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Abstract 

Background: Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer 
to predict therapeutic responses will help optimise patient care. Calcium (Ca2+)-signalling is important in a variety of 
processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca2+-signal-
ling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins 
involved in Ca2+-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets 
to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome.

Methods: Expression levels of a panel of Ca2+-pumps, channels and channel regulators were assessed using RT-
qPCR in resistant and sensitive age-matched SKBR3 breast cancer cells, established through continuous culture in 
the absence or presence of trastuzumab. The role of Cav3.2 in the acquisition of trastuzumab-resistance was assessed 
through pharmacological inhibition and induced overexpression. Levels of Cav3.2 were assessed in a panel of non-
malignant and malignant breast cell lines using RT-qPCR and in patient samples representing different molecular 
subtypes (PAM50 cohort). Patient survival was also assessed in samples stratified by Cav3.2 expression (METABRIC and 
KM-Plotter cohort).

Results: Increased mRNA of Cav3.2 was a feature of both acquired and intrinsic trastuzumab-resistant SKBR3 cells. 
However, pharmacological inhibition of Cav3.2 did not restore trastuzumab-sensitivity nor did Cav3.2 overexpression 
induce the expression of markers associated with resistance, suggesting that Cav3.2 is not a driver of trastuzumab-
resistance. Cav3.2 levels were significantly higher in luminal A, luminal B and HER2-enriched subtypes compared to 
the basal subtype. High levels of Cav3.2 were associated with poor outcome in patients with oestrogen receptor posi-
tive (ER+) breast cancers, whereas Cav3.2 levels were correlated positively with patient survival after chemotherapy in 
patients with HER2-positive breast cancers.

Conclusion: Our study identified elevated levels of Cav3.2 in trastuzumab-resistant SKBR3 cell lines. Although not a 
regulator of trastuzumab-resistance in HER2-positive breast cancer cells, Cav3.2 may be a potential differential bio-
marker for survival and treatment response in specific breast cancer subtypes. These studies add to the complex and 
diverse role of Ca2+-signalling in breast cancer progression and treatment.

Keywords: Breast cancer, Trastuzumab-resistance, Calcium-signalling, Cav3.2 (CACNA1H), Therapeutic response, 
Biomarker

© 2016 Pera et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Cancer Cell International

*Correspondence:  gregm@uq.edu.au 
†Elena Pera and Elke Kaemmerer contributed equally to this work
1 The School of Pharmacy, Pharmacy Australia Centre of Excellence, The 
University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 
Australia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-016-0299-0&domain=pdf


Page 2 of 15Pera et al. Cancer Cell Int  (2016) 16:24 

Background

Approximately 20–25 % of breast tumours display over-

expression of human epidermal growth factor receptor 

2 (HER2, ERBB2) [1]. �e monoclonal antibody trastu-

zumab (Herceptin®) represents a major advancement 

in the treatment of HER2-positive breast cancers [2, 3]. 

However, some patients can develop resistance to trastu-

zumab therapy [4, 5] while others exhibit initial therapeu-

tic insensitivity, despite their tumours being identified 

as HER2-positive and the patients being naïve to trastu-

zumab therapy (intrinsic resistance) [6, 7].

Overcoming therapeutic resistance is a major challenge 

and an understanding of the underlying mechanism will 

inform the development of second generation treatments 

[8]. For example, resistance to tyrosine kinase inhibitors 

in lung cancer is attributed to the acquisition of an EGFR 

T790M mutation, and evidence suggests that a combina-

tion of irreversible tyrosine kinase inhibitors and an anti-

EGFR antibody is effective in overcoming this particular 

resistance mechanism [9].

Different mechanisms may be responsible for acquired 

and intrinsic trastuzumab-resistance. �ese mechanisms 

include, but are not limited to, mutations in ERBB2 

resulting in the expression of a modified HER2 receptor 

altering trastuzumab binding [10, 11] and upregulation of 

proteins that sterically hinder trastuzumab binding [12, 

13]. Increased signalling through HER1, HER2, HER3 

(receptors of the EGFR-family) and IGF-1R [14–17] as 

well as downstream signalling such as activation of the 

PTEN/PI3K/Akt pathway also represent potential path-

ways for trastuzumab-resistance [7, 18–20]. Many of the 

aforementioned studies have been evaluated in breast 

cancer cell lines established from HER2-positive breast 

cancer cells cultured in the presence of trastuzumab, 

including the HER2-positive SKBR3 cell line [15, 16, 21].

A remodelling of Ca2+-signalling occurs in some breast 

cancers and is thought to be an important contributor 

or biomarker of breast tumourigenesis [22]. For exam-

ple, enhanced expression of the Ca2+-channel TRPV6 is 

a feature of oestrogen receptor negative breast cancers 

[23] and alteration in the relative levels of the store oper-

ated Ca2+-influx pathway regulators STIM1 and STIM2 

are a feature of the basal molecular breast cancer subtype 

and is associated with poor survival [24]. Ca2+ is a criti-

cal regulator of many processes important in cancer [25], 

including proliferation and migration [26, 27]. Indeed, 

inhibition of the Orai1 Ca2+-channel reduces the meta-

static potential of breast cancer cells [28].

