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Abstract The visual extent of an object reaches beyond the

object itself. This is a long standing fact in psychology and is

reflected in image retrieval techniques which aggregate statis-

tics from the whole image in order to identify the object within.

However, it is unclear to what degree and how the visual

extent of an object affects classification performance. This

paper investigates the visual extent of an object from two

angles: (a) Not knowing the object location, we determine

where in the image the support for object classification re-

sides. (b) Assuming an ideal box around the object we evalu-

ate the relative contribution of the object interior, object bor-

der, and surround. In (a) we find that the surroundings con-

tribute significantly to object classification where for boat the

object area contributes negatively. In (b) we find that the sur-

roundings no longer contribute. Comparing (a) and (b) we

find that with ideal object localisation there is a considerable

gain in classification accuracy to be made.

Key words Content Based Image Retrieval Visual Extent

Context

1 Introduction

It is widely acknowledged that the visual extent of an object

extends beyond the object itself (e.g. [2,3,28,40]). Neverthe-

less, in the early days of computer vision it was thought that

the visual extent of an object is precisely confined to the ob-

ject silhouette. This led to the idea that an object should be

correctly segmented before it can be recognised. But the gen-

eral task of finding the contour-bounded location of an ob-

ject is very hard to solve and not really necessary for object

recognition [34]. In recent years, the use of powerful local

descriptors, the increasing size of datasets to learn from, and

the great advances in statistical pattern recognition have cir-

cumvented the necessity to know the object location before

object-based image classification.

The first step on the road to less localization of the ob-

ject was to use local region descriptors in a specific spatial

arrangement [1,5,11]. This allowed the object to be found

based on only its discriminative features. The second step was

the introduction of the Bag-of-Words method [32], which se-

lects interesting regions, converts them to visual words, and

uses word counts followed by a spatial verification step to re-

trieve matching image regions. In the third step, Csurka et al.

[7] generalized Bag-of-Words to image classification and re-

moved the spatial verification, relying on interest point detec-

tors to extract visual words from the object. In the final step,

the quantity of visual words was found to be more impor-

tant than the quality of the location of the visual words [18,

26]. Therefore these words are no longer extracted at salient

points but on a dense, regular grid. This has caused last no-

tion of object location to be lost in the Bag-of-Words repre-

sentation. This is the state-of-the-art of image classification

in 2009 [10,33].

While discarding the object location has its advantages,

it is also unsatisfactory. On the one hand, discarding the ob-

ject location leads to computational benefits and a natural in-

corporation of context. On the other hand, it is unclear how

much information is lost by discarding the object location:

the object features of a small object in a large field of view

are drowned in the information of its surroundings. Therefore

this paper investigates the question: What is the visual ex-

tent of an object? This paper extends our CVPR paper [37].

Specifically, we investigate what is the influence of the sur-

roundings, what is the influence of the object borders, and

what is influence of the object interior for object classifica-

tion?

2 Related Work

The influence of context on recognition was researched ear-

lier in human vision. Most notably, Biederman [3] considered

five types of relations between the object and its context: (1)
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Support reflects that objects do not float in the air. (2) Inter-

position deals with occlusion. (3) Probability is the likelihood

that an object is present given the context. (4) Position is the

location within the image (e.g. a knife can be found next to a

fork). And (5) size is the familiar size of the object. He mea-

sured the time it took for humans to identify objects violating

one or more of the constraints, which reflects the difficult of

identification. In this paper we focus on Biederman’s proba-

bility by automatic rather than human vision, leaving the re-

maining four to another occasion. We measure the difficulty

of identification in terms of classification accuracy.

Oliva and Torralba [28] give a good overview of work in

visual cognition and cognitive neuroscience on visual con-

text and place this in light of recent advances in computer

vision. They conclude that although real-world relationships

between individual objects seems the most complete way to

describe context, context is already described effectively by

its global statistics which ignores object identities and their

relations. This was also observed in earlier experimental work

in computer vision by Wolf and Bileschi [40], who showed

that high-level semantic context (i.e. the co-occurrence of

buildings, trees, sky, etc.) provided no additional informa-

tion over low-level image statistics. In our paper, we repre-

sent context as a Bag-of-Words representation which can be

seen as a form of low-level global image statistics.

The use of the term “context” in computer vision is rather

broad. To make the terminology more precise, Divvala et al.

