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The volume preserving mean curvature flow

By Gerhard Huisken at Canberra

Consider a compact, uniformly convex n-dimensional hypersurface M, without
boundary, which is smoothly imbedded in R"*!, and suppose that M, is represented
locally by some diffeomorphism

Fo:R"> U — Fy(U)c My R 1.

In [3] we deformed M, in direction of its mean curvature vector, i.e. we solved

~6~F(>€ t)y=—H(x,t)-v(xX,t), XeU, t=20
(1) ot
F(-,0)=F,,

where H is the mean curvature and v the outer unit normal. It was shown that the
corresponding hypersurfaces M, contract to a single point in finite time and become
round at the end of the contraction.

In this paper we study the problem

O FE)=h)-HE D) v(E 1, TeU, 120
) ot
F(" 0)=F0’

where h(t) is the average of the mean curvature on M,:

h(t)= | Hdu/j du.
M,

M.

As is clear from (2), this flow keeps the volume enclosed by the surfaces M, constant,
and we will see that the area |M,| of the hypersurfaces is always decreasing: The M,’s
can be expected to converge to a solution of the isoperimetric problem. We show that
this is the case if the initial surface is uniformly convex.

0. 1. Theorem. If the initial hypersurface M, n=2, is uniformly convex, then the
evolution equation (2) has a smooth solution M, for all times 0<t<co and the M,s
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converge to a round sphere enclosing the same volume as M, in the C*®-topology as
t— 00.

Remarks. (i) A similar problem in the one-dimensional case was treated
recently by Gage in [1].

(i) If M, is immersed in a general Riemannian manifold, it would be interesting
to find conditions on M, which ensure that M, converges to a hypersurface of constant
mean curvature. The methods in this paper cannot be readily generalized to that case
like the mean curvature flow in [4]. In view of the term h in the evolution equation (2)
the local evolution of M depends heavily on the global shape of the hypersurface and
we show in § 1 that convexity properties of M, may not be preserved if M,, is immersed
in a general Riemannian manifold.

The strategy in the proof of Theorem 0. 1 aims at obtaining a uniform bound for
the mean curvature on M,. We show that the mean curvature can only blow up if it
blows up uniformly, thus contradicting the constancy of the enclosed volume. The
required estimates are more involved than in [3] since here we don’t have an a priori
lower bound for the mean curvature and since h introduces a global term in all relevant
evolution equations.

In §4 we give a method to obtain the higher order derivative estimates directly
from the maximum principle without using the interpolation inequalities employed in

[2], [3] and [4].
Part of this work was completed while the author was visiting the University of

California San Diego, and he is grateful to the Department of Mathematics there for its
support and hospitality.

1. Evolution equations and convexity properties

We will use the same notation as in [3], in particular we write g={g;;} and
A={h;;} for the metric and the second fundamental form and use the notation
H =gijhij’ |A’2 =8ijg“hikhjt,

C=gg"g™hyhmh,j, Z=HC—|A*.

The symbol of equation (2) is the same as in the case of the mean curvature flow. Thus
we know that (2) has a smooth solution at least for short times and we will denote by
0<t<T,,< oo the maximal time interval where a smooth solution of (2) exists.

Proceeding now exactly as in [3] we derive evolution equations for the metric and
the second fundamental form on M, from the basic equation (2).

1. 1. Proposition. We have the evolution equations

0
'a—tgij=2(h—H)hij

0
"aTt hlj=Ahl]—2thmhm]+ hhimhmj+ |/4I2 hij'
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The evolution equation for g implies that the area of M, is decreasing. We have

0

and therefore
0
5 M =— [ HH—-hdp=— [ (H-hdp,
M, M,

since h is the mean value of H.

Using now

— o= _2(h—H)gimginh

3 8 ( )8 8" hyu

and contraction we easily obtain from Proposition 1.1 evolution equations for other
quantities formed from g and A.

1. 2. Corollary. We have

() %H=AH+(H——h) |4]2,

0
(i) = A= AJA]* —2|VAP +2|4|* = 2hC,

(iii) —(-9— (|A|2 -——1- H2> =A <|A|2 —l H2> -2 <|VA|2 —1 |VH|2>
ot n n n

1 2
+2]42 <|A|2 - H2> + = h(H|A* =nC).

Since the initial hypersurface M, is uniformly convex, there is 0<e <1/n such that
at t=0

©) hijgaHgij,

holds everywhere on M,. Whereas the evolution equation for H doesn’t yield an
immediate lower bound for the mean curvature, we can show that inequality (3) is
preserved.

