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Křtiny, Czech Republic, February 3–5, 2014

The VOT2013 challenge: overview and additional results

M. Kristan1, R. Pflugfelder2, A. Leonardis3, J. Matas4, F. Porikli5, L. Čehovin1, G. Nebehay2,
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Abstract Visual tracking has attracted a significant at-

tention in the last few decades. The recent surge in the

number of publications on tracking-related problems have

made it almost impossible to follow the developments in the

field. One of the reasons is that there is a lack of com-

monly accepted annotated data-sets and standardized eval-

uation protocols that would allow objective comparison of

different tracking methods. To address this issue, the Vi-

sual Object Tracking (VOT) challenge and workshop was

organized in conjunction with ICCV2013. Researchers from

academia as well as industry were invited to participate in

the first VOT2013 challenge which aimed at single-object

visual trackers that do not apply pre-learned models of ob-

ject appearance (model-free). In this paper we provide an

overview of the VOT2013 challenge, point out its main re-

sults and document the additional previously unpublished

experiments and results.

1 Introduction

Visual tracking is a rapidly evolving field of computer vision

that has been increasingly attracting attention of the vision

community. One reason is that it offers many challenges as

a scientific problem. Second, it is a part of many higher-

level problems of computer vision, such as motion analysis,

event detection and activity understanding. Furthermore, the

steady advance of HW/SW technology in terms of compu-

tational power, form factor and price, opens vast applica-

tion potential for tracking algorithms. Applications include

surveillance systems, transport, sports analytics, medical

imaging, mobile robotics, film post-production and human-

computer interfaces. Due to their large application domain,

single-object trackers that do not apply pre-learned models

of object appearance (model-free) are of particular interest.

The activity in the field is reflected by the abundance of new

tracking algorithms presented and evaluated in journals and

at conferences, and summarized in the many survey papers,

e.g., [13, 29, 11, 17, 30, 43, 26]. However, despite the efforts

invested in proposing new trackers, the field suffers from a

lack of established methodology for objective comparison.

One of the most influential performance analysis efforts

for object tracking is PETS (Performance Evaluation of

Tracking and Surveillance) [44]. The first PETS work-

shop that took place in 2000, aimed at evaluation of vi-

sual tracking algorithms for surveillance applications. How-

ever, its focus gradually shifted to high-level event inter-

pretation algorithms. Other frameworks and datasets have

been presented since, but these focussed on evaluation of

surveillance systems and event detection, e.g., CAVIAR1,

i-LIDS 2, ETISEO3, change detection [15], sports analytics

(e.g., CVBASE4), or specialized on tracking specific objects

like faces, e.g. FERET [33] and [20]. In general, the evalua-

tion of new tracking algorithms, and their comparison to the

state-of-the-art, depends on three essential components: (1)

an evaluation system, (2) a dataset, (3) performance evalua-

tion measures.

Evaluation system For objective and rigorous evalua-

tion, an evaluation system that performs the same experi-

ment on different trackers using the same dataset is required.

Ideally, the system should support multiple programming

platforms and easy integration of new trackers. Further-

more, a certain level of interaction with the tracker is de-

sirable, for instance to allow for detection of tracking fail-

ures. Currently, the most notable and general systems are

the ODViS [18], VIVID [4] and ViPER [8] toolkits. These,

however, do not allow for interaction with the tracker. Re-

cently, Wu et al. [41] have performed a large-scale bench-

mark of several trackers and developed an evaluation kit that

allows integration of third-party trackers as well. However,

in our experience, the integration is not straightforward due

to a lack of standardization of the input/output communica-

tion between the tracker and the evaluation kit.

Dataset A trend has emerged in the single-object model-

free tracking community to test newly proposed trackers

on larger datasets that include different real-life visual phe-

nomena like occlusion, clutter and illumination change. As

a consequence, various authors nowadays compare their

trackers on many publicly-available sequences, of which

some have became a de-facto standard in evaluation of new

trackers. However, many of these sequences lack a standard

ground truth labeling, which makes comparison of proposed

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
2http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
3http://www-sop.inria.fr/orion/ETISEO
4http://vision.fe.uni-lj.si/cvbase06/
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algorithms difficult. Furthermore, authors usually do not use

datasets with various visual phenomena equally represented.

