
The Volcano Optimizer Generator: Extensibility and Efficient Search

Goetz Graefe Wil l iam J. M c K e n n a
Portland State Univers i ty Univers i ty of Colorado at Boulder

graefe @ cs.pdx.edu bill @ cs .colorado.edu

A b s t r a c t
Emerging database application domains demand not only

new functionality but also high performance. To satisfy

these two requirements, the Volcano project provides

efficient, extensible tools for query and request processing,

particularly for object-oriented and scientific database

systems. One of these tools is a new optimizer generator.

Data model, logical algebra, physical algebra, and optimi-

zation rules are translated by the optimizer generator into

optimizer source code. Compared with our earlier EX-

ODUS optimizer generator prototype, the search engine is

more extensible and powerful; it provides effective support

for non-trivial cost models and for physical properties

such as sort order. At the same time, it is much more

efficient as it combines dynamic programming, which until

now had been used only for relational select-project-join

optimization, with goal-directed search and branch-and-

bound pruning. Compared with other rule-based optimi-

zation systems, it provides complete data model indepen-

dence and more natural extensibility.

1. Introduction
While extensibility is an important goal and requirement

for many current database research projects and system
prototypes, performance must not be sacrificed for two
reasons. First, data volumes stored in database systems
continue to grow, in many application domains far beyond
the capabilities of most existing database systems.
Second, in order to overcome acceptance problems in em-
erging database application areas such as scientific compu-
tation, database systems must achieve at least the same
performance as the file systems currently in use. Addi-
tional software layers for database management must be
counterbalanced by database performance advantages nor-
mally not used in these application areas. Optimization
and parallelization are prime candidates to provide these
performance advantages, and tools and techniques for op-
timization and parallelization are crucial for the wider use
of extensible database technology.

For a number of research projects, namely the Volcano
extensible, parallel query processor [4], the REWtAaaON
OODBMS project [11] and optimization and paralleliza-
tion in scientific databases [20] as well as to assist research
efforts by other researchers, we have built a new extensi-
ble query optimization system. Our earlier experience
with the EXODUS optimizer generator had been incon-

clusive; while it had proven the feasibility and validity of
the optimizer generator paradigm, it was difficult to con-
struct efficient, production-quality optimizers. Therefore,
we designed a new optimizer generator, requiring several
important improvements over the EXODUS prototype.

First, this new optimizer generator had to be usable both in
the Volcano project with the existing query execution

software as well as in other projects as a stand-alone tool.
Second, the new system had to be more efficient, both in
optimization time and in memory consumption for the
search. Third, it had to provide effective, efficient, and
extensible support for physical properties such as sort ord-
er and compression status. Fourth, it had to permit use of
heuristics and data model semantics to guide the search
and to prune futile parts of the search space. Finally, it
had to support flexible cost models that permit generating
dynamic plans for incompletely specified queries.

In this paper, we describe the Volcano Optimizer Gen-
erator, which will soon fulfill all the requirements above.
Section 2 introduces the main concepts of the Volcano op-
timizer generator and enumerates facilities for tailoring a
new optimizer. Section 3 discusses the optimizer search
strategy in detail. Functionality, extensibility, and search
efficiency of the EXODUS and Volcano optimizer genera-
tors are compared in Section 4. In Section 5, we describe
and compare other research into extensible query optimi-
zation. We offer our conclusions from this research in

Section 6.

2. T h e O u t s i d e View o f the Vo l cano Op t imiz -

e r G e n e r a t o r
In this section, we describe the Volcano optimizer gen-

erator as seen by the person who is implementing a data-
base system and its query optimizer. The focus is the wide
array of facilities given to the optimizer implementor, i.e.,
modularity and extensibility of the Volcano optimizer gen-
erator design. After considering the design principles of
the Volcano optimizer generator, we discuss generator in-
put and operation. Section 3 discusses the search strategy
used by optimizers generated with the Volcano optimizer
generator.

Figure 1 showsthe optimizer generator paradigm.
When the DBMS software is being built, a model
specification is translated into optimizer source code,
which is then compiled and linked with the other DBMS

Model Specification

~ Optimizer Generator

Optimizer Source Code

~ Compiler and Linker

Query Optimizer ~ Plan

Figure 1. The Generator Paradigm.

209
1063-6382/93 $03.00 © 1993 IEEE

software such as the query execution engine. Some of this

software is written by the optimizer implementor, e.g.,
cost functions. After a data model description has been

translated into source code for the optimizer, the generated
code is compiled and linked with the search engine that is

part of the Volcano optimization software. When the

DBMS is operational and a query is entered, the query is

passed to the optimizer, which generates an optimized
plan for it. We call the person who specifies the data

model and implements the DBMS software the "optimizer

implementor." The person who poses queries to be op-

timized and executed by the database system is called the
DBMS user.

2.1. Design Principles
There are five fundamental design decisions embodied

in the system, which contribute to the extensibility and

search efficiency of optimizers designed and implemented

with the Volcano optimizer generator. We explain and
justify these decisions in turn.

First, while query processing in relational systems has
always been based on the relational algebra, it is becoming

increasingly clear that query processing in extensible and

object-oriented systems will also be based on algebraic
techniques, i.e., by defining algebra operators, algebraic

equivalence laws, and suitable implementation algorithms.

Several object-oriented algebras have recently been pro-

posed, e.g. [16-18] among many others. Their common
thread is that algebra operators consume one or more bulk

types (e.g., a set, bag, array, time series, or list) and pro-

duce another one suitable as input into the next operator.

The execution engines for these systems are also based on

algebra operators, i.e., algorithms consuming and produc-

ing bulk types. However, the set of operators and the set
of algorithms are different, and selecting the most efficient
algorithms is one of the central tasks of query optimiza-
tion. Therefore, the Volcano optimizer generator uses two

algebras, called the logical and the physical algebras, and
generates optimizers that map an expression of the logical

algebra (a query) into an expression of the physical alge-
bra (a query evaluation plan consisting of algorithms). To

do so, it uses transformations within the logical algebra

and cost-based mapping of logical operators to algorithms.
Second, rules have been identified as a general concept

to specify knowledge about patterns in a concise and
modular fashion, and knowledge of algebraic laws as re-

quired for equivalence transformations in query optimiza-

tion can easily be expressed using patterns and rules.