1. 3. Theorem. If the initial hypersurface M, is uniformly convex, then M, stays
uniformly convex and inequality (3) remains true with a uniform 0<e=<1/n for all times
t 20 where the solution of (2) exists.

Proof. It is easy to see that the maximum principle for parabolic systems
developed by Hamilton in [2], Theorem 9.1 applies in this situation. It follows
immediately from Proposition 1.1 that uniform convexity is preserved since the absolute
terms in the evolution equation for 4 vanish at null-eigenvectors of A. To prove that
inequality (3) is preserved, consider
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From Proposition 1.1 and Corollary 1.2 (i) we obtain

0

Nij= —2Hhyh",+ hhy B + | A% b, — €| AI> (H — h) g, — 26H (h — H) ;.

Jj

We have only to check that N;; is non-negative on the null-eigenvectors of M,;. If X is a
null-eigenvector of M;; at some (t,, x,) we may arrange coordinates such that at (x, t,)
we have X =e,, g;;=0;; and h;; is diagonal. Then
N X'X'=N,; =—2¢’H>+he?H* + ¢eH |A|> — ¢|A|*H
+elAh—2e*hH? + 26 H?

= eh(|A? — eH?).
. 1
This is non-negative since h>0, 0<e¢=<1/n and always |4|>=> - H2.

Remarks. (i) It is not possible to show that an absolute lower bound like
h;j=&g;; is preserved. Indeed, if M, is a convex hypersurface containing an almost flat
region, then in this region we have h>> H, such that this region is moved in direction of
the outward normal and becomes even more flat temporarily.

(i) A similar argument shows that convexity need not be preserved under this
flow for hypersurfaces immersed in arbitrary Riemannian manifolds: Let M, be a
convex hypersurface in S"*! with a portion of M, being C2-close to an equator of $"**.
Again h> H in this region of M, such that initially the hypersurface in this region is
moving onto the other side of the equator, changing the sign of the second fundamental
form.

We will also need the following consequences of convexity.
1.4. Lemma. If inequality (3) holds with H>0, ¢>0 at some point of a
hypersurface, then we have at that point
1
(i) Z=ne*H? <|A|2 - H2>,
1
(i) |Vib, H— ViHhkl|2 —2—'2— e H? IVH|2,

1
(i) nC—H|A*=2neH <|A|2 — H2>.

Proof. The first two inequalities were shown in [3], Lemma 2. 3. To obtain (iii),
observe that in a coordinate system where h;;=k;0;; (no sum) we have

1
nC—H|A?=) K;"—x,-sz=—2— Y K} — Kk —KKE K]
i,j i¥j
1

=5 Z (ki + k) (1, — K)%.
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The result then follows from (3) and
2 1 2 1 2
|4 ";H =— Z (Ki*'Kj) .
2. A pinching estimate

In this section we show that the mean curvature can only blow up if the
eigenvalues of the second fundamental form come close together.

2. 1. Theorem. There is 6>0 and C,< oo depending only on M, such that
1 _
A"~ — H? S CoH*?
n
holds for all times t 20 where the solution of (2) exists.

We show how the proof of Theorem 5.1 in [3] has to be modified to overcome
the difficulties arising from the term h in the evolution equation (2). We want to bound
the function

1
|42~ H?

n

fd: H2—a

for some small ¢ >0 and begin with an evolution equation for f.

2.2. Lemma. We have with a=2—¢

o 2(a—1)
afa—‘Afa_FT <VIH’ Vlfa'>

2 2—a)(x—1 1

~ s W H = -0 O (g L) oy
2h 4 2 (H_h)

+gams (41 —HC} + oA S22

Proof. 1t is clear from Corollary 1.2 that the first and second order terms are
exactly as in the ordinary mean curvature flow. For the zero order terms we obtain

2 1 1
4__ — — 2V~ () — - 2 2_ " g2
i {2|A| 2hC—> (H h)HlAl} — (2—0) (H—h) |4| <|A| nH)

and the conclusion follows.
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From Lemma 1.4 we then derive the inequality

9 2(a—1) e . .
) 57 JeSAo = CNH, Vi fs) — 5 IVHP + 0|A41f, = 2e*hH .