[9] identifies several types of context as used in the computer

vision community. These include Local Pixel Context [6,8,

12,14,30], 2D scene gist context [27], 3D geometric context

[16,25], and semantic context [29,31]. In their definition the

Local Pixel Context captures the contextual information in

terms of low-level image statistics while Semantic Context

captures contextual information in terms of meaningful cat-

egories (e.g. scene class or object class). In accordance with

the best image retrieval methods, in this paper we study the

visual extent of an object through the use of low-level fea-

tures rather than semantics; we do not use region class labels

as in Markov Random Fields (e.g. [6] or Conditional Random

Fields [6,30] and we do not use a scene label, but we directly

use the features which we extract from the image.

Zhang et al. [41] studied the influence of context in their

work. They concluded that the influence of context is marginal

within the Bag-of-Words framework. However, the dataset

on which they tested it consists of only four classes. On the

larger and more diverse Pascal 2007 dataset, we will chal-

lenge this finding and investigate whether the influence of

context in the Bag-of-Words framework is significant.

Tuytelaars and Schmid [36] visualised a pixel-wise clas-

sification based on visual words. Using a large visual vocabu-

lary extracted from a regular lattice, they calculated the like-

lihood of each visual word belonging to an object. Using an

independence assumption on the visual words in the image,

they used this likelihood to calculate for each pixel the prob-

ability of belonging to a certain object class. This led to an

increased insight in Bag-of-Words. Similarly, in our paper we

calculate for each pixel how much it contributes to the clas-

sifier output. However, as we calculate this contribution from

the complete image representation rather than the individual

visual words, we do not use an independence assumption. In-

stead, we provide a direct visualisation of the classification of

a state-of-the-art Bag-of-Words framework.

Harzallah et al. [15] successfully combined object local-

isation with object classification for content based image re-

trieval. Their work can be interpreted as combining object

features from the localised object with context features taken

from the whole image. In this paper we provide an upper

bound of retrieval performance when the object is localised,

showing that using isolated object features is not only good

idea but also that there is plenty of room for further improve-

ment in this direction.

3 Methodology

This paper investigates the visual extent of an object in im-

age classification. Over the years, the Bag-of-Words method

has been established as the best framework in the major re-

trieval benchmarks such as the TRECVID high-level feature

extraction task for retrieving video [33] and the Pascal VOC

Classification task for retrieving images [10]. In this paper

we build on our state-of-the-art Bag-of-Words pipeline which

won the Pascal VOC 2008 classification task and which was

a runner-up in 2009.

We follow two lines in our investigation, visualised in

Figure 1. The first line is the normal situation where we ap-

ply a visual concept detection algorithm and determine which

image parts contribute how much to the identification of the

target object. The second line is the ideal situation in which

we use the known object locations to isolate the object, sur-

round, and object interior and object border. For each of these

image parts we create a separate representation and exam-

ine their retrieval performance. The first line shows what cur-

rently is measured, and the second one reveals what could be

measured.

We investigate the visual extent of an object in the Bag-

of-Words framework in terms of the object surround, object

border, and object interior. We split this in two separate ex-

periments. In one experiment we investigate the influence of

the surround with respect to the complete object. In the other

experiment we investigate the influence of the object border

with respect to the object interior.

We use the object locations in the form of ground truth

bounding boxes to isolate the object from its surround in both

the training and test set in both lines of our investigation. In

the normal line we do this after classification and in the ideal

line we do this beforehand. Note that in both cases we only

use the location of the bounding boxes and not their labels.

This means that if there is more than one object in the image

we leave it to the classifier to select the correct bounding box.

This reflects the situation where one is able to successfully

segment the objects within an image. Using this strategy in-

stead of always selecting the correct bounding box does not

influence the general observations made in this paper (data

not shown).
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Fig. 1 The two main lines of our analysis: The normal line on the right uses the ground truth object locations to divide the image into object

and surround before classification. The ideal line (on the left) first classifies the image, projects the classification score back on the image and

then aggregates classifier scores over the object and surround region.

As we do not have the ground truth to distinguish between

object interior and object border, we need to determine this

ourselves. We consider the boundary between the object inte-

rior and the object border in terms of the object interior box

which splits the complete object into the two desired parts.

We define the object interior box as being a factor n smaller

than the complete object box while its centre pixel remains

the same. To determine the interior box we use the idea that

object border contains the shape and the object interior con-

tains texture and interior boundaries, which is complemen-

tary information. We can now find the optimal interior box

by representing the object through its border and interior and

find the box which maximises classification accuracy.

