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Abstract

One of the most intriguing features of the Visual Ques-

tion Answering (VQA) challenge is the unpredictability of

the questions. Extracting the information required to an-

swer them demands a variety of image operations from de-

tection and counting, to segmentation and reconstruction.

To train a method to perform even one of these operations

accurately from {image,question,answer} tuples would be

challenging, but to aim to achieve them all with a limited

set of such training data seems ambitious at best. We pro-

pose here instead a more general and scalable approach

which exploits the fact that very good methods to achieve

these operations already exist, and thus do not need to be

trained. Our method thus learns how to exploit a set of

external off-the-shelf algorithms to achieve its goal, an ap-

proach that has something in common with the Neural Tur-

ing Machine [10]. The core of our proposed method is a

new co-attention model. In addition, the proposed approach

generates human-readable reasons for its decision, and can

still be trained end-to-end without ground truth reasons be-

ing given. We demonstrate the effectiveness on two publicly

available datasets, Visual Genome and VQA, and show that

it produces the state-of-the-art results in both cases.

1. Introduction

Visual Question Answering (VQA) is an AI-complete

task lying at the intersection of computer vision (CV)

and natural language processing (NLP). Current VQA ap-

proaches are predominantly based on a joint embedding [3,

9, 18, 22, 34, 40] of image features and question represen-

tations into the same space, the result of which is used to

predict the answer. One of the advantages of this approach

is its ability to exploit a pre-trained CNN model.

∗The first two authors contributed to this work equally.

Figure 1: Two real example results of our proposed model. Given an

image-question pair, our model generates not only an answer, but also a

set of reasons (as text) and visual attention maps. The colored words in

the question have Top-3 weights, ordered as red, blue and cyan. The high-

lighted area in the attention map indicates the attention weights on the im-

age regions. The Top-3 weighted visual facts are re-formulated as human

readable reasons. The comparison between the results for different ques-

tions relating to the same image shows that our model can produce highly

informative reasons relating to the specifics of each question.

In contrast to this joint embedding approach we propose

a co-attention based method which learns how to use a set of

off-the-shelf CV methods in answering image-based ques-

tions. Applying the existing CV methods to the image gen-

erates a variety of information which we label the image

facts. Inevitably, much of this information would not be

relevant to the particular question asked. So part of the role

of the attention mechanism is to determine which types of

facts are useful in answering a question.

The fact that the VQA-Machine is able to exploit a set

of off-the-shelf CV methods in answering a question means

that it does not need to learn how to perform these functions

itself. The method instead learns to predict the appropriate
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combination of algorithms to exploit in response to a previ-

ously unseen question and image. It thus represents a step

towards a Neural Network capable of learning an algorithm

for solving its problem. In this sense it is comparable to the

Neural Turning Machine [10] (NTM) whereby an RNN is

trained to use an associative memory module in solving its

larger task. The method that we propose does not alter the

parameters of the external modules it uses, but then it is able

to exploit a much wider variety of module types.

In order to enable the VQA-Machine to exploit a wide

variety of available CV methods, and to provide a com-

pact, but flexible interface, we formulate the visual facts

as triplets. The advantages of this approach are threefold.

Firstly, many relevant off-the-shelf CV methods produce

outputs that can be reformulated as triplets (see Tab.1). Sec-

ondly, such compact formats are human readable, and inter-

pretable. This allows us to provide human readable rea-

sons along with the answers. See Fig. 1 for an example.

At last, the proposed triplet representation is similar to the

triplet representations used in some Knowledge Bases, such

as < cat, eat, fish >. The method might thus be extendable

to accept information from these sources.

To select the facts which are relevant in answering a spe-

cific question, we employ a co-attention mechanism. This

is achieved by extending the approach of Lu et al. [16],

which proposed a co-attention mechanism that jointly rea-

sons about the image and question, to also reason over a set

of facts. Specifically, we design a sequential co-attention

mechanism (see Fig.3) which aims to ensure that atten-

tion can be passed effectively between all three forms of

data. The initial question representation (without attention)

is thus first used to guide facts weighting. The weighted

facts and the initial question representation are then com-

bined to guide the image weighting. The weighted facts

and image regions are then jointly used to guide the ques-

tion attention mechanism. All that remains is to run the fact

attention again, but informed by the question and image at-

tention weights, as this completes the circle, and means that

each attention process has access to the output of all others.

All of the weighted features are further fed into a multi-

layer perceptron (MLP) to predict the answer.