This inequality is slightly stronger than the corresponding inequality in [3], note
however that we don’t have a lower bound for H yet. Multiplying this inequality by
pfP~! we obtain as in [3]

0 1 _ 1 1 _
— [ frdu+=plp—1) [ fF2IVSPdu+= 2p [ — fF ' IVH > du
Jt 2 2 H

Sop|H*f?dp—2¢*p [hHfPdu+ (H(h—H)ffdu

provided pe? is large. The last term on the right hand side arises from the
timedependance of the volume form. We now use Lemma 5. 4 in [3] with n=¢p~Y?/4
and derive for all p=200&72, g<n-2"4e3p 12

0
—a—tjfapduéo

Thus (f f7dp)" is uniformly bounded by some constant C, for these values of p and o.
Now let f, ,=max(f,—k,0) and A(k)={xe M| f,>k}. Then we multiply (4) with
pf2:! and derive for pe® large

0 1
) 5 [ dut s p(p=1) [ VA2 du

A(k)

Sop | H*fP'f,du—¢*p | hHfP ' f,du— | H*f2;* fodp.
)

A(k) A(k) Ak

Proceeding then exactly as in [3] we see that there is a fixed finite p, and a g, >0 such
that for all 0<o<o0,, all 0<T<oo and all k=k,>0
fosk+d, dr=C 20t ARy

where k, and C, are constants depending only on n, & C;, M, and where

T
lA®Ir=] | dudr.
(V]

Ak)

To show that this term is bounded independently of T we show that

4@ = [ dp

A(k)
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decays exponentially for some k =k, if o is small enough. Choose a fixed p such that (5)
holds and then ¢ <1/2p~!, such that

0 1 1
A, I fa’fkldﬂé"z j Hzfalz;llfadué“i j Hzfa'ltkldu

0t 4iky Alky) Aky)

since f, = f, ;. Moreover, on A(k,) we have

1
|4|*—— H?
n

ki

lIA

e =i

and therefore

0 1
— [ fhdps—=k¥° | fP.dp
Ot Afky 2 Alky)

So we get
j ﬂ‘:hdiu—s—-e_bt' j fo‘lzknd”,t=0’

A(ky) Aky)

where §=1/2k?°. Then let k=k;+1 and observe that on A(k,+1) we have
1< (f,—k,)?. Thus we have

Ak, + )= | 1dus | (fo—k)Pdp

Ak +1) Ak +1)
< | (fo—kypdu= | fE dusCe™,
Aky) Aky)

completing the proof of Theorem 2. 1.

3. Gradient estimate for the mean curvature

In this section we use the pinching estimate in Theorem 2. 1 to obtain a bound for
the gradient of the mean curvature on M,. Since we don’t have a finite time interval
here, we could not get an estimate as strong as in [3]. However, if

Hp= max max H= max H,,/(t),
tel0.T] M, te[0,T]

then we have
3. 1. Theorem. For all n>0 there is a constant Cy<oo depending only on n and
M, such that
IVH|>? <nH7+C;

holds on M, for all 0<t<T. In particular C, is independent of T.
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We begin with an evolution equation for |VH|2.

3.2. Lemma. We have the equation
0 .

T IVH|?=A|VH|*--2|V?H|* - 2hh" V;HV,H
+2|A4|? \[VH|* +2{V;HV, H, h;,,h™>
+2(H — h) {V;H, V;|A|*).

Proof. From Proposition 1.1 and Corollary 1.2 we derive
0 o, ..
— |VH*=— (g"V;HV;H

=2(V;H, V,(AH + (H — h) |A]?)) + 2(H — h) <h;, V;HV,H Y

j9
and the conclusion follows from

A(V,H)=V,(AH)+ <VJH, HhU_ hlmhm1>.

3. 3. Corollary. We have the estimate
a 2 2 2
5 IVH|? <A|VH|* +8nH(H + h) [VA|*.

Proof. This follows from h;;=0, Schwarz’ inequality and

ij=

|2(H — h) CV;H, V;|A]>>| = |2(H — h) <V, H, V;(hy, h*'))|
<4nH?|VA|? +4nhH|VAJ?.

We will also need the following inequalities.

3.4. Lemma. For all times 0<t< T we have the estimates

9 1, s 1 2(n—1)
(i) EE(HZ (IAIZ—-;H >>§A<H (IAI —;H2>>—~—3—;— H*|VA]?

1
+4H*|A? (|A|2—; H2>

1
—4H<ViH, v, <|A|2 - H2>>,

(i) 5% <Hh <|A|2 —% H2>> <A (Hh <|A|2 -% H2>> —2—(';%1) Hh|VAP?