3.1 Dataset

We choose the large-scale, well-studied Pascal VOC 2007

dataset for our analysis. This comes at the expense of the

quality of the annotations: we use a bounding box around

the object rather than segmented objects. By this choice, we

emphasize quantity of annotations over the quality of anno-

tations. Furthermore, the widespread use of this dataset al-

lows for a better interpretation and comparison with respect

to other work.

The Pascal VOC 2007 challenge consists of 9963 images

from www.flickr.com, containing twenty different ob-

ject classes: aeroplane, bicycle, bird, boat, bottle, bus, car,

cat, chair, cow, dining-table, dog, horse, motorbike, person,

potted-plant, sheep, sofa, train, and TV/monitor. Some im-

ages contain multiple classes. The dataset is split into two

predefined train and test sets of size 5011 and 4952 images

respectively.

The classification performance of the Pascal VOC dataset

is measured by the Average Precision of a ranked list, defined

as

AP =
1

m

n

∑
i=1

fc(xi)

i
, (1)

where: n is the number of images. m is the number of im-

ages of class c. xi is the i-th image in the ranked list X =
{x1, · · · ,xn}. Finally, fc is a function which returns the num-

ber of images of class c in the first i images if xi is of class c

and 0 otherwise. This measure has range (0,1]where a higher
number means better performance.



4 J.R.R. Uijlings et al.

3.2 Evaluation Matrix

To facilitate analysis, we developed a confusion matrix based

on the Average Precision, which we call Confusion Average

Precision Matrix or CAMP. The CAMP includes the Average

Precision in its diagonal elements and, similar to a confusion

matrix, shows which classes are confused.

We define the confusion or off-diagonal elements of the

CAMP as the total loss of Average Precision of encountering

a specific non-target class in the ranked list. To calculate the

loss we traverse the ranked list in decreasing order of impor-

tance. When a non-target class is encountered at position i,

the loss L is the difference between the AP assuming a per-

fect ranking from position i and the AP assuming a perfect

ranking from position i+ 1. More formally, let f̂c be a func-

tion which returns the number of examples of class c in the

first i entries in the ranked list, and let r = m− f̂c(xi). Now
we can calculate the loss L at position i as

L(xi) =
1

m

(

r

∑
j=1

f̂c(xi)+ j

i+ j−1
−

r

∑
j=1

f̂c(xi)+ j

i+ j

)

. (2)

The total confusion with a non-target class d is the sum of

loss to that class, calculated by ∑xi∈d L(xi). As we measure

confusion in terms of loss, by definition the AP plus the sum

of the loss over all classes adds to one. The use of the CAMP

in our experiments helps in determining the cause of accuracy

loss or gain.

3.3 Bag-of-Words Framework

A condense overview of our Bag-of-Words implementation

[38] is given in Table 1. We sample small regions at each

pixel which is an extreme form of sampling using a regular,

dense grid. [18,26]. From these regions we extract SIFT [20]

and four colour SIFT variants [39] which have been shown

to be superior for image retrieval [23,39,41]. Thus we use

intensity-based SIFT, opponent-SIFT, rg-SIFT (normalized

RGB), RGB-SIFT, and C-SIFT. Normally, SIFT consists of

4 by 4 subregions. However, we want our descriptors to be as

small as possible in our experiments to be able to make the

distinctions between object interior, object border, and object

surround as crisp as possible. We therefore extract SIFT fea-

tures of 2 by 2 subregions, which degrades performance no

more than 0.02 MAP as shown in section 4.1. The size of

each SIFT patch is 8 by 8 pixels.

For the creation of a visual vocabulary we use a Random

Forest [24] in combination with PCA on the descriptors to

reduce the dimensionality by a factor 2. This yields equally

accurate results as using a k-means visual vocabulary, yet is

much faster [24,38]. Our Random Forest consists of 4 trees

of depth 10, resulting in a total size of 4,096 visual words.

To train a tree from the Random Forest we use the extremely

randomized trees algorithm [13], using 500,000 labelled de-

scriptors sampled randomly from the training set, where the

labels are obtained from the annotation at image level.

Descriptor Extraction Word Assignment Classification

• Sampling each pixel • PCA dimension • SVM:

• Size: 8×8 pixels reduction by 50% - Hist Int kernel

• Descriptors: • Random Forest: • Image Divisions:

- 2×2 SIFT 4 binary decision ⋆ Spatial Pyramid

- 2×2 opp-SIFT trees of depth 10 - 1×1,1×3

- 2×2 rg-SIFT ⋆ Ground truth boxes

- 2×2 RGB-SIFT - object/surround

- 2×2 C-SIFT - interior/border

Table 1 Overview of our Bag-of-Words implementation. In our two

lines of analysis we divide the image into subregions by either using

the Spatial Pyramid or the ground truth bounding boxes denoting the

object locations.

