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Abstract
Toxins commonly produced by cyanobacterial blooms in freshwater lakes are a serious public health
problem. The conditions leading to toxin production are currently unpredictable, thereby requiring
expensive sampling and monitoring programs globally. We explored the potential of volatile organic
compounds (VOCs) to indicate microcystin presence and concentration, and microbial community
composition in Upper Klamath Lake, OR. Elastic net regularization regression selected 29 of 229 detected
m/z+1 values (corresponding to unique VOCs) in models predicting microcystin toxicity that
outperformed or signi�cantly improved upon regression models based on environmental parameters,
including chlorophyll, pH, and temperature. Several m/z+1 values selected by elastic net were putatively
identi�ed as saturated fatty aldehydes (SFAs), which are important in defending cyanobacteria against
oxidative stress. Unique sets of m/z+1 values were also identi�ed by elastic net regression that predicted
the relative abundance of the most dominant bacterial phyla, classes, and cyanobacterial genera. These
results show that VOCs may be a key component of lake monitoring strategies.

Importance
Harmful algal blooms are among the most signi�cant threats to drinking water safety. Blooms dominated
by cyanobacteria can produce dangerous toxins and, despite intensive research, toxin production remains
unpredictable. We measured gaseous molecules in Upper Klamath Lake, Oregon over two years and used
them to predict the presence and concentration of the cyanotoxin, microcystin, and microbial community
composition. Our approach shows potential for gaseous chemicals to be harnessed in monitoring critical
waterways. Subsets of gaseous compounds were identi�ed that are associated with microcystin
production during oxidative stress, pointing to ecosystem-level interactions leading to microcystin
contamination.

Introduction
Cyanobacterial harmful algal blooms (cyanoHABs) occur globally and are characterized by excessive
growth of photosynthetic bacteria in freshwater lakes and rivers. CyanoHABs degrade water quality,
negatively impacting potability, aquatic life, and agricultural and recreational activities. Some cyanoHABs
produce toxins that pose direct threats to animal and human health1–5 and also stunt crop
development6,7. The chemical ecology of cyanotoxins is not well understood8 but appears to alter the
microbial community and disrupt multitrophic interactions9. Annual economic losses caused by
cyanoHABs in the United States alone are conservatively valued at $2-4 billion10,11, and the severity and
consequences of cyanoHABs are predicted to be exacerbated by climate change12–16.  These widely
ranging impacts call for near to real-time monitoring of cyanobacteria and their toxins to protect the
public and effectively manage cyanoHABs in source and recreational waters17. 

CyanoHAB monitoring programs are challenged because the speci�c toxins produced are strain-speci�c,
and no morphological shifts or commonly measured environmental triggers are known to be reliably
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associated with toxin production17. Quantifying the genes encoding the cyanotoxin microcystin in an
ecosystem offers one approach to assess risk of cyanotoxin contamination, but may be of limited value
because the presence of microcystin genes is not evidence of its expression18. Direct microcystin
 measurement in water and �sh tissues by enzyme-linked immunosorbent assay (ELISA) and liquid
chromatography tandem quadrupole mass spectrometry (LC-MS/MS)19 is expensive, speci�c to a subset
of microcystin congeners20, and cannot identify the microcystin producer or its abundance21. Tools to
leverage high resolution detection of cyanobacterial cells and their metabolites remain nascent in
application, but are needed to address many environmental problems that are reaching a crisis status
despite decades of intensive scienti�c effort22.

We investigated the potential of the volatilome to provide high sensitivity detection of cyanoHABs and
microcystin production23–25. The “volatilome” is the full range of low molecular weight (~30 - 272 a.m.u.)
volatile organic compounds (VOCs) produced in an ecosystem26. VOCs have roles in cell signaling27–30,
predator-prey interactions31, microbial carbon cycling32,33, and atmospheric emissions that impact
tropospheric ozone and climate34. Some VOCs inhibit growth and induce lysis in algal community
members35–37, thus regulating microbial interactions and community composition37–39. VOC production
depends on the algal species present, their growth phase, and their environment40,41,37,42,29,32. 

Algae, including cyanobacteria, release a wide array of VOCs, including terpenes, fatty acids and their the
2-keto acid degradation products, alkanes and alcohols38,43–45 as a result of primary and secondary
metabolism46,47 and indirectly through photochemical reactions with dissolved organic matter48.
Cyanobacteria produce medium-chain aliphatic hydrocarbons that strengthen and add �exibility and
�uidity to lipid bilayers49,50, as well as provide tolerance to temperature and light stress51,52. Alkanes (Cn)
and their corresponding alcohols and aldehydes are produced from Cn+1 fatty aldehydes via aldehyde

deformylating oxygenase (ADO) yielding aliphatic hydrocarbons of varying lengths51. The array of
volatile hydrocarbons present in cyanobacteria appear to provide mechanisms for managing cell-level
oxidative stress51. 

Upper Klamath Lake (UKL) is a large shallow lake in southern Oregon that is a hub of complex water use
for agriculture, wildlife, �sheries, recreation, and Tribal subsistence and culture. Intensive farming and
drought have decreased water quality in UKL over the last half century, contributing to annual cyanoHAB
events. UKL cyanoHABs are typically dominated by Aphanizomenon and Microcystis and produce the
hepatotoxin, microcystin, at elevated concentrations that prompt public warnings to avoid water contact
in the mid- to late-summer53. We characterized the volatilome using proton transfer reaction time-of-�ight
mass spectrometry (PTR-MS) at lake and canal sites in UKL over two years and identi�ed over 200 m/z+1
values, corresponding to unique VOCs.  Elastic net regularized regression selected small subsets of the
m/z+1 values that were effective predictors of microcystin contamination or microbial community
composition in UKL. Microcystin prediction by elastic net models outperformed other models based only
on environmental variables and in-water properties that are commonly used to detect cyanoHAB
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development. Several m/z+1 values recurring in our elastic net models appear to be associated with the
fatty aldehyde ADO pathway, suggesting these cyanobacterial metabolites underlie lipid repair and
reactive oxygen species (ROS) reduction during oxidative stress, which is thought to be associated with
microcystin production. These fatty aldehydes in combination with other key VOCs may be ideal targets
for cyanoHAB monitoring and indicate ecosystem interactions associated with microcystin production. 