Thus, most extensible query optimization systems use
rules, including the Volcano optimizer generator. Further-
more, the focus on independent rules ensures modularity.

In our design, rules are translated independently from one
another and are combined only by the search engine when

optimizing a query. Considering that query optimization

is one of the conceptually most complex components of

any database system, modularization is an advantage in it-

self both for initial construction of an optimizer and for its
maintenance.

Third, the choices that the query optimizer can make to

map a query into an optimal equivalent query evaluation

plan are represented as algebraic equivalences in the Vol-
cano optimizer generator's input. Other systems use mul-

tiple intermediate levels when transforming a query into a

plan. For example, the cost-based optimizer component of
the extensible relational Starburst database system uses an

"expansion grammar" with multiple levels of "non-
terminals" such as commutative binary join, non-

commutative binary join, etc. [10]. We felt that multiple

intermediate levels and the need to re-design them for a

new or extended algebra confuse issues of equivalence,

i.e., defining the choices open to the optimizer, and of

search method, i.e., the order in which the optimizer con-

siders possible query evaluation plans. Just as navigation-
al query languages are less user-friendly than non-

navigational ones, an extensible query optimization system
that requires control information from the database imple-

mentor is less convenient than one that does not. There-

fore, optimizer choices are represented in the Volcano op-

timizer generator's input file as algebraic equivalences,
and the optimizer generator's search engine applies them

in a suitable manner. However, for database implementors
who wish to exert control over the search, e.g., who wish
to specify search and pruning heuristics, there will be op-

tional facilities to do so.

The fourth fundamental design decision concerns rule

interpretation vs. compilation. In general, interpretation

can be made more flexible (in particular the rule set can be

augmented at run-time), while compiled rule sets typically

execute faster. Since query optimization is very CPU-
intensive, we decided on rule compilation similar to the

EXODUS optimizer generator. Moreover, we believe that

extending a query processing system and its optimizer is
so complex and time-consuming that it can never be done
quickly, making the strongest argument for an interpreter

pointless. In order to gain additional flexibility with com-
piled rule sets, it may be useful to pararneterize the rules

and their conditions, e.g., to control the thoroughness of

the search, and to observe and exploit repeated sequences
of rule applications. In general, the issue of flexibility in

the search engine and the choice between interpretation vs.
compilation are orthogonal.

Finally, the search engine used by optimizers generated
with the Volcano optimizer generator is based on dynamic

programming. We will discuss the use of dynamic pro-

gramming in Section 3.

2.2, O p t i m i z e r G e n e r a t o r I n p u t a n d Opt imiz -

er O p e r a t i o n
Since one major design goal of the Volcano optimizer

generator was to minimize the assumptions about the data
model to be implemented, the optimizer generator only

provides a framework into which an optimizer implemen-

tor can integrate data model specific operations and func-
tions. In this section, we discuss the components that the

optimizer implementor defines when implementing a new

database query optimizer. The actual user queries and ex-

ecution plans are input and output of the generated optim-

210

izer, as shown in Figure 1. All other components dis-
cussed in this section are specified by the optimizer imple-

mentor before optimizer generation in the form of
equivalence rules and support functions, compiled and

linked during optimizer generation, and then used by the
generated optimizer when optimizing queries. We discuss

parts of the operation of generated optimizers here, but
leave it to the section on search to draw all the pieces to-
gether.

The user queries to be optimized by a generated optim-

izer are specified as an algebra expression (tree) of logical
operators. The translation from a user interface into a log-

ical algebra expression must be performed by the parser

and is not discussed here. The set of logical operators is

declared in the model specification and compiled into the

optimizer during generation. Operators can have zero or
more inputs; the number of inputs is not restricted. The

output of the optimizer is a plan, which is an expression

over the algebra of algorithms. The set of algorithms,
their capabilities and their costs represents the data for-

mats and physical storage structures used by the database
system for permanent and temporary data.

Optimization consists of mapping a logical algebra ex-

pression into the optimal equivalent physical algebra ex-
pression. In other words, a generated optimizer reorders

operators and selects implementation algorithms. The

algebraic rules of expression equivalence, e.g., commuta-
tivity or associativity, are specified using transformation
rules. The possible mappings of operators to algorithms

are specified using implementation rules. It is important
that the rule language allow for complex mappings. For
example, a join followed by a projection (without dupli-
cate removal) should be implemented in a single pro-

cedure; therefore, it is possible to map multiple logical

operators to a single physical operator. Beyond simple
pattern matching of operators and algorithms, additional

conditions may be specified with both kinds of rules. This
is done by attaching condition code to a rule, which will

be invoke after a pattern match has succeeded.

The results of expressions are described using proper-
ties, similar to the concepts of properties in the EXODUS

optimizer generator and the Starburst optimizer. Logical
properties can be derived from the logical algebra expres-

sion and include schema, expected size, etc., while physi-
cal properties depend on algorithms, e.g., sort order, parti-
tioning, etc. When optimizing a many-sorted algebra, the

logical properties also include the type (or sort) of an in-
termediate result, which can be inspected by a rule's con-
dition code to ensure that rules are only applied to expres-

sions of the correct type. Logical properties are attached
to equivalence classes - sets of equivalent logical expres-

sions and plans - whereas physical properties are attached
to specific plans and algorithm choices.

The set of physical properties is summarized for each

intermediate result in a physical property vector, which is
defined by the optimizer implementor and treated as an
abstract data type by the Volcano optimizer generator and
its search engine. In other words, the types and semantics
of physical properties can be designed by the optimizer

implementor.
There are some operators in the physical algebra that do

not correspond to any operator in the logical algebra, for

example sorting and decompression. The purpose of these
operators is not to perform any logical data manipulation

but to enforce physical properties in their outputs that are

required for subsequent query processing algorithms. We

call these operators enforcers; they are comparable to the
"glue" operators in Starburst. It is possible for an enforcer

to ensure two properties, or to enforce one but destroy

another.
Each optimization goal (and subgoal) is a pair of a logi-

cal expression and a physical property vector. In order to

decide whether or not an algorithm or enforcer can be

used to execute the root node of a logical expression, a

generated optimizer matches the implementation rule, exe-
cutes the condition code associated with the rule, and then

invokes an applicability function that determines whether

or not the algorithm or enforcer can deliver the logical ex-

pression with physical properties that satisfy the physical

property vector. The applicability functions also deter-
mine the physical property vectors that the algorithm's in-

puts must satisfy. For example, when optimizing a join

expression whose result should be sorted on the join attri-
bute, hybrid hash join does not qualify while merge-join

qualifies with the requirement that its inputs be sorted.