Ca2+-signalling is also implicated in some therapeu-

tic resistance pathways in breast cancer. For example, 

the Ca2+-permeable ion channel TRPC5 plays a role in 

p-glycoprotein-mediated resistance to adriamycin in 

MCF-7 breast cancer cells [29]. However, the potential 

contribution of remodelling of Ca2+-signalling in tras-

tuzumab-resistance has not yet been explored. Herein 

we sought to determine alterations of Ca2+-signalling 

proteins in the context of trastuzumab-resistance using 

HER2-positive SKBR3 breast cancer cell lines as mod-

els of intrinsic (no previous trastuzumab exposure) and 

acquired resistance. �is work had the goal of identifying 

calcium channels and pumps that when inhibited could 

restore sensitivity to therapy and/or serve as biomarkers 

for prognosis or response to therapy.

Methods

Cell culture and development of resistant cell lines

Human breast cell lines were purchased from ATCC, 

provided by UQCCR or were a gift from the late Pro-

fessor Rob Sutherland (Garvan Institute, Sydney, Aus-

tralia). SKBR3 cells were subcultured in McCoy’s 5A 

media (Invitrogen) supplemented with 10 % foetal bovine 

serum and 1  % penicillin/streptomycin mixture (100  U/

mL/100 µg/mL, Invitrogen) at 37 °C and 5 % CO2. Cells 

were routinely tested for mycoplasma infection and the 

SKBR3 parental cell line was STR profiled as previously 

described [30]. Trastuzumab-resistant cell lines were 

developed as follows, adapted from [31]. Briefly, cells 

were cultured in the presence of trastuzumab (10 µg/mL, 

Herceptin®, Roche Products, Dee Why, Australia) over 

a 7 month period. Trastuzumab treatment was initiated 

24  h after seeding. Age-matched controls (no trastu-

zumab) were produced over a similar time period. Media 

(±trastuzumab) was replaced every 3 days.

Cell viability, MTS assay

Cell viability was assessed using the CellTiter 96® aque-

ous non-radioactive cell proliferation assay (Promega) 

using the manufacturer’s instructions. Cell lines were 

treated with trastuzumab or control media without 

antibiotics.

Real time RT-qPCR (RT-qPCR)

Real time RT-qPCR (RT-qPCR) was used to assess 

mRNA levels of target genes as previously described [32]. 

Briefly, total RNA (Qiagen RNeasy™ Plus Mini Kit (Qia-

gen, Hilden, Germany) was reverse transcribed (Omin-

iscript RT Kit Qiagen) and amplified using TaqMan 

Universal or TaqMan Fast Universal PCR master mix 

(Life technologies, Australia), with TaqMan Gene expres-

sion Assays (Additional file  1: Data S1). Experiments 

were performed using a StepOnePlus Real Time RT-

qPCR instrument (Applied Biosystems, Carlsbad, USA) 

with universal cycling conditions. Results are expressed 

normalised to 18S rRNA and analysed using the com-

parative CT method. A CT value of 35 was assigned to 

samples where amplification did not occur within 40 
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cycles for characterisation of trastuzumab-resistant and 

aged-matched control SKBR3 cell lines and assessment of 

Cav3.2 levels in breast cancer cell lines (Taqman Univer-

sal PCR master mix). A CT of 40 was assigned to sam-

ples where amplification did not occur within 40 cycles 

for studies assessing potential mRNA changes induced by 

Cav3.2 overexpression (TaqMan Fast PCR master mix).

Immunoblotting

Whole cell lysates were prepared using lysis buffer con-

taining protease and phosphatase inhibitors (Roche, 

Applied Science, Penzberg, Germany). Proteins were 

separated using 4–12  % NuPAGE Bis–Tris gels with 

MOPS SDS running buffer (Invitrogen) and trans-

ferred to a PVDF membrane. Membranes were blocked 

in phosphate buffered saline (PBS)/1  %Tween20 or in 

PBS/5 % skim milk powder for 1 h. Antibodies included: 

HER2 polyclonal rabbit (Tyr 1222, Cell Signaling), EGFR 

polyclonal rabbit (Tyr 992, Cell Signaling), β-actin load-

ing control (AC-15, Sigma Aldrich) and horseradish 

peroxidase conjugated goat anti-rabbit IgG (170-6516, 

Biorad). Membranes were incubated with SuperSignal 

West Dura Extended Duration Substrate (�ermo Sci-

entific) and images analysed using a Versadoc MP400 

Imaging system (BioRad). Protein density was normal-

ised to β-actin.

Pharmacological inhibition of Cav3.2

Cells were treated with mibefradil (0.01–1  µM; Sigma 

Aldrich) [33] or ML218 (0.1–10 µM; Sigma Aldrich) [34] 

either alone or in combination with trastuzumab (10 µg/

mL), 24 h after seeding (2000 cells/well in a 96 well plate). 

All treatments and media changes were repeated every 

2  days in antibiotic-free media. Sensitivity to trastu-

zumab was assessed using a MTS assay 192 h after treat-

ment start.

