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also mod-φ convergence and the large deviations behaviour of the logarithmic volume of Zµ
are investigated.

Résumé. — Nous considérons des simplexes aléatoires pondérés typiques Zµ, µ ∈ (−2,∞),
dans une tessellation de Poisson–Delaunay dans Rn, où le poids est donné par la puissance
(µ+ 1) du volume. Ceci inclut en particulier les simplexes de Poisson–Delaunay dans les cas
typiques (µ = −1) et pondérés par le volume (µ = 0). En prouvant des bornes précises sur les
cumulants, nous montrons que le volume logarithmique de Zµ satisfait un théorème central
limite en grande dimension, i.e., lorsque n → ∞. De plus, nous établissons des vitesses de
convergence. Parallèlement, nous étudions les inégalités de concentration et les déviations
modérées. Ce cadre permet au poids µ = µ(n) de dépendre également de la dimension. Nous
discutons séparément un certain nombre de cas particuliers. Lorsque µ est fixé, nous étudions
également la convergence mod-φ et les grandes déviations du volume logarithmique de Zµ.

1. Introduction and Selected results

Establishing probabilistic limit theorems for convex bodies in high dimensions has
been and is still one of the driving forces in the branch of mathematics known as
Asymptotic Geometric Analysis. The arguably most prominent example is Klartag’s
central limit theorem [Kla07]. It roughly says that most lower-dimensional marginals
of isotropic convex bodies are close to Gaussian distributions. More recently, other
functionals and set-ups of high dimensional convex bodies were also investigated. For
example, a central limit theorem for the volume of k-dimensional random projections
of the n-dimensional cube with k fixed and n → ∞ is the content of the work
of Paouris, Pivovarov and Zinn [PPZ14], and for k = 1 also moderate and large
deviations were investigated [KPT19a, KPT19b]. In addition, several types of limit
theorems for the norms of (projections of) random points in the classical `np -ball were
proved by Gantert, Kim and Ramanan [GKR17], Alonso-Gutiérrez, Prochno and
Thäle [AGPT18, AGPT19] and Kabluchko, Prochno and Thäle [KPT19a, KPT19b].
In high dimensional Stochastic Geometry, the probabilistic behaviour of random

convex sets is investigated when the dimension tends to infinity. For example, gener-
alizing earlier works of Mathai [Mat82] and Ruben [Rub77], Grote, Kabluchko and
Thäle [GKT19] investigated the logarithmic volume of a class of random simplices in
high dimensions. Among other results, they proved that the logarithmic volume of
the simplex generated by n+1 independent and uniformly distributed random points
in the n-dimensional Euclidean unit ball satisfies a central limit theorem, as n→∞.
For random simplices (and more general convex bodies) generated by product distri-
butions with sub-exponential tails a similar result was derived by Alonso–Gutiérrez
et al. [AGBG+19]. The present paper continues this line of research, but the model
we will work with is rather different in the following sense. While the previous
works [AGBG+19, GKT19, Mat82, Rub77] deal with a single random simplex, we
work with an infinite collection of random simplices and then apply a probabilistic
selection procedure to pick one of the simplices. To explain our set-up, we let η be
a stationary Poisson point process in Rn with intensity γ ∈ (0,∞), which might or
might not depend on n. We now construct the Delaunay tessellation (also called
Delaunay triangulation) in Rn based on η. It gives rise to a dissection of Rn into
an almost surely countable collection D of random simplices having the property
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that no point of η is inside the circumball of any simplex in D . We remark that the
tessellation of Rn induced by D is dual to the well-known Poisson–Voronoi tessella-
tion, see [SW08, Section 10.2]. Next, we select randomly one of the simplices from D
in such a way that each simplex has the same chance of being selected. Intuitively,
one can think of restricting D to the almost surely finite sub-collection of simplices
that are contained in a “very large” ball and then selecting one of these simplices
with equal chances, that is, regardless of its size and shape. We shall describe in
Section 2 how to make this construction mathematically rigorous using the notion
of Palm distributions. We denote by Z the outcome of the selection, which is (up to
a random shift) known as the typical Poisson–Delaunay simplex in the stochastic
geometry literature. In this paper we are interested in the probabilistic behaviour of
the logarithmic n-volume

Yn := log Vn(Z)
of Z in high dimension, that is, as n → ∞. A particular instance of our result
we prove in this paper reads as follows. It provides a formula for the asymptotic
behaviour of the expectation and the variance of the random variables Yn (part (i))
and describes their fluctuations in high dimensions (part (ii)) as well as their large
deviations behaviour (part (iii)). We recall that γ is the intensity of the underlying
Poisson point process.

Theorem 1.1. —
(i) As n→∞,

EYn = −n2 log n− log γ +O(n) and VarYn = 1
2 log n+O(1).

(ii) For a standard Gaussian random variable N one has that

(1.1) sup
x∈R

∣∣∣∣∣P
(
Yn − EYn√

VarYn
6 x

)
− P(N 6 x)

∣∣∣∣∣ 6 c√
log n

for any n > 3, where c ∈ (0,∞) is an absolute constant.
(iii) Define

mn := −n2 log n− n

2 (log π + 1) + 7
4 log n− log γ.

Then, for each x ∈ (0,∞),

lim
n→∞

1
1
2 log(n2 ) logP(Yn −mn > x) = −x

2

2 .

In particular, letting n→∞ in (1.1), we conclude the convergence in distribution

Ỹn := Yn − EYn√
VarYn

D−→ N.

In addition to this central limit theorem we are able to prove an exponential con-
centration inequality, a Cramér–Petrov-type estimate and a Donsker–Varadhan-type
moderate deviations principle for the centred and normalized logarithmic volume
Ỹn. Moreover, we prove mod-Gaussian convergence and a large deviations principle
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for the sequence of random variables Yn after suitable shift and rescaling. In partic-
ular, these results cover the last part of Theorem 1.1. As already emphasized above,
part (ii) of Theorem 1.1 is only a special case of our Central Limit Theorem 4.4. In
fact, we are able to deal with other procedures that select simplices from the infinite
collection D , where each simplex c ∈ D gets weight Vn(c)µ+1 for some µ ∈ (−2,∞)
and where a simplex Zµ is now selected randomly according to these weights. Even
more generally, we will allow µ to vary with n and especially deal with the cases
when µ is fixed or when µ = nα for some α ∈ (0, 1), µ = αn for some α ∈ (0,∞) and
n−µ = o(n). On the other hand, mod-Gaussian convergence and the large deviations
principle for Ỹn as n→∞ will be derived only for fixed weight parameter µ.
The proof of Theorem 1.1(ii) and its generalization, Theorem 4.4, relies on the

general limit theory for large deviations of Saulis and Statulevičius [SS91], which in
turn is based on sharp bounds for cumulants. This method has been intensively used
during the last decade to derive a number of limit theorems for various quantities.
Examples include determinants of randomWigner and block Hankel matrices [DE13a,
DT19], spectral statistics of orthogonal polynomial ensembles [PWZ17], patterns
in random permutations [Hof17], weighted dependency graphs [Fér18], subgraph
counts in the Erdős–Rényi random graph [DE13b, FMN16], stabilizing functionals in
geometric probability [BYY19, ERS15], the volume fraction of a Boolean model and
of a Poisson cylinder process [Hei05, HS09], functionals of random polytopes [GT18a,
GT18b], the volume of random simplices [GKT19] as well as multiple stochastic
integrals [ST16]. The method is also well adapted to our situation, since we have
directly access to the moment generating function of the random variables under
consideration. This also allows for rather direct proofs of Theorem 1.1(i) and (iii),
where the latter relies in addition on an asymptotic analysis of the Barnes G-function.
Let us remark that while the moments of integer order of the random variables
Vn(Z) are known (see [SW08, Theorem 10.4.5]), we need an extension to non-integer
moments as well as a generalization to the weighted random simplices Zµ. We
develop the corresponding results in the present paper building on earlier works on
beta random polytopes [GGZ19, KTT19]. This in turn also allows neat probabilistic
interpretations of Vn(Z) in terms of independent gamma and beta random variables.
The remaining parts of this paper are structured as follows. In Section 2 we

formally introduce the weighted random simplices Zµ and derive an explicit formula
for the moment generating function of the logarithmic volume of Zµ. We also present
there our probabilistic interpretations for Vn(Z) and its weighted generalization.
Section 3 is devoted to a number of specific bounds and asymptotic expansions
for polygamma functions. They are needed in Section 4, where we derive sharp
cumulant bounds for the logarithmic volume of Zµ. We also present and prove there
our main results, Theorem 4.4, which as a special case includes Theorem 1.1(ii).
Section 5 is devoted to the results on mod-φ convergence and the large deviation
principle for the logarithmic volume of Zµ when µ is fixed, including a proof of
Theorem 1.1(iii). Mod-φ convergence is a relatively new and rather powerful tool
which, once established, yields a whole collection of limit theorems. It has been
introduced and studied in [DKN15, FMN16, JKN11], we recall the basic definitions
and some background material in Section 5 below.
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2. Weighted simplices in Poisson-Delaunay tessellations

2.1. Description of the model

Let n ∈ N and η be a stationary Poisson point process on Rn with intensity
γ ∈ (0,∞). For a (n + 1)-tuple (x0, . . . , xn) of distinct points of η we denote
by B(x0, . . . , xn) the almost surely uniquely determined ball having the points
x0, . . . , xn on its boundary. The points x0, . . . , xn then form a Delaunay simplex
conv(x0, . . . , xn) whenever B(x0, . . . , xn) does not contain any further point from
η, that is, if B(x0, . . . , xn) ∩ η = {x0, . . . , xn}. The collection D of all Delaunay
simplices is called the Poisson–Delaunay tessellation of Rn, see [SW08, Section 10.2].
Our next goal is to describe a procedure to randomly select simplices from the

tessellation D , i.e., from the almost surely infinite collection of simplices D . For
this purpose we introduce a parameter µ ∈ (−2,∞). Moreover, if c ∈ D is a
Delaunay simplex with vertices x0, . . . , xn ∈ η we shall write z(c) for the mid-
point of the ball B(x0, . . . , xn), that is, the circumcentre of x0, . . . , xn. The set
of all simplices in Rn is denoted by Simpln. Endowing Simpln with the usual
Hausdorff distance, we can define on Simpln the Borel σ-field B(Simpln). Writing
Simpl0n := {c ∈ Simpln : z(c) = 0} we define a probability measure P0

µ on Simpl0n by

(2.1) P0
µ(A) := 1

γµ
E

∑
c∈D

z(c)∈ [0,1]n

1{c− z(c) ∈ A}Vn(c)µ+1, A ∈ B
(
Simpl0n

)
,

where Vn(c) stands for the volume of c and where
γµ := E

∑
c∈D

z(c)∈ [0,1]n

Vn(c)µ+1

is a normalizing constant. By Zµ we denote a random simplex with distribution P0
µ.

