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The Voronoi Polyhedra as Tools for Structure Determination in Simple Disordered Systems 
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The structure of some simple fluids is analyzed through the Voronoi tessellation of the configurations generated 
by computer simulation. Special emphasis is put on the investigation of disordering, i.e., the deviation from 
solid-state properties. The models studied include a simple Lennard-Jones (LJ) liquid, two quenched states 
obtained from the liquid, and a system made of noninteracting particles (the ideal gas), while a state point 
corresponding to the LJ solid phase is used as reference. To perform the Voronoi construction, an algorithm 
specially suited for disordered systems is presented. The arrangement of particles has been studied through 
the geometrical features of their Voronoi polyhedra (VP). It is shown that two parameters can give a description 
of the VP in such a way that the disordering of the system is clearly manifested. One is the volume distribution 
coefficient of skewness, and the other is the shape of the VP as described by the convex bodies nonsphericity 
factor. In particular, the clusters present in a rapidly quenched liquid are easily revealed in this way. 

1. Introduction 

The characterization of the spatial structure of a system is a 
challenging matter far from being solved. The usual description 
through the radial distribution function g(r) is not enough because 
the one-dimensional nature of g(r) implies that 3D correlations 
have been averaged out. Some aspects of the global structure 
may be depicted by obtaining the power expansion in spherical 
harmonics of the neighborhood of a particle’ or inspecting the 
relative intensity of the components of the structure factor,2 but 
those approaches are rather indirect and thus are difficult to 
interpret. A more straightforward insight can be achieved by 
focusing our attention in the Voronoi polyhedra (VP)3 associated 
with each atom. The VP, defined as the convex region of space 
closer to its central atom than to any other, are a generalized 
version of the WignerSeitz cells in crystallography (see, for 
example, ref 4). As the structure of liquids and amorphous solids 
is primarily determined by repulsive forces5 and these are produced 
by nearest neighbors, it follows that the description of the shape 
and size of the VP may be used to characterize that structure. 

Such an analysis was first employed by Berna16 to the case of 
a random packing system. After that it has been applied in the 
framework of structural determination in a wide variety of 
physicochemical problems such crystalli~ation,~-l I glass forma- 
tion,12.13 solvation structure,I4 defects in melting t ran~i t ion,’~ 
solvolytic reactions,’6 molecular volumes of  protein^,'^.'^ studies 
on neighboring identities,19 interfacial area between substrate 
and enzyne,20and determination of clefts in receptor structures.2’*22 
For the description of the VP both shape and size of the 

individual polyhedra should be given. The volume distribution 
has been widely used as a measure of size but there is no general 
agreement about how to describe the shape: “signature” of the 
polyhedra7 (enumeration of the number of faces with three, four, 
and so on vertices), number of faces distribution?Jl portion of 
odd-edged faces,IO dimensionless parameter constructed with 
surfaceand area,l0,23 and even “tetrahedricity” and “octahedricity” 
of the related Delaunay tetrahedra.z4 But the scaled particle 
theory (SPT)25 demonstrated some time ago that a suitable 
parameter to define the shape of a convex body is the so-called 
nonsphericity, also referred to as anisotropic factor, a which is 
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V, S, and R being the volume, surface, and average curvature 
radius of the convex body, respectively. This parameter is the 
unity for a sphere and greater for any other convex body. 

In this work we show how the combined analysis of volume and 
nonsphericity of the VP is a powerful tool to study the structure 
of disordered fluids. We apply this technique to the Lennard- 
Jones fluid at two thermodynamic points corresponding to solid 
and liquid phases, two differently quenched supercooled states 
obtained from the liquid, and the ideal gas (i.e., a noninteracting 
system obtained by randomly placing particles into a box). The 
structural features of each system are clearly disclosed by the 
volume and nonsphericity distributions as shown below. 