Measurement of cytosolic free calcium levels

Cytosolic free Ca2+ ([Ca2+]CYT) levels were measured 

using a fluorometric imaging plate reader (FLIPRTETRA, 

Molecular Devices, Sunnyvale, USA). Cells (2000 cells/

well in a 96-well black-walled imaging plate; Corn-

ing) were assessed 216  h after seeding in antibiotic-

free media. Cells were treated with Fluo-4 AM (4  µM) 

for 30  min at 37  °C, washed three times in physiologi-

cal salt solution (PSS) buffer [NaCl (140  mM)], glu-

cose (11.5  mM), CaCl2 (1.8  mM), HEPES (10  mM), 

KCl (5.9  mM), MgCl2 (1.4  mM), NaH2PO4 (1.2  mM), 

NaHCO3 (5 mM) pH 7.3] and incubated in PSS at room 

temperature (15 min). Measurements were performed at 

470–495  nm excitation and 515–575  nm emission and 

analysed using ScreenWorks Software (v2.0.0.27, Molec-

ular Devices).

Overexpression of Cav3.2 (CACNA1H)

SKBR3 cells were transfected in 6-well plates (375 000 

cells/well) 24  h after seeding using Lipofectamine®3000 

and PC3000 enhancer (Life Technologies) with 2.5 µg of 

total DNA [pCDNA3.1 (Invitrogen) + pEGFP-N1 (Clon-

tech)] (EGFP MOCK) or (α1Ha (Adgene, 45809, Cam-

bridge, USA) + pEGFP-N1) (EGFP Cav3.2) at equimolar 

ratio of 10:1. After transfection (24  h) cells were sorted 

into EGFP enriched (>90  % purity) and EGFP depleted 

populations using a MoFlo Astrios FACS, RNA was iso-

lated and the effect on expression of selected markers 

was analysed using RT-qPCR.

Relative CACNA1H (Cav3.2) expression levels in breast 

cancer subtypes

�e relative expression levels of CACNA1H were analysed 

in the cancer genome atlas network (TCGA) [35] breast 

cancer data set. Expression levels were defined as log2 

transformed mean-centred transcript quantification pro-

duced by the TCGA consortium through RSEM (RNA-seq 

by expectation–maximization) [36]. TCGA tumours were 

divided into quartiles of CACNA1H expression. ERBB2, 

ESR1 and PGR levels were compared in each quartile to 

the quartile with the lowest level of CACNA1H expression.

Assessment of patient survival and response 

to chemotherapy (CT) in oestrogen receptor positive 

(ER+), HER2-positive (HER+) and triple negative (TNBC) 

tumours based on CACNA1H expression

Receiver operator curve (ROC) analysis was performed 

in each clinical subgroup and within the METABRIC [37] 

cohort that received chemotherapy (CT). �e variable for 

ROC analysis was CACNA1H expression while the classifi-

cation variable was patient survival (1 = death from breast 

cancer, 0  =  non-event). �e optimal criterion, as deter-

mined by MedCalc (https://www.medcalc.org/) factoring 

in disease prevalence as death caused by breast cancer, 

was used to stratify tumours into high and low express-

ing groups. Groups were used for stratifying patients by 

overall survival using Kaplan–Meier curves. �e online 

tool KM-Plotter [38] was used to generate a validation set 

of Kaplan–Meier curves based on CACNA1H expression. 

Survival of patients was stratified using the “Auto select 

best cutoff” feature, which determines the optimal patient 

stratification based on median, tertile and quartile group-

ings. Logrank P values and hazard ratios were determined 

using MedCalc. Hazard ratios with corresponding 95  % 

confidence interval and P values are as indicated.

Statistical analyses

GraphPad Prism (v6.05 for Windows; GraphPad Soft-

ware, Inc., La Jolla, CA, USA) was used to determine sta-

tistical differences.

https://www.medcalc.org/
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Results

Development and characterisation 

of trastuzumab-resistant SKBR3 cell lines

Trastuzumab-resistant cell lines and sensitive age-

matched control cell lines were established from tras-

tuzumab-sensitive parental SKBR3 cells by continuous 

culture in trastuzumab (10  µg/mL) for 7  months. Cell 

lines were assigned as “T” for continuous culture in tras-

tuzumab or “V” for vehicle, “S” for sensitive and “R” for 

resistant. Cell line status after the 7  months of culture 

was analysed in the presence of trastuzumab (10 µg/mL) 

over 192  h (Fig.  1a). Most cell lines (6 of 8) cultured in 

the absence of trastuzumab retained sensitivity e.g. [SV1, 

SV2, Fig. 1a (i)]. Two cell lines cultured in the presence of 

trastuzumab were selected for further study based on the 

acquisition of trastuzumab-resistance. In these two cell 

lines the relative cell viability was not decreased by tras-

tuzumab treatment compared to vehicle controls [RT1, 

RT2, Fig.  1a (ii)]. Two of eight age-matched control cell 

lines cultured continuously for 7 months in the absence 

of trastuzumab spontaneously developed resistance 

to trastuzumab and were defined as exhibiting intrin-

sic resistance to trastuzumab [RV1, RV2, Fig.  1a (iii)]. 

Trastuzumab-sensitive cell lines (SV1 and SV2) showed 

a significant decrease in cell viability after trastuzumab 

treatment, while acquired (RT1 and RT2) and intrinsic 

(RV1 and RV2) resistant cells showed no significant dif-

ference compared to vehicle controls (**p ≤ 0.1) (Fig. 1b).

Assessment of HER2 and EGFR expression 

in trastuzumab-resistant SKBR3 cell lines

To confirm that trastuzumab-resistance amongst the 

model cell lines was not due to loss of HER2 expression, 

or alterations in EGFR expression, mRNA and protein 

levels of HER2 and EGFR were quantified in all cell lines 

(Fig. 2). Resistant cell lines showed similar levels of HER2 

and EGFR mRNA compared to trastuzumab-sensitive cell 

lines (p  >  0.5) (Fig.  2a, b). HER2 protein (185  kDa) was 

seen in all samples, with no truncated receptor detected. 