The sort enforcer also passes the test, and the requirements

for its input do not include sort order. When the input to

the sort is optimized, hybrid hash join qualifies. There is

also a provision to ensure that algorithms do not qualify
redundantly, e.g., merge-join must not be considered as in-

put to the sort in this example.
After the optimizer decides to explore using an algo-

rithm or enforcer, it invokes the algorithm's cost function
to estimate its cost. Cost is an abstract data type for the

optimizer generator; therefore, the optimizer implementor

can choose cost to be a number (e.g., estimated elapsed
time), a record (e.g., estimated CPU time and I/O count),

or any other type. Cost arithmetic and comparisons are

performed by invoking functions associated with the
abstract data type "cost."

For each logical and physical algebra expression, logi-

cal and physical properties are derived using property
functions. There must be one property function for each

logical operator, algorithm, and enforcer. The logical pro-
perties are determined based on the logical expression, be-
fore any optimization is performed, by the property func-
tions associated with the logical operators. For example,
the schema of an intermediate result can be determined in-

dependently of which one of many equivalent algebra ex-
pressions creates it. The logical property functions also

encapsulate selectivity estimation. On the other hand,
physical properties such as sort order can only be deter-

mined after an execution plan has been chosen. As one of

many consistency checks, generated optimizers verify that
the physical properties of a chosen plan really do satisfy
the physical property vector given as part of the optimiza-

tion goal.

211

To summarize this section, the optimizer implementor
provides (1) a set of logical operators, (2) algebraic

transformation rules, possibly with condition code, (3) a

set of algorithms and enforcers, (4) implementation rules,

possibly with condition code, (5) an ADT "cost" with
functions for basic arithmetic and comparison, (6) an ADT
"logical properties," (7) an ADT "physical property vec-
tor" including comparisons functions (equality and cover),
(8) an applicability function for each algorithm and en-
forcer, (9) a cost function for each algorithm and enforcer,
(10) a property function for each operator, algorithm, and
enforcer. This might seem to be a lot of code; however,
all this functionality is required to construct a database
query optimizer with or without an optimizer generator.
Considering that query optimizers are typically one of the
most intricate modules of a database management systems
and that the optimizer generator prescribes a clean modu-
larization for these necessary optimizer components, the
effort of building a new database query optimizer using
the Volcano optimizer generator should be significantly
less than designing and implementing a new optimizer
from scratch. This is particularly true since the optimizer
implementor using the Volcano optimizer generator does
not need to design and implement a new search algorithm.

3. T h e S e a r c h E n g i n e
Since the general paradigm of database query optimiza-

tion is to create alternative (equivalent) query evaluation
plans and then to choose among the many possible plans,
the search engine and its algorithm are central components

of any query optimizer. Instead of forcing each database
and optimizer implementor to implement an entirely new
search engine and algorithm, the Volcano optimizer gen-
erator provides a search engine to be used in all created
optimizers. This search engine is linked automatically
with the pattern matching and rule application code gen-
erated from the data model description.

Since our experience with the EXODUS optimizer gen-
erator indicated that it is easy to waste a lot of search ef-
fort in extensible query optimization, we designed the
search algorithm for the Volcano optimizer generator to
use dynamic programming and to be very goal-oriented,
i.e., driven by needs rather than by possibilities.

Dynamic programming has been used before in data-
base query optimization, in particular in the System R op-
timizer [15] and in Starburst's cost-based optimizer [8,

10], but only for relational select-project-join queries. The
search strategy designed with the Volcano optimizer gen-
erator extends dynamic programming from relational join
optimization to general algebraic query and request optim-
ization and combines it with a top-down, goal-oriented
control strategy for algebras in which the number of possi-
ble plans exceeds practical limits of pre-computation. Our
dynamic programming approach derives equivalent ex-
pressions and plans only for those partial queries that are
considered as parts of larger subqueries (and the entire
query), not all equivalent expressions and plans that are
feasible or seem interesting by their sort order [15]. Thus,
the exploration and optimization of subqueries and their

alternative plans is tightly directed and very goal-oriented.
In a way, while the search engines of the EXODUS optim-

izer generator as well as of the System R and Starburst re-

lational systems use forward chaining (in the sense in
which this term is used in AI), the Volcano search algo-
rithm uses backward chaining, because it explores only
those subqueries and plans that truly participate in a larger
expression. We call our search algorithms directed
dynamic programming.

Dynamic programming is used in optimizers created
with the Volcano optimizer generator by retaining a large
set of partial optimization results and using these earlier
results in later optimization decisions. Currently, this set
of partial optimization results is reinitialized for each
query being optimized. In other words, earlier partial op-
timization results are used during the optimization of only
a single query. We are considering research into longer-
lived partial results in the future.

Algebraic transformation systems always include the

possibility of deriving the same expression in several dif-
ferent ways. In order to prevent redundant optimization
effort by detecting redundant (i.e., multiple equivalent)

derivations of the same logical expressions and plans dur-
ing optimization, expression and plans are captured in a
hash table of expressions and equivalence classes. An
equivalence class represents two collections, one of
equivalent logical and one of physical expressions (plans).
The logical algebra expressions are used for efficient and
complete exploration of the search space, and plans are
used for a fast choice of a suitable input plan that satisfies
physical property requirements. For each combination of
physical properties for which an equivalence class has al-
ready been optimized, e.g., unsorted, sorted on A, and
sorted on B, the best plan found is kept.

Figure 2 shows an outline of the search algorithm used
by the Volcano optimizer generator. The original invoca-
tion of the FindBestPlan procedure indicates the logical

expression passed to the optimizer as the query to be op-
timized, physical properties as requested by the user (for
example, sort order as in the ORDER BY clause of SQL),
and a cost limit. This limit is typically infinity for a user

query, but the user interface may permit users to set their
own limits to "catch" unreasonable queries, e.g., ones us-
ing a Cartesian product due to a missing join predicate.

The FindBestPlan procedure is broken into two parts.