Using this notation (2.1) can equivalently be expressed by saying that

(2.2) Eh(Zµ) = 1
γµ

E
∑
c∈D

z(c)∈ [0,1]n

h(c− z(c))Vn(c)µ+1

for any non-negative measurable function h : Simpl0n → R. This construction com-
bines two particularly important special cases. Namely, if µ = −1 then P0

−1 is just the
distribution of the typical Delaunay simplex (with respect to the circumcentre as cen-
tre function) and if µ = 0 then P0

0 is the distribution of the typical volume-weighted
Delaunay simplex (again with respect to the circumcentre as centre function) in the
usual sense of Palm theory, see [SW08, Section 3.3]. It is well known that up to a
random shift Z0 coincides in distribution with the almost surely uniquely determined
simplex from D containing the origin of Rn, cf. [SW08, Theorem 10.4.1].
We shall now establish a link between the distributions P0

µ and P0
−1.

Lemma 2.1. — For all non-negative measurable functions h : Simpl0n → R we
have

Eh(Zµ) = 1
EVn(Z−1)µ+1 E

[
h(Z−1)Vn(Z−1)µ+1

]
.

TOME 4 (2021)



126 Anna GUSAKOVA & Christoph THÄLE

Proof. — We can consider D as a stationary particle process of simplicial particles
in Rn in the sense of [SW08, Chapter 4]. Each simplex c ∈ Simpln can be identified
with a pair (c0, z) ∈ Simpl0n×Rn, where c0 = c − z(c) and z = z(c). Since D
is a stationary particle process, its intensity measure Λ admits the factorization
Λ = γ−1 P0

−1 ⊗ λn according to [SW08, Theorem 4.1.1], where λn stands for the
Lebesgue measure on Rn. Applying now Campbell’s theorem ([SW08, Theorem 3.1.2])
and the translation invariance of Vn we find that for any non-negative measurable
function h : Simpl0n → R

γµ Eh(Zµ) = E
∑
c∈D

z(c)∈ [0,1]n

h(c− z(c))Vn(c)µ+1

=
∫

Simpln

1{z(c) ∈ [0, 1]n}h(c− z(c))Vn(c)µ+1 Λ(dc)

= γ−1

∫
Simpl0n

∫
Rn

1{z ∈ [0, 1]n}h(c0)Vn(c0)µ+1 P0
−1(dc0)λn(dz)

= γ−1 E
[
h(Z−1)Vn(Z−1)µ+1

]
.

Choosing now h ≡ 1 we obtain that
γµ = γ−1 EVn(Z−1)µ+1,

which completes the argument of Lemma 2.1. �

We introduce the notation
κn := πn/2

Γ(1 + n
2 )

for the volume of the n-dimensional unit ball and let σ be the normalized spherical
Lebesgue measure on the (n−1)-dimensional unit sphere Sn−1. Furthermore, following
the notation used in [SW08, p. 302] we define the quantities

S(n, n, s) :=
∫

Sn−1

. . .
∫

Sn−1

∆n(u0, . . . , un)s σ(du0) . . . σ(dun), s ∈ [0,∞),

and

an := n2

2n+1π
n−1

2

Γ
(
n2

2

)
Γ
(
n2+1

2

)
 Γ

(
n+1

2

)
Γ
(
1 + n

2

)
n ,

where ∆n(u0, . . . , un) := Vn(conv(u0, . . . , un)). This notation allows us to identify
the values of EVn(Z−1)µ+1.

Lemma 2.2. — For any s ∈ (−1,∞) we have

EVn(Z−1)s = an S(n, n, s+ 1) Γ(n+ s)
nκn+s

n

1
γs
.

Proof. — The moments EVn(Z−1)s are known from [SW08, Theorem 10.4.5] for
integer values of s. However, the proof can be easily extended to non-integer values
for s. This yields the result. �

In the next step, we develop a probabilistic representation for the distributions P0
µ.
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Theorem 2.3. — For µ ∈ (−2,∞) and A ∈ B(Simpl0n) one has that

P0
µ(A) = nκn+µ+1

n γn+µ+1

S(n, n, µ+ 2) Γ(n+ µ+ 1)

∞∫
0

∫
(Sn−1)n+1

1{conv(ru0, . . . , run) ∈ A}

× e−γκnrn rn2+n(µ+1)−1 ∆n(u0, . . . , un)µ+2 σn+1(d(u0, . . . , un)) dr.

Proof. — According to [SW08, Theorem 10.4.4] we have that

P0
−1(A) = anγ

n

∞∫
0

∫
(Sn−1)n+1

1{conv(ru0, . . . , run) ∈ A} e−γκnrnrn2−1

×∆n(u0, . . . , un)σn+1(d(u0, . . . , un)) dr.

Using now Lemma 2.1 with h(·) = 1{· ∈ A} and Lemma 2.2 we conclude that

P0
µ(A) = an γ

n

EVn(Z−1)µ+1

∞∫
0

∫
(Sn−1)n+1

1{conv(ru0, . . . , run) ∈ A} e−γκnrnrn2−1

×∆n(u0, . . . , un) ∆n(ru0, . . . , run)µ+1 σn+1(d(u0, . . . , un)) dr

= nκn+µ+1
n γn+µ+1

S(n, n, µ+ 2) Γ(n+ µ+ 1)

∞∫
0

∫
(Sn−1)n+1

1{conv(ru0, . . . , run) ∈ A}

× e−γκnrnrn2+n(µ+1)−1 ∆n(u0, . . . , un)µ+2 σn+1(d(u0, . . . , un)) dr.

This completes the proof of the Theorem 2.3. �

As a first corollary of Theorem 2.3 we derive a probabilistic representation for the
radius of the circumsphere of the random simplex Zµ. Given a simplex c ∈ Simpln
denote by R(c) the radius of the circumsphere of c. The next Lemma 2.2 provides
the formula for the cumulative distribution function Fµ(t) := P(R(Zµ) 6 t), t > 0,
of the random variable R(Zµ). We remark that for the typical Delaunay simplex Z−1
this formula was known before from [ENR17].

Corollary 2.4. — For µ ∈ (−2,∞) and t > 0 one has that

Fµ(t) = nκn+µ+1
n γn+µ+1

Γ(n+ µ+ 1)

t∫
0

e−γκnr
n

rn
2−1+n(µ+1) dr.

Proof. — Applying Theorem 2.3 we get

P(R(Zµ) 6 t)
= E [1{R(Zµ) 6 t}]

= nκn+µ+1
n γn+µ+1

S(n, n, µ+ 2) Γ(n+ µ+ 1)

∞∫
0

∫
(Sn−1)n+1

1{R(conv(ru0, . . . , run)) 6 t}

× e−γκnrn rn2+n(µ+1)−1 ∆n(u0, . . . , un)µ+2 σn+1(d(u0, . . . , un)) dr.
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Using Fubini’s theorem and the definition of S(d, d, µ+ 2) we conclude

P(R(Zµ) 6 t) = nκn+µ+1
n γn+µ+1

S(n, n, µ+ 2) Γ(n+ µ+ 1)

t∫
0

e−γκnr
n

rn
2+n(µ+1)−1dr

×
∫

(Sn−1)n+1

∆n(u0, . . . , un)µ+2 σn+1(d(u0, . . . , un))

= nκn+µ+1
n γn+µ+1

Γ(n+ µ+ 1)

t∫
0

e−γκnr
n

rn
2−1+n(µ+1) dr

and complete the proof of the Corollary 2.4. �

2.2. Moments of the volume of the random simplex Zµ

As a second application of Theorem 2.3 we compute the moments of the random
variable Vn(Zµ).

Theorem 2.5. — For µ ∈ (−2,∞) and s ∈ (−µ− 2,∞) we have that

EVn(Zµ)s = S(n, n, µ+ s+ 2)
S(n, n, µ+ 2)

Γ(n+ µ+ s+ 1)
Γ(n+ µ+ 1)

1
(γ κn)s .

