is permutation invariant (see Fig. 2c). More formally,

given the two original ground truth videos {V 1, V 2} and the

outputs of our network O defined previously, we set up the

training loss as:

L
(

{V 1, V 2}, O
)

= min
(i,j)|i 6=j

ℓ(V 1, Oi) + ℓ(V 2, Oj), (2)

where ℓ is a reconstruction loss for videos.

Following previous work [32], we define ℓ for two videos

U and V as follows:

ℓ(U, V ) =
1

2T

(

∑

t

‖Ut − Vt‖1 + ‖∇(Ut)−∇(Vt)‖1

)

,

(3)

where ‖ · ‖1 is the L1 norm and ∇(·) is the spatial gradi-

ent operator. We noticed that adding the gradient loss was

useful to set more emphasis on edges which were usually

harder to capture when compared to constant areas.

4. Experiments

We trained models on the task of unmixing averaged

pairs of videos then tested these models on individual

videos from the web and in the wild. The models were

trained on pairs of videos from the Kinetics-600 dataset [8]

training set, which has approximately 400k 10s long videos

(250 frames). We evaluated generalization on the Kinetics-

600 validation set, which has 30k videos. We used standard

augmentation procedures: random left-right flipping and

random spatiotemporal cropping, where the shortest side of

the video was first resized to 1.15x the desired crop size.

Most of the experiments used 32-frame clips with 112x112

resolution for fast iteration. We also trained the full pro-

posed architecture on 64-frame clips with 224x224 resolu-

tion – we report results with this model in the applications

section 5. We tried sampling the blending parameter α of

Eq. (1) in [0.25, 0.75] without observing a strong influence

on the results when compared to fixed sampling scheme.

Therefore, we simply use α = 0.5.

4.1. Architecture Evaluation

Here we compare the performance of multiple architec-

tural variations on the learning task of separating averaged

videos. We first evaluate using the reconstruction loss, and

then use a downstream task – that of human action recogni-

tion. All architectures share the same basic predictor mod-

ule. All models were trained using SGD with momentum,

with the same hyperparameters: learning rate 0.1, momen-

tum 0.99, no weight decay and batch size of 10 clips. The

learning rate is lowered to 0.05 at 100k iterations, 0.025 at

150k and 0.01 at 200k. The models are trained for a total

of 240k iterations. At test time moving averages are used in

batch normalization layers.

The first observation was that even the simplest model

works: using the permutation-invariant loss, the blended

videos separate into the original ones. The loss of the ba-

sic predictor model with two output video layers, is pro-

vided in table 1 and can be contrasted with two baselines:
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1) outputing twice the blended video, 2) outputting two dif-

ferent layers, but using the predictor with random weights

(no training). The loss of the trained model is significantly

lower, although the layers are still somewhat noisy. Our

more advanced models are more accurate.

Model Validation loss

Identity 0.361

Predictor (no training) 0.561

Predictor (trained) 0.187

Table 1: Validation losses obtained by the basic predictor – an

encoder-decoder model producing two output layers. Identity is a

baseline where the two output video layers are just copies of the

input blended video. The second baseline is the predictor without

any training, using the initial random weights.

We also found that predicting more than 2 layers for each

video results in substantially better unmixing – we observed

that often the outputs formed two clear clusters of video lay-

ers, and that two of the layers among the predicted set are

considerably more accurate than those obtained when pre-

dicting just 2 overall. These results can be found in table 2,

second column. We think that producing additional lay-

ers is mainly helping the training process by allowing the

model to hedge against factors like differences in bright-

ness, which may be impossible to invert, and to focus on

separating the content (objects, etc.).

Table 2 also shows the benefits of the predictor-corrector

architecture, using a single correction module, especially

when predicting multiple (more than 2) video layers. It

is also likely that additional correction steps would im-

prove performance further – we plan to verify this in future

work. The results in the rest of the paper used the predictor-

corrector architecture with 4 output video layers.