First, if a plan for the expression satisfying the physical
property vector can be found in the hash table, either the
plan and its cost or a failure indication are returned
depending on whether or not the found plan satisfies the

given cost limit. If the expression cannot be found in the
hash table, or if the expression has been optimized before
but not for the presently required physical properties, actu-'
al optimization is begun.

There are three sets of possible "moves" the optimizer
can explore at any point. First, the expression can be
transformed using a transformation rule. Second, there
might be some algorithms that can deliver the logical ex-
pression with the desired physical properties, e.g., hybrid
hash join for unsorted output and merge-join for join out-

212

FindBestPlan (LogExpr, PhysProp, Limit)

if the pair LogExpr and PhysProp is in the look-up table

if the cost in the look-up table < Limit
return Plan and Cost

else
return failure

/* else: optimization required */

create the set of possible "moves" from
applicable transformations

algorithms that give the required PhysProp

enforcers for required PhysProp

order the set of moves by promise

for the most promising moves

if the move uses a transformation

apply the transformation creating NewLogExpr
call FindBestPlan (NewLogExpr, PhysProp, Limit)

else if the move uses an algorithm

TotalCost := cost of the algorithm

for each input I while TotalCost < Limit

determine required physical properties PP for I
Cost = FindBestPlan (I, PP, Limit - TotalCost)

add Cost to TotalCost

else/* move uses an enforcer */

TotalCost := cost of the enforcer
modify PhysProp for enforced property
call FindBestPlan for LogExpr with new PhysProp

/* maintain the look-up table of explored facts */

if LogExpr is not in the look-up table
insert LogExpr into the look-up table

insert PhysProp and best plan found into look-up table

return best Plan and Cost

Figure 2. Outline of the Search Algorithm.

put sorted on the join attribute. Third, an enforcer might

be useful to permit additional algorithm choices, e.g., a

sort operator to permit using hybrid hash join even if the
final output is to be sorted.

After all possible moves have been generated and as-
sessed, the most promising moves are pursued. Currently,

with only exhaustive search implemented, all moves are

pursued. In the future, a subset of the moves will be

selected, determined and ordered by another function pro-

vided by the optimizer implementor. Pursuing all moves

or only a selected few is a major heuristic placed into the
hands of the optimizer implementor. In the extreme case,

an optimizer implementor can choose to transform a logi-

cal expression without any algorithm selection and cost

analysis, which covers the optimizations that in Starburst

are separated into the query rewrite level. The difference
between Starburst's two-level and Volcano's approach is

that this separation is mandatory in Starburst while Vol-
cano will leave it as a choice to be made by the optimizer
implementor.

The cost limit is used to improve the search algorithm
using branch-and-bound pruning. Once a complete plan is
known for a logical expression (the user query or some
part of it) and a physical property vector, no other plan or

partial plan with higher cost can be part of the optimal

query evaluation plan. Therefore, it is important (for op-
timization speed, not for correctness) that a relatively good

plan be found fast, even if the optimizer uses exhaustive

search. Furthermore, cost limits are passed down in the

optimization of subexpressions, and tight upper bounds
also speed their optimization.

If a move to be pursued is a transformation, the new ex-
pression is formed and optimized using FindBestPlan. In

order to detect the case that two (or more) rules are

inverses of each other, the current expression and physical

property vector is marked as "in progress." ff a newly

formed expression already exists in the hash table and is

marked as "in progress," it is ignored because its optimal

plan will be considered when it is finished.

Often a new equivalence class is created during a
transformation. Consider the associativity rule in Figure

3. The expressions rooted at A and B are equivalent and

therefore belong into the same class. However, expression

C is not equivalent to any expression in the left expression

and requires a new equivalence class. In this case, a new

equivalence class is created and optimized as required for

cost analysis and optimization of expression B.

If a move to be pursued is the exploration of a normal
query processing algorithm such as merge-join, its cost is

calculated by the algorithm's cost function. The
algorithm's applicability function determines the physical

properly vectors for the algorithms inputs, and their costs

and optimal plans are found by invoking FindBestPlan for

the inputs.
For some binary operators, the actual physical proper-

ties of the inputs are not as important as the consistency of
physical properties among the inputs. For example, for a

sort-based implementation of intersection, i.e., an algo-
rithm very similar to merge-join, any sort order of the two

inputs will suffice as long as the two inputs are sorted in
the same way. Similarly, for a parallel join, any partition-

ing of join inputs across multiple processing nodes is ac-

ceptable if both inputs are partitioned using Compatible

partitioning rules. For these cases, the search engine per-
mits the optimizer implementor to specify a number of

physical property vectors to be tried. For example, for the

intersection of two inputs R and S with attributes A, B,

and C where R is sorted on (A,B,C) and S is sorted on

(B,A,C), both these sort orders can be specified by the op-

timizer implementor and will be optimized by the generat-

ed optimizer, while other possible sort orders, e.g.,

(C,B,A), will be ignored.
If the move to be pursued is the use of an enforcer such

as sort, its cost is estimated by a cost function provided by

A B

R S S T

Figure 3. Associativity Rule.

213

the optimizer implementor and the original logical expres-
sion is optimized using FindBestPlan with a suitably
modified (i.e., relaxed) physical property vector. In many
respects, enforcers are dealt with exactly like algorithms,
which is not surprising considering that both are operators
of the physical algebra. During optimization with the
modified physical property vector, algorithms that already

applied before relaxing the physical properties must not be
explored again. For example, if a join result is required
sorted on the join column, merge-join (an algorithm) and

sort (an enforcer) will apply. When optimizing the sort in-
put, i.e., the join expression without the sort requirement,

hybrid hash join should apply but merge-join should not.
To ensure this, FindBestPlan uses an additional parameter,
not shown in Figure 2, called the excluding physical pro-
perty vector that is used only when inputs to enforcers are
optimized. In the example, the excluding physical proper-
ty vector would contain the sort condition, and since
merge-join is able to satisfy the excluding properties, it
would not be considered a suitable algorithm for the sort

input.
At the end of (or actually already during) the optimiza-

tion procedure FindBestPlan, newly derived interesting
facts are captured in the hash table. "Interesting" is
defined with respect to possible future use, which includes
both plans optimal for given physical properties as well as
failures that can save future optimization effort for a logi-
cal expression and a physical property vector with the

same or even lower cost limits.
In summary, the search algorithm employed by optimiz-

ers created with the Volcano optimizer generator uses
dynamic programming by storing all optimal subplans as
well as optimization failures until a query is completely
optimized. Without any a-priori assumptions about the
algebras themselves, it is designed to map an expressions
over the logical algebra into the optimal equivalent expres-
sions over the physical algebra. Since it is very goal-
oriented through the use of physical properties and derives
only those expressions and plans that truly participate in
promising larger plans, the algorithm is more efficient than
previous approaches to using dynamic programming in da-

tabase query optimization.