For classification we use a Support Vector Machine (SVM),

which is currently the most popular classifier in Bag-of-Words

due to its robustness against large feature vectors and sparse

data. The χ2 kernel was found to be the best choice for the

kernel function [17,41]. However, we use the Histogram In-

tersection based SVM, which allows us to back-project the

output of the classifier onto the image as we explain in section

3.4.1. By taking the square root of the visual word histograms

we compensate for high frequent visual words, which makes

the Histogram Intersection kernel almost as good as the χ2

kernel [38]. In fact, by sampling visual words every pixel we

found no difference in performance between the χ2 kernel

and the histogram intersection kernel.

The original Bag ofWords framework is orderless. There-

fore Lazebnik et al. [19] introduced a weak spatial order by

using their spatial pyramid, in which an image is divided into

regular subregions. Codebook frequency histograms are ob-

tained from each region separately. We use the spatial pyra-

mid in half of our experiments. In the normal setting we cre-

ate visual word histograms for the whole image and a sub-

division into three horizontal segments, shown to be a good

pyramid division on this dataset by several researchers [22,

35,38]. In the ideal setting we divide the image into the three

subregions representing surround, object interior and object

border by using the ground truth bounding boxes. To keep

the total size of the final histogram representations similar

we refrain from using the spatial pyramid in the ideal setting.

This omission means that the upper bound of retrieval per-

formance in the ideal setting is underestimated. It does not

influence the general conclusions of this paper.

3.4 Analysis without knowing the object location

The line of analysis where the object locations are unknown

shows how all parts of the image are used for classification by

current state-of-the-art methods. We first classify images us-

ing a standard, state-of-the-art Bag-of-Words framework. Af-

ter classification, we project the output of the classifier back

onto the image to obtain a visualisation of pixel-wise classi-

fier contributions; the sum of the pixel-wise contributions is

equal to the output of the original classifier, which measures

the distance to the decision boundary.
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After we have created the pixel-wise classifier contribu-

tions, we use the ground truth bounding boxes to determine

how much each image part (i.e. surround, object, object inte-

rior, object border) contributes to the classification. When an

image contains instances of multiple object classes, we use

the one object class with the highest classifier output to make

the distinction into object, surround, object interior, and ob-

ject border. This allows us to create a partitioning for both

target and non-target images, which in turn enables us to cal-

culate the Average Precision over the whole dataset (instead

of over only target images).

3.4.1 Back-projection of the Classifier Score We want to

determine the relative contribution of each pixel in the im-

age. This requires dissecting the classification function to de-

termine the relative contribution of each visual word in the

image and is done as follows.

The classification function for a Support Vector Machine

can be written as [4]

h(x) = b+
m

∑
j=1

α jt jk(x,z j), (3)

where x = {x1, . . . ,xn} is the vector to be classified, z j =
{z1 j, . . . ,zn j} is the j-th support vector, α j is its correspond-

ing positive weight, t j ∈ {−1,1} is its corresponding label, m
is the number of support vectors, and k(·, ·) is a kernel func-
tion. For the Histogram Intersection kernel

k(x,z) =
n

∑
i=1

min(xi,zi), (4)

the classification function can be written as [21]

h(x) = b+
m

∑
j=1

α jt jk(x,z j) (5)

= b+
n

∑
i=1

m

∑
j=1

α jt jmin(xi,zi j). (6)

As the outer sum in equation 6 is over the visual words, the

contribution per visual word channel wi is calculated as

wi =
m

∑
j=1

α jt jmin(xi,zi j). (7)

Within an image there are often multiple visual words

having the same identity i. We evenly distribute the contri-

bution wi over all visual words with identity i. This gives us

per visual word in the image its contribution to the classifier

score. Using the locations of the patches which generated the

visual words, we can project these contributions back onto

the image. Examples are shown in Figure 3.

3.5 Analysis using the ideal object location

In this line of analysis we use the known object locations to

create different representations of the surround, object, ob-

ject interior, and object border in both the training and test

set, yielding hypothetical classification scores. We assign de-

scriptors to an image part based on its centre point. For exam-

ple, a descriptor is considered to come from an object when

its centre is contained within the bounding box of that ob-

ject. We use the bounding boxes to create a separate visual

word histogram for each of the image parts and analyse their

retrieval performance. We create combinations by concate-

nating these word histograms.