One of the advantages of this approach is that the ques-

tion, image, and facts are interpreted together, which par-

ticularly means that information extracted from the image

(and represented as facts) can guide the question interpreta-

tion. A question such as ‘Who is looking at the man with a

telescope?’ means different things when combined with an

image of a man holding a telescope, rather than an image of

a man viewed through a telescope.

Our main contributions are as follows:

• We propose a new VQA model which is able to learn to

adaptively combine multiple off-the-shelf CV methods

to answer questions.

• To achieve that, we extend the co-attention mechanism

to a higher order which is able to jointly process ques-

tions, image, and facts.

• The method that we propose generates not only an an-

swer to the posed questions, but also a set of supporting

information, including the visual (attention) reasoning

and human-readable textual reasons. To the best of our

knowledge, this is the first VQA model that is capa-

ble of outputting human-readable reasons on free-form

open-ended visual questions.

• Finally, we evaluate our proposed model on two VQA

datasets. Our model achieves the state-of-art in both

cases. A human agreement study is conducted to eval-

uate the reason generation ability of our model.

2. Related Work

Joint Embedding Most recent methods are based on a

joint embedding of the image and the question using a deep

neural network. Practically, image representations are ob-

tained through pre-trained CNNs. The question is typi-

cally passed through an RNN, which‘ produces a fixed-

length vector representation. These two representations

are jointly embedded into the same space and fed into a

classifier which predicts the final answer. Many previous

works [3, 9, 18, 22, 32, 40] adopted this approach, while

some [8, 13, 23] have proposed modifications of this ba-

sic idea. However, these modifications are either focused

on developing more advanced embedding techniques or

employing different question encoding methods, with only

very few methods actually aim to improve the visual infor-

mation available [20, 29, 34]. This seems a surprising situ-

ation given that VQA can be seen as encompassing the vast

majority of CV tasks (by phrasing the task as a question,

for instance). It is hard to imagine that a single pre-trained

CNN model (such as VGG [25] or ResNet [11]) would suf-

fice for all such tasks, or be able to recover all of the re-

quired visual information. The approach that we propose

here, in contrast, is able to exploit the wealth of methods

that already exist to extract useful information from images,

and thus does not need to learn to perform these operations

from a dataset that is ill suited to the task.

Attention Mechanisms Instead of directly using the

holistic global-image embedding from the fully connected

layer of a CNN, several recent works [12, 16, 24, 37, 38, 41]

have explored image attention models for VQA. Specifi-

cally, the feature map (normally the convolutional layer of

a pre-trained deep CNN) is used with the question to deter-

mine spatial weights that reflect the most relevant regions

of the image. Recently, Lu et al. [16] determine attention

weights on both image regions and question words. In our

work, we extend the co-attention to a higher order so that

the image, question and facts can be jointly weighted.
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Qw Qp Qq

Answer:  riding a horse

<_img _contain horse>

<_img _att riding>

<man holding rope>

<girl on horse>

<man with horse>

… … …

Ranking
Top-N  

Facts
FormattingReasons

• The image contains 
the object of horse 

• The image contains 
the action riding 

• The girl is on the horse

α
w
f α

p
f α

q
f

Figure 2: The proposed VQA model. The input question, facts and image features are weighted at three question-encoding levels. Given the co-weighted

features at all levels, a multi-layer perceptron (MLP) classifier is used to predict answers. Then the ranked facts are used to generate reasons.

Modular Architecture and Memory Networks Neural

Module Networks (NMNs) were introduced by Andreas et

al. in [1, 2]. In NMNs, the question parse tree is turned into

an assembly of modules from a predefined set, which are

then used to answer the question. Dynamic Memory Net-

works (DMN) [36] retrieves the ‘facts’ required to answer

the question, where the ‘facts’ are simply CNN features cal-

culated over small image patches. In comparison to NMNs

and DMNs, our method uses a set of external algorithms

that does not depend on the question. The set of algorithms

used is larger, however, the method for combining their out-

puts is more flexible, and varies in response to the question,

the image, and the facts.

Explicit Reasoning One of the limitations of most VQA

methods is that it impossible to distinguish between an an-

swer which has arisen as a result of the image content,

and one selected because it occurs frequently in the train-

ing set [27]. This is a significant limitation to the practi-

cal application of the technology, particularly in Medicine

or Defence, as it makes it impossible to have any faith in

the answers provided. One solution to this problem is to

provide human readable reasoning to justify or explain the

answer, which has been a long-standing goal in Neural Net-

works (see [7, 28], for example). Wang et al. [30] propose a

VQA framework named “Ahab” that uses explicit reasoning

over an RDF (Resource Description Framework) Knowl-

edge Base to derive the answer, which naturally gives rise

to a reasoning chain. This approach is limited to a hand-

crafted set of question templates, however. FVQA [31]

used an LSTM and a data-driven approach to learn the map-

ping of images/questions to RDF queries, but only consid-

ers questions relating to specified Knowledge Bases. In this

work, we employ attention mechanisms over facts provided

by multiple off-the-shelf CV methods. The facts are for-

mulated as human understandable structural triplets and are

further processed into human readable reasons. To the best

of our knowledge, this is the first approach that can provide

human readable reasons for the open-ended VQA problem.