HER2 protein levels were similar in all SKBR3-derived cell 

lines compared to parental SKBR3 cells and no differences 

in protein levels were observed between resistant and sen-

sitive cell lines (p > 0.5) (Fig. 2c). EGFR protein levels were 

also similar in sensitive and resistant cell lines (Fig.  2d). 

Collectively these data suggested that the mechanism of 

resistance in this model was not related solely to changes 

in the expression of HER2 or EGFR.

Assessment of mRNA levels of calcium channels, pumps 

and regulating proteins identi�es elevated Cav3.2 

in trastuzumab-resistant cell lines

Assessment of over 40 targets including purinergic recep-

tors (P2RX2/4/5, P2RY2/6), calcium pumps (PMCAs, 

SPCAs, SERCAs) and calcium permeable ion channels 

(Orai, TRPs, IP3Rs) demonstrated similar mRNA lev-

els of most targets between trastuzumab-sensitive and 

resistant cell lines, except for the voltage gated calcium 

channel Cav3.2 (Fig.  3a). Further analysis confirmed 

the elevation of Cav3.2 mRNA in the RV1, RV2 and RT1 

resistant cell lines in comparison to both sensitive cell 

lines SV1 and SV2 (Fig. 3b).

Pharmacological inhibition of Cav3.2 does not restore 

trastuzumab-sensitivity in trastuzumab-resistant SKBR3 

cells

Cav3.2 inhibition was assessed in the trastuzumab-

resistant cell line (RV1), which had the most pronounced 

upregulation of Cav3.2 relative to trastuzumab-sensitive 

SKBR3 cell lines. Cells were treated with mibefradil, a 

calcium channel blocker, which inhibits both T-type and 

L-type voltage-gated calcium channels, but with greater 

effectiveness for T-type calcium channel inhibition [33]. 

Treatment with mibefradil (0.01–1 µM) did not enhance 

the trastuzumab (10 µg/mL) response in the RV1 resistant 

cell line (Fig. 4a). Treatment with ML218, a pharmacolog-

ical inhibitor of Cav3.1, Cav3.2 and Cav3.3 channels with 

higher selectivity for Cav3.2 [34] at 0.1–10  µM also did 

not enhance the trastuzumab (10 µg/mL) response in the 

RV1 cell line (Fig.  4b). �us pharmacological inhibition 

of the Cav3.2 calcium channel with the inhibitors used in 

this study did not restore sensitivity to trastuzumab.

Assessment of ATP-mediated alterations in [Ca2+]CYT 

in trastuzumab-sensitive and resistant SKBR3 derived cell 

lines

To assess if Ca2+-signalling alterations were associated with 

trastuzumab-resistance, [Ca2+]CYT in response to puriner-

gic receptor activation with ATP (1  mM) was measured. 

Some resistant cell lines appeared to have a delayed recov-

ery in [Ca2+]CYT after ATP stimulation (Fig. 5a). ATP con-

centration–response curves (1 nM to 1 mM) were used to 

characterise changes in intracellular Ca2+-signalling. �e 

relative [Ca2+]CYT at 800 s, a measure of recovery after ATP 

stimulation, was higher in acquired trastuzumab-resistant 

SKBR3 cell lines (RT1 and RT2) compared to trastuzumab-

sensitive age-matched controls (Fig. 5b).

Overexpression of Cav3.2 in parental SKBR3 cells does not 

increase expression of selected mRNA markers associated 

with drug-resistance

Since Cav3.2 is upregulated in trastuzumab-resistant 

SKBR3 cells and given the role of Ca2+-signalling in the 

activation of transcription factors [39] we hypothesised 

that Cav3.2 may induce the expression of genes related to 

therapeutic resistance and/or with cellular phenotypes 

associated with therapeutic resistance [40–44]. SKBR3 
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a

b

Fig. 1 Development of SKBR3-derived cell lines as in vitro models for acquired and intrinsic drug-resistance. SKBR3 cells were continuously cultured 
for 7 months in the absence or the presence of 10 µg/mL trastuzumab. a Cells were seeded at a density of 2000 cells/well and treated with 10 µg/
mL trastuzumab or equal volume of H2O (vehicle), 24 h after seeding and relative cell viability was assessed over 192 h with a MTS assay. Two cell 
lines continuously cultured in the absence of trastuzumab (SV1, SV2) retained trastuzumab-sensitivity (i), two cell lines cultured in the presence 
of trastuzumab (RT1, RT2) acquired trastuzumab-resistance (ii) and two cell lines continuously cultured in the absence of trastuzumab (RV1, RV2) 
developed intrinsic resistance to trastuzumab (iii). Viable cell number of all samples are expressed relative to control cells (no trastuzumab) at 192 h. 
Normalised cell viability = [Absorbance of sample (t) − Average absorbance of control (t = 0)]/[Average absorbance control (t = 192 h) − Aver-
age absorbance control (t = 0)], (n = 3 ± SD). b Relative viable cell numbers of all cell lines were compared at the end of the protocol (192 h after 
start of treatment). Trastuzumab sensitive cell lines (SV1, SV2) showed a significant decreased cell viability in the presence of trastuzumab compared 
to vehicle control cells, whereas the relative viable cell number of acquired resistant cell lines (RT1, RT2) and intrinsic resistant cell lines (RV1, RV2) 
was not significantly altered by trastuzumab (n = 3 ± SD). Statistical analyses were performed using multiple t tests with Holm Sidak correction 
(**p ≤ 0.01). White bars present vehicle controls and solid coloured bars represent trastuzumab (10 µg/mL) treated cells
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a