In fact, many popular sequences exhibit the same visual phe-

nomenon, which makes the results biased toward some par-

ticular types of the phenomena. To address this issue, Wu

et al. [41] annotated each sequence with several visual at-

tributes and report tracker performance with respect to each

attribute separately. For example, a sequence is annotated

as “occlusion” if the target is occluded anywhere in the se-

quence, etc. However, visual phenomena like occlusion do

not usually last throughout the entire sequence. For exam-

ple, an occlusion might occur at the end of the sequence,

while a tracker might fail due to some other effects occur-

ring at the beginning of the sequence. In this case, the failure

would be falsely attributed to occlusion. Thus a per-frame

dataset labeling is required to facilitate a more precise anal-

ysis.

Performance measures. A wealth of performance mea-

sures have been proposed for single-object tracker evalu-

ation. These range from basic measures like center er-

ror [34], region overlap [25], tracking length [24] and fail-

ure rate [22, 21] to more sophisticated measures, such as

CoTPS [31], which combine several measures into a single

measure. A nice property of the combined measures is that

they provide a single score to rank the trackers. A downside

is that they offer little insight into the tracker performance.

In this respect the basic measures, or their simple deriva-

tives, are preferred as they usually offer a straight-forward

interpretation. While some authors choose several basic

measures to compare their trackers, the recent study [37]

has shown that many measures are correlated and do not

reflect different aspects of tracking performance. In this

respect, choosing a large number of measures may in fact

again bias results toward some particular aspects of tracking

performance.

VOT2013. In order to address the above stated issues,

the Visual Object Tracking (VOT2013) challenge was orga-

nized. Its aim was to provide an evaluation platform that

goes beyond the current state-of-the-art. In particular, the

authors of the challenge have compiled a labeled dataset

collected from widely used sequences showing a balanced

set of various objects and scenes. All the sequences are

labeled per-frame with different visual attributes to aid a

less biased analysis of the tracking results. An evaluation

kit5 was developed in Matlab/Octave that automatically per-

forms experiments on a tracker using the provided dataset.

A new tracker performance comparison protocol based on

basic performance measures was also proposed. A signif-

icant novelty of the proposed evaluation protocol was that

it explicitly addresses the statistical significance of the re-

sults and addresses the equivalence of trackers. A dedi-

cated VOT2013 homepage6 has been set up, from which

the dataset, the evaluation kit and the results are publicly

available. The authors of tracking algorithms have an op-

portunity to publish their source code at the VOT homepage

as well, thus pushing the field of visual tracking towards re-

producible research. The results of the challenge have been

5https://github.com/vicoslab/vot-toolkit
6http://www.votchallenge.net/

presented at the VOT2013 workshop in conjuction with the

ICCV2013 and documented in the supporting paper [23]. In

this paper we provide an overview of the VOT2013 chal-

lenge with a particular focus on the evaluation methodology

and provide additional results that have not been published

in [23].

2 Summary of the challenge

The VOT2013 challenge targets single-object, single-

camera, short-term causal trackers. The tracker is initialized

in the beginning of a sequence using the ground truth

bounding box and is required to predict a single bounding

box of the target for each frame of the sequence. Causality

requires the tracker to solely process the frames from the

initialization up to the current frame without using any

information from the future frames. Whenever the tracker

fails, a complete reinitialization is performed so that any

previously learned information (such as appearance and

dynamics) is discarded. The challenge consists of three

experiments:

• Baseline: Ground truth bounding boxes are used for ini-

tialization.

• Noise: Randomly perturbed bounding boxes are used for

initialization, where the perturbation is in order of ten

percent of the ground truth bounding box size.

• Grayscale: Color information is removed from the se-

quences.

The evaluation kit runs each tracker 15 times on each exper-

iment to obtain a better statistic of the tracking performance.

3 The dataset

While we could in principle collect all the sequences from

existing datasets into a new dataset, we note that a big

dataset does not necessarily mean rich in visual proper-

ties. In fact, many sequences may be visually similar and

would not contribute to diversification of the dataset, while

they would significantly prolong the execution of the exper-

iments. We have therefore applied an approach that would

lead to a dataset that includes various visual phenomena,

while containing a small number of sequences to keep the

time for performing the experiments reasonably low.