In section 2 we describe the algorithm we have developed to 
obtain the Voronoi construction. Section 3 addresses the 
simulations and quenching procedures, while the results and 
discussion are presented in section 4. Some concluding remarks 
will be given at the end of the paper. 

2. The Voronoi Tessellation Algorithm 

The 3D Voronoi construction is a nontrivial problem for which 
a few algorithms have been p r o p o ~ e d . ~ ” ~ ~  In all cases, for a 
given atom i ,  one needs to select a set Q of Nn neighboring atoms. 
For this set to be valid it must include all of the so-called nearest 
neighbors, 0, formed by the Nh particles strictly needed to define 
the faces of the VP 

The efficiency of the different algorithms is given in terms of 
Nn. Therefore, the key is to select the set B as small as possible; 
ideally, No should be equal to Nh so that Q only contains the 
nearest neighbors. Traditionally, B has been built as a list of 
closest neighbors (using a cutoff radius) which is a good approach 
(in the absence of other information) for any system with a quite 
isotropic neighborhood (say, a solid or even a liquid) but which 
turns out to be a poor approximation to Q for more disordered 
systems (such as glassy states or electrolyte solutions): to include 
the Nh nearest neighbors, a rather large cutoff distance must be 
chosen and consequently the number of atoms in Q increases. In 
fact, we decided to face the problem in a completely new way 
when we noticed that for some ill-behaved systems (the nonin- 
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GridAppximation 1 

VP Construction 

Figure 1. Flow chart of the proposed algorithm for the Voronoi polyhedra 
construction. 

teracting and even more the quenched states) sometimesa nearest 
neighbor was so far away that we were forced to increase the 
cutoff up to almost half the simulation box length. The 
construction of a ‘direct” polyhedron26 (built using only some of 
the closest atoms which suffice to close it) gives for each particle 
an upper limit for the cutoff radius which includes all its nearest 
neighbors, but the situation is not better because for those systems 
the radii are very large. Besides, the direct polyhedron is also 
quite difficult to obtain. 

Our algorithm is designed to avoid the inherent problems 
associated with the use of a cutoff distance. Instead, we explore 
the space surrounding each particle in such a way that the local 
anisotropy is directly incorporated into the algorithm. Figure 1 
is a flow chart of the algorithm. It is made up of two main blocks, 
namely the grid approximation and the VP’s construction, which 
in turn are subdivided in two steps. 

The Grid Approximation. The system is divided in boxes with 
the use of a grid. Each box delimited by the grid is assigned to 
its closest particle so that the set of boxes ascribed to one particle 
approximates its VP. (A 2D example is given in Figure 2. There, 
a small region of a system is depicted. The edges of the Voronoi 
polygons are drawn as solid lines and the approximation obtained 
through the grid as dotted lines. The grid itself is not plotted for 
the shake of clarity). The most obvious-and inefficient-way 
of performing the assignation of boxes is computing the distances 
from each box to every particle. Instead, in our procedure, each 
particle ‘conquers” the boxes around its previously occupied boxes 
beginning with that in which the particle is located. Only when 
a box is disputed between two particles do we need to evaluate 
the distances and assign the box to the closest one. When there 
are no free boxes, the polyhedra approximation phase (step 1 of 
Figure 1) finishes. Notice that certain properties of the VP can 
be directly estimated from these approximated VP, as is the case 
of the volume. Only if one is interested in, say, the VP surface 
or its number of faces is it necessary to go further and obtain the 
true VP. 

In stage 2 the algorithm identifies the nearest neighbors of 
each particle. By definition, two particles are nearest neighbors 
if their VP’s are adjacent. Thus, the approximated VP trivially 
provide the nearest neighbors of each particle: two particles are 
nearest neighbors if at  least two boxes, one of each, are adjacent. 
This is the main advantage of our method as opposed to the use 
of a cutoff-based list which furnishes the closest (not necessarily 
nearest) neighbors. It is worth noting that thegrid approximation 
can be very efficiently handled as only integer arithmetic is 
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Figure 2. Location of neighbors through the grid and overlapping polygons 
as a consequence of a missing edge (see the text). 

required (all the distances involved in stage 1 are computed in 
terms of ‘boxes”). 