Proof. — Using Theorem 2.3 we get

EVn(Zµ)s = nκn+µ+1
n γn+µ+1

S(n, n, µ+ 2) Γ(n+ µ+ 1)

∞∫
0

∫
(Sn−1)n+1

∆n(ru0, . . . , run)s

× e−γκnrn rn2+n(µ+1)−1 ∆n(u0, . . . , un)µ+2 σn+1(d(u0, . . . , un)) dr

= nκn+µ+1
n γn+µ+1

S(n, n, µ+ 2) Γ(n+ µ+ 1)

∞∫
0

∫
(Sn−1)n+1

e−γκnr
n

rn
2+n(µ+s+1)−1

×∆n(u0, . . . , un)µ+s+2 σn+1(d(u0, . . . , un)) dr

= nκn+µ+1
n γn+µ+1S(n, n, µ+ s+ 2)
S(n, n, µ+ 2) Γ(n+ µ+ 1)

∞∫
0

e−γκnr
n

rn
2+n(µ+s+1)−1 dr

= nκn+µ+1
n γn+µ+1S(n, n, µ+ s+ 2)
S(n, n, µ+ 2) Γ(n+ µ+ 1)

Γ(n+ µ+ s+ 1)
n (γκn)n+µ+s+1

= S(n, n, µ+ s+ 2)
S(n, n, µ+ 2)

Γ(n+ µ+ s+ 1)
Γ(n+ µ+ 1)

1
(γ κn)s .

This completes the proof of Theorem 2.5. �

The precise values for S(n, n, s), s ∈ [0,∞), can be found for integer values of
s in [Mil71] and for general s in [KTT19]. In particular, from an analysis of the
expected volume of so-called random beta-polytopes (see [KTT19, Proposition 2.8])
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we obtain, by formally putting β = −1 there,

S(n, n, s) =
2n+1π

n(n+1)
2 Γ

(
n2+n(s−1)+s

2

)
(n!)sΓ

(
n2+n(s−1)

2

)
Γ
(
n+s

2

)n+1

n∏
i=1

Γ
(
s+i
2

)
Γ
(
i
2

)
and hence from Theorem 2.5 we have

(2.3)

EVn(Zµ)s = Cµ ×

Γ
(
n
2 + 1

)
γπn/2n!

s × n∏
i=1

Γ
(
i+ µ

2 + 1 + s

2

)

×
Γ
(

(n+1)(n+µ)
2 + 1 + n+1

2 s
)

Γ
(
n(n+µ+1)

2 + n
2s
) Γ(n+ µ+ 1 + s)

Γ
(
n+µ

2 + 1 + s
2

)n+1 ,

where the constant Cµ is given by

Cµ :=
Γ
(
n2+n(µ+1)

2

)
Γ
(
n+µ

2 + 1
)n+1

Γ(n+ µ+ 1)Γ
(
n2+n(µ+1)+µ

2 + 1
) n∏
i=1

Γ
(
i+µ

2 + 1
) .

2.3. Probabilistic representations

Knowing the moments of the volume of the random simplex Zµ we are able to
say more about its actual distribution, namely we can provide a neat probabilistic
representation for the random variable Vn(Zµ)2, which is similar in spirit to the ones
for Gaussian or beta random simplices [GKT19, Mil71]. Before we formulate our
result let us recall some standard distributions.
A random variable has a Gamma distribution with shape α ∈ (0,∞) and rate

λ ∈ (0,∞) if its density function is given by

gα,λ(t) = λα

Γ(α)t
α−1e−λt, t ∈ (0,∞).

A random variable has a Beta distribution with shape parameters α, β ∈ (0,∞) if
its density function is given by

gα,β(t) = Γ(α + β)
Γ(α)Γ(β)t

α−1(1− t)β−1, t ∈ (0, 1).

We will use the notation ξ ∼ Gamma(α, λ) and ξ ∼ Beta(α, β) to indicate that the
random variable ξ has a Gamma distribution with shape α and rate λ or a Beta
distribution with shape parameters α, β, respectively. Moreover, ξ D= ξ′ will indicate
that two random variables ξ and ξ′ have the same distribution.

Theorem 2.6. — For any µ ∈ (−2,∞) we have that

ξn(1− ξ) (n!Vn(Zµ))2 D= (γκn)−2ρ2
n∏
i=1

ξi,

where ξ ∼ Beta(n2+n+nµ
2 , µ+2

2 ), ξi ∼ Beta( i+µ+1
2 , n−i+1

2 ), i ∈ {1, . . . , n}, and
ρ ∼ Gamma(n+µ+ 1, 1) are independent random variables, independent of Vn(Zµ).
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Proof. — First of all let us recall that for ξi ∼ Beta( i+µ+1
2 , n−i+1

2 ) and s ∈ (0,∞)
we have

E [ξsi ] =
Γ
(
n+µ

2 + 1
)

Γ
(
i+µ+1

2 + s
)

Γ
(
i+µ+1

2

)
Γ
(
n+µ

2 + 1 + s
) ,

and for ρ ∼ Gamma(n+ µ+ 1, 1) and s ∈ (0,∞) we have

E
[
ρ2s
]

= Γ(s+ n+ µ+ 1)
Γ(n+ µ+ 1) .

Moreover, for s ∈ (0,∞) we compute that

E [ξns(1− ξ)s] =
Γ
(

(n+1)(n+µ)
2 + 1

)
Γ
(
n2+n+nµ

2

)
Γ
(
µ+2

2

) 1∫
0

t
1
2 (n2+n+nµ+ns)−1(1− t)

µ
2 +sdt

=
Γ
(

(n+1)(n+µ)
2 + 1

)
Γ
(
n(n+1+µ)

2 + ns
)

Γ
(
µ
2 + 1 + s

)
Γ
(
n2+n+nµ

2

)
Γ
(
µ+2

2

)
Γ
(

(n+1)(n+µ)
2 + 1 + (n+ 1)s

) .
Combining this with (2.3) we conclude that, for all s ∈ (0,∞),

(γκnn!)2s E
[
ξsn(1− ξ)sVn(Zµ)2s

]
= E

[
ρ2s

n∏
i=1

ξsi

]
,

which finishes the proof of Theorem 2.6. �

Using the formula for the cumulative distribution function of the radius R(Zµ)
of the circumsphere of Zµ provided in Corollary 2.4 we also obtain the following
probabilistic equality.

Proposition 2.7. — For any µ ∈ (−2,∞) we have

R(Zµ)n D= (γκn)−1ρ,

where ρ ∼ Gamma(n+ µ+ 1, 1).

Proof. — Using Corollary 2.4 we obtain

P(γκnR(Zµ)n 6 t) = P
(
R(Zµ) 6 (γκn)−1t1/n

)

= n(γκn)n+µ+1

Γ(n+ µ+ 1)

(γκn)−1t1/n∫
0

e−γκnr
n

rn
2−1+n(µ+1) dr

= 1
Γ(n+ µ+ 1)

t∫
0

e−yyn+µ dy

= P(ρ 6 t).
This completes the proof of Proposition 2.7. �

Let us point out that the random variable (γκn)−1ρ also appears in the right side
of the equality in Theorem 2.6. This is an evidence for the fact that the distribution
of the vertices of the random simplex Zµ is a randomly rescaled distribution on the
unit sphere. The next result specifies this distribution for integer values of µ.
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Proposition 2.8. — For any integer µ ∈ {−1, 0, 1, 2, . . .} we have

ξn Vn(Zµ)2 D= (γκn)−2ρ2 Vn (conv(X0, . . . , Xn))2 ,

where X0, . . . , Xn are independent and distributed uniformly on the unit (n+µ+2)-
dimensional sphere, ξ ∼ Beta(n2+n+nµ

2 , µ+2
2 ) is independent of Vn(Zµ) and ρ ∼

Gamma(n+ µ+ 1, 1) is independent of X0, . . . , Xn.

Proof. — From [GKT19, Theorem 2.3] we have

E
[
Vn(conv(X0, . . . , Xn))2s

]
= 1
n!2s

n∏
i=1

Γ
(
µ+i

2 + 1 + s
)

Γ
(
µ+i

2 + 1
) Γ

(
n+µ

2 + 1
)n+1

Γ
(
n+µ

2 + 1 + s
)n+1

×
Γ
(

1
2(n+ 1)(n+ µ) + 1 + (n+ 1)s

)
Γ
(

1
2(n+ 1)(n+ µ) + 1 + ns

) ,

for any s ∈ (0,∞). Using the equality

E [ξns] =
Γ
(

(n+1)(n+µ)
2 + 1

)
Γ
(
n2+n+nµ

2 + ns
)

Γ
(
n2+n+nµ

2

)
Γ
(

(n+1)(n+µ)
2 + 1 + ns

)
and combining this with (2.3) we conclude, for all s ∈ (0,∞),

E
[
ξnsVn(Zµ)2s

]
= E

[(
(γκn)−1ρ

)2s
Vn (conv(X0, . . . , Xn))2s

]
,

which finishes the proof of Proposition 2.8. �

Remark 2.9. — In [GKT19, Theorem 2.7] it was shown that the random variable
ξ in the previous proposition is equal by distribution to the squared distance from
the origin to the n-dimensional affine subspace spanned by the random vectors
X0, . . . , Xn. This is equivalent to say that

1− ξ D= R (conv(X0, . . . , Xn))2 .

3. Asymptotics for polygamma functions

Later in this paper we will need to analyse sums of polygamma functions as the
number of terms tends to infinity. In this section we derive some useful identities
allowing to identify their asymptotic behaviour.
We will use the following notation. Given two functions f and g we write f = O(g)

if lim sup
x→∞

|f(x)/g(x)| <∞. Moreover, we write f = o(g) if lim
x→∞
|f(x)/g(x)| = 0.