1 1
+3HhIAP ('A'z‘;; H2> +2hHHE <|A|2—; H2>

1
—2h<V,-H, v, (IAl’—; H2>>.
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Proof. From [3], Lemma 2.2 (ii) we know the inequality

IVAI*— IVHI2 2

20D g

Combining this with Corollary 1.2 (iii) and Lemma 1. 4 (iii) we derive

© 51—y )8 (1r-1 w7) -2
ot n n 3n

1
+2]4) <|A|2—;H2>.

Then we get from Corollary 1.2 (i) that

,i (Hz (|A|2—-l H2>> §A<H2 (|A|2—l H2>> —E(n;l) H?|VA?
ot \ . n n 3n
1
+2|A4|> H? (lAIZ—% H2>—-2<|A|2—;l- H2> |VH|?

+2H(H —h) <|A|2—% HZ) |4)2

—2<Vi(H2), \ <|A|2—% H2>>,

proving the first inequality. To obtain the second inequality we need an estimate for the
time derivative of h. We get

(7) % {[ Hdp/\MI}=M|™" [ AH +(H—h) |4
M M

3 h
—H*(H—h)du—|M|* | Hdu- | Hh—H*dp
M M

=|M|~" [ (H—h)|A]*— H®+2hH>— h*Hdu < 2hH}
M

since |4]|> < H? by convexity. So we derive from (6) and Corollary 1.2 (i)

6(Hh<|A|2—lHz))§A<Hh(|AIZ—lH2>> 2(n— )HhIVAlz
ot n 3n

1 1
+2|4P Hh (IAI2 - H2> + h(H — h) |A)? <|A|2 - HZ)

1
+2hHH? (lAlZ—% H2>—2h<V,~H, \"/ (IAIZ—; H2>>,

proving the second inequality.
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We now want to add enough of the function

1
g1=(H+h>H<|A|2—; HZ)

to |VH|?* in order to absorb the terms on the right hand side of the estimate in
-] 1

Corollary 3.3. To accomplish this, let h;;=h;;—— Hg;; be the traceless second
n

fundamental form and use Theorem 2.1 to estimate

H '<V1H, Vi <|A|2 _% H2>>

= H KV, H, V;(h, B*))|

<2H|VH| |hyl [Vhi| £2nC3? VAP H?> %7
mn—1) 1

é_,______ - — HZIVA|2+ C4(C0’ ns 5) |VA|2
3n 4

and similarly

h KViH, V; <lA|2 —% H2>>

Thus we have

n—1 1

< . 2 2.
= 4hH|VA| + C5(Cy, n, 0) h|VA|

0 n—1 1
b—tglgAgl—( n ) (H+h) HIVA|*> +(C, +hCs) |VA|2+8HH%<|A|2—;I— HZ).

Now let :
g2=(1+h) (|A|2—; H’)
be another auxilary function and compute from (6) and (7)

2(n—1)
n

1
2 82 <Ag,— (1+h) [VA> +2(1+h) |4)? <|A|2—; H2>
+2hH2 <|A|2—;11— HZ),

2(n—1)

Then let N, be so big that N, =2 max(C,, Cs), such that

(n—1)

(H+h) H|VA|?
3n

0
‘a—t(gl +N;8)<A(g;+N,8)—

(n—1)

o (1+ ) VAP + [BHH}+ 2N, (1+h) |4P

._]\]1

1
+2N,hHZ] <|A|2—; H2>.
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(n—1)
3n

Now choose N, so large that N, =16n, then we see from Corollary 3. 3 that the
function
g3=|VHI>+N,g,+N,N, g,

satisfies the inequality

(H+h) HIVA]* -~ N, N, (—"3—"”3 (14 h) VA2

(n—1)
n

0
E&éAgs—Nz 6

1
+N,[8HH2+2N,(1+h) |A]* + 2N, hH?] (|A|2—; H2> ‘

From Theorem 2.1 we can now estimate the last term on the RHS by
N,[C¢H+2N,JH3C H?*"°

where C¢ is a constant depending on N, and M,. For any n>0 this can be estimated
by
nH,H# + C,H? + Cg H}

with C; and Cg depending only on #,, N;, N,, 0, C, and Cq. Thus we derive

(n—1)

3n?

d ~1
“gaéAgs—Nz(~n—~)(H+h)H|VA|2—N2N1

3 e (14 h) |VA* +nH?H} + CoH}.

We want to show now that for any #>0 there is C,,(#) such that

g;<fiH}+C,, for 0<t<T.