c

d

b

Fig. 2 Sensitive and resistant SKBR3-derived cell lines retained their HER2 and EGFR expression levels. Assessment of mRNA levels in SKBR3-derived 
cell lines showed no differences in the mRNA levels of HER2 (a) and EGFR (b) in trastuzumab-resistant cell lines (RT1, RT2, RV1, RV2) compared to sensi-
tive age-matched control cell lines (SV1, SV2). All mRNA levels were normalised to 18S rRNA and values expressed as −∆CT (n = 3 ± SD). The protein 
level of HER2 (c) and EGFR (d) were analysed in all SKBR3-derived cell lines and representative immunoblots are shown in (ci) and di). All protein levels 
were normalised to β-actin protein expression, parental SKBR3 cells were used to assess changes in protein levels through continuous culture, MDA-
MB-231 cells were used as a HER2-negative control (c) and MDA-MB-468 as an EGFR positive control (d). HER2 (cii) and EGFR (dii) protein expression 
was normalised to the SKBR3 parental cell line in biological replicates (n = 3 ± SD). Sensitive and resistant SKBR3-derived cell lines showed similar 
levels of EGFR and HER2 protein expression. Statistical analyses were performed using one-way ANOVA with Bonferroni post-tests (p > 0.05)
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parental cells were either co-transfected with pEGFP-

N1  +  α1Ha (EGFP Cav3.2) or with pEGFP-N1   +  the 

empty plasmid backbone (EGFP MOCK) as a control 

(Fig. 6). Overexpression of Cav3.2 did not produce any pro-

nounced increase of the mRNA levels of vimentin, snail, 

KRT5, KRT6A, CXCR4, FOXM1 or HSP90AA1 (Fig. 6).

Assessment of Cav3.2 expression levels in cell lines 

and clinical breast cancer molecular subtypes

Levels of Cav3.2 mRNA were then assessed in a panel of 

non-malignant breast and breast cancer cell lines rep-

resenting different molecular subtypes (Fig.  7). Cav3.2 

mRNA levels in three of the trastuzumab-resistant 

cell lines (RT1, RV1 and RV2) were similar to the basal-

like HER2 overexpressing trastuzumab-resistant cell 

line HCC1569 [45]. Basal-like breast cancer cell lines 

(MDA-MB-231, MDA-MB-468) had undetectable lev-

els of Cav3.2 mRNA, except for HCC1569 cells. In 

non-malignant breast cell lines (184A1, 184B5, MCF10A, 

Bret-80-Tert) Cav3.2 mRNA was not detected. High-

est levels of Cav3.2 were seen in the luminal-like breast 

cancer lines MCF-7 and T47D. However, Cav3.2 mRNA 

levels were dramatically different between luminal-like 

breast cancer cell lines, with very low levels in ZR-75-1 

and parental SKBR3 cell lines and very high levels in 

MCF-7 and T47D (Fig. 7).

Cav3.2 expression was also assessed in clinical breast 

cancer samples stratified into the intrinsic molecu-

lar subtypes using the cancer genome atlas expression 

data (TCGA) [35] (Fig.  8a). �e luminal A and B sub-

types showed the highest expression level of CACNA1H 

(Cav3.2), with the basal subtype expressing significantly 

lower levels of Cav3.2 compared to the luminal A, B and 

HER2 subtypes. Consistent with the cell line data, lumi-

nal breast cancers were associated with a wide range of 

Cav3.2 levels.

a

b

Fig. 3 Cav3.2 upregulation in trastuzumab-resistant cell lines. a Assessment of mRNA levels of 44 calcium pumps, channels and calcium regulating 
proteins identified increased expression of Cav3.2 in three of four trastuzumab resistant cell lines. All values were measured relative to 18 S rRNA and 
expressed as −∆CT. Data points at Y = −20 represent no mRNA detection (n = 3 ± SD). b Acquired resistant cell line RT1 and both intrinsic resistant 
cell lines (RV1, RV2) showed significantly increased expression of Cav3.2 compared to trastuzumab sensitive age-matched control (SV1) (n = 3 ± SD). 
Statistical analyses were performed using one-way ANOVA with Bonferroni post-tests (*p ≤ 0.05, **p ≤ 0.01)
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High levels of Cav3.2 are associated with increased levels 

of ESR1 and PGR receptor but Cav3.2 itself does not induce 

hormone receptor expression or expression of luminal 

markers in SKBR3 cells

Given the strong association between Cav3.2 and the 

luminal A and B molecular subtypes (Fig.  8a), we also 

assessed hormone receptor levels in different CAC-

NA1H (Cav3.2) expression quartiles using the TCGA 

database, to address the hypothesis that this may reflect 

a direct regulatory effect. Breast cancers with high levels 

of CACNA1H (Cav3.2) (2nd, 3rd, 4th quartile) showed 

a significant elevation in levels of ESR1 and PGR com-

pared to breast cancers with significantly low levels of 

Cav3.2 (1st quartile) (Fig.  8b). A significant correlation 

between ERBB2 was also observed, however, only minor 

compared to ESR1 and PGR (Fig. 8b). To define a poten-

tial role for Cav3.2 in the expression of ESR1 and PGR, 

we analysed the expression levels of ESR1, FOXA1, PGR 

and TFF1 in SKBR3 cells with induced overexpression 

of Cav3.2 (EGFP Cav3.2 SKBR3 cells). �ese results indi-

cated that Cav3.2 is not a regulator of the expression of 

ESR1 and PGR or the luminal markers FOXA1 and TFF1 

(Fig. 8c).