Again, if an image contains multiple object classes we

let the classifier decide which class is used to divide the im-

age into object, surround, object interior, and object border.

The class with the highest object score is considered the tar-

get object class and is used to divide the image. This strategy

allows us to create visual word representations for both tar-

get and non-target images, enabling calculating the Average

Precision over the whole dataset.

4 Results

4.1 Classification without knowing the object location

For our normal Bag-of-Words system where we do not know

the object location we achieve an accuracy of 0.57 MAP, suf-

ficiently close to recent state-of-the-art Bag-of-Word scores

obtained by [15] and [39], which are respectively 0.60 MAP

and 0.61 MAP. To enable back-projection with equation 7 we

use the Histogram Intersection kernel instead of the widely

accepted χ2 kernel [15,17,39,41]. This does not influence

classification accuracy: with the χ2 kernel performance stays

at 0.57 MAP. Instead, most of the difference in accuracy be-

tween our work and [15,39] may be attributed to our use of

2×2 SIFT patches: using the four times as large 4×4 SIFT

descriptor results in a classification accuracy of 0.59 MAP.

However, our experiments demand the use of small SIFT de-

scriptors to minimize the overlap between object and sur-

round descriptors.

The confusion matrix of the normal Bag-of-Words sys-

tem is shown in Figure 2. One can see that the classes can be

roughly divided into three clusters where most of the confu-

sion concentrates: furniture, animals, and land-vehicles. The

classes aeroplane, boat, and person behave differently and

cannot be grouped. The high confusion with the person class

in the right column of Figure 2 can be explained by the many

person images in the dataset. We will use the identified cate-

gories in subsequent analysis.

To conclude, we have verified that our Bag-of-Words sys-

tem is state of the art and we have identified categories to

facilitate subsequent analysis.
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Fig. 3 Pixel-wise contribution to the classification for top ranked images for the categories boat, cat, car, motorbike, person, and sofa. Dark-

blue means a negative and light-yellow means a positive contribution to the classifier. Notice that high positive or high negative contributions

are often located on small details.

4.1.1 Localising the Classifier Contributions We now in-

vestigate qualitatively where the Bag-of-Words classifier ob-

tains the evidence to classify images. We use the method de-

scribed in section 3.4.1 and show results for top-ranked im-

ages of the classes aeroplane, boat, cat, car, person, and sofa

in Figure 3.

First we observe that in the Bag-of-Words method often

small details give either a high positive or high negative con-

tribution to the classifier output. However, while details of-

ten stretch beyond the size of the descriptor patch, as seen

for example in the ropes of the boats or the contours of the

cars and persons, they never coherently cover a complete ob-

ject or object part. The contours of the cars come closest, but

these contours are frequently interrupted by small details with

a strong negative response. In homogeneous regions the re-

sponses show a considerable amount of noise, as seen for ex-

ample in the erratic responses of the sky in the boat images.

This is possibly caused by local normalisation of the descrip-

tors. Of course, the Bag-of-Words method was designed to

work on local details but these visualisations show just how

fragmented these details are.

For the boat class, water and sky yield both strong posi-

tive and negative contributions with an overall positive contri-

bution. The water-sky transition consistently yields positive

information. This shows why sky and water are good con-

textual indicators of boat. Within the boat only the ropes and

masts have a positive response, while their hulls have a strong

negative response. In fact, the overall contribution within the

boat region is negative(!). This shows that a boat is recog-

nised as a hole in the water and is purely recognised by its

function (being in the water).

For the cat images the fur is most discriminative. But like

the sky, fur consists of a mix of positive and negative contri-

butions which has a net positive contribution. This suggests

that for these kinds of textures looking at small image patches

is not ideal. Furthermore the shape of the cat is not impor-

tant. We see similar behaviour for the other animal classes

except horse, whose shape of legs are an important cue (data

not shown). This suggests that most animals are recognized

based on texture rather than shape.

For car, the largest positive contribution to the classi-

fier score is concentrated on the contours and interior bound-

aries. For the contours especially the roof of the car, the nose,

and the wheels yield high positive information. For the inte-

rior boundaries the positive information often is concentrated

on the lights, grill, and window-hood boundary. The impor-
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Fig. 2 Average Precision Confusion Matrix (CAMP) of the normal

situation where the object locations are unknown. Notice the within-

category confusion in the furniture, animal, and land-vehicle classes.

tance of the contours suggests that cars are mainly recognised

through their shape and interior boundaries.

In themotorbike images, all parts of the motorbike give an

equal amount of positive information to the classifier score.