Before we start let us recall some well-known asymptotic results for gamma and
polygamma functions. The first of them is Stirling’s formula [OLBC10, p. 140]:

log Γ(x) = x log x− x− 1
2 log x+O(1), as x→∞,(3.1)

log(n!) = n log n− n+ 1
2 log n+O(1), as n→∞, n ∈ N.(3.2)
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Consider the digamma function ψ(x) = ψ(0)(x) := d
dx log Γ(x) and, more generally,

for m ∈ N the polygamma function

ψ(m)(x) := dm
dxmψ(x) = dm+1

dxm+1 log Γ(x).

In [QV05, Theorem C] it was shown that

(3.3) ψ(x) = log x− 1
2x +O

(
1/x2

)
and in [Mor10] the asymptotics

(3.4) ψ(1)(x) = 1
x

+ 1
2x2 +O

(
1/x3

)
was obtained, as x→∞. Moreover, for any x 6= 0,−1,−2, . . . one has that

(3.5) ψ(m)(x) =
∞∑
k=0

(−1)m+1m!
(x+ k)m+1 .

Hence, according to [AS64, p. 260], we conclude that

(3.6)
∣∣∣ψ(m)(x)

∣∣∣ 6 ∞∑
k=0

m!
(x+ k)m+1 6

(m− 1)!
xm

+ m!
xm+1 .

The following three propositions provide identities or estimates for sums of polyg-
amma functions. They will be important in the proof of our cumulant estimates
provided in Section 4, which in turn are the key to establish our main central limit
theorem.

Proposition 3.1. — For any a ∈ (0,∞) and k ∈ N, k > 2 we have

1
2

k∑
j=1

ψ
(
j + a

2

)

=
(
k − c

2 + a

2 −
1
2

)
ψ(a+ k − c− 1) + c

2ψ(a+ k − 1) + 1
4ψ

(
a+ k

2

)

−
(
a

2 −
1
2

)
ψ(a+ 1)− 1

4ψ
(
a

2 + 1
)
− k

2 (1 + log 2) + 1 + 2c,

where c := k mod 2, which is equal to 0 if k is even and equal to 1 if k is odd.

Proof. — Put p := bk2c and c := k mod 2. Legendre’s duplication formula (see
[OLBC10, p. 138]) says that

Γ(2x) =
22x−1Γ(x)Γ

(
x+ 1

2

)
√
π

, x ∈ (0,∞).

As a consequence,
d

dx log Γ(2x) = d
dx

[
(2x− 1) log 2− 1

2 log π + log Γ(x) + log Γ
(
x+ 1

2

)]
= 2 log 2 + ψ(x) + ψ

(
x+ 1

2

)
.
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Moreover, since d
dx log Γ(2x) = 2ψ(2x) we deduce that

(3.7) 1
2

(
ψ(x) + ψ

(
x+ 1

2

))
= ψ(2x)− log 2.

Using the above equality we have

(3.8)

1
2

k∑
j=1

ψ
(
j + a

2

)
=

p∑
j=1

1
2

(
ψ
(2j − 1 + a

2

)
+ ψ

(2j + a

2

))
+ c

2ψ
(
k + a

2

)

=
p∑
j=1

ψ(2j − 1 + a)− p log 2 + c

2ψ
(
k + a

2

)
.

Applying the identity ψ(x+ 1) = ψ(x) + 1
x
, which follows from the definition of the

function ψ together with the fact that Γ(x+ 1) = xΓ(x), x ∈ (0,∞), we get
p∑
j=1

ψ(2j − 1 + a) =
p∑
j=1

2j−2∑
l=1

1
a+ l

+ pψ(a+ 1)

= p
2p−2∑
l=1

1
a+ l

−
p−1∑
j=1

j

(
1

a+ 2j − 1 + 1
a+ 2j

)
+ pψ(a+ 1)

=
p−1∑
j=1

p− j
a+ 2j − 1 +

p−1∑
j=1

p− j
a+ 2j + pψ(a+ 1)

=
(
p+ 1

2(a− 1)
) p−1∑
j=1

(a+ 2j − 1)−1 +
(
p+ a

2

) p−1∑
j=1

(a+ 2j)−1

− p+ 1 + pψ(a+ 1)

=
(
p+ 1

2(a− 1)
) 2p−2∑

j=1
(a+ j)−1 + 1

4

p−1∑
j=1

(
a

2 + j
)−1

− p+ 1 + pψ(a+ 1).

Finally, using the equalities
2p−2∑
j=1

(a+ j)−1 = ψ(a+ 2p− 1)− ψ(a+ 1),

p−1∑
j=1

(
a

2 + j
)−1

= ψ
(
a

2 + p
)
− ψ

(
a

2 + 1
)

we conclude that
p∑
j=1

ψ(2j − 1 + a) =
(
p+ 1

2(a− 1)
)
ψ(a+ 2p− 1)− a− 1

2 ψ(a+ 1)

+ 1
4ψ

(
a

2 + p
)
− 1

4ψ
(
a

2 + 1
)
− p+ 1.

Substituting this into (3.8) completes the proof of Proposition 3.1. �
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Proposition 3.2. — For any a ∈ (0,∞) and k ∈ N, k > 2 we have

1
4

k∑
j=1

ψ(1)
(
j + a

2

)
= 1

2 (ψ(a+ k − c+ 1)− ψ(a+ 1))

+ a

2
(
ψ(1)(a+ k − c+ 1)− ψ(1)(a+ 1)

)
− 1

8

(
ψ(1)

(
a+ k − c+ 1

2

)
− ψ(1)

(
a+ 1

2

))

+ k − c
2 ψ(1)(a+ k − c+ 1) + c

4ψ
(1)
(
k + a

2

)
,

where c := k mod 2.

Proof. — We will again use the notation p := bk2c and c := k mod 2. Apply-
ing (3.5) we have that

(3.9)

1
4

k∑
j=1

ψ(1)
(
j + a

2

)
=

k∑
i=1

∞∑
j=0

(i+ a+ 2j)−2

=
p∑
i=1

∞∑
j=0

(2i+ a+ 2j)−2 +
p∑
i=1

∞∑
j=0

(2i+ a+ 2j − 1)−2

+ c

4ψ
(1)
(
k + a

2

)
.

For b ∈ (0,∞) consider the following expression:

T (b) :=
p∑
i=1

∞∑
j=i

(2j + b)−2.

Then

T (b) =
p∑
i=1

p∑
j=i

(2j + b)−2 +
p∑
i=1

∞∑
j=p+1

(2j + b)−2

= 1
2

p∑
i=1

2i(2i+ b)−2 + p
∞∑

j=p+1
(2j + b)−2

= 1
2

p∑
i=1

(2i+ b)−1 − b

2

p∑
i=1

(2i+ b)−2 + p
∞∑

j=p+1
(2j + b)−2

= 1
4

p∑
i=1

(
i+ b/2

)−1
− b

8

∞∑
j=0

(
i+ 1 + b/2

)−2
+
(
p

4 + b

8

) ∞∑
j=0

(j + b/2 + p+ 1)−2 .

Using now (3.5) we conclude that

T (b) =
1
4ψ(b/2 + p+ 1)− 1

4ψ(b/2 + 1)− b

8ψ
(1)(b/2 + 1) +

(
p

4 + b

8

)
ψ(1) (b/2 + p+ 1) .
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Moreover, note that similarly to (3.7) one has the duplication formula

ψ(1)(2x) = 1
4

(
ψ(1)(x) + ψ(1)

(
x+ 1

2

))
, x ∈ (0,∞).

Using this together with (3.7) and substituting the above representation for T (b)
into (3.9) we get

1
4

k∑
j=1

ψ(1)
(
j + a

2

)
= T (a) + T (a− 1) + c

4ψ
(1)
(
k + a

2

)

= 1
2
(
ψ(a+ 2p+ 1)− ψ(a+ 1)

)
− a

2
(
ψ(1)(a+ 1)− ψ(1)(a+ 2p+ 1)

)
− 1

8

(
ψ(1)

(
a+ 2p+ 1

2

)
− ψ(1)

(
a+ 1

2

))
+ pψ(1)(a+ 2p+ 1) + c

4ψ
(1)
(
k + a

2

)
.

This completes the proof of Proposition 3.2 upon replacing 2p by k − c. �

Proposition 3.3. — For any a ∈ (0,∞) and k,m ∈ N, k,m > 2 we have that∣∣∣∣∣∣ 1
2m+1

k∑
j=1

ψ(m)
(
j + a

2

)∣∣∣∣∣∣ 6 4m!
(a+ 1)m−1 .

Proof. — We proceed analogously to the proof of Proposition 3.2. Using the nota-
tion p := bk2c and c := k mod 2, and applying (3.5) we write

1
2m+1

k∑
j=1

ψ(m)
(
j + a

2

)
=

p∑
i=1

∞∑
j=0

(−1)m+1m!
(2i+ a+ 2j)m+1

+
p∑
i=1

∞∑
j=0

(−1)m+1m!
(2i+ a+ 2j − 1)m+1 + c

2m+1ψ
(m)

(
k + a

2

)
.