We collected a large pool of sequences that have been

used by various authors in the tracking community and com-

puted six global attributes on each sequence: The illumina-

tion change as the maximal difference in object intensity; the

object size change as the average of sequential differences in

the ground-truth bounding box size; the object motion as the

average of changes in bounding box center over the frames;

clutter as the histogram difference within and outside the

ground truth bounding box; camera motion as the per-pixel

average difference outside the bounding box; blur was mea-

sured by a camera focus measure. Thus, each sequence was

encoded as a 6-dimensional feature vector. We clustered the

sequences using the affinity propagation [10] into 16 clus-

ters. From each cluster a single sequence was manually se-

lected. Thus the VOT 2013 dataset consists of 16 sequences.

Since the bounding boxes were annotated by various au-

thors, there was no common guideline for the process of
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manually annotating the sequences. It seemed that most

authors followed the strategy of maintaining a high fore-

ground/background ratio within the bounding box (at least

> 60%). In most cases, this ratio is quite high since the

upright bounding box tightly fits the target. But in some

cases, (e.g., the gymnastics sequence) where an elongated

target is rotating significantly, the bounding box contains a

large portion of the background at some frames as well. Af-

ter inspecting all the bounding box annotations, we have re-

annotated those sequences in which the original annotations

were out of place.

Additionally, we manually or semi-manually labeled

each frame in each selected sequence with five visual

attributes that reflect a particular challenge in appearance

degradation: occlusion, illumination change, motion

change, size change and camera motion. In case a particular

frame did not correspond to any of the five degradations, we

denoted it as non-degraded.

4 Evaluation methodology

There exists an abundance of performance measures in the

field of visual tracking (e.g., [40, 32, 15, 20, 41]). Our ap-

proach to choosing the performance measures was the inter-

pretability of the measures while selecting as few measures

as possible to provide a clear comparison among trackers.

Based on the recent analysis of widely-used performance

measures [37] we have chosen two weakly-correlated mea-

sures: (i) accuracy and (ii) robustness.

The accuracy measures how well the bounding box pre-

dicted by the tracker overlaps with the ground truth bound-

ing box. The tracking accuracy at time-step t is defined as

the overlap between the tracker predicted bounding box AT
t

and the ground truth bounding box AG
t

φt =
AG

t ∩AT
t

AG
t ∪AT

t

. (1)

On the other hand, the robustness was measured by the fail-

ure rate measure, which counts the number of times the

tracker drifted from the target and had to be reinitialized.

A failure is indicated as soon the overlap measure (Eq. 1)

drops to zero.

The reinitialization of trackers might introduce a bias into

the performance measures. Typically, if a tracker fails at a

particular frame it will likely fail again immediately after re-

initialization. To reduce this bias, we re-initialize the tracker

five frames after the failure. This number was determined

experimentally on a separate dataset. A similar bias oc-

curs in the accuracy measure, as the overlap measure in the

frames right after the initialization are biased towards higher

values for several frames (burn-in period, Figure 1). In a pre-

liminary study we have determined by a large-scale exper-

iment that the burn-in period is approximately ten frames.

For the computation of accuracy, frames in the burn-in peri-

ods are ignored.

A tracker is run on each sequence 15 times in to obtain a

better statistic on its performance. In particular, let Φt(i, k)
denote the accuracy of i-th tracker at frame t at experiment

repetition k. The per frame accuracy is obtained by taking

Figure 1: Overlaps after reinitialization averaged over a large

number of trackers and many reinitializations.

the average over these, i.e., Φt(i) = 1
Nrep

∑Nrep

k=1 Φt(i, k).

The average accuracy of the i-th tracker, ρA(i), over some

set of Nvalid valid frames is then calculated as the average

of per-frame accuracies

ρA(i) =
1

Nvalid

∑Nvalid

j=1
Φj(i). (2)

In contrast to accuracy measurements, we obtain a sin-

gle measure of robustness per experiment repetition. Let

F (i, k) be the number of times the i-th tracker failed in the

experiment repetition k over a set of frames. The average

robustness of the i-th tracker is then

ρR(i) =
1

Nrep

Nrep∑

k=1

F (i, k). (3)

Note that in the dataset some attributes are more fre-

quently presented than the others, which would introduce

a bias into the results. To address this, we calculate the ac-

curacy (2) and robustness (3) separately for each attribute.