Only the front wheel gives generally a strong positive contri-

bution. The highest ranked negative examples of motorbike

suggest that the strong response of its front wheel causes con-

fusion with the bicycle class (data not shown).

For person both its contours and inner boundaries are im-

portant. The shoulders, upper sides of the head, and the col-

lar/neck boundary often yield a strong positive contribution.

The clothes are mildly positive, yet their overall response is

large because of the size of their surface.

In the sofa images primarily true vertical and tilted hori-

zontal edges are important, which may be caused by a sofa or

more likely a whole living room in perspective.

4.2 Classification in ideal setting with known object location

In this experiment we use the object location to create a sepa-

rate representation for the surrounding and the object, where

the representation of the object may be split into the inte-

rior and the exterior of the object. We compare this with the

results of normal situation where the object location is not

known.

First we need to determine the location of the object in-

terior boxes to make the distinction between the interior and

border as described in section 3.We determine these locations

in the ideal situation on half of the Pascal dataset (train +

val). The interior box is defined as being a certain factor

smaller than the object box while its centre pixel remains the

same. We shrink the object box to 10% to 90% of its orig-

inal size with increments of 10%. We create an object rep-

resentation by concatenating the visual word histograms of

the interior and border. The optimal classification accuracy

in terms of Mean Average Precision is achieved by shrinking

the interior box in the range of 50%-70% of the size of the

complete object box. Within this range all results presented

in this paper are similar (data not shown). We show results

for shrinking the interior box to 60% of the size of the com-

plete object box, which means the object interior covers 36%

of the surface area of the complete object while the object

border covers 64%.

Figure 4 compares the performance of the normal situa-

tion in which the object location is not known with the ideal

situation where the object location is known. Clearly, for all

classes knowledge of the object location greatly increases

performance. The overall accuracy of the normal situation

is 0.57 MAP, the accuracy of the ideal situation when mak-

ing the distinction between object and surround is 0.73 MAP.

When creating separate representations for the surround, ob-

ject interior, and object border performance increases to 0.77

MAP. This shows that the potential gain of knowing the ob-

ject locations but not their labels is 0.20 MAP in this dataset.

The huge difference between the accuracy without and

without knowing the object location shows that the classifier

cannot distinguish if visual words belong to the object or sur-

round. We investigate the cause by determining for each vi-

sual word the probability that it occurs in any object and that

it occurs in the surround, which is visualised in Figure 7. This

graph shows that only a few words have a larger than 90%

probability of describing background. These words describe

homogeneous texture (data not shown). In contrast, there is

only a single word that describes in more than 66% of the

cases an object and that word occurs only 21 times in the

whole dataset. This means that no visual words exclusively

describes objects and that these visual words are less specific

than is generally thought.

4.3 Discussion on Object versus Surround

We now proceed to discuss the relative influence of the object

and its surroundings. Figure 5 plots the Average Precision for

the object against the surround and against the combination

of the object and surround for the normal situation where the

object location is unknown, Figure 6 plots the same for the

ideal setting where the object location is known.

In Figure 5(a) one can see that for boat and bird the sur-

roundings are more used than the object for classification in

the normal situation. For boat this confirms that it is recog-

nised as a hole in the water as seen in Figure 3.

The retrieval performance when using only the surround

is very low for most classes in the normal setting, except for

boat, bird, person, and plane. In contrast, when training and

learning on the isolated surroundings, Figure 6(a) shows that

most classes can be retrieved reasonably well. The difference

is especially large for train and horse. Thus, while the sur-
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Fig. 5 The retrieval performance of the object, surround, and its

combination in the normal setting where the object locations are un-

known. (a) the surround versus the object. For bird and boat the

surround is more important than the object itself. (b) The object ver-

sus the combination of object and surround. For bottle, tv/monitor,

car, and person the performance of the object is very similar to the

combination, suggesting that these classes are context-free.
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Fig. 6 The retrieval performance of the object, surround, and its

combination in the ideal setting where the object locations are con-

sidered known. (a) the surround versus the object. For all classes the

object is more important than the surround. For all classes perfor-

mance increases significantly over Figure 5(a) (b) The object versus

the combination of object and surround. For most classes perfor-

mance is similar for the object and the combination. This means

that if the object location is considered known, the surround adds

little information.
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Fig. 4 A comparison of the normal situation when the object lo-

cation is unknown and the ideal situation where the object loca-

tion is known. Accuracy over all classes for the normal situation

is 0.57 MAP, for object+surround this is 0.73 MAP, and for inte-

rior+border+surround this is 0.77 MAP.

roundings contain information, it is not the focus of the clas-

sifier.