Since we have the nearest neighbor sets for all the particles 
in the system, R, it follows that by simple inspection of the 
neighborhood lists we can extract the common neighbors’ tetrads, 
i.e., the subsets of four atoms so that each one is a neighbor of 
the others. These tetrads are nothing but the vertices of the 
so-called Delaunay tetrahedra, and the VP are easily obtained 
since its vertices are just the circumcenters of the Delaunay 
tetrahedra. 

Rigorously, as described, the algorithm only works in the limit 
of zero thickness grid; a finite thickness grid may result in missing 
in R some far nearest neighbors (which define small area VP 
faces, as that between particles A and B in Figure 2) or even in 
including non-nearest neighbors (as is the case of particles C and 
D in the same figure). The implications and solution for this 
failure are given in the next subsection. 

The VP Construction. In this block we describe how to obtain 
theVPfrom an approximateset of nearest neighbors 52i(‘). Firstly, 
we should be able to include the missing nearest neighbors. We 
will refer to this step as neighbor expansion (step 3 in Figure 1). 
It is only intended to improve the efficiency of the whole algorithm 
since a high-resolution grid (which would detect all the nearest 
neighbors) would be too expensive in terms of computer time. 
Secondly, a procedure to remove the spurious neighbors introduced 
by previous stages is required. For this purpose we use a 
modification of Finney’s algorithm2’ (step 4). 

In the neighbor expansion phase, the atoms with a certain 
number N,, of common neighbors with atom i are added to 
giving an improved set R i z ) .  For example, in Figure 2, the grid 
approximation fails to locate B as neighbor of A, as said above. 
However, if we expand the A neighbors with N,, = 2 (the most 
likely choice for a two-dimensional system) B will be included in 
QA(2) because both C and D belong to both R,(l) and R#); Le., 
we can build two bridges between A and B through common 
neighbors. The price one has to pay for adding most of the 
nonpreviously detected neighbors is the possibility of inclusion of 
fake ones, which must be eliminated later. 

Now, one could take for each particle the current neighbors 
set Ri(2) as the list of candidates Ri and proceed with any standard 
algorithm such as the one by Tanemura et a1.28 or M e d ~ e d e v . ~ ~  
We chose to modify Finney’s algorithm27 in order to improve its 
efficiency. In Finney’s procedure the circumcenters of the 
tetrahedra built connecting all the possible combinations of four 
atoms (the central one and three other among the R members) 
are computed; the VP vertices are those circumcenters closer to 
the central atom than to any other in R. Finney’s method is not 
specially suitable unless the number of particles NQ in the 
approximate set is close to Nh. But we can cross the neighborhood 
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information between particles to eliminate most of the tetrads 
not leading to a real VP vertex. All the atoms defining a Delaunay 
tetrahedra are nearest neighbors of each other. Thus, to build 
the VP of particle i we do not need to try all the three-atom 
combinations among its nearest neighbors list, but only those 
being nearest neighbors among them. But as our Qi(2) does not 
exactly fit the Delaunay network, we need to relax this condition 
somewhat. Thus, we do not input to Finney's algorithm all the 
combinations of three atoms from Qi2) but only those with a 
given number of "neighborhood links", say 1 or 2, among them. 
In this way, the Nn3 dependence of Finney's algorithm is greatly 
improved. 