A human agreement study is reported in Sec. 4.2.3 which

demonstrates the performance of this approach.

3. Models

In this section, we introduce the proposed VQA model

that takes questions, images and facts as inputs and outputs

a predicted answer with ranked reasons. The overall frame-

work is described in Sec. 3.1, while Sec. 3.2 demonstrates

how the three types of input are jointly embedded using the

proposed sequential co-attention model. Finally, the mod-

ule used for generating answers and reasons is introduced

in Sec. 3.3.

Notation In the following, matrices are represented by

bold capital letters and column vectors are denoted by bold

lower-case letters. [a;b] vertically concatenates the vectors

a and b, while [a,b] stacks a and b horizontally. We omit

bias terms in neural networks.

3.1. Overall Framework

The entire model is shown in the Fig. 2. The first step

sees the input question encoded at three different levels. At

each level, the question features are embedded jointly with

images and facts via the proposed sequential co-attention

model. Finally, a multi-layer perceptron (MLP) is used

to predict answers based on the outputs (i.e., the weighted

question, image and fact features) of the co-attention mod-

els at all levels. Reasons are generated by ranking and re-

formulating the weighted facts.
Hierarchical Question Encoding We apply a hierarchi-

cal question encoding [16] to effectively capture the infor-

mation from a question at multiple scales, i.e. word, phase

and sentence level. Firstly, the one-hot vectors of question

words Q = [q1, . . . ,qT ] are embedded individually to con-

tinuous vectors Qw = [qw
1
, . . . ,qw

T ], using a linear transfor-
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Triplet Example

( img, scene,img scn) ( img, scene,office)

( img, att,img att) ( img, att,wedding)

( img, contain,obj) ( img, contain,dog)

(obj, att,obj att) (shirt, att,red)

(obj1,rel,obj2) (man,hold,umbrella)

Table 1: Facts represented by triplets. img, scene, att and

contain are specific tokens. While img scn, obj, img att,

obj att and rel refer to vocabularies describing image scenes, objects,

image/object attributes and relationships between objects.

mation followed by a tanh function. Then 1-D convolutions

with different filter sizes (unigram, bigram and trigram) are

applied to the word-level embeddings Qw, followed by a

max-pooling over different filters at each word location, to

form the phrase-level features Qp = [qp
1
, . . . ,q

p
T ]. Finally,

the phrase-level features are further encoded by an LSTM,

resulting in the question-level features Qq = [qq
1
, . . . ,q

q
T ].

Encoding Image Regions Following [16, 38], the input

image is resized to 448× 448 and divided to 14× 14 re-

gions. The corresponding regions of the last pooling layer

of VGG-19 [25] or ResNet-100 [25] networks are extracted

and further embedded using an end-to-end learned linear

transformation followed by a tanh function. The output is

V = [v1, . . . ,vN ] (N = 196), are taken as image features.

Encoding Facts In this work, we use triplets of the form

(subject,relation,object) to represent facts in

an image, where subject and object denote two visual

concepts and relation represents a relationship between

these two concepts. This format of triplets is very gen-

eral and widely used in large-scale structured knowledge

graphs (such as DBpedia [4], Freebase [5], YAGO [17]) to

record a surprising variety of information. In this work,

we consider 5 types of visual facts as shown in Table 1,

which respectively records information about the scene,

objects, object attributes, image attributes, and relation-

ships between two objects. A fact (triplet) is encoded as

f = tanh([Wses;Wrer;Woeo]), where es, er and eo
are one-hot vectors representing subject, relation or

object respectively. Ws, Wr and Wo are linear transfor-

mation weights to be learned. By applying different types

of visual models, we achieve a list of encoded fact features

F = [f1, . . . , fM ], where M is the number of facts. Note

that this approach may be easily extended to using any exist-

ing vision methods to extract image information that might

usefully be recorded as a triplet, or even more generally, an

n-tuple that includes additional information, such as confi-

dence score and data source.