In Figure 5(b) we see that the combination of object and

surround is much better than using the object alone for most

classes. This is not surprising as the classifier was learned on

the combination. However, for the classes bottle, tv/monitor,

car, and person the performance of the combination is equal

to using only the object. This means that the classifier learns

to ignore the surroundings, suggesting that these classes are

context-free.

When the objects are considered localised in Figure 6(b),

for all classes except bird and bottle, using surroundings in

addition to the object does not yield much improvement over

using the object alone. Interestingly, this agrees with the re-

search on human vision of Biederman [3], who found that

objects viewed in isolation are recognised equally well as ob-

jects viewed in proper context.

In the idealized setting when the object is considered lo-

calized, we also analyse the confusion matrices of using only

object and context descriptors in Figure 8. The confusion ma-

trix of using only surround in Figure 8(a) looks similar to the

confusion matrix of the normal setting in Figure 4.1. Again,

most of the confusion is concentrated within the furniture, an-

imals, and land-vehicle categories. This means that each cat-

egory shares context, which obviously is the case. For the car

class something interesting happens. One can see that the car

context is strongly confused as context for other classes, but

not vice versa. This suggests that while the contexts of bicy-

cle, bus, and motorbike are disjunct, the car context includes

them all. Indeed, in this dataset the motorbike context is dom-

inated by a race circuit and the bus-context is dominated by

urban environments, whereas the car occurs in both.
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Fig. 7 The probability of each visual word belonging to an object.

The dotted red line is the prior probability. Contrary to general be-

lief, visual words are not very object specific as no visual word oc-

curs more than 70% on an object.

Figure 8(b) displays the confusion matrix when only ob-

ject descriptors are used. Most notably, the confusion within

the furniture and land-vehicle category is very low, which

means that confusion within these two categories is mainly

caused by the surroundings. The only exception is that with-

out the surround bicycles are far more confused as motor-

bikes, but not vice versa. For animals, within category confu-

sion is still high. This means that both context and object are a

source of confusion. Intuitively, object descriptors cause con-

fusion because most of the animals are furry and have similar

shapes (four legs and a head). In the next section we will see

what causes most confusion: fur or shape.

To conclude, in the normal situation where the object lo-

cation is unknown the surroundings contribute significantly

to classification for all classes but bottle, car, person, and

tv/monitor, which are context-free. For the classes boat and

bird the surroundings are even more important then the object

itself. This means that the findings of Zhang et al. [41] that the

surroundings are not important for Bag-of-Words still holds

for car and person, but do not generalise to other classes

in larger datasets. In contrast, when the object locations are

known, the surroundings add little additional information which

is in accordance with human vision [3]. Finally, the surround-

ings are a source of confusion within the furniture, animal,

and land-vehicle categories, but the object itself only causes

confusion within animals.

4.4 Interior versus Border

Now we discuss the relative influence of the interior and the

border of the object. Figure 9 plots the Average Precision for

the interior against the border and against the combination

of the interior and border for the normal situation where the

object locations are unknown, Figure 10 plots the same for

the ideal situation with known object location.
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Fig. 8 Confusion matrices when using only the descriptors from the surroundings and when using only the descriptors from the object. (a)

Surround descriptors only. (b) Object descriptors only. What is noticeable is that when using only surround descriptors in (a) there is a lot

of confusion within the furniture, animal, and vehicle category. These categories therefore share context. In contrast, when using only object

descriptors there is only a significant confusion within the animal category. This shows that animals share many object features, but furniture

and vehicles do not.

For all classes the influence of the object interior and

boundary show similar tendencies in both the normal and

ideal setting. For the classes boat, sofa, and tv/monitor the

border is yields better results than the interior in Figure 9(a)

and 10(a). For tv/monitor this is because its interior can take

any appearance and Figure 3 shows that for sofa the classi-

fier contributions lie mainly on vertical and diagonal lines.

However, for boat the preference for the border is most likely

because it often contains water.

In contrast, for the classes dog, cat, cow, sheep, andmotor

the object interior is more important than the object borders.

For the animals this makes sense as they are non-rigid objects

which can be found in a variety of poses, hence their shape in-

formation is volatile and unreliable while their fur is a stable

source of evidence. For cat this was observed earlier in Fig-

ure 3. For motor the behaviour is more surprising. However,

inspection of the confusion matrices show that the motorbike

boundaries perform worse because they get confused with bi-

cycle boundaries, which in turn is caused by the wheel shape

as seen in Figure 3. Note that this confusion works only one

way: for bike the pixel-wise classifier contributions show that

the classifier focuses on the spokes (data not shown).