The main advantage of the algorithm is its robustness. Provided 
a reasonable grid is to be used, the initial set furnished by 
the grid ensures that a (closed) polyhedron can be obtained 
irrespective of the disordering degree of the system. Nevertheless, 
it is possible that two nearest neighbors were not identified either 
by the grid approximation or by neighbor expansion. In that 
case, the resulting VP is missing a face. The two polyhedra which 
should share that face are bigger than the correct ones because 
a small region of space is assigned to both. In our example of 
Figure 2 the shaded area would be the surface ascribed to both 
the A and B polygons if these two atoms were not considered 
neighbors, Le., with no neighbor expansion. These approximate 
VP's are very close to the true ones with most of the geometrical 
quantities (volume, surface, total edge length, and average 
curvature radius) being almost the same, except of course the 
number of faces. Figure 3 compares the polyhedra volume 
distribution for several configurations of the 108-particle Lennard- 
Jones liquid described in the next section using two sampling 
grids (20 and 80 boxes per dimension, respectively) with no 
neighbor expansion (Ncn = 0). The departures are acceptable 
even for such rough grid. Besides, even if our algorithm may 
generate slightly overlapping polyhedra this can be easily checked. 
As the total sum of the VP volumes for any configuration should 
match the simulation cell volume and overlapping polyhedra 
always have volumes bigger than the true VP volume, the 
difference between the total VP and cell volumes is therefore a 
measure of the correctness of the tessellation. Our experience 
is that an error of 0.1% in the total volume for our 108-particle 
systems gives completely satisfactory results for all the properties 
of the polyhedra studied in this paper. 

3. The System and Its Simulation 
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Figure 4. Voronoi polyhedra volume distribution functions about the 
mean for the solid (S), liquid (L), and gas (G) systems. 

(L, liquid far from the triple point) and T = 0.68t /k~ ,  p = 1 ,0/u3 
(S, solid). The equations of motion were integrated with a time- 
step of 0.001 (mu2/e)1/2.  6500 configurations were generated 
after equilibration, among which 500 were saved for later analysis. 

Two quenched states were generated through a standard Monte 
Carlo (MC) procedure with T = 0 applied to every saved liquid 
configuration which ensures a descent of each particle to a local 
energy minimum. 100 attempted moves per particle with a 
constant displacement of 0.70-resulting in a global acceptance 
rate of 6%-were employed to originate the first quenched (QI) 
state, which corresponds to a moderate distortion of the liquid. 
State Q2 was obtained by attempting to move each particle 500 
times. Beginning with Ar = 0.7u, the displacement was 
continuously reduced to keep the acceptance rate about 40%, so 
that at  the end the moves are vanishingly small. The so-obtained 
state Q2 corresponds to the proper structure of the liquidas termed 
by Naberukhin et al.30 

The last studied system is a completely noninteracting fluid, 
the ideal gas, in which the particles are randomly distributed (G 
system). 1500 configurations were used in this case. 

4. Results and Discussion 

For all the systems the Voronoi construction using the algorithm 
described in section 2 has been built, the properties of the individual 
VP have been computed, and its distributions have been 
accumulated and averaged along the 500 (1 500 for system G) 
configurations. In all cases, the maximum error accepted in the 
total volume due to possible overlapping VP produced by the 
algorithm was kept under 0.1% using a 40 X 40 X 40 grid for the 
S system, 50 X 50 X 50 for the L system, and 80 X 80 X 80 for 
the QI, Q 2 ,  and G systems. 

Figure 4 displays the normalized VP volume distribution 
functions p (  P) for the S, L, and G systems. We chose to deal 
with P, the VP volume reduced with that of the perfect solid 
at  the same density as a reference, so that different systems could 
be compared. The distribution would be a 6 function for a perfect 
simple solid (the only VP present would be just the WignerSeitz 
cell). For our realistic solid model there is a very sharp peak 
centered just below P = 1. As previously reported,93" most of 
the particles have little distorted VP's due to thermal vibrations 
about their equilibrium positions. The distribution is almost 
symmetric; only small fluctuations around the perfect solid VP 
occur. The L system shows a much more spread distribution 
though the maximum is not shifted substantiallv from that of 