Results And Discussion
Upper Klamath Lake chemical and microbial composition

Water samples were collected from three sites on Upper Klamath Lake, one site on its northern arm,
Agency Lake, and four canal sites during the months of May-December in 2018 and 2019 (Fig 1). The
mean microcystin concentration among UKL samples with detectable toxin was 8.7 ppb (Table 1),
surpassing the United States Environmental Protection Agency’s recommended health advisory limit for
drinking water of 0.3 ppb for pre-school aged children and 1.6 ppb for children and adults54. The
minimum reporting, recreational, and drinking water limits for microcystin varies by state depending on
water use and potential for exposure55. Of the 70 samples collected over 2018-2019, ten UKL samples
and three canal samples were contaminated with microcystin at concentrations ≥0.3 ppb. Toxic samples
mostly occurred in summer months (July – Sept), but occasionally in November, 2019, and occurred at all
four lake sites (NAL, WBR, EPP, PEL) (Fig 2). The highest microcystin concentration was 469 ppb from
NAL in September, 2019. Environmental parameters varied widely in UKL (Fig 2; Table 1) and toxic
samples were sometimes associated with high temperature, chloride, pH, POC, PON, chlorophyll,
ammonium, and conductivity; however, no signi�cant correlations were observed with microcystin
concentration and any single parameter measured at UKL (Fig S1). 

Untargeted volatilomics detected 229 m/z+1 values in samples collected at UKL and associated canals
during 2018 and 2019. Seven m/z+1 values were present in signi�cantly discriminating amounts
between samples with microcystin ≤0.3 ppb and samples with microcystin ≥0.3 ppb (Fig 3). Using these
seven m/z +1 values in a multiple linear regression model failed to predict microcystin contamination or
concentration (R2=0.08; p-value=0.89). Volatilomes clustered well by sampling date, and samples
collected in 2018 mostly clustered separately from those collected in 2019 (Fig S2). Volatilomes of toxic
samples did not demonstrate clear clustering (Fig S2). 

The relative abundances of four phyla, Cyanobacteria, Bacteroidota, Pseudomonadota, and
Actinobacteria represented 79-99% of the 16S rRNA sequences in all UKL samples during 2018-2019 (Fig
4). The class Cyanophyceae were only ~10% of the microbial community in May and peaked in
September, 2019 when they were up to 75% of the community before decreasing in the autumn months.
The four bloom-forming and potentially microcystin-producing cyanobacteria genera in ULK were
Aphanizomenon, Anabaena/Dolichospermum, Microcystis, and Gloeotrichia.
Anabaena/Dolichospermum sequences were always the dominant Cyanobacteria, contributing 75->99%
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of the sequences in all samples. The relative abundance of Microcystis represented 5-25% of sequences
in August through December and May but was absent in June and July. 

Cell morphologies characteristic of Aphanizomenon, which is the dominant Cyanobacteria during the
mid-summer in UKL56, were commonly observed in UKL samples inspected by light microscopy (Fig S3).
Nevertheless, few sequences were placed within Aphanizomenon and instead sequences often grouped
with representatives of Anabaena sp. strain 90, Dolichospermum circinate strain ACBU02, and Anabaena
sp. strain WA 102.  16S rRNA-based phylogenies are so far unable to resolve Aphanizomenon and
Anabaena/Dolichospermum57. For example, addition of metagenomic data (with morphological
validation) from 16 Aphanizomenon, Anabaena, and Dolichospermum strains collected in the Paci�c
northwest of the United States to collections of Cyanobacterial genomes from previous phylogenetic
analyses still placed some strains, such as an Anabaena strain collected from Washington state, within
Aphanizomenon clades58.

Microcystin toxin prediction using the volatilome 

Elastic net is a regression method that uses regularization and selects the input variables that are
important for the prediction. We developed elastic net regularized regression models using the volatilome
with outputs that were either linearly predictive of microcystin concentration (linear models) or predictive
of microcystin concentration ≥ 0.3 ppb (logistic models) to facilitate different water management
approaches (Table 2). Linear model M1 and logistic model M2 were developed using only the 229 m/z+1
values.  Linear model M7 and logistic model M8 were developed using the 229 m/z+1 values and ‘low-
cost’ environmental parameters (e.g., buoy data such as temperature, pH, conductivity, which are rapidly
retrieved by current technologies) (Table 1). Across the four elastic net models, variable selection
identi�ed 24 of the 229 unique m/z+1 as being important to predicting microcystin contamination (Table
3), and their relative concentrations are shown in �gure 2. Nine m/z+1 values were selected in two elastic
net models, and four m/z+1 values (151.119, 157.157, 199.189, and 203.185) were selected in three
elastic net models (Table 3). 

Four additional regression models based on the ‘low cost’ environmental parameters (M3, M4) or the full
collection of environmental parameters (‘low + high cost’, M5, M6) were developed to compare against
the skill of the VOC-based elastic net models. Similar to previous studies59, ‘low-cost’ linear M3 was
weakly predictive of microcystin concentration and retained only pH and chlorophyll (Table S1). POC,
PON, and AMM strongly boosted the predictive power of linear M5.  Neither logistic ‘low-cost’ M4 nor ‘low
+ high cost’ M6 were able to discriminate whether samples contained microcystin ≥0.3 ppb with greater
than 50% probability (Fig 5, Table S2, Fig S4). 