High CACNA1H (Cav3.2) expression levels in ER-positive 

(ER+) breast cancer are associated with poor prognosis, 

whereas in HER2-positive (HER2+) breast cancer patients 

it is associated with better responses to chemotherapy (CT)

Given the association between Cav3.2 and trastuzumab-

resistance in HER2-positive breast cancer cell lines in vitro 

and increased expression within the luminal subtype, we 

a

b

Fig. 4 The effect of pharmacological inhibition of Cav3.2 on 
trastuzumab-resistance. a Cells were treated with mibefradil 
(0.01–1 µM) alone or with trastuzumab (10 µg/mL) 24 h after seeding 
for 192 h (n = 3 ± SD). Mibefradil did not promote the response to 
trastuzumab (p > 0.05). b Cells were treated with ML218 (0.1–10 µM) 
alone or with trastuzumab (10 µg/mL) 24 h after seeding for 192 h 
(n = 3 ± SD). ML218 did not promote the response to trastuzumab 
(p > 0.05). Statistical analyses were performed using two-way ANOVA 
with Bonferroni post-tests

a b

Fig. 5 Intracellular calcium measurements with ATP stimulation in trastuzumab-sensitive and resistant cell lines. a Example of relative cytosolic 
calcium [Ca2+]CYT responses after ATP [1 mM] stimulation in trastuzumab-sensitive age-matched controls (SV1, SV2), acquired resistant cell lines (RT1, 
RT2) and intrinsic resistant cell lines (RV1, RV2). b Relative calcium [Ca2+]CYT responses at 800 s with ATP stimulation [1 nM to 1 mM] in aged-matched 
control and resistant cell lines (n = 3 ± SD). Acquired resistant cell lines (RT1, RT2) showed a slower recovery after ATP stimulation with a significant 
higher relative calcium [Ca2+]CYT level at 800 s while intrinsic resistant cell lines (RV1, RV2,) showed similar recovery rate and similar relative calcium 
[Ca2+]CYT levels compared to aged matched control SV1. Statistical analysis was performed using two-way ANOVA with Bonferroni post-tests, com-
pared to SV1 (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001)
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explored the potential of Cav3.2 as a biomarker in predict-

ing patient survival and/or outcomes with chemotherapy. 

�e overall survival of patients from both METABRIC 

[37] and KM-Plotter [38] cohorts were analysed based on 

their expression level of CACNA1H (Cav3.2) (high/low) in 

each subtype and within each group for patients receiv-

ing chemotherapy (CT) (Fig.  9a). Our analysis identified 

that high levels of Cav3.2 are associated with poor survival 

in ER + tumours in METABRIC and KM-Plotter cohorts 

[Fig.  9a, b (i, ii)]. Note that beyond 20  years, survival of 

ER+ patients appear to be better for those with high 

expression, however, due to a small sample size remain-

ing in the study at this time (9 patients) we were unable 

to explore this further. In all other subtypes, expression 

levels of Cav3.2 were not consistently stratified with over-

all survival in both cohorts (Fig.  9a). We then analysed 

the treatment response from the METABRIC and KM-

Plotter cohorts towards chemotherapy in each subgroup. 

Interestingly, this analysis identified that HER2-positive 

patients receiving chemotherapy with tumours expressing 

high levels of CACNA1H demonstrated a better overall 

survival after chemotherapy, compared to patients with 

low levels of CACNA1H in both, METABRIC and KM-

Plotter cohorts [Fig.  9a, b (iii, iv)]. In all other subtypes, 

Cav3.2 did not significantly affect survival with therapy in 

both cohorts (Fig. 9a).

Discussion

Our work explores alterations in the expression of calcium 

channels in the context of trastuzumab-resistance and 

therapeutic response. �e work presented here demon-

strated that levels of Cav3.2, a voltage gated T-type calcium 

Fig. 6 Effect of CACNA1H (Cav3.2) overexpression on expression of 
mRNA markers associated with tumour progression and drug-resist-
ance. SKBR3 parental cells were co-transfected with α1Ha + pEGFP-
N1 (EGFP Cav3.2) or pCDNA3.1 + pEGFP-N1 (EGFP MOCK) and sorted 
into EGFP enriched and depleted populations 24 h after transfection. 
Results are expressed as fold change normalised to EGFP MOCK. EGFP 
Cav3.2 cells showed an approximate greater than 2 106 fold increase 
in expression compared to EGFP MOCK cells (n = 3 ±SD). Overex-
pression of Cav3.2 did not increase levels of markers associated with 
EMT (vimentin, snail), basal markers (KR5, KR6A ) and markers associ-
ated with drug-resistance (CXCR4, FOXM1, HSP90AA1) (n = 3 ±SD)