For a particular attribute we calculate the two measures only

on the subset of frames in the dataset that contain that at-

tribute (attribute subset). To compare different trackers one

might average the accuracy and robustness over all the at-

tribute subset frames. However, these will likely be at a

different scale across the attribute sequences in which case

direct averaging of performance measures is not appropri-

ate. Instead, we have developed a ranking-based methodol-

ogy akin to [6, 9, 15]. We start by ranking all the trackers

with respect to each measure on each attribute subset sepa-

rately. Let r(i, a,m) be the rank of the i-th tracker on the

attribute subset a using the performance measure m, which

can either be accuracy (A) or robustness (R). Now we can

calculate the average rank for the i-th tracker by averaging

over the attributes r(i,m) = 1
Natt

∑Natt

a=1 r(i, a,m). Giving

an equal weight to each performance measure, we average

the two corresponding rankings as

r(i) =
1

2

∑

m∈{A,R}

r(i,m). (4)

The averaging over attribute subsets assures that every at-

tribute contributes equally to the final ranking. Since the

frequency of the attributes is uneven and some frames con-

tain several attributes, it means that some frames contribute

more than the other to the final rank. This is a subtlety that

might not be immediately apparent, but has to be kept in

mind when interpreting the results.
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A group of trackers may perform equally well on a given

attribute subset, in which case they should be assigned an

equal rank. In particular, after ranking trackers on an at-

tribute set, we calculate for each i-th tracker its corrected

rank as follows. We determine for each tracker, indexed

by i, a group of equivalent trackers, which contains the i-

th tracker as well as any tracker that performed equally well

as the selected tracker. The corrected rank of the i-th tracker

is then calculated as the average of the ranks in the group of

equivalent trackers. Note that this equality is not transitive.

For example, consider trackers T1, T2 and T3. It may hap-

pen that a tracker T2 performs equally well as T1 and T3,

but this does not necessarily mean that T1 performs equally

well as both, T2 and T3 – the equivalence groups should be

established for each tracker separately.

To determine for each tracker the group of equivalent

trackers, we require an objective measure of equivalence

on a given sequence. In case of accuracy measure, a per-

frame accuracy is available for each tracker. One way to

gauge equivalence in this case is to apply a paired test to de-

termine whether the difference in accuracies is statistically

significant. In case the differences are distributed normally,

the Student’s t-test, which is often used in the aeronautic

tracking research [3], is the appropriate choice. However,

in a preliminary study we have applied Anderson-Darling

tests of normality [1] and have observed that the accura-

cies in frames are not always distributed normally, which

might render the t-test inappropriate. As an alternative, we

apply the Wilcoxon Signed-Rank test as in [6]. In case of

robustness, we obtain several measurements of the number

of times the tracker failed over the entire sequence in dif-

ferent runs. However, these cannot be paired, and we use

the Wilcoxon Rank-Sum (also known as Mann-Whitney U-

test) [6] instead to test the difference in the average number

of failures.

When establishing equivalence, we have to keep in mind

that statistical significance of performance differences does

not directly imply a practical difference [7]. One would have

to define a maximal difference in performance of two track-

ers at which both trackers are said to perform practically

equally well. By varying the practical difference from zero

to 0.1 we have not observed significant changes in ranking.

However, since we could not find clear means to objectively

define this difference, we reserve our methodology only to

testing the statistical significance of the differences.

5 Result analysis

In the following section we overview the results of the

VOT2013 challenge. We briefly overview the results

from [23] and focus on results that were not yet published.