3.2. Sequential Co­attention

To accommodate multiple sources of information (ques-

tion, image, fact), the proposed co-attention approach se-

quentially generates attention weights for each feature type

using others as guidance, as shown in Fig 3. The op-

Input 

Sequences

Weighted 

features

Atten(Q,0,0)

Atten(F, q̃0,0)

Atten(V, q̃0, f̃0)

Atten(Q, ṽ, f̃0)

Atten(F, ṽ, q̃)

Q

F

V

q̃0

f̃0

ṽ

q̃

f̃

Figure 3: The sequential co-attention module. Given the feature sequences

for the question (Q), facts (F) and image (V), this module sequentially

generates weighted features (ṽ, q̃, f̃ ).

eration in each of the five attention modules is denoted

x̃ = Atten(X,g1,g2), which can be expressed as follows:

Hi = tanh(Wxxi+Wg1g1+Wg2g2), (1a)

αi = softmax(w⊤Hi), i = 1, . . . ,N, (1b)

x̃ =
∑N

i=1
αixi, (1c)

where X is the input sequence (i.e., Q, F or V), and g1,

g2 ∈ R
d represent guidances that are outputs of previous

attention modules. Wx, Wg1 , Wg2 ∈ R
h×d and w ∈

R
h are linear embedding parameters to be learned. Here h

denotes the size of hidden layers of the attention module.

In this work, all the question, image and fact features are

embedded to d-dimensional vectors, i.e., Q ∈ R
d×T , V ∈

R
d×N , F ∈ R

d×M . α is the attention weights of the input

sequence and x̃ is the weighted sum of features.

In the proposed co-attention approach, the encoded ques-

tion/image/fact features (see Sec. 3.1) are sequentially fed

into the attention module (Eqn. 1) as input sequences, and

the weighted features from the previous two steps are used

as guidance. Firstly, the question features are summa-

rized without any guidance (q̃0 = Atten(Q,0,0)). At

the second step, the fact features are weighted based on

the summarized question features (f̃0 = Atten(F, q̃0,0)).
Next, the weighted image features are generated with the

weighted fact features and summarized question features

as guidances (ṽ = Atten(V, q̃0, f̃0)). In step 4 (q̃ =
Atten(Q, ṽ, f̃0)) and step 5 (f̃ = Atten(F, ṽ, q̃)), the ques-

tion and fact features are re-weighted based on the outputs

of the previous steps. Finally, the weighted question/im-

age/fact features (q̃, f̃ , ṽ) are further used for answer pre-

diction and the attention weights of the last attention module

αf are used for reasons generation.
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3.3. Answer Prediction and Reason Generation

Similar to many previous VQA models [16, 21, 22, 40],

the answer prediction process is treated as a multi-class

classification problem, in which each class corresponds to

a distinct answer. Given the weighted features generated

from the word/phrase/question levels, a multi-layer percep-

tron (MLP) is used for classification:

hw = tanh
(

Ww(q̃
w + ṽw + f̃w)

)

, (2a)

hp = tanh
(

Wp

[

(q̃p + ṽp + f̃p);hw
])

, (2b)

hq = tanh
(

Wq

[

(q̃q + ṽq + f̃q);hp
])

, (2c)

p = softmax(Whh
q), (2d)

where {q̃w, ṽw, f̃w}, {q̃p, ṽp, f̃p} and {q̃q, ṽq, f̃q} are

weighted features from all three levels. Ww, Wp, Wq and

Wh are parameters and p is the probability vector.

As shown in Fig. 2, the attention weights of facts from all

three levels (αw
f , α

p
f , α

q
f ) are summed together. Then the

top-3 ranked facts are automatically formulated (by simple

rule-based approaches, see supplementary) to human read-

able sentences and are considered as reasons.

4. Experiments

We evaluate our models on two datasets, Visual Genome

QA [14] and VQA-real [3]. The Visual Genome QA con-

tains 1,445,322 questions on 108,077 images. Since the

official split of the Visual Genome dataset is not released,

we randomly generate our own split. In this split, we have

723,060 training, 54,506 validation and 667,753 testing

question/answer examples, based on 54,038 training, 4,039
validation and 50,000 testing images. VQA dataset [3] is

one of the most widely used datasets, which comprises two

parts, one using natural images, and a second using cartoon

images. In this paper, we only evaluate our models on the

real image subset, which we have labeled VQA-real. VQA-

real comprises 123,287 training and 81,434 test images.