# output video layers Predictor Predictor-Corrector

2 0.187 0.172

4 0.159 0.133

8 0.151 -

12 0.150 -

Table 2: Validation loss when producing various number of

output video layers, for a simple predictor model and for the

predictor-corrector model. Larger sets of layers tend to contain

higher-quality reconstructions of the original videos, but this starts

to saturate at around 4 – there is little improvement when increas-

ing to 8 or 12 for the predictor model and we did not experi-

ment with such large sets of output layers on the more memory-

demanding predictor-corrector model. Finally, the predictor-

corrector model outperforms the predictor by a significant margin,

especially when computing 4 output video layers.

Figure 3: Example outputs of the model on blended Kinetics val-

idation clips. Due to lack of space we show a single frame per clip.

Original unblended videos are shown on the rightmost columns.

Overall the network is able to unmix videos with a good accuracy

even when confronted with hard examples, e.g., videos from the

same class. The first four rows show successful separations. The

last three show rare cases where the network cuts and pastes in a

coherent manner some objects between videos.

Additional loss functions. We mention here two loss func-

tions that we experimented with, but that ultimately brought

no benefit and are not used. First, it might be expected that it

is important to enforce that the output layers should recom-

pose into the original mixed video as a consistency check.

This can be achieved by adding a loss function to the objec-

tive:

ℓ(V, (1− α) ·Oi + α ·Oj), (4)

where i and j are respectively the indexes of the layers

matched to V1 and V2 according to equation (2). How-

ever, we did not observe an outright improvement – pos-

sibly because for real sequences (see below) the strict ad-

dition is only a weak model for layer formation. We also

considered enforcing diversity in the outputs through an

explicit loss term, −ℓ(Oi, Oj). This also did not bring
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immediate improvement (and without reconstruction con-

straints and proper tuning was generating absurdly diverse

outputs). Note also that in general the outputs are diverse

when measured with simple diversity losses, despite some

small cross-talk, so more efforts might be needed to design

a more appropriate diversity loss.

Evaluating on a downstream task. We evaluated the qual-

ity of the separated videos for the task of human action

recognition. To this end, we tested I3D (that has been

trained on the standard Kinetics training set): (a) directly on

mixed pairs of videos, (b) on centrifugally-unmixed pairs of

videos, and (c) on the original clean pairs of videos on the

validation set of the Kinetics dataset (using only 64-frames

clips for simplicity, though better results can be obtained on

the full 250-frame clips). We used a modified version of ac-

curacy for evaluation – as we have two different videos, we

allow the methods to make two predictions. We consider a

score of 1 if we recover the two ground truth labels, a score

of 0.5 if we recover only one of the two labels and a score

of 0 otherwise. For method (a), we simply take its top 2

predictions. For method (b) and (c), we take the top-1 pre-

dictions of the two branches. In this setting, the centrifuge

process improved accuracy from 22% for (a) to 44% for

(b). However, there is still a gap with the original setup (c)

which achieves an accuracy of 60%. The gap is presumably

due to persistent artifacts in the unmixed videos.

4.2. Psychophysics of Layered Representations

Having established the benefits of our proposed archi-

tecture, it is interesting to probe into it and see what it

has learned, its strengths and weak points which we at-

tempted to do by running a series of psychophysics-like ex-

periments.

Color. In human vision the colors of objects are perceived

as the same across different lighting conditions – indepen-

dently of whether the sun is shining bright at mid-day, or

nearing sunset and factoring out any cast shadows. We ex-

perimented with an extreme notion of color constancy and

transformed Kinetics videos as if they had been captured

by cameras with different pure-colored filters: black, white,

green, red, yellow, blue, cyan and magenta, by averaging

them with empty videos having just those colors. We did

not train on this data, instead we simply used the best model

trained to separate pairs of Kinetics videos. We observed

that the model generalized quite well to these videos and

did accurately reconstruct the two layers in most cases –

one Kinetics video and one pure color video – and the re-

sults are shown in Fig. 4. It can be seen that the task is eas-

ier for black and white filters, which is natural since it cor-

responds roughly to just darkening or brightening a video.

The hardest cases are magenta and green filters, perhaps be-

cause these colors are less common in our training data – we

leave this analysis for future work, the main point here be-
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Figure 4: Loss obtained by the predictor-corrector model when

separating Kinetics videos from pure-colored video of different

hues. The loss obtained when separating pairs of Kinetics-videos

is shown for reference as the gray bar – note that the while the

model is accurate at separating pairs of Kinetics videos, for which

it was explicitly trained, it is even better at separating most of these

pure-colored videos, a task for which it was not trained for. Some

colors, however, make the task quite hard – magenta and green,

perhaps due to less frequent in the natural videos from Kinetics.