5.1 Submitted trackers

In total 27 trackers were evaluated for the challenge, 19
original submissions and 8 baseline well-known trackers

that were contributed by the VOT committee. In interest

of space, we cite [23] for all trackers submitted and/or pre-

sented at VOT2013. We also refer the reader to the appendix

of the VOT supporting paper [23] for short descriptions. The

set of trackers was very diverse, ranging from trackers that

use background-subtraction (MORP [23], STMT [23]), are

based on optical-flow or motion cues (FoT [39], TLD [19],

SwATrack [27]), key-points (SCTT [23], Matrioska [28]),

use complex generative (IVT [34], MS [5], CCMS [23],

DFT [35], ORIA [42], EDFT [23], AIF [23], CACTuS-

FL [12], PJS-S [45], SwATrack) or discriminative (MIL[2],

STRUCK [16], PLT [23], CT [46], RDET [23], ASAM [23],

GSDT [23]) models to trackers that use geometrical con-

stellation of parts (HT [14], LGT [38], LGT++ [23], LT-

FLO [23]).

5.2 Conclusions for the challenge experiments

We overview only the major conclusions for experiments

1, 2 and 3 and refer the reader to [23] for further details.

For reference, we show the accuracy-robustness rank plots

in Figure 2. Averaging ranks across all three basic exper-

iments, the top performing trackers were PLT, FoT, EDFT,

LGT++ and LT-FLO. The top performing PLT is a single-

scale, detection-based tracker that applies online structural

SVM on color and grayscale pixels and grayscale deriva-

tives. In all experiments the PLT achieved best robustness,

however in the Baseline and Noise experiment, the part-

based LGT++ and the original LGT tightly followed. The

three trackers (PLT, LGT++ and LGT) perform well even

in noisy initializations, but in accuracy, the top perform-

ing tracker on average was FoT, followed by SCTT and a

RANSAC-based edge tracker LT-FLO. We have noticed that

the top ranked trackers in the averaged ranks remain at the

top also with respect to each attribute separately, with two

exceptions. When considering the size change, the best ro-

bustness is still achieved by PLT, however, the trackers that

yield best trade-off between the robustness and accuracy are

the LGT++ and the size-adaptive mean shift tracker CCMS.

When considering occlusion, the PLT and STRUCK seem

to share the first place in the best trade-off. Note that the

evaluation kit was also measuring the tracker speed during

the experiments. Since the trackers were coded in different

programming languages and run on different machines, the

measurements are not directly comparable. However, two

trackers stood out in performance. These were the PLT and

FoT, whose speed was higher than 150fps.

We ranked the individual types of visual degradation ac-

cording to the tracking difficulty they present to the tested

trackers. Our results imply that the subsequences that do not

contain any specific degradation present little difficulty for

the trackers in general. Most trackers do not fail on such

intervals and achieve best average overlap. On the other

hand, camera motion is the hardest degradation in this re-

spect. One way to explain this is that most trackers focus

primarily on appearance changes of the target and do not ex-

plicitly account for changing background. Note that camera

motion does not necessarily imply that the object is signifi-

cantly changing position in the image frame. For accuracy,

the hardest degradation is the change of object size. This is

plausible as many trackers do not adapt in this respect and

sacrifice their accuracy for a more stable visual model that is

more accurate in situations where the size of the target does

not change.

In summary, the sparse discriminative tracker PLT seems
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Figure 2: The accuracy-robustness ranking plots with respect to

the three experiments. An optimal tracker would reside in the top-

right corner of the plot.

to address the robustness quite well, despite that it does not

adapt the target size, which reduces its accuracy when the

size of the tracked object is significantly changing. On the

other hand, the part-based trackers with a rigid part constel-

lation yield a better accuracy at reduced robustness. The ro-

bustness is increased with part-based models that relax the

constellation, but this on average comes at a cost of signifi-

cant drop in accuracy.

5.3 Additional experiments

In addition to the official challenge experiments, the VOT

committee has also performed four additional experiments

on the top five submitted entries that had been attached a

working executable version of the tracker. The aim of the

first experiment was to evaluate the effect of the failure

threshold on the overall ranking outcome. The remaining

four experiments were designed to offer further insights into

the tracker performance.

5.3.1 Effects of the failure threshold Recall that the

evaluation kit proclaimed a failure if the overlap between

the predicted and ground-truth bounding box became zero.