4.1. Implementation Details

Facts Extraction Using the training splits of the Visual

Genome dataset, we trained three naive multi-label CNN

models to extract objects, object attributes and object-

object relations. Specifically, we extract triplets of the form

( img, contain,obj)/(obj, att,obj att)/

(obj1,rel,obj2) based on the annotations of Visual

Genome and rank them individually according to fre-

quency. The top-5000/10000/15000 triplets are selected

respectively and used as class labels. We then formulate

them as three separate multi-label classification problems

using an element-wise logistic loss function. The pre-

trained VGG-16 model is used as initialization and only

the fully-connected layers are fine-tuned. We also used the

scene classification model of [39] and the image attribute

model of [32] to extract facts not included in the Visual

Genome dataset (i.e., image scenes and image attributes).

Thresholds for these visual models’ softmax scores are set

to 0.4 and on average 76 facts (ranging from 9 to 150) are

extracted for each image. The score of predicted fact is

added as an additional dimension of fact features f .

Training Parameters In our system, the dimension d of

encoded question/image/fact features and the hidden layer

size h of co-attention models (see Eqn. 1) are both set to

512. For facts, the subject/relation/object entities

are embedded to 128/128/256 dimensional vectors respec-

tively and concatenated to form 512-d vectors. We used

two layers of LSTM model with the hidden size of 512. For

the MLP in Eq. (2), the dimensions of hw and hp are also

512, while the dimension of hq is set to 1024 for the VQA

dataset and 2048 for the Visual Genome dataset. For predic-

tion, we take the top 3000 answers for the VQA dataset and

the top 5000 answers for the Visual Genome dataset. The

whole system is implemented on the Torch7 [6] and trained

end-to-end but with fixed CNN features. For optimization,

the RMSProp method is used with a base learning rate of

2× 10−4 and momentum 0.99. The model is trained for up

to 256 epochs until the validation error has not improved in

the last 5 epochs.

4.2. Results on the Visual Genome QA

Metrics We use the accuracy value and the Wu-Palmer

similarity (WUPS) [35] to measure the performance on the

Visual Genome QA (see Table 2). Before comparison, all

responses are made lowercase, numbers converted to digits,

and punctuation & articles removed. The accuracy accord-

ing to the question types are also reported.

Baselines and State-of-the-art The first baseline method

is VGG+LSTM from Antol et al. in [3], who uses a two

layer LSTM to encode the questions and the last hidden

layer of VGG [25] to encode the images. The image fea-

tures are then ℓ2 normalized. We use the author provided

code1 to train the model on the Visual Genome QA training

split. VGG+Obj+Att+Rel+Extra+LSTM uses the same

configuration as VGG+LSTM, except that we concatenate

additional image features extracted by VGG-16 models

(fc7) that have been pre-trained on different CV tasks de-

scribed in the previous section. HieCoAtt-VGG is the orig-

inal model presented in [16], which is the current state of

art. The authors’ implementation2 is used to train the model.

4.2.1 Ablation Studies with Ground Truth Facts

In this section, we conduct an ablation study to evaluate the

effectiveness of incorporating different types of facts. To

avoid the bias that would be caused by the varying accuracy

with which the facts are predicted, we use the ground truth

1https://github.com/VT-vision-lab/VQA LSTM CNN
2https://github.com/jiasenlu/HieCoAttenVQA
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Accuracy (%) WUPS (%)

Methods What Where When Who Why How
Overall

Overall

(60.5%) (17.0%) (3.5%) (5.5%) (2.7%) (10.8%) @0.9 @0.0

VGG+LSTM [3] 35.12 16.33 52.71 30.03 11.55 42.69 32.46 38.30 58.39

VGG+Obj+Att+Rel+Extra+LSTM 36.88 16.85 52.74 32.30 11.65 44.00 33.88 39.61 58.89

HieCoAtt-VGG [16] 39.72 17.53 52.53 33.80 12.62 45.14 35.94 41.75 59.97

Ours-GtFact(Obj) 37.82 17.73 51.48 37.32 12.84 43.10 34.77 40.83 59.69

Ours-GtFact(Obj+Att) 42.21 17.56 51.89 37.45 12.93 43.90 37.50 43.24 60.39

Ours-GtFact(Obj+Rel) 38.25 18.10 51.13 38.22 12.86 43.32 35.15 41.25 59.91

Ours-GtFact(Obj+Att+Rel) 42.86 18.22 51.06 38.26 13.02 44.26 38.06 43.86 60.72

Ours-GtFact(Obj+Att+Rel)+VGG 44.28 18.87 52.06 38.87 12.93 46.08 39.30 44.94 61.21

Ours-PredFact(Obj+Att+Rel) 37.13 16.99 51.70 33.87 12.73 42.87 34.01 39.92 59.20

Ours-PredFact(Obj+Att+Rel+Extra) 38.52 17.86 51.55 34.65 12.87 44.34 35.20 41.08 59.75

Ours-PredFact(Obj+Att+Rel)+VGG 40.34 17.80 52.12 34.98 12.78 45.37 36.44 42.16 60.09

Ours-PredFact(Obj+Att+Rel+Extra)+VGG 40.91 18.33 52.33 35.50 12.88 46.04 36.99 42.73 60.39

Table 2: Ablation study on the Visual Genome QA dataset. Accuracy for different question types are shown. The percentage of questions for each type is

shown in parentheses. We additionally calculate the WUPS at 0.9 and 0.0 for different models.

facts provided by the Visual Genome dataset as the inputs

to our proposed models for ablation testing.