Microcanonical molecular dynamics (MD) simulations were 
performed with a sample of 108 particles in standard periodic 
boundary conditions using a fifth-order predictor-corrector 
algorithm and the Lennard-Jones 12-6 potential shifted at 2 . 5 ~ .  
We chose the thermodynamic states T = 2.74e/ks, p = 0.65/u3 

the &lid. The curve is slightly asymmetric, wiih detected VP 
volumes ranging from 0.55 to 1.85. The liquid particles are able 
to diffuse to some extent producing local areas of high/low density 
which correspond to small/big VP volumes. Of course, the 
enlargement of a polyhedra implies diminution of others but the 
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Figure 5. Voronoi polyhedra volume distribution functions about the 
mean for the quenched (Q, and Qz), liquid (L), and gas (G) systems. 

TABLE I: Volume Distribution Coefficients of Skewness for 
the Systems Considered 

system m3p system m3p 

solid 0.242 quenched (1) 1.180 
liquid 0.589 quenched (2) 1.345 
gas 0.727 

total volume and the mean remain unchanged. 

(3) 

The VP volume distribution must be asymmetric as a conse- 
quence of the fact that there is no upper limit for the maximum 
volume of a VP may exhibit (except the obvious boundary given 
by the periodic conditions). Conversely, there is a lower limit 
because the steep repulsive forces bring out a nonpenetrable core 
with a volume roughly given by ~ 0 3 1 6 .  This also explains why 
the most probable volume has a value lower than unity. The G 
system shows a flat distribution because very small and big VP 
are possible as the particles are completely independent and the 
distribution entropy increases when thevalues spread over a wide 
range. 

The quenched states volume distributions are plotted in Figure 
5 which also displays the L and G curves for comparison. When 
the liquid is quenched the particles tend to aggregate and the 
number of small volume VP increases. As commented above, 
this implies that other VP must have larger volumes and the 
distribution becomes clearly asymmetric. The Q1 curve shows 
the earlier stage of the quenching process. Compared with that 
of the liquid, the maximum shifts toward lower volumes while at  
the bigger volumes it becomes more flat but the peak value does 
not change significantly. In the final stage of quenching-the 
Q2 state-all of the innermost particles of the dense clusters have 
approximately the same volume which is denoted by the sheer 
slope of the curve below the maximum. The outermost particles 
can have more or less neighbors so the slope of the VP distribution 
curve is progressively decreasing. In fact, the final part of the 
distribution is essentially coincident with that of the G system 
denoting the existence of low-density areas with almost isolated 
particles among the clusters. 

The volume distribution coefficients of skewness given by 

(4) 
where M ,  is the nth moment about the mean, are summarized 
in Table I. Notice how the low-intensity quenched state Q, has 
twice the skewness of its originating liquid while the ideal gas 
takes up the central place. Therefore, this is a simple parameter 
which properly reflects the anisotropy of the neighborhood of the 
particles and clearly discriminates between systems. 

For the evaluation of the nonsphericity parameter, a, the mean 
curvature radius, R, of the corresponding convex body must be 

a 
Figure 6. Voronoi polyhedra nonsphericity distribution for the systems 
studied. Curve labels as for previous figures. 

known. For a polyhedron, R is given by” 