For the physically rigid bus, car, and aeroplane classes,

both the interior and border are about equally important. The

pixel-wise classifier contributions show that mainly boundary

edges are important as can be seen for car in Figure 3. These

edges include both shape boundaries and interior boundaries.

Finally, in Figure 9(b) one can see that the classes dog,

cat, cow, sheep, and motor for which the object interior is

more important than the object border, the object interior is

also more important than the combination of the two. In con-

trast, in Figure 10(b) where the object locations are known,

classification is slightly better when using both the interior

and border for the classes cow, sheep, and motor. This means

that the border for these classes does contain discriminative

information. Observations are similar for the classes boat,

sofa, and tv/monitor whose border is more important (data

not shown).

5 Conclusions

This paper investigated the visual extent of an object in terms

of its surround, its interior and its border from two perspec-

tives: The normal situation where the location of the objects

are unknown, and an ideal situation with known object loca-

tions.

For the normal situation we visualised how the Bag-of-

Words framework classifies images. As expected, these visu-

alisations indicate that the support for the classifiers is found

throughout the whole image occurring indiscriminately in both

the object and its surround, supporting the notion that con-

text facilitates image classification [9,28]. The role of the sur-

roundings is significant for most classes to the point where,
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Fig. 9 The retrieval performance of the object interior, object bor-

der, and their combination in the normal situation with unknown ob-

ject locations. (a) Object border versus object interior. dog, cat, cow,

train, table, sheep, motor, and bus are better recognised by their inte-

rior, tv/monitor, boat, and sofa are better recognised by their border.

(b) Object interior versus the combination. For most classes that are

better recognised by their interior using also the border information

lowers performance.
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Fig. 10 The retrieval performance of the interior, border, and their

combination in the idealised setting where the object locations are

considered known. (a) As in Figure 9(a), the classes dog, cat, cow,

and motor are best recognised by their interior, tv/monitor, boat, and

sofa are better recognised by their border. (b) object interior versus

the combination. The combination of interior and border is always

as good or better than using the interior alone.
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surprisingly, for boat and bird they are even more important

for recognition than the object itself. For boat the object area

is even a negative indicator of its presence. Thus, the obser-

vation of Zhang et al. [41] that surroundings are unimpor-

tant in the Bag-of-Words framework does not generalise. For

the classes bottle, car, person, and tv/monitor the framework

ignores the surroundings, suggesting that these classes are

context-free.

In contrast, in the ideal case where the object bounding

boxes are known a priori, using the surroundings in addi-

tion to the object does not help to increase classification per-

formance significantly. The object is classified purely by its

own appearance (and a marginal surround inside the bound-

ing box). This is quite different from the normal situation

where the support for the classification is scattered over the

image as argued above. Yet it is consistent with the observa-

tion by Biederman [3] in human vision that objects viewed in

isolation are recognised as easily as objects in proper context.

In general, the surroundings help to distinguish between

groups of classes: furniture, animals, and land-vehicles all

have distinct surroundings. When distinguishing between the

classes of one group the surroundings are a source of con-

fusion. Regarding the object features, we have observed dif-

ferences how classes are being recognised: (1) For the phys-

ically rigid aeroplane, bus, and car classes interior and ex-

terior boundaries are important, while texture is not. (2) For

the classes sofa and tv/monitor only the exterior boundary is

important as their interior can take any appearance. (3) The

non-rigid animals dog, cat, cow, and sheep are recognised pri-

marily by their fur while their projected shape varies highly.

While SIFT feature values respond to interior boundaries, ex-

terior boundaries, and texture at the same time, the recogni-

tion differences suggest that using more specialised features

is beneficial.

When the object locations are unknown our retrieval per-

formance is 0.57 MAP, whereas when object locations are

known retrieval performance increases to 0.77 MAP, which is

a significant difference of 0.20 MAP. This difference means

that without object locations the classifier is unable to learn

the origin of visual words. Further examination shows that no

visual words are specific for objects. Instead one could model

the object location: Harzallah et al. [15] fused the output of

their object localisation system with their object classifica-

tion and improved classification accuracy by 0.035 MAP to

0.635 MAP. Being a positive result in its own right, on the ba-

sis of results in this paper we conclude that there is still room

for improvement in using object locations to improve image

classification.
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