Figure 5: Top: frame from original video. 2nd row: same frame

from same video after mixing with different colored videos. 3rd

and 4th rows: 2 video layer outputs from our predictor-corrector.

Note that the reconstructions of the original video are quite similar

and that the colored layers are also well reconstructed, despite a

highly colorful scene (e.g. the clown’s shirt has yellow sleeves).

ing that the models generalize well to very different layer

compositions. Results for an example frame are shown in

Fig. 5.

Motion vs. Static Cues. Motion plays a critical role in

engineered solutions (in constrained settings) to problems

such as reflection removal (e.g. [46]). To understand how

important motion is in our models, compared to static scene

analysis, we trained a second predictor-corrector model

with 4 output layers, using the exact same experimental set-

ting as before, but now training on videos without motion.

We generated these frozen videos by sampling a frame from

a normal video and repeating it 32 times to get each 32-

frame clip. We then evaluated the two models on both nor-

mal and frozen videos to see how they generalize. We also

tried mixing pairs composed of one normal video and one

frozen video. The 6 different val. losses appear in table 3.
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0.178

0.158

0.262

0.228

0.225

Figure 6: Example videos where our models produce highly di-

verse sets of layers. Top 3 rows: layers output by a model trained

and tested on frozen videos; Bottom 2 rows: layers output by a

model trained and tested on regular videos. In both cases we sort

the videos by layer diversity (from least diverse on the top to most

diverse on the bottom). We observe that the diversity in output

video layers is much higher for the model on frozen videos – mo-

tion is a strong cue to disambiguate between the layers. Note that

we selected these blended videos automatically by blending many

pairs and choosing here the ones that maximize the diversity met-

ric, mini 6=j ℓ(O
i, Oj) (shown on the left), over 1K runs.

We found that motion is an important cue in our system:

it is harder to unmix frozen videos than motion ones. Also,

the system trained on motion videos is worse on mixed

frozen videos than the model trained on frozen videos.

However, if just one of the videos is frozen then the motion-

trained model excels and does better even than when both

videos have motion – perhaps during training the model re-

ceives some examples like. Finally, the model trained on

frozen videos does poorly when processing inputs which

contain motion – this is natural, since it never seen those in

training. Interestingly, we noticed also that the sampled lay-

ers tend to be significantly more diverse for frozen videos,

reflecting the fact that they are more ambiguous. To further

support that point, we computed an average diversity met-

ric, mini 6=j ℓ(O
i, Oj), over 1K runs. For the frozen video

model on frozen videos, we obtained an average diversity

score of 0.079 versus 0.045 for our standard model on mo-

tion videos. Fig. 6 shows outputs with maximum diversity

score for both models.

Low-level vs. high-level features. Another interesting

question is whether the models are relying on high-level se-

mantic cues (e.g. people’s shapes, scene consistency) or just

on low-level ones (e.g. texture, edges, flow). We ran several

experiments to try to shed light on this.

Train/Test 2 frozen 2 normal 1 frozen 1 normal

2 frozen 0.165 0.233 0.198

2 normal 0.205 0.133 0.127

Table 3: Loss obtained when training/testing on pairs of

frozen/normal videos, and testing on pairs of frozen/normal

videos or when blending one frozen and one normal video.

A frozen video is a video obtained by just repeating many

times a single frame from a normal video, such that it does

not have motion.

First, we revisited the basic predictor model and varied

the depth of the encoder architecture, by taking features

from three different layers of I3D: “Mixed 3c”, “Mixed 4f”

and “Mixed 5c” (the default elsewhere in the paper). These

correspond respectively to encoders with 7, 17 and 21 con-

volutional layers. The results in table 4 show that the two

deeper encoders perform considerably better than the shal-

lower one, suggesting that higher-level, semantic features

matter, but this may also be due to greater fitting capac-

ity and/or larger spatio-temporal receptive fields being re-

quired.

As a second experiment we ran the predictor-corrector

model on blended videos formed of pairs from the same

Kinetics human action classes, and found that the average

loss was 0.145, higher than 0.133 when operating random

pairs of videos. However this may also be explained by

actions in the same class having similar low-level statistics.