GtFact(Obj) is the initial implementation of our pro-

posed co-attention model, using only the ‘object’ facts,

which means the co-attention mechanisms only occur be-

tween question and the input object facts. The overall accu-

racy of this model on the test split is 34.77%, which already

outperforms the baseline model VGG+LSTM. However,

there is still a gap between this model and the HieCoAtt-

VGG (35.94%), which applies the co-attention mechanism

to the questions and whole image features. Considering that

the image features are still not used at this stage, this result

is reasonable.

Based on this initial model, we add the ‘attribute’ and

‘relationship’ facts separately, producing two models, Gt-

Fact(Obj+Att) and GtFact(Obj+Rel). Table 2 shows that

the former performs better than the latter (37.50% VS.

35.15%), although both outperform the previous ‘Object’-

only model. This suggests that ‘attribute’ facts are more

effective than the ‘relationship’ facts. However, when it

comes to questions starting with ‘where’ and ‘who’, the

GtFact(Obj+Rel) performs slightly better (18.10% VS.

17.56%, 38.22% VS.37.45%), which suggests that the ‘re-

lationship’ facts play a more important role in these types of

question. This makes sense because ‘relationship’ facts nat-

urally encode location and identity information, for exam-

ple < cat, on,mat > and < boy, holding, ball >. The Gt-

Fact(Obj+Att) model exceeds the image features based co-

attention model HieCoAtt-VGG by a large margin, 1.56%.

This is mainly caused by the substantial improvement in

the ‘what’ questions, from 39.72% to 42.21%. This is not

surprising because the ‘attributes’ facts include detailed in-

formation relevant to the ‘what’ questions, such as ‘color’,

‘shape’, ‘size’, ‘material’ and so on.

In the GtFact(Obj+Att+Rel), all of the facts are plugged

into the proposed model, which brings further improve-

ments for nearly all question types, achieving an over-

all accuracy 38.06%. Compared with the baseline model

VGG+Obj+Att+Rel+Extra+LSTM that uses a conven-

tional method (concatenating and embedding) to introduce

additional features into the VQA, our model outperforms

by 4.18%, which is a large gap. However, for the ‘when’

questions, we find that the performance of our ‘facts’ based

models are always lower than the image-based ones. We

observed that this mainly because the annotated facts in

the Visual Genome normally do not cover the ‘when’ re-

lated information, such as time and day or night. The sur-

vey paper [33] makes a similar observation - “98.8% of the

‘when’ questions in the Visual Genome can not be directly

answered from the provided scene graph annotations”.

Hence, in the final model GtFact(Obj+Att+Rel)+VGG,

we add the image features back, allowing for a higher order

co-attention between image, question and facts, achieving

an overall accuracy 39.30%. It also brings 1% improve-

ments on the ‘when’ questions. The WUPS evaluation ex-

hibits the same trend as the above results, the question type-

specific results can be found in the supplementary material.

4.2.2 Evaluation with Predicted Facts

In a normal VQA setting the ground truth facts are not

provided, so we now evaluate our model using predicted

facts. All facts were predicted by models that have been

pre-trained on different computer vision tasks, e.g. object

detection, attributes prediction, relationship prediction and

scene classification (see Sec. 4.1 for more details).

The PredFact(Obj+Att+Rel) model uses all

of the predicted facts as the input, while Pred-

Fact(Obj+Att+Rel+Extra) additionally uses the predicted

scene category, which is trained on a different data source,

the MIT Places 205 [39]. From Table 2, we see that

although all facts have been included, the performance

of these two facts-only models is still lower than that

of the previous state-of-the-art model HieCoAtt-VGG.

Considering that errors in fact prediction may pass to the

question answering part and the image features are not

used, these results are reasonable. If the fact prediction
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Q: What is in the water? Q: What time of day is it? Q: What color is the plane’s tail? Q: What is sitting on the chair? Q: Who is surfing?

A: boat A: daytime A: blue A: cat A: man

• This image contains the object

of boat.

• The boat is on the water.

• This image happens in the scene

of harbor.