4. Comparison with the EXODUS Optimizer
Generator

Since the EXODUS optimizer generator was our first at-
tempt to design and implement an extensible query optimi-
zation system or tool, this section compares the EXODUS
and Volcano optimizer generators in some detail. The
EXODUS optimizer generator was successful to the extent
that it defined a general approach to the problem based on
query algebras, the generator paradigm (data model
specification as input data), separation of logical and phy-
sical algebras, separation of logical and physical proper-
ties, extensive use of algebraic rules (transformation rules
and implementation rules), and its focus on software
modularization [2, 3]. Considering the complexity of typi-
cal query optimization software and the importance of
well-defined modules to conquer the complexities of

software design and maintenance, the latter two points
might well be the most important contributions of the EX-
ODUS optimizer generator research.

The generator concept was very successful because the
input data (data model specification) could be turned into
machine code; in particular, all strings were translated into
integers, which ensured very fast pattern matching. How-
ever, the EXODUS optimizer generator's search engine
was far from optimal. First, the modifications required for

unforeseen algebras and their peculiarities made it a bad
patchwork of code. Second, the organization of the
"MESH" data structure (which held all logical and physi-

cal algebra expressions explored so far) was extremely
cumbersome, both in its time and space complexities.
Third, the almost random transformations of expressions

in MESH resulted in significant overhead in "reanalyzing"
existing plans. In fact, for larger queries, most of the time

was spent reanalyzing existing plans.
The Volcano optimizer generator has solved these three

problems, and includes new functionality not found in the

EXODUS optimizer generator. We first summarize their
differences in functionality and then present a perfor-
mance comparison for relational queries.

4.1. Functionality and Extensibility
There are several important differences in the func-

tionality and extensibility of the EXODUS and Volcano
optimizer generators. First, Volcano makes a distinction
between logical expressions and physical expressions. In
EXODUS, only one type of node existed in the hash table
called MESH, which contained both a logical operator
such as join and a physical algorithm such as hybrid hash
join. To retain equivalent plans using merge-join and hy-
brid hash join, the logical expression (or at least one node)
had to be kept twice, resulting in a large number of nodes

in MESH.
Second, physical properties were handled rather hapha-

zardly in EXODUS. If the algorithm with the lowest cost
happened to deliver results with useful physical properties,
this was recorded in MESH and used in subsequent optim-
ization decisions. Otherwise, the cost of enforcers (to use
a Volcano term) had to be included in the cost function of
other algorithms such as merge-join. In other words, the
ability to specify required physical properties and let these
properties, together with the logical expression, drive the
optimization process was entirely absent in EXODUS and

has contributed significantly to the efficiency of the Vol-
cano optimizer generator search engine.

The concept of physical property is very powerful and
extensible. The most obvious and well-known candidate
for a physical property in database query processing is the
sort order of intermediate results. Other properties can be
defined by the optimizer implementor at will. Depending
on the semantics of the data model, uniqueness might be a
physical property with two enforcers, sort- and hash-
based. Location and partitioning in parallel and distribut-
ed systems can be enforced with a network and parallelism
operator such as Volcano's exchange operator [4]. For
query optimization in object-oriented systems, we plan on

214

defining "assembledness" of complex objects in memory
as a physical property and using the assembly operator
described in [5] as the enforcer for this property.

Third, the Volcano algorithm is driven top-down; su-

bexpressions are optimized only if warranted. In the ex-
treme case, if the only move pursued is a transformation, a

logical expression is transformed on the logical algebra

level without optimizing its subexpressions and without
performing algorithm selection and cost analysis for the

subexpressions. In EXODUS, a transformation is always
followed immediately by algorithm selection and cost

analysis. Moreover, transformations were explored

whether or not they were part of the currently most

promising logical expression and physical plan for the

overall query. Worst of all for optimizer performance,

however, was the decision to perform transformations with
the highest expected cost improvement first. Since the ex-

pected cost improvement was calculated as product of a

factor associated with the transformation rule and the

current cost before transformation, nodes at the top of the

expression (with high total cost) were preferred over lower

expressions. When the lower expression were finally
transformed, all consumer nodes above (of which there

were many at this time) had to be reanalyzed creating an

extremely large number of MESH nodes.

Fourth, cost is defined in much more general terms in
Volcano than in the EXODUS optimizer generator. In

Volcano, cost is an abstract data type for which all calcu-
lations and comparisons are performed by invoking func-

tions provided by the optimizer implementor. It can be a
simple number, e.g., estimated elapsed seconds, a struc-

ture, e.g., a record consisting of CPU time and I/O count
for a cost model similar to the one in System R [15], or

even a function, e.g., of the amount of available main
memory.

Finally, we believe that the Volcano optimizer generator
is more extensible than the EXODUS prototype, in partic-

ular with respect to the search strategy. The hash table

that holds logical expressions and physical plans and

operations on this hash table are quite general, and would
support a variety of search strategies, not only the pro-

cedure outlined in the previous section. We are still modi-

fying (extending and refining) the search strategy, and
plan on modifying it further in subsequent years and on
using the Volcano optimizer generator for further
research.

4 . 2 . S e a r c h E f f i c i e n c y a n d E f f e c t i v e n e s s
In this section, we experimentally compare efficiency

and effectiveness of the mechanisms built into the EX-

ODUS and Volcano search engines. The example used

for this comparison is a rather small "data model" consist-
ing of relational select and join operators only; as we will

see, however, even this small data model and query

language suffices to demonstrate that the search strategy of

the Volcano optimizer generator is superior to the one
designed for the earlier EXODUS prototype. The effects
exposed here would be even stronger for richer and more
complex data models, (logical) query algebras, and (physi-

cal) execution algebras.