Consider for b ∈ (0,∞) the following expression:

T (b) : =
p∑
i=1

∞∑
j=i

(−1)m+1m!
(2j + b)m+1

=
p∑
i=1

p∑
j=i

(−1)m+1m!
(2j + b)m+1 +

p∑
i=1

∞∑
j=p+1

(−1)m+1m!
(2j + b)m+1

= 1
2

p∑
i=1

2i(−1)m+1m!
(2i+ b)m+1 + p

∞∑
j=p+1

(−1)m+1m!
(2j + b)m+1

= 1
2

p∑
i=1

(−1)m+1m!
(2i+ b)m − b

2

p∑
i=1

(−1)m+1m!
(2i+ b)m+1 + p

∞∑
j=p+1

(−1)m+1m!
(2j + b)m+1

= − m

2m+1

p∑
i=1

(−1)m(m− 1)!
(i+ b/2)m − b

2m+2

∞∑
i=1

(−1)m+1m!
(i+ b/2)m+1

+ 2p+ b

2m+2

∞∑
j=0

(−1)m+1m!
(j + b/2 + p+ 1)m+1 .
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Then, using (3.5) and estimate (3.6) we obtain

|T (b)| 6 (2m− 1)(m− 2)!
4|b+ 2|m−1 + m!

|b+ 2|m + |2p+ b|(m− 1)!
4|b+ 2p+ 2|m + |2p+ b|m!

2|b+ 2p+ 2|m+1

6
(2m− 1)(m− 2)!

4|b+ 2|m−1 + m!
|b+ 2|m + (m− 1)!

4|b+ 2p+ 2|m−1 + m!
2|b+ 2p+ 2|m .

Finally, we get∣∣∣∣∣∣14
k∑
j=1

ψ(1)
(
j + a

2

)∣∣∣∣∣∣ 6 |T (a)|+ |T (a− 1)|+
∣∣∣∣∣ 1
2m+1ψ

(m)
(
k + a

2

)∣∣∣∣∣
6

(2m− 1)(m− 2)!
2|a+ 1|m−1 + 2m!

|a+ 1|m + (m− 1)!
2|a+ k|m−1 + m!

|a+ k|m

+ (m− 1)!
2|a+ k|m

+ m!
|a+ k|m+1

6
5
2

m!
|a+ 1|m−1 + 3

2
m!

|a+ k|m−1 .

This proves the claim of Proposition 3.3. �

4. Cumulant estimates and their consequences
This section is devoted to a description of the asymptotic probabilistic behaviour

of the random variables
(4.1) Yµ,n := log Vn(Zµ), µ ∈ (−2,∞),
in the high dimensional regime, that is, as n→∞. We recall at this occasion that
Zµ is a random simplex with distribution P0

µ given by (2.1). That is, Zµ is a typical
V µ+1
n -weighted random simplex from the Poisson–Delaunay tessellation in Rn with

intensity γ. In our set-up we will allow the parameter µ and the intensity γ of the
underlying Poisson point process to depend on the dimension parameter n, although
this dependence is suppressed in our notation for simplicity.
Our strategy is as follows. First, we derive in Section 4.1 asymptotic expansions for

the expectation and the variance and provide sharp bounds for the cumulants of the
random variables Yµ,n. They are specialized in Section 4.2 for different growth rates
of µ with respect to n. These estimates are then used in Section 4.3 to prove our
main result, Theorem 4.4, based on the general limit theorems for large deviations
from [SS91, Chapter 2]. In particular, this includes part (i) and (ii) of Theorem 1.1
from the introduction as a special case.

4.1. General bounds for cumulants

Given an m ∈ N and a random variable X with E |X|m < ∞, let cm(X) be the
mth order cumulant of X defined by

cm(X) = (−i)m dm
dtm logE

[
eitX

] ∣∣∣∣
t=0
,
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where i is the imaginary unit. The aim of this section is to derive the bounds for
the cumulants of random variable Yµ,n. In addition, we will determine an asymptotic
expansion for the expectation and the variance of Yµ,n, as n→∞. As a special case,
this provides a proof of Theorem 1.1(i) from the introduction when we take µ = −1.

Proposition 4.1. — For any µ ∈ (−2,∞) and n ∈ N, n > 2 we have

EYµ,n = −n2 log n− n log
√

2π − log γ +
(
µ

2 + 7
4

)
log (n+ µ) + 1

2 log n

− µ+ 1
2 ψ(µ+ 3)− 1

4ψ
(
µ

2 + 2
)

+O(1),

VarYµ,n = 3− n
2(n+ µ) + 2n

(n+ µ)2 + 1
2 log(n+ µ) + 1

2 −
1
2ψ(µ+ 3)

− µ+ 2
2 ψ(1) (µ+ 3) + 1

8ψ
(1)
(
µ+ 3

2

)
+O

(
(n+ µ)−2

)
.

Moreover, for m ∈ N, m > 3 we have

|cm(Yµ,n)| 6 (3n+ 4)(m− 2)!
2(n+ µ)m−1 + (2n+ 3)(m− 1)!

(n+ µ)m + 4(m− 1)!
(µ+ 3)m−2 .

Proof. — Substituting the moment formula (2.3) into the definition of the cumu-
lants and using the relation Γ(x+ 1) = xΓ(x), x ∈ (0,∞), we see that

cm(Yµ,n) = dm
dsm logE [Vn(Zµ)s]

∣∣∣∣
s=0

= 1{m=1}

(
log Γ

(
n/2 + 1

)
− log γ − n

2 log π − log n!
)

+ dm
dsm

[
log Γ (n+ µ+ s) + log Γ

(
(n+ 1)(n+ µ)

2 + n+ 1
2 s

)

− log Γ
(
n(n+ µ+ 1)

2 + n

2 s
)
− (n+ 1) log Γ

(
n+ µ

2 + s

2

)
− (n− 1) log(n+ µ+ s) +

n∑
i=1

log Γ
(
i+ µ+ 2

2 + s

2

) ]∣∣∣∣∣
s=0

after simplifications. The above equality can be rewritten in terms of polygamma
functions as follows:

cm(Yµ,n) = 1{m=1}

(
log Γ

(
n/2 + 1

)
− log γ − n

2 log π − log n!
)

+ ψ(m−1)(n+ µ)

+ (n+ 1)m
2m ψ(m−1)

(
(n+ 1)(n+ µ)

2

)
− nm

2mψ
(m−1)

(
n(n+ µ+ 1)

2

)

− n+ 1
2m ψ(m−1)

(
n+ µ

2

)
+ 1

2m
n∑
i=1

ψ(m−1)
(
i+ µ+ 2

2

)
− n− 1

(n+ µ)m .
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We now distinguish the cases m = 1, m = 2 and m > 3. If m = 1, c1(Yµ,n) = EYµ,n
and the above expression is

EYµ,n = log Γ(n/2) + log n− log γ − n

2 log π − log n! + ψ (n+ µ)

− n+ 1
2 ψ

(
n+ µ

2

)
+ n+ 1

2 ψ

(
(n+ 1)(n+ µ)

2

)

− n

2ψ
(
n(n+ µ+ 1)

2

)
+ 1

2

n∑
i=1

ψ
(
i+ µ+ 2

2

)
+O(1).

Using the asymptotic relations (3.1) and (3.2) together with Proposition 3.1 and the
identity ψ(x+ 1) = ψ(x) + 1

x
, x ∈ (0,∞), we obtain

EYµ,n = −n2 log n− n

2 log 2 + n

2 −
n

2 log π − log γ + ψ (n+ µ)

+ n+ 1
2 ψ

(
(n+ 1)(n+ µ)

2

)
− n

2ψ
(
n(n+ µ+ 1)

2

)
− n+ 1

2 ψ
(
n+ µ

2

)

+ n+ µ+ 1
2 ψ(n+ µ) + 1

4ψ
(
µ+ n

2

)
− µ+ 1

2 ψ(µ+ 3)− 1
4ψ

(
µ

2 + 2
)

− n

2 (1 + log 2) +O(1).

Applying now the asymptotics (3.3) for the digamma function we conclude that

EYµ,n = −n2 log n− n log
√

2π − log γ +
(
n+ µ

2 + 7
4

)
log(n+ µ)− 1

4ψ
(
µ

2 + 2
)

+ n+ 1
2 log(n+ 1)− n

2
(

log n+ log(n+ µ+ 1)
)
− µ+ 1

2 ψ(µ+ 3) +O(1).

Finally, taking into account that log(x+ 1) = log x+O(1/x), x ∈ (0,∞), we obtain

EYµ,n = −n2 log n− n log
√

2π − log γ +
(
µ

2 + 7
4

)
log(n+ µ) + 1

2 log n

− µ+ 1
2 ψ(µ+ 3)− 1

4ψ
(
µ

2 + 2
)

+O(1).

Next, we turn to the case m = 2. Since c2(Yµ,n) = VarYµ,n we have

VarYµ,n = ψ(1)(n+ µ) + (n+ 1)2

4 ψ(1)
(

(n+ 1)(n+ µ)
2

)
− n2

4 ψ
(1)
(
n(n+ µ+ 1)

2

)

− n+ 1
4 ψ(1)

(
n+ µ

2

)
+ 1

4

n∑
i=1

ψ(1)
(
i+ µ+ 2

2

)
− n− 1

(n+ µ)2 .