All of the VOC-based models outperformed the ability of ‘low-cost’ comparator models to predict
microcystin in UKL (Fig 5). Addition of “low-cost” environmental parameters to the training data did not
improve VOC-based model performance (Fig 5), and except for “month” in M8, were not retained in the
�nal equations (Table S1, Table S2). The high Akaike Information Criterion (AIC) in logistic M2 and M8
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are partly attributable to the number of selected variables and were strongly balanced by area under the
receiver operating characteristic curve (AUC) values that were 0.78 and 0.88 compared to 0.50 (no better
than chance) for M4 and only 0.22 for M6 (Fig 5; Fig S4).

VOCs were effective predictors of microcystin in UKL.  Our ability to rapidly and inexpensively measure
volatile metabolites in water samples (5 min PTR-MS measurement of raw water samples) provides a
unique platform to explore relationships between the volatilome and ecosystem health and the potential
for VOCs to be leveraged in cyanotoxin monitoring. Low volatility of toxins, including microcystin, makes
their direct detection by PTR-ToF-MS unfeasible. Direct toxin measurement by ELISA or mass
spectrometry is the current gold standard for monitoring but remains too expensive for the widespread
and frequent application needed to provide timely public health advisories19. The metabolome is
increasingly used to evaluate human health60,61,62 and ecosystem status, such as shifts in soil microbial
ecology63. Similarly, the success of the volatilome to provide information about microcystin presence and
concentration suggests that unique collections of VOCs in UKL are produced depending on cell
physiology and community composition. 

Predicting microbial community composition using the volatilome

Elastic net models were also developed using the relative abundances of the four most abundant phyla
and classes, and toxin producing cyanobacteria genera as dependent variables and the 229 m/z+1
values as independent variables. The 12 resulting models selected a total of 71 m/z+1 values (Table S3).
All twelve elastic net models performed well, yielding mean squared prediction errors (MSPE) of 0.75-1.02
and standard deviations (SD) of 0.08-0.54 (Fig S5). The m/z+1 value 205.204 was an important predictor
of the relative abundance of Cyanobacteria phylum, Cyanophyceae class, and all four Cyanobacteria
genera (Fig 6). Eleven of the 18 m/z+1 values predictive of the Cyanobacteria phylum relative abundance
were also predictive of Cyanophyceae (class) relative abundance and 14 were predictive of the relative
abundance of at least one of the Cyanobacteria genera. Similarly, seven of the eight m/z+1 values
predictive of Actinobacteriota relative abundance were predictive of Actinobacteria (class) relative
abundance (Fig 6). Six m/z+1 values identi�ed in models predicting microcystin concentration were also
identi�ed in models predicting the relative abundances of Cyanobacteria genera (Table 3).

Elastic net regularized regression yielded a collection of VOC-based models that were highly effective at
predicting the relative abundance of key cyanobacteria, including Microcystis, which is thought to be the
primary source of microcystin in UKL. The success of these models is likely a consequence of seasonal
changes in the microbial community composition and taxonomic and physiological differences leading
to the collections of VOCs released32,64–66. We do not know if the VOCs identi�ed here would also be
detected in cultures of the different cyanotoxin-producing cyanobacteria. Fundamental differences in
metabolism between strains in culture collections are likely to result in unique volatilomes and the
absence of certain VOCs in cultures may be a consequence of in situ conditions rather than a clear VOC-
strain association. Furthermore, the complex interactions between cyanobacteria and ecosystem
processes leading to toxin production remain enigmatic and challenging to replicate in the laboratory.
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Nevertheless, the subsets of VOCs identi�ed using elastic net revealed m/z+1 values that were
maintained through coarse and �ner-grained taxonomic groups. These results indicate systematic
relationships between volatilomes and microbial taxa in UKL. We are unaware of studies that have
leveraged the metabolome to describe microbial community composition; however, neural networks and
linear regression approaches are being used to integrate metabolomic, metagenomic, and taxonomic
data67–70.  In our study, elastic net machine learning applied to volatilomes yielded models that were
strongly predictive of ecosystem cyanotoxins and microbial community composition. 

Selected m/z+1 values in our models suggest that those compounds mediate interactions between
cyanobacteria, microcystin, and the environment. For example, a sesquiterpene, m/z+1 203.185, was
retained with positive coe�cients by three models predicting microcystin and in models predicting
relative abundances of Phylum Cyanobacteria, Class Cyanophyceae, and Anabaena. Sesquiterpene
synthases are present in Anabaena species71, and the recurrence of m/z+1 203.185 in our models is
consistent with the abundance of Anabaena in UKL and release of sesquiterpenes and microcystin during
cyanobacterial senescence72. 

β-ionone was assigned to m/z+1 193.153 based on its known PTR-ToF-MS target mass73. m/z+1
193.153 was retained with negative coe�cients in M1 and M7 predicting microcystin and three models
predicting relative abundance of non-cyanobacterial taxonomic groups. m/z+1 193.153 was positively
correlated with phylum Cyanobacteria, class Cyanophyceae, and Anabaena (Fig 6). β-ionone and other
norcarotenoids are products of carotenoid oxidation in various cyanobacteria during photo-oxidative 
stress, including Anabaena, Aphanizomenon, and Microcystis, and inhibit photosystem II in
Microcystis38,74,75,76,77. Oxidative stress in UKL may have induced production of β-ionone in
cyanobacteria78,79, thereby decreasing Microcystis abundance and microcystin production. Nontoxic
Microcystis strains employ peroxidases in response to oxidative stress, but toxic Microcystis strains may
produce microcystin to combat mild, chronic oxidative stress80. The different pathways employed by
cyanobacteria to tolerate oxidative stress point to β-ionone as a potentially important compound that
mediates interactions within the cyanobacterial community, including microcystin production. β-ionone is
also a taste-odor compound in potable freshwater sources74 that can be rapidly identi�ed using our
approach.