• The sky is blue.

• The horse is pulling.

• This image contains the ob-

ject of road.

• The tail is blue.

• This image contains the ob-

ject of airplane.

• This image happens in the

scene of airport.

• This image contains the ob-

ject of cat.

• The cat is on the chair.

• The fur is on the cat

• The man is riding the surf-

board.

• The man is wearing the wet-

suit.

• This image contains the ac-

tion of surfing.

Q: Where is the kite? Q: How is the weather outside? Q: What the policemen riding? Q: Where is this place? Q: Who is talking on a phone?

A: in the sky A: rainy A: horse A: office A: woman

• The kite is in the sky.

• This image contains the object

of kite.

• This image happens in the scene

of beach.

• The woman is with the um-

brella.

• This image contains the at-

tribute of rain.

• This image contains the ob-

ject of umbrella.

• The military officer is on the

horse.

• The military officer is riding

the horse.

• This image contains the ob-

ject of police.

• This image contains the ob-

ject of desk.

• The printer is on the desk.

• This image happens in the

scene of office.

• The woman is holding the

telephone.

• The woman is wearing the

sunglasses.

• The woman is wearing the

short pants.

Figure 4: Some qualitative results produced by our complete model on the Visual Genome QA test split. Image, QA pair, attention map and predicted

Top-3 reasons are shown in order. Our model is capable of co-attending between question, image and supporting facts. The colored words in the question

have Top-3 identified weights, ordered as red, blue and cyan. The highlighted area in the attention map indicates the attention weights on the image regions

(from red: high to blue: low). The Top-3 identified facts are re-formulated as human readable reasons, shown as bullets.

models perform better, the final answer accuracy will be

higher, as shown in the previous ground-truth facts experi-

ments. The PredFact(Obj+Att+Rel+Extra) outperforms

the PredFact(Obj+Att+Rel) model by 1.2%, because the

extra scene category facts are included. This suggests

that our model benefits by using multiple off-the-shelf

CV methods, even though they are trained on different

data sources, and on different tasks. And as more facts

are added, our model performs better. Compared with the

baseline model VGG+Obj+Att+Rel+Extra+LSTM, our

PredFact(Obj+Att+Rel+Extra) outperforms it by a large

margin, which suggests that our co-attention model can

more effectively exploit the fact-based information.

Image features are further inputted to our model, pro-

ducing two variants PredFact(Obj+Att+Rel)+VGG and

PredFact(Obj+Att+Rel+Extra)+VGG. Both of these out-

perform the state of art, and our complete model Pred-

Fact(Obj+Att+Rel+Extra)+VGG outperforms it by 1%,

i.e. more than 6,000 more questions are correctly answered.

Please note that all of these results are produced by us-

ing the naive facts extraction models described in Sec. 4.1.

We believe that as better facts extraction models (such as

the relationship prediction models from [15], for instance)

become available, the results will improve further.

4.2.3 Human agreements on Predicted Reasons

A key differentiator of our model is that the attention

weights on facts can be used to provide human-interpretable

reasons for generated answers. We sampled 1,000 ques-

tions that have been correctly answered by our Pred-

Fact(Obj+Att+Rel+Extra)+VGG model, and conduct a

human agreement study on the generated reasons.
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Test-dev Test-std

Method Open-Ended Multiple-Choice Open-Ended Multiple-Choice

Y/N Num Other All Y/N Num Other All Y/N Num Other All Y/N Num Other All

iBOWING [40] 76.6 35.0 42.6 55.7 76.7 37.1 54.4 61.7 76.8 35.0 42.6 55.9 76.9 37.3 54.6 62.0

MCB-VGG [8] - - - 57.1 - - - - - - - - - - - -

DPPnet [21] 80.7 37.2 41.7 57.2 80.8 38.9 52.2 62.5 80.3 36.9 42.2 57.4 80.4 38.8 52.8 62.7

D-NMN [1] 80.5 37.4 43.1 57.9 - - - - - - - 58.0 - - - -

VQA team [3] 80.5 36.8 43.1 57.8 80.5 38.2 53.0 62.7 80.6 36.4 43.7 58.2 80.6 37.7 53.6 63.1