Using now Proposition 3.2 together with (3.3) and (3.4) we conclude that

VarYµ,n = 1
n+ µ

− n

2(n+ µ+ 1) + 3n
2(n+ µ)2 + 1

2 log(n+ µ+ 3− c)− 1
2ψ(µ+ 3)

+ n+ µ+ 1
2(n+ µ+ 3− c) −

µ+ 2
2 ψ(1)(µ+ 3) + 1

8ψ
(1)
(
µ+ 3

2

)
+O

(
(n+ µ)−2

)
.
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Using a Taylor expansion of the functions log x and 1/x we see that

log(n+ µ+ 3− c) = log(n+ µ) + 3− c
n+ µ

+O
(
(n+ µ)−2

)
,

n

2(n+ µ+ 1) = n

2(n+ µ) −
n

2(n+ µ)2 +O
(
(n+ µ)−2

)
,

and, thus,

VarYµ,n = 3− n
2(n+ µ) + 2n

(n+ µ)2 + 1
2 log(n+ µ) + 1

2 −
1
2ψ(µ+ 3)

− µ+ 2
2 ψ(1) (µ+ 3) + 1

8ψ
(1)
(
µ+ 3

2

)
+O((n+ µ)−2).

This proves the first two assertions of the Proposition 4.1.
We turn now to the case that m > 3. Applying the estimate (3.6) and Proposi-

tion 3.3 for n > 2, we get

|cm(Yµ,n)| 6
∣∣∣ψ(m−1)(n+ µ)

∣∣∣+ (n+ 1)m
2m

∣∣∣∣∣ψ(m−1)
(

(n+ 1)(n+ µ)
2

)∣∣∣∣∣
+ nm

2m

∣∣∣∣∣ψ(m−1)
(
n(n+ µ+ 1)

2

)∣∣∣∣∣+ n+ 1
2m

∣∣∣∣ψ(m−1)
(
n+ µ

2

)∣∣∣∣
+
∣∣∣∣∣ 1
2m

n∑
i=1

ψ(m−1)
(
i+ µ+ 2

2

)∣∣∣∣∣+ n− 1
(n+ µ)m

6
(m− 2)!

(n+ µ)m−1 + (n+ 4)(m− 1)!
(n+ µ)m + (n+ 1)(m− 2)!

2(n+ µ)m−1 + n(m− 2)!
2(n+ µ)m−1

+ (n+ 1)(m− 2)!
2(n+ µ)m−1 + 3(m− 1)!

(µ+ 3)m−2 + n− 1
(n+ µ)m

6
(3n+ 4)(m− 2)!

2(n+ µ)m−1 + (2n+ 3)(m− 1)!
(n+ µ)m + 3(m− 1)!

(µ+ 3)m−2 .

This completes the proof of the Proposition 4.1. �

4.2. Asymptotics and bounds in different regimes

In this section we simplify the asymptotic expansions for EYµ,n and VarYµ,n as
well as the cumulant estimates provided in Proposition 4.1 for a number of special
choices for the growth rate of µ with respect to the dimension parameter n. We recall
that the symbol γ stands for the intensity of the underlying Poisson point process.

4.2.1. The case when n→∞ and µ is fixed.

From Proposition 4.1 we get

EYµ,n = −n2 log n− n log
√

2π − log γ +
(
µ

2 + 9
4

)
log n+O(1)

= −n2 log n− log γ +O(n)
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and

VarYµ,n = 1
2 log(µ+ n+ 3) +O(1) = 1

2 log n+O(1).

In addition, for all m > 3 and n > 3 we have the bound

|cm(Yµ,n)| 6 6(m− 1)!(µ+ 3)−(m−2).

4.2.2. The case when n→∞ and µ = nα, α ∈ (0, 1).

By Proposition 4.1, Equality (3.3) and a Taylor expansion of the logarithm we
obtain

EYµ,n = −n2 log n+ 1− α
2 nα log n− n log

√
2π − log γ

+ 7− 3α
4 log n+ 1

2

∞∑
i=1

(−1)i+1

i!ni−(i+1)α +O(1)

= −n2 log n− log γ +O(n).

Analogously, using (3.3), (3.4) and a Taylor expansion of the logarithm and the
function 1/x we get

VarYµ,n = 3− n
2(n+ nα) + 2n

(n+ nα)2 + 1
2 log(n+ nα) + 1

2 −
1
2 log(nα + 3)

+ 1
4(nα + 3) −

nα + 2
2(nα + 3) −

nα + 2
4(nα + 3)2 + 1

4(nα + 3) +O
( 1
n2α

)

= 1− α
2 log n+O(1),

and for all m > 3 and n > 3

|cm(Yµ,n)| 6 6(m− 1)!n−α(m−2).

4.2.3. The case when n→∞ and µ = αn for some fixed α.

Substituting µ = αn with α ∈ (0,∞) into Proposition 4.1 and using the asymptotic
relation (3.3) we get

EYµ,n = −n2 log n− n log
√

2π − log γ +
(
αn

2 + 7
4

)
(log n+ log (1 + α)) + 1

2 log n

− αn+ 1
2 (logα + log n)− 1

4 log n+O(1)

= −n2 log n− n

2
(
log 2π − α log

(
1 + α−1

))
− log γ + log n+O(1)

= −n2 log n− log γ +O(n).
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Analogously, using (3.4) we obtain

VarYµ,n = − 1
2(1 + α) + 1

2 log((1 + α)n)− 1
2 log(αn) +O

(
n−1

)
= 1

2 log
(
1 + α−1

)
− 1

2(1 + α) +O
(
n−1

)
.

Finally for all m > 3 and n > 3 we have that

|cm(Yµ,n)| 6 6(m− 1)!(αn)−(m−2).

4.2.4. The case when n→∞ and n− µ = o(n).

By Proposition 4.1 and Identity (3.3) applied to this case we obtain

EYµ,n = −n2 log n− n log
√

2π − log γ +
(
n− o(n)

2 + 7
4

)
(log n+ log 2)

+ 1
2 log n− n− o(n) + 1

2 log n+O(1)

= −n2 log n− log γ −O(n).

Similarly, from (3.3) and (3.4) we get

VarYµ,n = −1
4 + 1

2 log
(

2n− o(n) + 3
n− o(n) + 3

)
+O

(
n−1

)
= 1

2 log 2− 1
4 +O

(
n−1

)
,

and also for all m > 3 and n > 3 we obtain

|cm(Yµ,n)| 6 6(m− 1)!n−(m−2).

4.2.5. The case when n is fixed and µ→∞.

From Proposition 4.1 and (3.3) we conclude that

EYµ,n = − log γ +
(
µ

2 + 7
4

)
log µ− µ+ 1

2 log µ− 1
4 log µ+O(1)

= log µ− log γ +O(1).

Similarly, using (3.3), (3.4) and a Taylor expansion of the logarithm we get

VarYµ,n = 3− n
2(n+ µ) + 1

2 log(n+ µ)− 1
2 log(µ+ 3) + 3

4µ +O
(
µ−2

)
= 3

4µ +O
(
µ−2

)
,

and also for all m > 3 and n > 3

|cm(Yµ,n)| 6 (n+ 2) (m− 1)!µ−(m−2).
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4.2.6. The case when µ→∞ and n = µα, α ∈ (0, 1).

Applying Proposition 4.1, equality (3.3) and a Taylor expansion of the logarithm
we obtain

EYµ,n = −α2µ
α log µ− µα log

√
2π − log γ +

(
µ

2 + 7
4

)
log(µα + µ)

+ α

2 log µ− µ+ 1
2 log(µ+ 3)− 1

4 log
(
µ

2 + 2
)

+O(1)

= −α2µ
α log µ− µα

2 (log π − 1 + log 2)− log γ + 1 + α

2 log µ+ µ

2

∞∑
i=2

(−1)i+1

i!µi(1−α)

= −α2µ
α log µ− log γ +O(µα).

Analogously, using (3.3), (3.4) and a Taylor expansion of the logarithm as well as of
the function 1/x we get

VarYµ,n = 3− µα
2(µ+ µα) + 2µα

(µ+ µα)2 + 1
2 log(µ+ µα) + 1

2 −
1
2 log(µ+ 3) + 1

4(µ+ 3)

− µ+ 2
2(µ+ 3) −

µ+ 2
4(µ+ 3)2 + 1

4(µ+ 3) +O
(
(µ+ µα)−2

)

= 3
4µ + 1

2

∞∑
i=2

(
1− 1

i!

) (−1)i
µi(1−α) +O

(
µ−2+α

)
.

Thus, for α < 1
2 we have

VarYµ,n = 3
4µ
−1 +O

(
µ−2+2α

)
,

for α = 1
2 we get

VarYµ,n = µ−1 +O
(
µ−3/2

)
,

and for α > 1
2 we obtain

VarYµ,n = 1
4µ
−2(1−α) +O

(
µ−1 + µ−3(1−α)

)
.

Finally, we conclude that for all m > 3 and n > 3
|cm(Yµ,n)| 6 6(m− 1)!µ−(m−2).

4.3. Limit theorems for weighted random simplices

Having derived cumulant bounds for the random variables Yµ,n we are now in the
position to prove a number of probabilistic limit theorems for the logarithmic volume
of the weighted random simplices Zµ in a Poisson–Delaunay tessellation. For this we
use the following Lemma 4.2. It summarizes results from [DE13b] and [SS91] in a
simplified form (see also [ERS15, GT18a, GT18b]). As above, we shall write cm(X),
m ∈ N, for the mth cumulant of a random variable X with E |X|m <∞. Moreover,
by Φ( · ) we denote the distribution function of a standard Gaussian random variable.
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In what follows we will obtain a concentration inequality (see Theorem 4.4(i)),
Berry–Esseen bounds (see Theorem 4.4(iv)) and investigate moderate deviations
(see Theorem 4.4(ii) and (iii)). Let us recall here for convenience the definition of
moderate deviations principle for a sequence of random variables. Given a sequence
(νn)n∈N of probability measures on a topological space E, we say that it fulfils a
large deviations principle with speed an and (good) rate function I : E → [0,∞],
if I is lower semi-continuous and has compact level sets, and if for every Borel set
B ⊆ E we have
− inf

x∈ int(B)
I(x) 6 lim inf

n→∞
a−1
n log νn(B) 6 lim sup

n→∞
a−1
n log νn(B) 6 − inf

x∈ cl(B)
I(x),

where int(B) and cl(B) stand for the interior and the closure of B, respectively. We
say that a sequence (Xn)n∈N of random elements in E satisfies a large deviations
principle if the sequence of their distributions does. Moreover, if the rescaling an lies
between that of a law of large numbers and that of a distributional (often a central)
limit theorem, we will say that a sequence (Xn)n∈N satisfies a moderate deviations
principle with speed an and rate function I, cf. [DZ10].