For the experiments, we specified the data model

descriptions as similarly as possible for the EXODUS and
Volcano optimizer generators. In particular, we specified

the same operators (get, select, join) and algorithms (file
scan, filter for selections, sort, merge-join, hybrid hash
join), the same transformation and implementation rules,

and the same property and cost functions. Sorting was
modeled as an enforcer in Volcano while it was implicit in
the cost function for merge-join in EXODUS. The

transformation rules permitted generating all plans includ-

ing bushy ones (composite inner inputs). The test rela-

tions contained 1,200 to 7,200 records of 100 bytes. The

cost functions included both I/O and CPU costs. Hash join

was presumed to proceed without partition files, while

sorting costs were calculated based on a single-level
merge.

As a first comparison between the two search engines,
we performed exhaustive optimizations of relational

select-join queries. Figure 4 shows the average optimiza-

tion effort and, to show the quality of the optimizer output,

the estimated execution time of produced plans for queries
with 1 to 7 binary joins, i.e., 2 to 8 input relations, and as

many selections as input relations. Solid lines indicate op-

timization times on a Sun SparcStation-1 delivering about

12MIPS. Dashed lines indicate estimated plan execution

times. Note that the y-axis are logarithmic. Measure-

ments from the EXODUS optimizer generator are marked

with r-]'s, Volcano measurements are marked with O's.

For each complexity level, we generated and optimized
50 queries. For some of the more complex queries, the

EXODUS optimizer generator aborted due to lack of
memory or was aborted because it ran much longer than
the Volcano optimizer generator. Furthermore, we ob-

served in repeated experiments that the EXODUS optimiz-

er generator measurements were quite volatile. Similar

problems were observed in EXODUS experiments report-
ed in [3]. The Volcano-generated optimizer performed ex-

haustive search for all queries with less than 1 MB of work

space. The data points in Figure 4 represent only those
queries for which the EXODUS optimizer generator com-

1 0 -
Optimization
and Estimated

Execution Time 1 -

per Query

[seconds] 0.1 - 0 Volcano
solid Optim.

0¢" dashed Exec.
0.01

I I I I I I I
2 3 4 5 6 7 8

Number of Input Relations

Figure 4. Exhaustive Optimization Performance.

215

pleted the optimization.

The search times reflect Volcano's more efficient search

strategy, visible in the large distance between the two solid

lines. For the EXODUS-generated optimizer, the search
effort increases dramatically from 3 to 4 input relations

because reanalyzing becomes a substantial part of the

query optimization effort in EXODUS at this point. The

increase of Volcano's optimization costs is about ex-
ponential, shown in an almost straight line, which mirrors

exactly the increase in the number of equivalent logical
algebra expressions [13]. For more complex queries, the

EXODUS' and Volcano's optimization times differ by
about an order of magnitude.

The plan quality (shown by the estimated execution

cost; dashed lines in Figure 4) is equal for moderately

complex queries (up to 4 input relations). For more com-
plex queries, however, the cost is significantly higher for

EXODUS-optimized plans, because the EXODUS-

generated optimizer and its search engine do not systemat-

ically explore and exploit physical properties and interest-

ing orderings.

In summary, the Volcano optimizer generator is not

only more extensible, it is also much more efficient and ef-

fective than the earlier EXODUS prototype. In the next

section, we compare our work with other related work.

5. Other Related Work
The query optimizer of the Starburst extensible-

relational database management system consists of two

rule-based subsystems with nested scopes. The two sub-

systems are connected by a common data structure, which

represents an entire query and is called query graph model

(QGM). The first subsystem, called query rewrite, merges

nested subqueries and bundles selection and join predi-
cates for optimization in a second, cost-based optimizer.
Optimization during the query rewrite phase, i.e., nested
SQL queries, union, outer join, grouping, and aggregation,
is based entirely on heuristics and is not cost-sensitive.

Select-project-join query components are covered by the

second optimizer l, also called the cost-based optimizer,

which performs rule-based expansion of select-project-
join queries from relational calculus into access plans and

compares the resulting plans by estimated execution costs

[8, 10]. The cost-based optimizer performs exhaustive
search within certain structural boundaries. For example,

it is possible to restrict the search space to left-deep trees

(no composite inner), to include all bushy trees, or to set a
parameter for exploration of some but not all bushy trees.

For moderately complex join queries, the exhaustive
search of Starburst's cost-based optimizer is very fast be-

cause of its use of dynamic programming. Moreover, the

cost-based optimizer considers physical properties such as
sort order and creates efficient access plans that include

"glue" operators to enforce physical properties.

1 Actually, the cost-based optimizer covers all operators.
However, its optimization and algorithm choices are very

limited for all but the select-project-join blocks in a query.

As we see it, there are two fundamental problems in

Starburst's approach to extensible query optimization.

First, the design of the cost-based optimizer is focused on

step-wise expansion of join expressions based on
grammar-like rules. The "grammar" depends on a hierar-

chy of intermediate levels (similar to non-terminals in a

parsing grammar), e.g., commutative join and non-
commutative join, and the sets of rules and intermediate
levels are tailored specifically to relational join optimiza-

tion. The problem is that it is not obvious how the existing

rule set would interact with additional operators and ex-
pansion rules. For example, which level of the hierarchy

is the right place for a multi-way join algorithm? What

new intermediate levels (non-terminals) must be defined

for the expansion grammar? In order to integrate a new

operator into Starburst's cost-based optimizer, the data-
base implementor must design a number of new intermedi-

ate levels and their new grammar rules. These rules may

interact with existing ones, making any extension of

Starburst's cost-based optimizer a complex and tedious

task. Volcano's algebraic approach seems much more na-

tural and easier to understand. Most recent work in

object-oriented query optimization and some work on da-

tabase programming languages has focused on algebras
and algebraic transformations, e.g. [9, 16-18] among many

others.
Second, in order to avoid the problems associated with

adding new operators to the cost-based optimizer, new

operators are integrated at the query rewrite level. How-

ever, query optimization on the query rewrite level is

heuristic; in other words, it does not include cost estima-

tion. While heuristics are sufficient for some transforma-
tions, e.g., rewriting nested SQL queries into join expres-

sions, they are not sufficient for the relational operators al-
ready in Starburst's query rewrite level and certainly not
for an extensible query optimization system in which fu-

ture algebra operators and their properties are yet unk-
nown. As an example for insufficient optimization capa-

bilities for existing Starburst operators, consider that op-

timizing the union or intersection of N sets is very similar
to optimizing a join of N relations; however, while join
optimization uses exhaustive search of tree shapes and join

orderings as well as selectivity and cost estimation, union

and intersection are optimized using query rewrite heuris-

tics and commutativity only. We believe that a single-

level approach, in which all algebraic equivalences and

transformations are specified in a single language and per-

formed by a single optimizer component, is much more
conducive for future research and exploration of database

query algebras and their optimization. Note that the Vol-

cano optimizer generator will permit heuristic transforma-
tions by suitable ranking and selection of "moves"; how-

ever, it leaves the choice to the database implementor

when and how to use heuristics vs. cost-sensitive optimi-

zation rather than making this choice a priori as in the
Starburst design.