m/z+1 137.129 is likely limonene with the molecular formula (C10H14)H+. Limonene is a monoterpene

produced by planktonic and benthic cyanobacteria81. Other compounds with the same m/z+1 value
reported in PTR-MS databases include pinene and linalool, but neither of these terpenes are produced by
wild-type cyanobacteria82,83. m/z+1 137.129 was retained with a negative coe�cient in M7 and a
positive coe�cient in the model predicting relative abundance of Aphanizomenon. m/z+1 137.129 was
also negatively correlated with Microcystis and Gloeotrichia (Fig 6).  Limonene can inhibit
photosynthesis37,84 and lyse M. aeruginosa85, suggesting that limonene produced by Aphanizomenon
was associated with lower Microcystis abundance and perhaps consequently, lower microcystin
concentrations.
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The m/z+1 values 157.157, 171.171, and 185.185 were selected in M1, M7, and M8 and differ by 14.014
mass units, suggesting these VOCs are products of sequential demethylation activity. A fourth, m/z+1,
199.189, is 14.004 mass units greater than 185.185 and was retained in M2, M7, and M8 with positive
coe�cients. The smallest m/z+1 value in this series, 157.157, was retained with negative coe�cients.
Chemical formulas for these m/z+1 values include C10-C13 saturated fatty aldehydes (SFAs), decanal,
undecanal, dodecanal86, and tridecanal (Table 3). Tridecanal is a key marker for Cyanophyceae87, but is
not yet present in PTR-MS chemical databases and has not been reported in PTR-MS-based research.
Nevertheless, the longer chained SFAs (C12 and possibly C13) appear to be upregulated in concert with
microcystin production. 

The associations between SFAs and microcystin concentration in our elastic net models indicate that the
relative abundances of SFAs shift during oxidative stress. SFAs accumulate between the lipid bilayers of
cyanobacterial thylakoid and cytoplasmic membranes50,88 where they contribute to membrane structure
and help �ne-tune localization of photosynthetic machinery50 during temperature and light stress49,50,89.
Cyanobacteria use an acyl-ACP reductase/aldehyde-deformylating oxygenase (ADO) pathway to produce
fatty aldehydes of decreasing chain length (Cn, Cn-1, Cn-2…; Fig 7). Fatty aldehydes are substrates for
aldehyde dehydrogenase (ALDH) yielding fatty acids that can be used to repair membrane lipids
damaged by ROS (e.g., hydrogen peroxide, H2O2) produced during photosynthesis. ADO, like other diiron

oxygenases, appears to be a powerful oxidizing enzyme with a wide substrate range51. The alkane
products of NADH-dependent ADO activity on fatty aldehydes can also serve as electron donors to reduce
ROS. This latter reaction is primed by generation of a FeIV-FeIV diiron center in ADO by H2O2 and alkane

oxidation returns the diiron center to the FeIII-FeIII state90.  However, alkane-dependent H2O2 reduction

could also lead to OH• accumulation causing a deleterious cycle of cell damage. During high light stress
the fatty acid and alkane metabolites of the ADO pathway would be rapidly depleted requiring larger
pools of longer chain length fatty acids to maintain ongoing lipid repair and H2O2 destruction. The genes
encoding ADO and ALDH were upregulated in the model cyanobacterium, Synechocystis sp. PCC6803
during high light and oxidative stress91,92. As the cell’s capacity to repair systems damaged by ROS
becomes overwhelmed, longer chained SFAs may accumulate.  

The currently prevailing hypothesis for the biological role of microcystin posits that it protects
photosystems and peroxidases against oxidative damage80,93–95. Increased cyanobacterial dependence
on the ADO pathway during oxidative stress is consistent with the mechanistic view that ROS can rapidly
accumulate to algicidal concentrations even in the presence of microcystin production. Although the
m/z+1 values retained in our microcystin models and assigned here to SFAs need to be independently
veri�ed using standards or other mass spectrometry approaches (e.g., GC-MS), selection of this collection
of related m/z+1 values in multiple elastic net models predicting microcystin concentration suggests their
ecological and biochemical interactions with microcystin production (Fig 7).

The use of VOCs to evaluate microcystin and microbial composition in UKL is time-e�cient, and could be
streamlined or even automated to inform agencies and water managers within a day, compared to the
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weeks-long waiting periods sometimes required for results of microcystin and microscopic sample
processing. The volatilome in water samples was collected directly by PTR-MS without need for pre-
processing or sorption onto resins. Our models were designed to determine total microcystin
concentration, and cannot at this time evaluate toxicity, which would require knowledge of the
abundances of speci�c microcystin congeners96,97. Evaluation of the volatilome is a holistic and indirect
measurement of the ecosystem. Many of the m/z+1 values identi�ed in our elastic net models provide
valuable targets for future study of their roles in cell to ecosystem level processes.   

Conclusion
The increasing frequency and severity of toxic cyanoHABs in waterways makes new, cost-effective
monitoring strategies an urgent task. The ideal monitoring approach would yield information about
cyanotoxin identity and concentration, cyanobacterial abundances, and ecosystem health. The VOCs
produced in Upper Klamath Lake, OR provided information about the integrated growth environment and
were leveraged using machine learning to determine the microcystin concentration and microbial
community composition in UKL water samples. Speci�c VOCs, including SFAs, may be the smoking gun
needed to quickly detect toxin production in freshwater lakes.