Lemma 4.2. — Let (Xn)n∈N be a sequence of random variables with E [Xn] = 0
and Var[Xn] = 1 for all n ∈ N. Suppose that, for all m ∈ N, m > 3 and sufficiently
large n,

|cm(Xn)| 6 (m!)1+δ

(∆n)m−2(4.2)

with a constant δ ∈ [0,∞) not depending on n and constants ∆n ∈ (0,∞) that may
depend on n. Then the following assertions are true.

(i) For all y ∈ [0,∞) and sufficiently large n,

P(|Xn| > y) 6 2 exp

− y2

2
[
1 +

(
y/∆1/(1+2δ)

n

) 1+2δ
1+δ

]
 .

(ii) There exist constants c1, c2 ∈ (0,∞) only depending on δ such that for
sufficiently large n and 0 6 y 6 c1 (∆n)

1
1+2δ ,∣∣∣∣∣log P(Xn > y)

1− Φ(y)

∣∣∣∣∣ 6 c2
(
1 + y3

)
(∆n)−

1
(1+2δ)

and ∣∣∣∣∣log P(Xn 6 −y)
Φ(−y)

∣∣∣∣∣ 6 c2
(
1 + y3

)
(∆n)−

1
(1+2δ) .

(iii) Let (an)n∈N be a sequence of positive real numbers such that

lim
n→∞

an =∞ and lim
n→∞

an ∆−
1

1+2δ
n = 0.

Then (a−1
n Xn)n∈N satisfies a moderate deviations principle on R with speed

a2
n and rate function I(x) = x2

2 .
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(iv) One has the Berry–Esseen bound

sup
y ∈R
|P(Xn 6 y)− Φ(y)| 6 c (∆n)−1/(1+2δ)

with a constant c ∈ (0,∞) that only depends on δ.

Remark 4.3. — Lemma 4.2(ii) is a simplified form of a Cramér–Petrov-type as-
ymptotic expansion that follows from the cumulant bound (4.2) together with [SS91,
Lemma 2.2 and 2.3]. We leave the formulation of the more precise (and much more
involved) statement that follows from these results to the reader.

We shall distinguish the following three regimes:
(R1) n→∞ and µ ∈ (−2,∞) fixed,
(R2) n→∞ and µ = nα for some α ∈ (0, 1),
(R3) n→∞ and n− µ = o(n),
(R4) n→∞ and µ = αn for some α ∈ (0,∞).

Moreover, for n ∈ N we define the quantity

εn :=


√

log n : µ fixed,
nα
√

log n : µ = nα, α ∈ (0, 1),
n : µ = αn, α ∈ (0,∞) or n− µ = o(n),

as well as the centred and normalized random variables

Ỹ µ,n := Yµ,n − EYµ,n√
VarYµ,n

.

We are now ready to present our main result. Note that part (ii) of Theorem 1.1
from the introduction corresponds to the special choice µ = −1.

Theorem 4.4. — Suppose that n and µ are such that we are in one of the
regimes (R1), (R2), (R3) or (R4). Then the following assertions are true.

(i) There exists a constant c ∈ (0,∞) such that for all y ∈ [0,∞) and large
enough n one has that

P
(
Ỹµ,n > y

)
6 2 exp

(
− y2

2 + cyε−1
n

)
.

(ii) There are constants c1, c2 ∈ (0,∞) such that for large enough n and
0 6 y 6 c1εn one has that∣∣∣∣∣∣log

P
(
Ỹµ,n > y

)
1− Φ(y)

∣∣∣∣∣∣ 6 c2
(
1 + y3

)
ε−1
n ,

∣∣∣∣∣∣log
P
(
Ỹµ,n 6 −y

)
Φ(−y)

∣∣∣∣∣∣ 6 c2
(
1 + y3

)
ε−1
n .

(iii) Let (an)n∈N be a sequence of positive real numbers such that

lim
n→∞

an =∞ and lim
n→∞

an ε
−1
n = 0.
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Then the sequence of random variables (a−1
n Ỹµ,n)n∈N satisfies a moderate

deviations principle on R with speed a2
n and rate function I(x) = x2/2.

(iv) There exists a constant c ∈ (0,∞) such that for all n > 3,

sup
y∈R

∣∣∣P (Ỹµ,n 6 y
)
− Φ(y)

∣∣∣ 6 c ε−1
n .

Proof. — From the estimates presented in the previous section we obtain∣∣∣cm(Ỹ µ,n)
∣∣∣ = |cm (Yµ,n)|

(VarYµ,n)m/2 6 Am
m!
εm−2
n

6

(
Amax{1, A2}

εn

)m−2

m!,

for all n > 3. Here, A ∈ (0,∞) is an absolute constant, except for the cases where
µ = nα or µ = αn, where it depends additionally on the choice of α. Thus Ỹ µ,n

satisfies condition (4.2) with ∆n = εn/(Amax{1, A2}) and δ = 0. This completes
the proof. �

Remark 4.5. — The proof of Theorem 4.4 shows that the constants c in part (i)
and (iv) and the constants c1, c2 in part (ii) are in fact absolute constants in
regimes (R1) and (R3) and that they only depend on the additional parameter
α in regimes (R2) and (R4).

5. Mod-φ convergence and large deviations principle

In this final section we investigate mod-φ convergence and the large deviations
behaviour of the logarithmic volume of the random simplex Zµ. The notion of mod-
φ convergence has been recently introduced and studied in [DKN15, JKN11]. It
is a powerful tool which leads to a whole collection of limit theorems including
an extended version of the central limit theorem, a local limit theorem, precise
moderate and large deviations and Cramér–Petrov type asymptotic expansions. For
more references and a survey of the topic we refer the reader to [FMN16]. We remark
that some of the results established in the previous section for fixed µ will also follow
once we have established mod-φ convergence.
The main idea behind the concept of mod-φ convergence of a sequence of random

variables is to look for a suitable renormalization of the moment generating func-
tions (considered on the complex plane C) of these random variables. There are a
several versions of the definition of mod-φ convergence, we will consider the one
from [FMN16, Definition 1.1]. Let (Xn)n∈N be a sequence of real-valued random
variables, and let us denote by ϕn(z) = E [ezXn ] their moment generating functions,
which are assumed to exist in a strip

S(a,b) := {z ∈ C : a < Re z < b} ,
where a < 0 < b are extended real numbers. Assume there exists a non-constant
infinitely divisible distribution φ with moment generating function

∫
R e

zxφ(dx) =
exp(η(z)), which is well defined on S(a,b), and an analytic function ψ which does not
vanish on the real part of S(a,b), such that

exp (−wnη(z))ϕn(z)→ ψ(z), n→∞,
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locally uniformly in z ∈ S(a,b) for some sequence (wn)n∈N converging to infinity.
Then we say that the sequence (Xn)n∈N converges in the mod-φ sense on S(a,b)
with parameters (wn)n∈N and limiting function ψ. Especially, if η(z) = z2/2 is the
Gaussian exponent, one speaks about mod-Gaussian convergence.
Mod-φ convergence for the log-volume of random simplices generated by random

vectors distributed according to the Gaussian distribution, the beta distribution, the
beta’ distribution or the uniform distribution on the sphere was recently studied
in [EK20, GKT19]. We remark that although [EK20] studies very general models
with so-called gamma type moments, our random variables do not precisely fit into
this framework.

5.1. The Barnes G-function

Our result about the mod-φ convergence of the random variables Yµ,n defined
in (4.1) involves the so-called Barnes G-function. The Barnes G-function is an entire
function of one complex argument z, which can be defined as a solution of the
functional equation

G(z + 1) = Γ(z)G(z),
satisfying G(1) = 1. Using induction one can deduce that for any integer n one has
that

(5.1)
n∏
k=1

Γ(k + z) = G(z + n+ 1)
G(z + 1) , z 6= −1,−2, . . . .

In what follows we will need the following Lemma 5.1, which was proved in [GKT19,
Lemma 4.1].

Lemma 5.1. — Let |z| → ∞ and let a = a(z) ∈ C be such that a
z
→∞. Let also

| arg z|, | arg(z + a)| < π − ε for some ε > 0. Then

logG(z+a+1)−logG(z+1) = a
(
z log z − z + log

√
2π
)

+ 1
2a

2 log z+O
(
|a|3 + 1

z

)
.

5.2. Mod-φ convergence of Yµ,n for fixed µ

As before we will consider the random variables

Yµ,n := log Vn(Zµ), µ ∈ (−2,∞),

and investigate the mod-φ convergence for the sequence (Yµ,n)n∈N, where µ is as-
sumed to be fixed. It should be pointed out that other regimes for µ could also be
considered using the same approach. However, we decided to restrict ourselves to the
case of fixed µ since this includes the most prominent examples, namely the typical
and the typical volume-weighted Delaunay simplex.
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Theorem 5.2. — Let µ ∈ (−2,∞) be fixed and define

mn := log
(

4Γ(n/2)
γ n!π n−1

2

)
+
(
µ

2 + 13
4

)
log

(
n

2

)
− µ+ n+ 1

2 .