As a third experiment we measured again the unmixing

losses, but this time we recorded also two distances between

each video in a pair that gets blended together, using eu-

clidean distance on features from an I3D action classifier

trained with supervision on Kinetics-600. One distance be-

tween low-level features (averaging features from the sec-

ond convolutional layer) and the other between high-level

features (averaging deeper ”Mixed 5c” features). We then

measured the Pearson correlation between the losses and

each of the two distances. We found a negative correlation

of -0.23 between high-level distance and loss, confirming

that videos showing similar (low-distance) actions tend to

be hard to separate, but a weaker positive correlation be-

tween losses and low-level distances of 0.14, showing that

low-level similarity is less of a challenge for unmixing.

Encoder endpoint depth Validation loss

Mixed 3c 7 0.214

Mixed 4f 17 0.181

Mixed 5c 21 0.187

Table 4: Validation losses obtained when using three increasingly

deeper subnetworks of the I3D encoder. The two deeper models

achieve lower loss, indicating the value of high-capacity and wide

receptive fields in space and time on this task.
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Figure 7: Results of our model on real-world videos con-

taining transparency, reflections, shadows and even smoke.

5. Applications

In this section, we discuss the applicability of our

method to real videos. For these experiments we trained

the proposed model on 64-frame clips with 224x224 reso-

lution. We first discuss the computational efficiency of our

architecture in section 5.1 before showing results on videos

composed of various naturally layered phenomena such as

reflections, shadows or occlusions in section 5.2.

5.1. Efficiency

Our base network takes approximately 0.5 seconds to

process a 64-frame clip at 224 × 224 resolution, using 4
output layers. If we use our biggest model, the corrector-

predictor, it then takes approximately twice that time. These

timings are reported using a single P4000 Nvidia GPU.

Note that this is significantly faster than the timings reported

by techniques in related areas, such as for reflection removal

[46] which require minutes to process a similar video. In

addition, our network can seamlessly be applied to longer

and higher definition videos as it is fully convolutional.

5.2. Real world layer decomposition

We now demonstrate that, even if trained with synthetic

videos, the proposed model is able to generalize to standard

videos, sourced from the web. A selection showcasing var-

ious types of natural video layers such as reflections, shad-

ows and smoke is presented in Fig. 7. The model tends to

perform quite well across many videos, in regions of the

videos where such compositions do occur; outside those re-

gions it sometimes distorts the videos (or perhaps we do not

understand exactly what layers the model is considering).

We also compare visually to a method that is specifically

designed for reflection removal [46] in Fig. 8. Even if our

results look less vivid than [46], the centrifuge does a rea-

sonable job at this task while making fewer assumptions.

Figure 8: Comparison of the centrifuge with a method

specifically engineered for the purpose of reflection re-

moval [46] (we unfortunately do not have their results for

the first and third frames).

6. Conclusion

We have presented a model that can be trained to recon-

struct back individual videos that were synthetically mixed

together, in the spirit of real-life centrifuges which sepa-

rate materials into their different components. We explored

what were the important bits to suceed at the training task,

namely a permutation invariant loss, the depth of the net-

work, the ability to produce multiple hypotheses and the

recursive approach with our predictor-corrector model. We

also investigated what are the cues used by our model and

found evidence that it relies on both semantic and low-level

cues, especially motion.

Our main scientific goal, however, was to find out what

such a system would do when presented with a single (not

synthetically mixed) video and we verified that it learns to

tease apart shadows, reflections, and lighting. One can only

hope that, as we look at the world through the lenses of

more advanced models of this kind, we can uncover new

layers of reality that are not immediately apparent, similar

to what hardware-based advanced such as microscopes and

telescopes have done in the past – but now in the pattern

recognition domain.

Much work remains to be done, in particular on how to

control the layer assignment process to make it more useful

for applications, which may include robust perceptual fron-

tends for safety-critical systems operating in complex visual

scenes (e.g. self-driving cars) or in video editing packages.

Future work should also consider relaxing the uniform mix-

ing of videos that we employed here – both to make the

learning problem harder but hopefully also to improve the

visual quality of the separated layers.
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