Cyanotoxins can now be detected in many waterways that were thought to be pristine (Kurt Carpenter,
pers. comm.), suggesting that the combination of ongoing human activities and climate change are
shifting many waterways towards ecological tipping points where HABs and cyanotoxin contamination
are reliable annual events. Application of volatilomes and complex data analysis shows their potential for
guidance of water treatment for taste-odor compounds in drinking water, monitoring of toxic and non-
toxic cyanoHABs, and novel discovery of ecological interactions leading to toxin production in situ. An
important next step is to determine whether the identi�ed m/z+1 values in our models emerge in samples
from other lakes experiencing toxic cyanoHAB events. Because water manager actions are predicated
upon sensitive and timely detection of cyanotoxins and their bacterial producers, future research that
harnesses volatilomes in conjunction with other accessible complex data, including real-time buoy and
satellite monitoring, to track and predict cyanoHAB trajectories before, during and after toxic HAB events
is warranted to limit public exposures and economic hardship.

Methods
Water sample collection

Water samples were collected from three sites on Upper Klamath Lake and one site on its northern arm,
Agency Lake, during the months of May-December in 2018 and 2019. Sampling sites were NAL, an
agricultural-dominated terrain on the northeastern shore of Agency Lake, two wildlife and recreational
areas near the peninsula at Eagle Point in UKL (EPP) and western shore of UKL at Howard Bay (WBR),
and a residential area near the dam at the southern end of the lake (PEL) (Fig 1). Additional samples were
collected from canals that drain from UKL for agricultural irrigation (NCA, ADY, MER, and LRI; Fig 1).
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Samples were collected by pole from the surface about 2 meters from the shore or canal line. Samples
for all analyses (VOCs, anions, pigments, particulate C and N, community composition) excepting
microcystin concentration were collected in autoclaved 1 L polycarbonate bottles with limited to no
headspace. Samples were transported in a cooler to Oregon State University, Corvallis, OR, and analyzed
or processed by �ltration and frozen within 24 h of collection for later analysis via Oregon State
Universities Freshwater IIW Collaboratory. Samples for microcystin concentration were collected in
autoclaved 10 ml glass vials and frozen upon arrival at OSU (-20°C) for later analysis.  

Environmental Parameters

Temperature, pH, and conductivity were measured using an Extech pH/temperature meter (Nashua, NH)
and YSI 30 Conductivity meter (Yellowsprings, OH), respectively. The anions bromide, �uoride, chloride,
nitrite, nitrate, phosphate, and sulfate were measured with a Dionex ICS-1500 Ion Chromatograph
Autosampler (Sunnyvale, CA). Data for bromide and �uoride are not shown because only one and two
samples yielded data above the detection limits, respectively. Ammonium was measured by UV-Vis
spectroscopy after three freeze thaw cycles98. Particulate carbon and nitrogen were determined from
three volumes (3-110 ml) �ltered onto pre-combusted GF/F �lters to create a linear regression, and frozen
until analysis by Exeter Analytical EA1 elemental analyzer99 (Coventry, England). Non-particulate C and N
was determined from sample �ltrate and subtracted from the �ltered samples. The median sample
volume of �ltrate was re-�ltered onto a fourth GF/F �lter, frozen, and analyzed with the sample �lters.
Chlorophyll concentration was measured in triplicate using 2-100 ml of sample �ltered onto 25 mm GF/F
�lters (until green was observed on the �lter) and extracted for 24-48 h at -20° in 90% acetone. Extract
absorption was measured by UV-VIS spectrophotometer (Shimadzu, Kyoto, Japan), and calculated using
the equation for cyanobacteria from Ritchie (2006)100. Microcystin concentrations were measured using
Euro�ns Abraxis Inc. Microcystins/Nodularins (ADDA) ELISA Kit (Product Number 520011). 

Detection of VOCs

Triplicate 100 ml sub-samples were transferred to custom made 200 mL polycarbonate dynamic
stripping chambers with sintered glass frits (2-2.5 µm) at the bases32. Chambers were kept in an
incubator at the sample collection temperature. Samples were stripped of VOCs by �owing synthetic air
through a hydrocarbon trap, then a �ow controller (Sierra Instruments) set to 50 sccm, then through the
glass frits into the samples. The carrier air with the stripped VOCs was directed into the PTR-MS (Ionicon,
Austria) where the primary ion (H3O+) causes a proton transfer reaction, or soft ionization event, to VOCs

having higher proton a�nities than 691 kJ mol -1, which is the proton a�nity of water. VOCs in the mass
range 18-363 a.m.u. were detected at their molecular masses plus 1 (m/z+1).  Data were collected over 5
min. The conditions of the drift tube were 2.1 mbar, 80°C, and 500 V with an E/N value of 125 Td.  

VOC data processing
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PTR-MS raw peak data were processed using PTRwid101. The resulting output yielded tables giving each
integrated m/z+1 peak signal that incorporated a correction for overlapping peaks. PTRwid yields a
uni�ed mass list of all m/z+1 values detected in all lake and canal samples. Known contaminants and
internal standards were removed from the list prior to subsequent data processing (Table S1). The �rst
2.5 min of data were removed to account for contaminating air in the tubing and headspace of the
stripping chambers. The remaining data were integrated over 2.5-5 min.. Differences in concentrations of
m/z+1 values and Wald test derived p-values were determined using the R package DESeq2, and
Benjamini-Hochberg corrected p-values of m/z+1 values were determined using the EnhancedVolcano
package102. Chemical formulas were assigned using Ionicon PTR Viewer software and the
Ionicon integrated database (PTR Viewer software version 3.3), PTR Viewer calculated values (version
3.4.2), or GLOVOCs database for PTR-MS103 (update Nov. 16, 2020). Some chemical formulas were
assigned based on published PTR-MS research on those compounds. The maximum mass shift
(difference between the actual mass value and the detected mass value) allowed for compound
assignment was 0.007 a.m.u. as determined by PTR-MS calculated RMSE. 