To study how increasing the threshold affects the ranking

of the trackers, we have repeated the baseline experiment

with thresholds 0.1 and 0.2. The results are shown in Fig-

ure 3. We have observed that the failure rate increased with

the threshold, however, the increase is approximately the

same for all five trackers. From Figure 3 we see that the

two top performing trackers do not change rank, but there

is a slight change in ranking of the last three trackers. This

change is due to ranking change in the accuracy rankings,

since the practical difference in accuracy is in fact small

for these trackers. We can conclude that the applied rank-

ing scheme is sufficiently stable across reasonable values of

failure thresholds.

Figure 3: Effects of failure threshold on ranking.

Figure 4: Results of top performing trackers on Baseline (E1),

Noise (E2), Gray (E3), Empty frames (E4), Frame skipping (E5),

Frame Resize (E6) and Reverse order (E7) experiments.

5.3.2 Sequence degradation We have considered four

diverse challenging scenarios of sequence degradation:

• Empty frames: The adaptability of the employed visual

models is tested by replacing every fifth frame in the se-

quence by a black image.

• Skipping frames: To simulate frame-drops that can oc-

cur in video transmission, the original sequences were

modified by removing every third frame from the se-

quence.

• Reduction of image size: To study how the size of the

target affects the tracking, the size of the images is re-

duced by 60%.

• Reversed sequence: To test the importance of the spe-

cific sequence of events in the sequence, the order of the

frames is reversed.

The overall results for the four additional results above

are shown in Figure 4. In all but one experiment the rank-

ing results do not change a lot, meaning that the trackers

are equally well adapted to these degradations. In the ex-

periment with black frames, the performance of the FoT and

PLT significantly decreased relative to other trackers, while

the performance of EDFT relatively increased. Note that the

absolute performance decreased for all trackers, but this re-

duction was greater for FoT and PLT than it was for EDFT.

The significant jump in ranking for the FoT can be explained

by the way this tracker adapts its visual model. In particu-

lar, the FoT performs full adaptation in each frame. Once

a black frame occurs the visual model becomes completely

corrupted, which leads to failure. In case of PLT the de-

crease is most likely a result of fixed color model that is

initialized at the first frame and is used to determine regions

that most likely belong to the object. Once a black frame ar-

rives, the discriminative power of model is rendered useless,
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Figure 5: Scatter plot for the woman sequence shows the failures

for each tracker w.r.t. frame number.

which, may lead to unrepairable false adaptations of the vi-

sual model. EDFT on the other hand is better suited for this

kind of changes, likely because of lazy adaptation of the vi-

sual model and a well designed motion model, which help it

to survive short-term image degradations.

5.4 Sequence analysis

The second part of our analysis focused on the selected se-

quences. In particular, we have first analyzed the difficulty

of each sequence presented to the trackers. Namely, for each

sequence we have recorded if a particular tracker fails at

least once at a particular frame. Using this approach we

have constructed for each sequence a scatterplot of failures

over each tracker (see the example in Figure 5). We visu-

alize the level of difficulty for each sequence by summing

the scatterplots vertically. This yields the failure curve (e.g.,

Figure 6a,b,c,d) which shows how many trackers failed at

each frame. From these curves we derive two objective

measures of sequence difficulty: area and max. The area

is just the sum of frame-wise values from the failure curve

normalized by the number of frames, while the max is the

maximum on this curve, i.e. the maximal number of failed

trackers in a frame. While the area indicates the average

level of difficulty of a sequence, the max is localized and

focuses on a particular frame that presented most difficult

part of the sequence. For example, the area in the failure

curve for the David sequence (Figure 6a) is smaller than

the area for the woman sequence (Figure 6b), which sug-

gests that david sequence is less challenging that the woman

sequence. Furthermore, a significant peak in the woman

sequence (frame 565) suggests that this sequence contains

a subsequence which is challenging to most of the track-

ers. Table 1 summarizes the area and max values for all

sequences.

Given the measures of area, we intuitively clustered the

remaining 15 sequences by hand into three clusters accord-

ing to their level of difficulty: Hard, Intermediate, Easy.