Then, as n → ∞, the sequence of random variables (Yµ,n − mn)n∈N converges in
the mod-Gaussian sense on S(−µ−3,∞) (meaning that η(z) = 1

2z
2) with parameters

wn = 1
2 log

(
n
2

)
and limiting function

(5.2) ψ(z) =
G
(

3+µ
2

)
G
(
2 + µ

2

)
G
(

3+µ+z
2

)
G
(
2 + µ+z

2

) .
Remark 5.3. — The shift mn and the limiting function ψ can be simplified further

for µ = −1 (corresponding to the typical Delaunay simplex) and µ = 0 (correspond-
ing to the typical volume-weighted Delaunay simplex) using that G(1) = G(2) = 1
and that G(3/2) = A−3/2 π1/2 e1/8 21/24, where A ≈ 1.2824 . . . is the Glaisher–
Kinkelin constant.

Proof of Theorem 5.2. — Consider the moment generating function of the random
variable Yµ,n. From the moment formula (2.3) we have

(5.3) logE
[
ezYµ,n

]
= z log

(
dΓ(n/2)
2γπn/2n!

)
+ Sn(z) + Tn(z),

where

Sn(z) : = log
n∏
i=1

Γ
(
i+µ

2 + 1 + z
2

)
Γ
(
i+µ

2 + 1
) ,

Tn(z) : =
(

log Γ(n+ µ+ 1 + z)− log Γ(n+ µ+ 1)
)

−
(

log Γ
(
n(n+ µ+ 1)

2 + n
z

2

)
− log Γ

(
n(n+ µ+ 1)

2

))

− (n+ 1)
(

log Γ
(
n+ µ

2 + 1 + z

2

)
− log Γ

(
n+ µ

2 + 1
))

+
(

log Γ
(

(n+ 1)(n+ µ)
2 + 1 + (n+ 1)z2

)
− log Γ

(
(n+ 1)(n+ µ)

2 + 1
))

.

Let us start by analysing the asymptotic behaviour of Sn(z). Defining c := n mod 2
and using (5.1) we can rewrite Sn(z) in terms of the Barnes G-function:

Sn(z) = log
G
(

3+c+µ+n
2 + z

2

)
G
(

3+µ
2

)
G
(
2 + µ+n−c

2 + z
2

)
G
(
2 + µ

2

)
G
(

3+c+µ+n
2

)
G
(

3+µ
2 + z

2

)
G
(
2 + µ+n−c

2

)
G
(
2 + µ

2 + z
2

)
= logψ(z) + logG

(3 + c+ µ+ n

2 + z

2

)
− logG

(3 + c+ µ+ n

2

)
+ logG

(
2 + µ+ n− c

2 + z

2

)
− logG

(
2 + µ+ n− c

2

)
,
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where ψ is given by (5.2). Applying now Lemma 5.1 and a Taylor expansion of the
logarithm we conclude that

Sn(z) = logψ(z) + z

2

(
1 + c+ µ+ n

2 log
(
n

2

)
− n

2 + log
√

2π
)

+ z2

8 log
(
n

2

)

+ z

2

(
2− c+ µ+ n

2 log
(
n

2

)
− n

2 + log
√

2π
)

+ z2

8 log
(
n

2

)
+O

(
|z|3 + 1

n

)

= logψ(z) + z

2

((3
2 + µ+ n

)
log

(
n

2

)
− n+ log(2π)

)

+ z2

4 log
(
n

2

)
+O

(
|z|3 + 1

n

)
.

In order to compute Tn(z) we will use the classical first Binet’s formula [WW15,
p. 243] for the logarithm of the gamma function, saying that

log Γ(z)

=
(
z − 1

2

)
log z − z + 1

2 log(2π) +
∞∫
0

e−tz

t

(1
2 −

1
t

+ 1
et − 1

)
dt, Re z ∈ (0,∞),

together with the relation Γ(1 + z) = zΓ(z). This leads to

Tn(z) =
(
n+ µ+ z − 1

2

)
log(n+ µ+ z)− z −

(
n+ µ− 1

2

)
log(n+ µ)

− 1
2
(
n(n+ µ) + n− 1 + nz

)(
log n+ log(n+ µ+ 1 + z)− log 2

)
+ nz

2 + 1
2
(
d(n+ µ) + n− 1

)(
log n+ log(n+ µ+ 1)− log 2

)
− 1

2
(
(n+ 1)(n+ µ)− n− 1 + (n+ 1)z

)(
log(n+ µ+ z)− log 2

)
+ (n+ 1)z

2 + 1
2
(
(n+ 1)(n+ µ)− n− 1

)(
log(n+ µ)− log 2

)
+ 1

2
(
(n+ 1)(n+ µ)− 1 + (n+ 1)z

)(
log(n+ 1) + log(n+ µ+ z)− log 2

)
− (n+ 1)z

2 − 1
2
(
(n+ 1)(n+ µ)− 1

)(
log(n+ 1) + log(n+ µ)− log 2

)
− (n− 1)

(
log(n+ µ+ z)− log(n+ µ)

)
+Rn(z),

where Rn(z) is given by

Rn(z) :=
∞∫
0

1
t

(1
2 −

1
t

+ 1
et − 1

)(
e−(n+µ)t(e−zt − 1)− e−

n(n+µ+1)t
2

(
e−

nzt
2 − 1

)

− (n+ 1)e−
(n+µ)t

2 (e− zt2 − 1) + e
−(n+1)(n+µ)t

2

(
e−

z(n+1)t
2 − 1

))
dt.
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Using the inequality |ez − 1| 6 |z|e|z|, which is valid for any z ∈ C, and the fact
that the function t 7→ 1

t
(1

2 −
1
t

+ 1
et−1) is bounded (by 1/12) for any t ∈ R it is easy

to ensure that
Rn(z) = O

(
|z|
n

)
.

This allows us to simplify further the expression for Tn(z) and we arrive at

Tn(z) = z

2
(
(n+ 1) log(n+ 1)− n log n+ n(1 + log 2)− 2

+ 2 log(n+ µ+ z)− n log(n+ µ+ 1 + z)
)

+ 1
2 (n+ 1 + 2µ) (log(n+ µ+ z)− log(n+ µ))

− 1
2 (n(n+ µ+ 1)− 1)

(
log(n+ µ+ 1 + z)− log(n+ µ+ 1)

)
+O

(
|z|
n

)
.

From a Taylor expansion of the logarithm we deduce that
(n+ 1) log(n+ 1)− n log n = log n+ 1 +O

(
n−1

)
,

log(k + z)− log k = z

k
− z2

k2 +O

(
|z|3

k3

)
,

and, hence,

Tn(z) = z

2 (n log 2− 1− µ− (n− 3) log n) +O

(
1 + |z|3

n

)
.

Combining all this with (5.3) we finally obtain

(5.4) logE
[
ezYµ,n

]
= z

(
log

(
4Γ(n/2)
γ n!π n−1

2

)
+
(
µ

2 + 13
4

)
log

(
n

2

)
− µ+ n+ 1

2

)

+ logψ(z) + z2

4 log
(
n

2

)
+O

(
1 + |z|3

n

)
,

which completes the proof of Theorem 5.2. �

5.3. Large deviations principle for Yµ,n for fixed µ

The purpose of this subsection is to derive a large deviations principle for the
sequence of random variables Yµ,n when µ is fixed (recall the definition of a large
deviations principle from the beginning of Section 4.3). In particular, this covers the
statement of part (iii) of Theorem 1.1 we presented in the introduction if we take
µ = −1.
Theorem 5.4. — Let µ ∈ (−2,∞) be fixed and put

mn := −n2 log n− n

2 (log π + 1) +
(
µ

2 + 9
4

)
log n− log γ.

Then the sequence of random variables (Yµ,n −mn)n∈N satisfies a large deviations
principle on R with speed 1

2 log(n2 ) and good rate function I(x) = x2

2 .
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Our proof of this result will rely on the Gärtner–Ellis theorem, see [DZ10, Sec-
tion 2.3]. Although this is a standard tool in the large deviations theory, we refor-
mulate it in order to keep our presentation self-contained.
Lemma 5.5 (Gärtner–Ellis theorem). — Consider a sequence of random variables

(Xn)n∈N in R with logarithmic moment generating functions Λn(t) := logE etXn ,
t ∈ R. Let (an)n∈N be a positive sequence such that an → ∞, as n → ∞. Assume
that for each t ∈ R the limit

Λ(t) := lim
n→∞

1
an

Λn(ant),

exists as an extended real number. Also assume that DΛ := {t ∈ R : Λ(t) <∞} = R
and that Λ is differentiable onDΛ. Then the sequence of random variablesXn satisfies
large deviations principle with speed an and rate function

I(x) = sup
t∈R

[xt− Λ(t)] ,

the Legendre–Fenchel transform of Λ.
Proof of Theorem 5.4. — Theorem 5.2 ensures that, for each t ∈ R,

Λ(t) := lim
n→∞

1
1
2 log(n2 ) logE et(Yµ,n−mn) = t2

2 .

Thus DΛ = R and Λ is differentiable on DΛ. Moreover, the Legendre–Fenchel trans-
form of Λ is also given by I(x) = x2/2. The Gärtner–Ellis theorem thus yields the
result. �
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