VOC-based elastic net models predicting microcystin concentration

Two elastic net model types were developed (1) linear models that predict the continuous outcome of
microcystin concentration (M1 and M7) and (2) logistical models that predict the dichotomous outcome
of whether microcystin concentration ≥ 0.3 ppb (M2 and M8). The logistical models were trained with a
binary output that designated a sample as toxic if the microcystin concentration was at or above the 0.3
ppb threshold.  M1 and M2 utilized only m/z+1 values and were trained using the glmnet function in R
software (version 4.1.0) on 95% of the samples (total n=70). M7 and M8 utilized m/z+1 values and “low
cost” environmental variables (Table 3) and were trained on 95% of all samples for which VOC and “low
cost” environmental data were available (total n=35).  Cross validation with 10 (M7, M8) or 15 (M1, M2)
fold was used to determine the value of the tuning parameters (Table S2), and hence the strength of
regularization in M1, M2, M7, and M8. MSPE and their SD in M1 and M7 were calculated from the lambda
value yielding the minimum mean cross-validated error. AUC and AIC for M2 and M8 were averaged from
ten random iterations of each model.  The m/z+1 values in the �nal models were selected using the full
data sets. The m/z+1 values retained by the elastic net models were re�t using the lm function in R to
yield the coe�cients in each �nal model (Table 2). A lower MSPE, lower AIC, and higher AUC are
indicative of a preferred model.

‘Low cost’ and ‘Low + high cost’ regression models predicting microcystin concentration 

Four base models were developed to predict microcystin concentration using only environmental
parameters (Table 3). Outlier removal and bidirectional stepwise elimination was implemented using the
MASS package in R to select the environmental parameters. Microcystin concentration in M3 was
modeled by multiple linear regression using month of collection, collection site, and “low cost”
environmental parameters. Multiple linear regression model, M5, was based on month of collection,
collection site, and both “low cost” and “high cost” environmental parameters (Table 3). Two logistic
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models were developed based on “low cost” and “low + high-cost” environmental parameters (M4 and
M6, respectively) to predict microcystin concentration ≥ 0.3 ppb. The predictive performance of these
linear regression base models was evaluated using the glmnet package with lambda and alpha values
set to zero. 

DNA extraction and sequencing

Samples (10-150 mL) were �ltered onto 0.2 µm polycarbonate �lters and stored at -20°C until DNA
extraction using phenol:choloroform:iso-amyl 25:24:1. DNA quality and quantity was determined by
Nanodrop 1000104. The V1-V2 region of the 16SrRNA gene was ampli�ed using 27F (5’-
AGAAGAGTTTGATCNTGGCTCAG-3’) and 338 RPL (5’-CWGCCWCCCGTAGGWGT -3’) primers with
overhang adaptors according to the Illumina Inc. standard 16S sequencing library preparation protocol.
Libraries were created using dual indices and Illumina sequencing adapters with a Nextera XT Index Kit
(Illumina Inc.), then pooled in equimolar concentrations and sequenced using Illumina MiSeq (2X250 PE)
in two batches: 54 samples were sequenced at the Center for Quantitative Life Sciences (Oregon State
University, OR), and 16 samples were sequenced at Molecular Research DNA-RNA Laboratory
(Shallowater, TX)104. 

16S rRNA gene amplicon analysis

The 27F (20b) and 338RPL (18 bp) primers were removed using CutAdapt, then DADA version 1.2 R
package (version 3.6.1), using the SILVA database train version 138, quality �ltered, dereplicated, merged,
constructed an ASV table, removed chimeras, and taxonomically assigned the sample reads through the
dada2 package104.  Taxonomic assignment through dada2 was used for phylum and class classi�cation.
 Taxonomic assignment of 16S rRNA sequences within the Cyanobacteria genera was done using
Cydrasil and its maximum-likelihood phylogenetic tree constructed of 1327 Cyanobacteria reference
sequences105. Sequences were aligned using reference alignments constructed using  PaPaRa vs 2.0,
and the alignments were placed using EPA-ng105. The placements were visualized via the Interactive Tree
of Life (iTOL) vs. 6.5.4, and taxonomy was hand assigned (Figure S4 and S5)106. The dominant
cyanobacteria were also con�rmed by visual identi�cation using light microscopy and morphological
characteristics (Figure S3).

VOC-based models of microbial community composition

Relative abundances of the four most abundant microbial phyla, classes, and cyanobacterial genera
(Anabaena, Aphanizomenon, Gloeotrichia, and Microcystis) were determined using the R package
phyloseq107. A total of 12 VOC-based linear regression models were developed to predict microbial
relative abundances using elastic net modeling. Models were trained using the glmnet function in R (v.
4.1.0) on 95% of the samples (total n=70). Cross validation with 15 fold was used to determine the value
of the tuning parameter (Table S4) and strength of regularization. MSPE and their SD were calculated
from the lambda value yielding the minimum mean cross-validated error. The m/z+1 values in the �nal
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models were selected using the full data set. The m/z+1 values retained by the elastic net models were
re�t using the lm function in R to yield the coe�cients in each �nal model (Table S4). The R package
ComplexHeatMap was used to create �gures 1,5 and S2, and the R package EnhancedVolcano was used
to create �gure 2. 

Data availability

The authors declare that all data supporting the results of this study are available within the article,
corresponding Supplementary Information (Supplementary Table 2, Supplementary Tables 4-5), and
Supplementary Data that have been deposited and are publicly available on NCBI’s SRA (link available
upon request) and OSF (https://osf.io/3uctg/).
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Tables
Table 1. Environmental parameters collected at Upper Klamath Lake, OR. Microcystin concentration is in bold in
the top row. ‘Low cost’ parameters are shaded grey and ‘high cost’ parameters are white.
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Environmental parameter Abbreviation Minimum Maximum Mean Standard deviation