Sciore and Sieg criticized earlier rule-based query op-
timizers and concluded that modularity is a major require-

ment for extensible query optimization systems, e.g., in

216

the rule set and in the control structures for rule applica-

tion [14]. The different tasks of query optimization, such
as rule application and selectivity estimation, should be

encapsulated in separate and cooperating "experts."

Mitchell et al. recently proposed a very similar approach

for query optimization in object-oriented database systems

[12]. While promising as a conceptual approach, we feel

that this separation can be sustained for some aspects of
query optimization (and have tried to do so in the abstract

data types for cost etc. in the Volcano optimizer genera-
tor), but we have found it exa'emely hard to maintain en-

capsulation of all desirably separate concerns in an actual

implementation.

Kemper and Moerkotte designed a rule-based query op-

timizer for the Generic Object Model [6]. The rules

operate almost entirely on path expressions (e.g.,
employee.department.floor) by extending and cutting them

to permit effective use of access support relations [7].

While the use of rules makes the optimizer extensible, it is

not clear to what extent these techniques can be used for

different data models and for different execution engines.

6. Summary and Conclusions
Emerging database application domains demand not

only high functionality but also high performance. To
satisfy these two requirements, the Volcano project pro-

vides efficient, extensible tools for query and request pro-

cessing, particularly for object-oriented and scientific data-
base systems. We do not propose to reintroduce relational

query processing into next-generation database systems;
instead, we work on a new kind of query processing en-

gine that is independent of any data model. The basic as-

sumption is that high-level query and request languages
are and will continue to be based on sets, other bulk types,

predicates, and operators. Therefore, operators consuming

and producing sets or sequences of items are the funda-
mental building blocks of next-generation query and re-
quest processing systems. In other words, we assume that

some algebra of sets is the basis of query processing, and
our research tries to support any algebra of collections, in-

cluding heterogeneous collections and many-sorted alge-

bras. Fortunately, algebras and algebraic equivalence

rules are a very suitable basis for database query optimiza-
tion. Moreover, sets (permitting definition and exploita-
tion of subsets) and operators with data passed (or pipe-

lined) between them are also the foundations of parallel al-
gorithms for database query processing. Thus, our funda-

mental assumption for query processing in extensible data-

base systems are compatible with high-performance paral-
lel processing.

One of the tools provided by the Volcano research is a

new optimizer generator, designed and implemented to
further explore extensibility, search algorithms, effective-

ness (i.e., the quality of produced plans), heuristics, and

time and space efficiency in the search engine. Extensibil-
ity was achieved by generating optimizer source code
from data model specifications and by encapsulating costs
as well as logical and physical properties into abstract data
types. Effectiveness was achieved by permitting exhaus-

tive search, which will be pruned only at the discretion of

the optimizer implementor. Efficiency was achieved by
combining dynamic programming with directed search

based on physical properties, branch-and-bound pruning,

and heuristic guidance into a new search algorithm that we

have called directed dynamic programming. A prelim-

inary performance comparison with the EXODUS optim-

izer generator demonstrated that optimizers built with the
Volcano optimizer generator are much more efficient than

those built with the EXODUS prototype. We hope that the

new Volcano optimizer generator will permit our own

research group as well as others to develop more rapidly

new database query optimizers for novel data models,

query algebras, and database management systems. The

Volcano optimizer generator has been used to develop op-

timizers for computations over scientific databases [20]
and for Texas Instruments' Open OODB project [1, 19],

which introduces a new "materialize" or scope operator

that captures the semantics of path expressions in a logical

algebra expression. Both of these optimizers have recent-

ly become operational. Moreover, the Volcano optimizer

generator is currently being evaluated by several academic

and industrial researchers in three continents.

In addition to combining an efficient implementation of
exhaustive search based on dynamic programming (as also

found in the cost-based component of the Starburst's rela-

tional optimizer) with the generality of the EXODUS op-

timizer generator and the more natural single-level alge-

braic lransformation approach, the Volcano optimizer gen-
erator has a number of new features that enhance its value
as a software development and research tool beyond all

earlier extensible query optimization efforts.
First, the choice when and how to use heuristic transfor-

mations vs. cost-sensitive optimization is not prescribed or
"wired in." In EXODUS, cost analysis was always per-

formed after a transformation; in Starburst, one level can

only perform heuristic optimization while the other level

performs cost-sensitive exhaustive search. Thus, the Vol-

cano optimizer generator has removed the restrictions on

the search strategy imposed by the earlier extensible query
optimizer designs.

Second, optimizers generated with the Volcano optimiz-

er generator use physical properties very efficiently to
direct the search. Rather than optimizing an expression
first and then adding "glue" operators and their cost to a

plan (the Starburst approach), the Volcano optimizer

generator's search algorithm immediately considers which
physical properties are to be enforced and can be enforced
by which enforcer algorithms, and subtracts the cost of the

enforcer algorithms from the bound that is used for

branch-and-bound pruning. Thus, the Volcano optimizer
generator promises to be even more efficient in its search

and pruning than the relational Starburst optimizer.

Third, for binary (ternary, etc.) operations that can
benefit from multiple, alternative combinations of physical
properties, the subexpressions can be optimized multiple
times. For example, any sort order can be exploited by ,an
intersection algorithm based on merge-join as long as the
two inputs are sorted in the same way. Although the same

217

consideration applies to location and partitioning in paral-

lel and distributed relational query processing, no earlier

query optimizer has provided this feature.