The sum extends over polyhedron edges of length I , ,  and 4, is the 
angle between the normal vetors to the intersecting faces. The 
nonsphericity distribution for all the systems studied is shown in 
Figure 6 (to avoid confusion only thequenchedQ2 stateis drawn). 
The curve corresponding fo the solid is extremely narrow, with 
a maximum at a = 1.223. The probability of finding polyhedra 
with an anisotropic factor lower than that of the face-centered 
WignerSeitz cell (qCc = 1.1 17) is negligible. We saw that the 
thermal motion of the particles in the solid system only slightly 
distorts the perfect lattice VP volumes. This distortion is clearly 
manifested in the displacement of the nonsphericity distribution 
which nevertheless remains very sharp. The L system p ( a )  is 
much more wide, and the value at  the maximum is about six 
times lower than that of the solid (the heights peak ratio was only 
about 3.5 for thevolumesdistribution). Besides, the most probable 
anisotropic factor is located noticeably shifted from that of the 
S system, at  about 1.31. In this sense, the a distribution 
distinguishes the fluid from the solid better than the volume 
distribution does. The VP for the G system have large non- 
sphericities, and the maximum of the curve is located a t  cr = 1.42. 
Ninety-two percent of the polyhedra have a greater than 1.3 1. 
The most illuminating curve is that corresponding to the Q2 system. 
The distribution rapidly grows up and seems to reach a wide 
plateau for nonsphericites ranging from 1.20 to 1.37. At the top 
of the plateau a maximum identically aligned with that of the 
liquid one is distinguishable. The maximum for the solid system 
is also coincident with a small secondary maximum a t  the 
beginning of the Q2 plateau. The quenched-state nonsphericity 
distribution can be explained in terms of a combination of “solid” 
and “liquid” polyhedra. This is clear if one realizes that the Q2 
curve can be accurately described by the sum of two asymmetric 
distributions-x2 distributions with six (or more) degrees of 
freedom in particular-one centered at  the position of the 
maximum of the S curve with height 4.2 and width a t  half height 
about 0.05 and the other centered along the liquid curve with 
height 5.0 and width 0.14. 

Figure 7 portrays the face distribution results. These were 
obtained with suitable algorithm parameters in order to keep the 
error in volume well below 0.01%. The solid distribution agrees 
with published data for other states of the LJ s ~ l i d . ~ ~ l ~  In 
particular, the most probable polyhedron is that having 14 faces, 
two more than the face-centered Wigner-Seitzcell due to thermal 
motion. In our liquid there are nearly the same number of 
polyhedra having 15 and 14 faces, which is consistent with Hsu 
et al.,” who found more 14-face polyhedra in their LJ liquids not 
far from the fluid and solid coexistence region. The Q I  system 
is midway from the liquid and the completely quenched 42 state 
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Figure 7. Voronoi polyhedra faces distribution for the systems studied. 
Curve labels as for previous figures. 

for which 13- and 14-face polyhedra have almost the same 
probability denoting that the quenching procedure decreases the 
number of nearest-neighbors. It is clear that the face analysis 
hides most of the structural features of the systems. This is mainly 
due to the discreteness of the distribution but also to the fact that 
the same weight is given to a big face-shared between two very 
close neighbors-and to a small cut in a vertex produced by a 
particle which is much farther away. In this sense, the analysis 
using the signature of the polyhedra-which has been of great 
help in the investigation of crystal nucleation8~9J~-should surely 
be of little interest for describing the structure of more disordered 
systems. As shown in this work, the alternative may be the use 
of the nonsphericity parameter. 

5. Concluding Remarks 
We have developed and tested a new algorithm to perform the 

Voronoi construction of an arbitrary set of particles which is 
specially well suited for disordered systems. The algorithm has 
robustness as its main advantage. Provided a reasonable grid is 
used, a (closed) polyhedron is obtained irrespective of the 
disordering degree of the system. The improvements needed to 
obtain more refined results are also given and can be applied 
within the desired compromise between efficiency and accuracy. 
In fact, the results obtained for the number of faces 
distribution-the property less accurately computed with our 
algorithm-closely matches previously reported data. 

We have shown that the use of the nonsphericity factor a 
describes the shape of the Voronoi polyhedra (VP) in such a way 
that the structure of the system is clearly revealed. For ordered 
systems such as solids and liquids we have found it superior to 
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the traditionally used face-related quantities. But this is especially 
true as far as aggregation processes are involved so it can help 
in our understanding of disordered structures as quenched3* or 
glassy states. Our current work on the structure of ions in 
electrolyte s0lutions3~ confirms this assert. 
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