The results are summarized in Table 1. david, face, bicy-

cle, juice, jump, car and cup sequences do not present a sig-

nificant challenge to most of the trackers; on average, less

than a single tracker fails. Surprisingly the david sequence

(Figure 6a) shows a small area in this study, although the

sequence is usually considered in literature to be challeng-

sequence area max frame difficulty

bolt 4.28 13 242 hard

diving 4.23 9 105 hard

hand 4.22 14 51 hard

gymnastics 3.13 12 98 interm.

woman 2.86 15 565 interm.

sunshade 2.79 11 85 interm.

torus 2.67 8 189 interm.

iceskater 2.38 6 227 interm.

singer 1.68 4 268 interm./easy

david 1.36 4 337 easy

face 1.22 3 140 easy

bicycle 1.22 11 178 easy

juice 1.12 4 242 easy

jump 0.93 4 203 easy

car 0.92 5 253 easy

cup 0.22 2 232 easy

Table 1: The sequence analysis results. The area under the failure

curve (area), the maximal number of simultaneously failed track-

ers (max), the frame number with maximum number of failures

(frame), and the difficulty label (difficulty).

Figure 6: Failure curves for david, woman, bicycle and bolt se-

quences.

ing. The reason might be that this sequence is so frequently

used for tracker evaluation that the authors might have over-

fitted to this sequence. The analysis also shows that the bolt,

diving and hand sequences are the most challenging ones,

followed by sequences of intermediate difficulty, in particu-

lar, the gymnastics, woman, sunshade, torus, and iceskater

sequences and the singer sequence which seems to be easy-

to-intermediate.

Most of the difficulties in hard and intermediate se-

quences arise from changes in camera and object motion as

well as from rapid changes in object size. For example, bolt

is hard, as all three aforementioned nuisances occur simulta-

neously in the sequence. The diving sequence shows signif-

icant changes in object size while the hand sequence shows

challenging pose variations of the person’s hand.

Easy to intermediate sequences might remain valuable

for tracker comparison as these sequences still conceal chal-

lenges in particular frames. We can identify those sequences

by considering max in Table 1. For example, the woman

sequence at frame 565 (Figure 6b) shows camera zooming

which lets 15 out of 23 trackers fail. Similarily, the bicy-

cle sequence at frame 178 (Figure 6c) shows a peak in the
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failure curve. Here, an object occlusion happens and imme-

diately after that, the tracked object is partially covered by a

shadow. A large peak is also present in the challenging Bolt

sequence (Figure 6d) at frame 242. Almost half of the track-

ers fail here. A closer look at the frame and its neighboring

frames shows significant object motion between frames as a

cause of failures.

6 Conclusions and Future Work

This paper reviewed the VOT2013 challenge and its results.

The challenge provides an evaluation kit comprising an eval-

uation protocol and dataset of 16 sequences which allows

simple and objective tracker comparison. VOT2013 also

provides attributes such as illumination change, occlusion,

etc. on frame level for each sequence. First results show

that trackers tend to specialize either for robustness or ac-

curacy. None of the trackers consistently outperformed the

others by all measures at all sequence attributes. It is cur-

rently impossible to conclusively say what kind of tracker

design works best in general, however, there is some evi-

dence showing that accuracy tends to be better for the track-

ers that do not apply global models, but rather split their

visual models into parts. On the other hand, robustness is

pretty much achieved by discriminative learning where vari-

ants of Structured SVM, e.g. PLT, seems very promising.

The analysis of our dataset showed that some sequences are

challenging on average, other sequences are very challeng-

ing at particular frames and some of them were well tackled

by all the trackers. While we believe that it is difficult to

overfit a tracker to a visually diverse dataset, tuning param-

eters may very likely contribute to higher ranks. Because

of this unavoidable dependence on implementation and pa-

rameter tuning, care has to be taken when deciding for or

against a new tracker based on performance scores. Rather

than waging decision on absolute scores, comparative eval-

uation should be used to position trackers against baseline

implementations and further focus on detailed analysis per

visual properties. Our future work will focus on revising and

carefully enriching the dataset with new sequences, e.g. in-

cluding sequences from related datasets like the recent [36]

with the aim of significantly increasing diversity while keep-

ing the number of sequences on a useful level. We also in-

tend to improve the evaluation kit, allowing faster execution

of more complex experiments. Our work will focus on orga-

nizing further VOT challenges and pushing towards a stan-

dard for tracker comparison.
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