Fourth, the internal structure for equivalence classes is

sufficiently modular and extensible to support alternative

search strategies, far beyond the parameterization of rule

condition codes, which can be found to a roughly similar

extent in Starburst and EXODUS. We are exploring

several directions with respect to the search strategy,

namely preoptimized subplans, learning of transformation

sequences, an alternative, even more parameterized search

algorithm that can be "switched" to different existing algo-

rithms, and parallel search (on shared-memory machines).

Finally, the consistent separation of logical and physical

algebras makes specification as well as modifications at ei-

ther level particularly easy for the database and optimizer

implementor and makes the search engine very efficient.

For example, the introduction of a new, non-trivial algo-

rithm such as a multi-way join (rather than binary joins)

requires one or two implementation rules in Volcano,

whereas the design of Starburst's cost-based optimizer re-

quires reconsideration of almost the entire rule set. While

the separation of logical and physical algebras was already

present in the EXODUS rule language, the Volcano design

also exploits this separation in the search engine, which

makes extending the code supplied by the optimizer im-

plementor (which sometimes must inspect the internal data

structures, e.g., in rule condition code) significantly easier

to write, understand, and modify. In summary, the Vol-

cano optimizer generator is a much more extensible and

useful research tool than both the Starburst optimizer and

the EXODUS optimizer generator.

Acknowledgements
Jim Martin, David Maier, and Guy Lohman have made

valuable contributions to this research. Jim Martin, Guy

Lohman, Barb Peters, Rick Cole, Diane Davison, and

Richard Wolniewicz suggested numerous improvements to

drafts of this paper. We thank Jos6 A. Blakeley andhis

colleagues at Texas Instruments for using the Volcano Op-

timizer Generator in the Open OODB project. - This

research was performed at the University of Colorado at

Boulder with partial support by NSF with awards 1RI-

8805200, 1RI-8912618, and IRI-9116547, DARPA with
contract DAAB07-91-C-Q518, and Texas Instruments.

References
[1] J.A. Blakeley, W. J. McKenna and G. Graefe, "Experi-

ences Building the Open OODB Query Optimizer", sub-
mitted for publication, December 1992.

[2] G. Graefe, "Software Modularization with the EXODUS
Optimizer Generator", 1EEE Database Eng. 10, 4 (De-
cember 1987).

[3] G. Graefe and D. J. DeWitt, "The EXODUS Optimizer
Generator", Proc. ACM SIGMOD Conf., San Francisco,
CA, May 1987, 160.

[4] G. Graefe, R. L. Cole, D. L. Davison, W. J. McKenna and
R. H. Wolniewicz, "Extensible Query Optimization and
Parallel Execution in Volcano", in Query Processing for
Advanced Database Applications,
J.C. Freytag, G. Vossen and D. Maier (editor),

Morgan-Kaufman, San Mateo, CA, 1992. Also available
as CU Boulder CS Tech. Rep..

[5] T. Keller, G. Graefe and D. Maier, "Efficient Assembly
of Complex Objects", Proc. ACM SIGMOD Conf.,
Denver, CO, May 1991, 148.

[6] A. Kemper and G. Moerkotte, "Advanced Query Process-
ing in Object Bases Using Access Support Relations",
Proc. lnt'l. Conf. on Very Large Data Bases, Brisbane,
Australia, 1990, 290.

[7] A. Kemper and G. Moerkotte, "Access Support in Object
Bases", Proc. ACM SIGMOD Conf., Atlantic City, NJ,
May 1990, 364.

[8] M. Lee, J. C. Freytag and G. Lohman, "Implementing an
Interpreter for Functional Rules in a Query Optimizer",
Proc. lnt'l. Conf. on Very Large Data Bases, Long Beach,
CA, August 1988, 218.

[9] D.F. Lieuwen and D. J. DeWitt, "A Transformation-
Based Approach to Optimizing Loops in Database Pro-
gramming Languages", Proc. ACM SIGMOD Conf., San
Diego, CA, June 1992, 91.

[10] G. M. Lohman, "Grammar-Like Functional Rules for
Representing Query Optimization Alternatives", Proc.
ACM SIGMOD Conf., Chicago, IL, June 1988, 18.

[11] D. Maier, S. Daniels, T. Keller, B. Vance, G. Graefe and
W. McKenna, "Challenges for Query Processing in
Object-Oriented Databases", in Query Processing for Ad-
vanced Database Applications,
J.C. Freytag, G. Vossen and D. Maier (editor),
Morgan-Kaufman, San Mate.o, CA, 1992.

[12] G. Mitchell, S. B. Zdonik and U. Dayal, "An Architecture
for Query Processing in Persistent Object Stores", Proc.
Hawaii Conf. on System Sciences, 1993.

[13] K. Ono and G. M. Lohman, "Measuring the Complexity
of Join Enumeration in Query Optimization", Proc. Int'l.
Conf. on Very Large Data Bases, Brisbane, Australia,
1990, 314.

[14] E. Sciore and J. Sieg, "A Modular Query Optimizer Gen-
erator", Proc. IEEE Conf. on Data Eng., Los Angeles,
CA, February 1990, 146.

[15] P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie and T. G. Price, "Access Path Selection in a Rela-
tional Database Management System", Proc. ACM SIG-
MOD Conf., Boston, MA, May-June 1979, 23. Reprinted
in M. Stonebraker, Readings in Database Sys., Morgan-
Kaufman, San Mateo, CA, 1988.

[16] G.M. Shaw and S. B. Zdonik, "A Query Algebra for
Object-Oriented Databases", Proc. IEEE Conf. on Data
Eng., Los Angeles, CA, February 1990, 154.

[17] D.D. Straube and M. T. Ozsu, "Execution Plan Genera-
tion for an Object-Oriented Data Model", Proc. Conf. on
Deductive and Object-oriented Databases, Munich, Ger-
many, December 1991.

[18] S.L. Vandenberg and D. J. DeWitt, "Algebraic Support
for Complex Objects with Arrays, Identity, and Inheri-
tance", Proc. ACM SIGMOD Conf., Denver, CO, May
1991, 158.

[19] D. Wells, J. A. Blakeley and C. W. Thompson, "Architec-
ture of an Open Object-Oriented Database Management
System", IEEE Computer 25, 10 (October 1992), 74.

[20] R.H. Wolniewicz and G. Graefe, "Algebraic Optimiza-
tion of Computations over Scientific Databases", in
preparation, 1993.

218