Microcystin (ppb) TOX 0 469.51 8.72 56.03

Chlorophyll (µg/mL) CH 0 6.8 0.24 0.94

Temperature (°C) TEMP -0.1 26.87 17.62 6.65

pH PH 7.22 10.22 8.59 0.94

Conductivity (S/m) COND 61.4 133.6 102.9 12.6

Particulate organic carbon (µg/mL) POC 0.45 432.32 18.38 65.53

Particulate organic nitrogen (µg/mL) PON 0.066 100.20 3.96 15.12

Chloride (ppm) CHL 2.392 50 4.39 6.94

Sulfate (ppm) None 1.70 50 4.46 6.97

Nitrate (ppm) None 0.2 15.54 0.73 2.26

Phosphate (ppm) None 0.11 50 1.37 7.35

Ammonium (ppm) AMM 0.01 5.43 0.41 0.82

Table 2. Models developed for prediction of microcystin contamination
Model number Model type Input variables Output type

M1 Linear elastic net VOCs Continuous

M2 Logistic elastic net VOCs Binary

M3 Linear regression Low cost environmental parameters Continuous

M4 Logistic regression Low cost environmental parameters Binary

M5 Linear regression Low + high cost environmental parameters Continuous

M6 Logistic regression Low + high cost environmental parameters Binary

M7 Linear elastic net VOCs + low cost environmental parameters Continuous

M8 Logistic elastic net VOCs + low cost environmental parameters Binary

 

Table 3. m/z+1 values identified in models predicting microcystin contamination. A ‘C+’ indicates the m/z+1
value was retained in the model with a positive coefficient and ‘C-‘indicates a negative coefficient; m/z+1 values
selected in two models are shaded light orange, and m/z+1 values selected in three models are shaded dark
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orange. m/z+1 values shaded grey were also important in predicting bacterial relative abundance (Fig 6). Shift
is the difference between the chemical’s actual mass and detected mass. Chemical identifications were made
using the Ionicon PTR viewer integrated database (‘a’ superscript), the PTR viewer calculated formulas (‘b’
superscript), GLOVOC database (‘c’ superscript), previously published PTR-MS research (‘d’ superscript), or
relationships to other identified m/z+1 values (‘e’). 
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m/z+1 value Peak variance Chemical Shift [m/z] M1 M2 M7 M8
35.042 0.009346 (CH4O)H+ a 0.004       x

80.045 0.02135 (C5H5N)H+ ac

(C3H8S)H+ a

(C6H5)H+ a

(C4H3N2)H+ b

-0.004
0.004
-0.008
0.008

C+   C-  

83.055 0.022152 (C4H6N2)H+ ac

(C4H4N2)H+ a

(C5H6O)H+ ac

(C3H4N3)H+ b

-0.005
0.004
0.006
0.007

  C+    

83.078 0.022158 (C6H8)H+ a

(C6H10)H+ ac

(C5H8N)H+ b

0.001
-0.008
0.005

  C+    

98.040 0.026149 (C5H4FN)H+ c

(C4H4N2O)H+ a

(C3H3N3O)H+ ac

(C5H5O2)H+ b

(C4H5N2O)H+ b

0.000
-0.003
0.005
0.003
-0.008

    C+  

103.070 0.027491 (C5H10O2)H+ ac

(C5H8O2)H+ a

(C3H8N3O)H+ b

(C4H8NO2)H+ b

-0.005
0.006
-0.005
0.007

  C+    

111.102 0.029633 (C7H11N)H+ a

(C8H12)H+ a

(C7H12N)H+ b

0.002
-0.006
-0.003

    C- C+

137.129 0.036575 (C10H16)H+ acd

(C10H14)H+ a
-0.003
0.005

    C-  

138.131 0.036842 (C9H15N)H+ ac

(C10H16)H+ a
0.003
-0.005

    C+  

148.073 0.039494 (C7H12CIN)H+ a

(C9H9NO)H+ c

(C9H7NO)H+ a

(C5H10N2O3)H+ a

(C6H11O4)H+ b

(C7H9N4)H+ b

(C2H7N6O2)H+ b

(C6H12N2Cl)H+ b

(C5H12N2OP)H+ b

(C4H11N4S)H+ b

(C5H11N2OS)H+ b

(C7H12OCl)H+ b

0.003
-0.003
0.006
-0.007
-0.001
-0.002
0.002
-0.004
-0.004
-0.005
0.006
0.008

C+   C-  

149.117 0.039772 (C7H16O3)H+ c

(C6H14N2O2)H+ a

(C8H18S)H+ a

(C10H13N)H+ a

0.000
0.000
0.001
0.002
0.001

C-   C+  
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(C5H14N3O2)H+ b

(C10H14N)H+ b
-0.003

151.119 0.040306 (C10H14O)H+ c

(C9H14N2)H+ c

(C9H12N2)H+ a

(C8H12N3)H+ b

0.007
-0.004
0.005
0.008

C+ C- C+  

153.095 0.040833 (C9H12O2)H+ c

(C4H14N3OP)H+ a

(C7H10N3O)H+ b

(C6H10N5)H+ b

0.004
-0.003
0.005
-0.006

    C-  

157.157 0.041917 (C10H20O)H+ c

(C9H18N2)H+ a

(C8H18N3)H+ b

-0.002
-0.004
-0.001

C-   C- C-

169.113 0.045106 (C10H16S)H+ ac

(C9H16NO2)H+ b

(C5H10N7)H+ b

0.008
0.003
0.005

    C-  

171.171 0.045655 (C11H22O)H+ c

(C10H20N2)H+ a

(C9H20N3)H+ b

-0.003
-0.006
-0.003

C+   C-  

175.159 0.046718 (C10H22S)H+ c

(C9H20NO2)H+ b

(C5H16N7)H+ b

0.008
0.002
0.004

C-   C-  

185.185 0.049392 (C12H24O)H+d

(C10H22N3)H+ b

(C11H22NO)H+ b

-0.004
-0.004
0.007

C-   C+  

189.151 0.05045 (C14H18)H+ a

(C13H18N)H+ b

(C8H18N3O2)H+ b

(C10H22NS)H+ b

(C4H14N9)H+ b

(C7H18N5O)H+ b

-0.004
-0.001
0.003
-0.004
0.006
-0.008

    C-  

193.153 0.051517 (C11H17N3)H+ a

(C13H18O)H+ a

(C6H18N5O2)H+ b

(C11H18N3)H+ b

(C12H18NO)H+ b

(C6H19N5P)H+ b

0.000
0.003
-0.001
-0.005
0.006
0.007

C-   C-  

199.189 0.053128 (C13H26O)H+e

(C12H24NO)H+ b
N/A

-0.005
  C+ C+ C+

203.185 0.054193 (C7H20N7)H+ b

(C11H24NO2)H+ b

(C11H25NP)H+ b

((C15H22)H+ c

-0.001
-0.004
0.005
0.006

C+ C+ C+  

233.959 0.062401  
Many compounds

 