SMem [37] 80.9 37.3 43.1 58.0 - - - - 80.8 37.3 43.1 58.2 - - - -

SAN [38] 79.3 36.6 46.1 58.7 - - - - - - - 58.9 - - - -

ACK [34] 81.0 38.4 45.2 59.2 - - - - 81.1 37.1 45.8 59.4 - - - -

DMN+ [36] 80.5 36.8 48.3 60.3 - - - - - - - 60.4 - - - -

MRN-VGG [13] 82.5 38.3 46.8 60.5 82.6 39.9 55.2 64.8 - - - - - - - -

HieCoAtt-VGG [16] 79.6 38.4 49.1 60.5 79.7 40.1 57.6 64.9 - - - - - - - -

Re-Ask-ResNet [19] 78.4 36.4 46.3 58.4 - - - - 78.2 36.3 46.3 58.4 - - - -

FDA-ResNet [12] 81.1 36.2 45.8 59.2 - - - - - - - 59.5 - - - -

MRN-ResNet [13] 82.4 38.4 49.3 61.5 82.4 39.7 57.2 65.6 82.4 38.2 49.4 61.8 82.4 39.6 58.4 66.3

HieCoAtt-ResNet [16] 79.7 38.7 51.7 61.8 79.7 40.0 59.8 65.8 - - - 62.1 - - - 66.1

MCB-Att-ResNet [8] 82.5 37.6 55.6 64.7 - - - 69.1 - - - - - - - -

Ours-VGG 81.2 37.7 50.5 61.7 81.3 39.9 60.5 66.8 81.3 36.7 50.9 61.9 81.4 39.0 60.8 67.0

Ours-ResNet 81.5 38.4 53.0 63.1 81.5 40.0 62.2 67.7 81.4 38.2 53.2 63.3 81.4 39.8 62.3 67.8

Table 3: Single model performance on the VQA-real test set in the open-ended and multiple-choice settings.

Since this is the first VQA model that can generate hu-

man readable reasons, there is no previous work that we can

follow to perform the human evaluation. We have thus de-

signed the following human agreement experimental pro-

tocols. At first, an image with the question and our cor-

rectly generated answer are given to a human subject. Then

a list of human readable reasons (ranging from 20 to 40)

are shown. These reasons are formulated from facts that are

predicted from the facts extraction model introduced in the

Sec.4.1. Although these reasons are all related to the image,

not all of them are relevant to the particular question asked.

The task of the human subjects is thus to choose the rea-

sons that are related to answering the question. The human

agreements are calculated by matching the human selected

reasons with our model ranked reasons. In order to ease the

human subjects’ workload and to have an unique guide for

them to select the ‘reasons’, we ask them to select only the

top-1 reason that is related to the question answering. And

they can choose nothing if they think none of the provided

reasons are useful.

Finally, in the evaluation, we calculate the rate at which

the human selected reason can be found in our generated

top-1/3/5 reasons. We find that 30.1% of the human se-

lected top-1 reason can be matched with our model ranked

top-1 reason. For the top-3 and top-5, the matching rate are

54.2% and 70.9%, respectively. This suggests that the rea-

sons generated are both interpretable and informative. Fig-

ure 4 shows some example reasons generated by our model.

4.3. Results on the VQA­real

Table 3 compares our approach with state-of-the-art on

the VQA-real dataset. Since we do not use any ensemble

models, we only compare with the single models on the

VQA test leader-board. The test-dev is normally used for

validation while the test-standard is the default test data.

The first section of Table 3 shows the state of art methods

that use VGG features, except iBOWING [40], which uses

the GoogLeNet features [26]. The second section gives the

results of models that use ResNet [11] features. Two ver-

sions of our complete model are evaluated at the last sec-

tion, using VGG and ResNet features, respectively.

Ours-VGG produces the best result on all of the splits,

compared with models using the same VGG image encod-

ing method. Ours-ResNet ranks the second amongst the

single models using ResNet features on the test-dev split,

but we achieve the state of the art results on the test-std,

for both Open-Ended and Multiple-Choice questions. The

best result on the test-dev with ResNet features is achieved

by the Multimodal Compact Bilinear (MCB) pooling model

with the visual attention [8]. We believe the MCB can be

integrated within our proposed co-attention model, by re-

placing the linear embedding steps in Eqs. 1 and 2, but we

leave it as a future work.

5. Conclusion

We have proposed a new approach which is capable of

adaptively combining the outputs from other algorithms in

order to solve a new, more complex problem. We have

shown that the approach can be applied to the problem of

Visual Question Answering, and that in doing so it achieves

state of the art results. Visual Question Answering is a

particularly interesting application of the approach, as in

this case the new problem to be solved is not completely

specified until run time. In retrospect, it seems strange to

attempt to answer general questions about images without

first providing access to readily available image information

that might assist in the process. In developing our approach

we proposed a co-attention method applicable to questions,

image and facts jointly. We also showed that attention-

weighted facts serve to illuminate why the method reached

its conclusion, which is critical if such techniques are to be

used in practice.
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