Choose C,, so large that this inequality holds at t =0 and then suppose there is a first
time t =t, < T where g;=7Hj+ C,, at some x, € M. At this point we have Ag; <0,

0
n 2320 and therefore

1
0 — (N H(H+W+2N,N)) "

1

Using Theorem 2. 1 as before we see that the bracket [ ] can be estimated from below
by

1 1
E'IH;"'E Cio

31 Journal fiir Mathematik. Band 382
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provided C,,=C,0(#, 0, Ny, N,, Co, M,) is sufficiently large. So we get

n 1 —1

n—1
0= —f o5 NyH HE =N, Ny o Cio— Ny Ny 5 f{HE+n H2 H} + Co () H}
12 6n 6n

-1
and we derive a contradiction if we first choose 11<17 n 5 N, and then C,, = C,,(C,, )
large. This completes the proof of Theorem 3. 1.
3. 5. Corollary. The mean curvature H is uniformly bounded on M, for

0Zt<T,, S 0.

max =

Proof. Suppose there is a sequence of times T; — T,,, such that

maxH=H; and Hy—o as i— 0.
M,

Then for any #>0 there is i such that for all j>i

1
IVH| éE nHz, on Mzy,.

We can then use Theorem 3.1 and Myer’s theorem as in [3] to conclude that

min H2(1—n)Hy,, on My,

Theorem 1. 3 then implies that all principal curvatures on My, tend to infinity which is
clearly a contradiction since the enclosed volume is constant.

4. Higher derivatives

In this section we derive the higher order derivative estimates directly from
maximum principle arguments. We do not need the Sobolev inequality and interpola-
tion inequalities employed in [2] and [3].

4. 1. Theorem. For each m=1 there is C,, such that
Vr4I? <G,
uniformly on M, for 0=t<T,,, < 0.

Proof. Let S*T denote any linear combination of tensors formed by contraction
with g from S and T. Then we derive as in [3] from the evolution equation of the
second fundamental form that

d . . . .
—tV"'h,-j=AV"‘h,~j+ Y VA*VIA*V*A+h ), Vi4A*Vi4

d i+tjtk=m i+j=m
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and also

d . .
) 7 IV"AZ =AIVT A2 =2|V" T AP+ ) VIA* VI VE4* VA
t itj+k=m
+h Z ViA* ViA* V™A,

i+j=m

In view of convexity and Corollary 3. 5 we know that |42 =|V°A4|? and h are uniformly
bounded and we prove Theorem 4.1 by induction on m. Suppose |V"A4|* is uniformly
bounded by C,, for all m<m. It follows that for some constant C,; depending on C,,

%lV"’“A|2§A|V"’“A|2 +C11('Vm+lA|2+ 1)

Now choose N=2C,, and let f=|V"*14|> 4+ N|V™A|%. Then
d m+1 412
c‘i’t‘féAf—N}V A"+ Cy,

with C,, =C,,(C,,, C,;, N). This implies
d
Ef_s_Af—Nf’{”Clz"l'Ncm.

Thus f is uniformly bounded by a constant C,,, depending on C,, C;,, N and
max |V" 142,
Mo

proving Theorem 4. 1.

The uniform derivative estimates clearly imply that the solution of (2) exists for all
time, we have

4. 2. Corollary. T, = 0.

It remains to show that M, converges to a round sphere as t — co. To accomplish
this, note that the total area of M, is monotone decreasing and

40 du=— [ (H-hPdu
M,

Therefore

Ot 8

[ (H—hydpdt |M,|.
M

t

The estimates in Corollary 3.5 and Theorem 4.1 imply that both

d
j (H—h?dp and — j (H—h)*dp
dt .

M.
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are uniformly bounded. Thus [ (H —h)*du tends to zero as t — co. Then the uniform

M,
estimates on H and |VH| together with an interpolation argument show that sup|H — h|
M.
tends to zero as t — oo. Thus both h and H are bounded from below by some constant

1
6>0 for t=T,. Hence, from (4) we see that fo=<lA|2~; H2>/H2 satisfies the

inequality

d 2
d_tf0§Af0+E ViH, Y, fo) =260 f,.
This shows that

1
(10) AP —— H? < Cpye®

for some constants C,; and 6, >0, and a slight modification in the proof of Theorem 4. 1
shows that all higher derivatives of the second fundamental form decay exponentially as
well. In particular, the velocity of the surfaces M,,
d
— F|=|H—h
|- -n
decays exponentially as ¢t — oco. Thus M, converges smoothly to a limiting hypersurface

M, enclosing the same volume as M,, and in view of (10) the limiting hypersurface M,
is a round sphere.
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