Fig. 7 Assessment of the expression level of CACNA1H (Cav3.2) in SKBR3 derived trastuzumab-resistant cell lines, different breast cancer cell lines 
and non-malignant breast cell lines. Cav3.2 was not detected (ND) in non-malignant breast cell lines and the basal breast cancer cell lines MDA-
MB-231 and MDA-MB-468. The luminal cell lines MCF-7 and T47D showed the highest expression of Cav3.2. Statistical analysis was performed 
within each subtype and trastuzumab-resistant cell lines were compared to the SV1 trastuzumab sensitive SKBR3 cell line. For all amplified targets 
(n = 3 ±SD), statistical analysis was performed using one-way ANOVA with Bonferroni post-test (*p ≤ 0.05, **p ≤ 0.01)
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channel, are elevated in acquired and intrinsic SKBR3 

breast cancer cell line models of trastuzumab-resistance. 

Whilst we found no evidence for a direct role of Cav3.2 in 

driving or reversing trastuzumab-resistance, our data sug-

gest that Cav3.2 may be an informative prognosis marker 

in ER+ breast cancer patients for overall survival and in 

HER2-positive breast cancer patients with chemotherapy.

In vitro models for trastuzumab-resistance include cell 

lines representing intrinsic resistance such as those estab-

lished from the breast cancers of patients that do not 

a

b

c
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respond to trastuzumab therapy despite HER2 overexpres-

sion [46], and those that represent acquired resistance, 

established through continuous culture of HER2-positive 

breast cancer cell lines in the presence of trastuzumab [31, 

47]. Intrinsic resistance and acquired resistance may be 

mediated through different mechanisms [10]. In this study 

we developed a model system derived from the same cell 

line, suitable for assessing the mechanistic pathways that 

may be responsible for spontaneous (intrinsic) and acquired 

resistance derived from the same cell line. Intrinsic tras-

tuzumab-resistant SKBR3 cell lines were established dur-

ing the production of age-matched controls, which was 

not unexpected as continuous culturing can have a major 

impact on cellular phenotypes [48, 49].

�e dysregulation of calcium homeostasis and the 

expression levels of specific calcium channels and pumps 

can be a feature of tumour progression [26, 50, 51] and is 

associated with the acquisition of resistance to adriamycin, 

the IGF-1 receptor inhibitor ganitumab and other agents 

[29, 52]. Our assessment of a wide panel of calcium pumps, 

channels and channel modulators identified an upregula-

tion of the voltage gated Ca2+ channel Cav3.2 in three of 

four trastuzumab-resistant SKBR3 cell lines. Consistent 

with the variety of pathways associated with trastuzumab 

resistance [10, 16, 18], Cav3.2 was not elevated in all of 

the resistant cell lines, with elevated Cav3.2 absent from 

RT2 cells. Cav3.2 is a T-type voltage-gated calcium chan-

nel [53] generally expressed in cells of the heart, brain and 

liver and some tumours [53, 54]. High expression levels of 

T-type channels are associated with increased proliferation 

in breast cancer cells [55] and tumour progression in pros-

tate cancer cells [56]. Cav3.2 is also proposed as an onco-

gene candidate in T cell leukaemia [57]. A higher level of 

Cav3.2 was also identified in the basal-like, HER2-positive, 

intrinsically trastuzumab-resistant cell line HCC1569. 

Intrinsic resistance to trastuzumab is associated with 

expression of basal markers [58]. �us Cav3.2 expression 

might be a feature of breast cancers that are trastuzumab-

resistant and also express basal markers. Our studies also 

demonstrated that although Cav3.2 may be a marker for 

activation of some trastuzumab-resistance pathways, inhi-

bition of Cav3.2 is unable to restore trastuzumab-sensitivity 

in SKBR3 cell lines with acquired or intrinsic trastuzumab-

resistance. Cav3.2 inhibitors therefore do not appear to 

represent an effective way to overcome trastuzumab-resist-

ance in HER2-positive breast tumours. Although induced 

overexpression did not promote expression of resistance 

markers, future studies using T-type Ca2+ channel activa-

tors when available should assess the effect of these agents 

on the expression of resistance markers and trastuzumab 

resistance, analogous to studies which have evaluated the 

effects of pharmacological activation of L-type Ca2+ chan-

nels with (S)-(-)-Bay K 8644 [59, 60]. Only the acquired 

trastuzumab-resistant cell lines RT1 and RT2 showed a dif-

ferent calcium response after ATP stimulation compared 

to trastuzumab-sensitive controls, resulting in a delayed 

recovery. Although the response to ATP showed only 

minor alterations between sensitive and resistant cell lines 

and was not observed in all resistant cell lines, Cav3.2 might 

be involved in activation of transcription factors as previ-

ously shown for other voltage gated calcium channels [39]. 