 
 
 

  C+    
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332.868 0.088782 Many compounds     C+   C+

 

Figures

Figure 1
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Sample sites on Upper Klamath and Agency Lakes, OR. Lake sites and their geospatial positions were
NAL (42.559839-121.929579), WBR (42.314529-121.942224), EPP (42.430715 -121.962764), and PEL
(42.2390 -121.8097). Canal sites and their geospatial positions were NCA (42.1222 -121.8289), ADY
(42.0808 -121.8456), MER (42.0536 -121.6006), and LRI (42.1733 -121.6175).

Figure 2

Unsupervised hierarchical clustering of m/z +1 values selected by elastic net in M1, M2, M7, and M8 (left
panel) and in models predicting cyanobacterial genera relative abundances (right panel) in lake and
canal samples. Samples are shown in rows and labeled with site and date. The heatmap shows the
Pearson correlation between each m/z +1 value and microcystin concentration or relative abundances of
cyanobacteria genera, with yellow being most positively correlated and dark blue being most negatively
correlated (legend: VOC magnitude). To the left of the heatmap are environmental parameters identi�ed
by elastic net or stepwise linear regression or logistical models associated with each sample: TOXT,
microcystin concentration ≥ 0.3 ppb (red) or < 0.3 ppb (black); TOXC, microcystin toxin concentration
(ppb); TEMP, temperature (°C); CH, chlorophyll concentration (mg/mL); pH; POC, particulate organic
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carbon (ug/mL); PON, particulate organic nitrogen (ug/ml); AMM, ammonium (ppm); and SUL, sulfate
(ppm).

Figure 3

Volcano plot showing log2 fold-changes and p-values (signi�cance determined via Wald test) for the 229
m/z +1 values in toxic (≥ 0.3 ppb) vs. non-toxic samples. Multiple test correction using the Benjamin-
Hochberg False Discovery Rate was applied to the p-value for each m/z+1 value. The points are colored
according to log2 fold changes and degree of signi�cance. Points with positive fold changes greater than
the dashed vertical line at +1.0 are m/z+1 values enriched in toxic vs. non-toxic samples. Points with
negative fold changes less than the dashed vertical line at -1.0 are m/z+1 values depleted in toxic vs.
non-toxic samples.
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Figure 4

Coarse-level microbial community composition in UKL samples across 2018-2019. Microcystin
concentration shown as symbols at top, with concentrations ≥0.3 ppb in red. Relative abundances of the
four toxin producing cyanobacteria genera (top bar graph), four most abundant microbial classes (middle
bar graph), and four most abundant microbial phyla (bottom bar graph). Samples are ordered by date on
the X-axis.
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Figure 5

Statistical performances of linear models (left) and logistic models (right) predicting microcystin toxicity.
VOC-based M1, M2, M7, M8 (dark blue); environmental parameter-based M3, M4, M5, M6 (light colors).
AIC, blue bars; AUC, yellow bars. Error bars are SD.

Figure 6

Pearson correlations between the relative abundances of four toxin producing cyanobacterial genera
(top), four most abundant microbial classes (middle), or four most abundant microbial phyla (bottom) in
UKL samples and the associated m/z+1 values identi�ed in elastic net models. Outlined boxes are m/z+1
values identi�ed in the model predicting the relative abundance of the taxonomic group in each row.
Boxes with a solid outline indicate m/z+1 values in models predicting relative abundances of
cyanobacteria genera, class, or phylum. Note that some m/z+1 values predictive of cyanobacteria genera
relative abundances are also predictive of Cyanophyceae and Cyanobateria relative abundances. Boxes
with a dotted outline indicate m/z+1 values in models predicting relative abundance of other taxonomic
classes or phyla. Pearson r value of 1 (green) indicates a positive correlation, a value of -1 (purple)
indicates a negative correlation.
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Figure 7

The role of the saturated fatty aldehyde (SFA) oxidation pathway in membrane lipid repair and depletion
of reactive oxygen species. SFAs putatively identi�ed by elastic net models predicting microcystin
concentration are in yellow (m/z+1 values 157.157, 171.171, and 185.185). SFAs produced by aldehyde-
deformylating oxygenase (ADO) are metabolized by aldehyde dehydrogenase (ALDH) producing SFAs.
Blue arrows and arrowheads represent SFAs used to repair thylakoid (green) and plasma membrane
(grey) lipids damaged by ROS (red), represented here by H2O2. Photosynthesis (Ps) unavoidably produces
ROS. Medium chained alkanes, (C10-C12) reduce ROS via ADO activity (see text). Microcystins (MC) can
protect against ROS by binding to the photosynthetic subunits and by binding to and promoting
production of ROS degrading enzymes (RDE). Desaturases A-D (DesA-D) unlink glycerol from the fatty
acyl moieties in the membrane. The fatty acyl is removed from the membrane by lipolytic enzyme (LipA).
Acyl-ACP synthase (Aas) can reattach the fatty acyl to ADO to reenter the SFA oxidation pathway,
represented by a dotted arrow.
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