However, our studies identified that Cav3.2 is not a driver 

of basal, epithelial to mesenchymal (EMT) transition or 

markers associated with resistance in SKBR3 cells. Cav3.2 

mRNA was highly expressed in some luminal-like breast 

cancer cell lines (MCF-7 and T47D) compared to basal 

breast cancer cell lines that lack HER2 amplification, and 

was undetectable in cell lines derived from non-malignant 

breast tissue. �e relationship between Cav3.2 and the 

luminal subtype was also observed in clinical breast cancer 

samples, with significantly higher Cav3.2 levels in luminal A 

and B subtypes compared to basal breast cancers. Although 

not a driver for ESR1 and PGR levels in SKBR3 cells, there 

was a strong correlation between Cav3.2 and levels of these 

hormone receptors in breast cancers. Analyses of clini-

cal data showed that high levels of Cav3.2 were associated 

with poor prognosis in ER+ breast cancer patients. Sur-

prisingly, our studies identified that high levels of Cav3.2 

(See figure on previous page.)  
Fig. 8 a Analysis of CACNA1H (Cav3.2) expression across the intrinsic molecular subtypes of breast cancer in clinical patient samples. The relative 
CACNA1H expression level (log2 normalised) was produced by the TCGA consortium through RSEM [36]. The TCGA tumour cohort consists of 845 
tumours with 140 basal-like (Basal), 67 HER2-enriched (HER2), 420 luminal A (LumA), 194 luminal B (LumB) and 24 normal-like (N-Like) as determined 
by RNA-Seq based PAM50 allocations by the TCGA consortium. The PAM50 intrinsic molecular subtypes are based on the classifications of gene 
expression patterns previously described [66, 67]. This classification was performed by the TCGA consortium [35]. Horizontal lines represent data 
means with standard deviation and data points in grey. Statistical analysis was performed on expression levels of CACNA1H in basal-like compared to 
HER2-enriched and luminal subtypes using a one-way ANOVA with Sidak corrected multiple comparisons,(****p ≤ 0.0001). b Relative gene expres-
sion for breast cancer receptors ERBB2 (HER2), ESR1 (oestrogen receptor) and PGR (progesterone receptor) within each quartile of CACNA1H expres-
sion. Statistical analysis was performed using a one-way ANOVA with Sidak corrected multiple comparisons, comparing expression levels between 
the highest and the lowest quartile for each gene (*p ≤ 0.05, ****p ≤ 0.0001). c Cav3.2 overexpression in SKBR cells (SKBR3 EGFP) did not increase 
expression of hormone receptors or proteins involved in oestrogen-receptor mediated signalling TFF1, FOXA1, quantified using RT-qPCR. Results are 
expressed as fold change normalised to EGFP MOCK (n = 3 ±SD)
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was associated with a better response to chemotherapy in 

patients with HER2-positive breast cancers.

�e apparent contradiction of Cav3.2 mRNA levels 

being negatively associated with survival in ER+ cancers 

and positively associated with survival with chemother-

apy in HER-positive breast cancers, may be reflective 

not only of potential differential contribution of calcium 

signalling in different breast cancer subtypes but also 

a

b

Fig. 9 Cav3.2 expression stratifies the survival of breast cancer patients. The survival of patients from both the METABRIC and Kaplan–Meier Plot-
ter cohorts were stratified based on the expression of Cav3.2 for each of the clinical subgroups and within those groups, in patients treated with 
chemotherapy (CT). METABRIC patients were stratified on overall survival (OS) and the KM-Plotter cohort on relapse free survival (RFS). Log-rank 
hazard ratios (HR) and corresponding P values are shown (a). Kaplan–Meier curves from data shown in panel A for ER+ patients (b i, ii) and those 
with HER2-positive tumours (HER+) treated with CT (b iii, iv). Tumours were stratified on the basis of their CACNA1H expression into low and high 
expressing groups, numbers indicated in brackets
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in the diversity of the Ca2+-signal. Some aspects of cal-

cium signalling could be quite different between HER2+ 

and ER+ breast cancers and this could contribute to dif-

ferences in the association between Cav3.2 levels and 

survival, for example Orai3-mediated Ca2+-influx is 

Ca2+-store dependent in ER positive but not ER nega-

tive breast cancer cells lines [61]. Ca2+-influx can pro-

mote cellular proliferation or be an inducer of cell death 

[50]. In the context of the association between high 

Cav3.2 levels and poor prognosis in ER+ breast cancers, 

Cav3.2-mediated constitutive Ca2+-influx contributes 

to enhanced proliferation in the LNCaP prostate cancer 

cell line [62]. Whereas the association between high lev-

els of Cav3.2 and better outcomes with chemotherapy in 

HER2-positive breast cancer may be related to important 

role of Ca2+-increases during cell death [63]. Although 

not yet studied in HER2-positive breast cancer cell lines, 

the T-type Ca2+-channel Cav3.1 is a key mechanism by 

which cyclophosphamide induces apoptosis in luminal 

MCF-7 breast cancer cells [64] and Cav3.2 is essential in 

the inhibitory effects of epigallocatechin-3-gallate on the 

viability of MCF-7 breast cancer cells [65].

Conclusion

Our data suggest that at the clinical level, Cav3.2 may be 

similarly important in the responses to chemotherapy in 

HER2-positive breast cancers, however, further studies 

are required. In summary, these studies have identified 

enhanced expression of Cav3.2 as a feature of trastu-

zumab-resistant breast cancer cells, however, Cav3.2 does 

not seem to be a driver of trastuzumab-resistance. Fur-

ther studies are now required to elucidate the potential 

differential roles of Cav3.2 in different breast cancer sub-

types and its utility as a potential biomarker of prognosis 

and therapeutic responsiveness in patients with ER + and 

HER2-positive breast cancers respectively.
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