
July 14, 2016 9:43 WSPC/S0219-8878 IJGMMP-J043 1650099

International Journal of Geometric Methods in Modern Physics
Vol. 13, No. 7 (2016) 1650099 (14 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219887816500997

The W2-curvature tensor on warped product
manifolds and applications

Sameh Shenawy

Basic Science Department
Modern Academy for Engineering and Technology

Maadi, Egypt
drssshenawy@eng.modern-academy.edu.eg;

drshenawy@mail.com

Bülent Ünal
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The purpose of this paper is to study the W2-curvature tensor on (singly) warped product
manifolds as well as on generalized Robertson–Walker and standard static space-times.
Some different expressions of the W2-curvature tensor on a warped product manifold
in terms of its relation with W2-curvature tensor on the base and fiber manifolds are
obtained. Furthermore, we investigate W2-curvature flat warped product manifolds.
Many interesting results describing the geometry of the base and fiber manifolds of
a W2-curvature flat warped product manifold are derived. Finally, we study the W2-
curvature tensor on generalized Robertson–Walker and standard static space-times; we
explore the geometry of the fiber of these warped product space-time models that are
W2-curvature flat.
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1. Introduction

In [1], Pokhariyal and Mishra first defined the W2-curvature tensor and they studied
its physical and geometrical properties. Since then the concept of the W2-curvature
tensor has been studied as a research topic by mathematicians and physicists (see
[2–5]). Pokhariyal defined many symmetric and skew-symmetric curvature tensors
on the same line of the W2-curvature tensor and studied various geometrical and
physical properties of manifolds admitting these tensors in [3]. Among many of
his results, we would like to mention that he proved that the vanishing of one of
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these curvature tensors in an electromagnetic field implies a purely electric field.
Another study to establish applications of the W2-curvature in the theory of general
relativity was carried in [6] where the authors particularly prove that a space-time
with vanishing W2-curvature tensor is an Einstein manifold. They also consider the
case of vanishing W2-curvature tensor in relation with a perfect fluid space-time.
In [2, 5], the authors study the properties of flat space-time under some conditions
regarding the W2-curvature tensor and W2-flat space-times. Moreover, there are
many studies regarding the geometrical meaning of the W2-curvature tensor in
different types of manifolds (see [7–10] and references therein).

The main aim of this paper is to study and explore the W2-curvature tensor on
warped product manifolds as well as on well-known warped product space-times.
The concept of the W2-curvature tensor has never been studied on warped products
before this paper in which we intent to fill this gap in the literature by providing a
complete study of the W2-curvature tensor on such spaces.

This paper is organized as follows. In Sec. 2, we state well-known curvature
related formulas of warped product manifolds and the W2-curvature tensor prop-
erties on pseudo-Riemannian manifolds. We also define and study a new curvature
tensor, K(X, Y )Z, that will be used in the characterization of the W2-curvature
tensor on pseudo-Riemannian manifolds. In Sec. 3, we explore the relation between
the W2-curvature tensor of a warped product manifold and that of the fiber and
base manifolds. Section 4 is devoted to the study of the W2-curvature tensor on
generalized Robertson–Walker space-time and standard static space-time.

2. Preliminaries

In this section, we will provide basic definitions and curvature formulas about
warped product manifolds.

Suppose that (M1, g1, D1) and (M2, g2, D2) are two C∞-pseudo-Riemannian
manifolds equipped with pseudo-Riemannian metric tensors gi where Di is the
Levi-Civita connection of the metric gi for i = 1, 2. Further suppose that π1 :
M1 × M2 → M1 and π2 : M1 × M2 → M2 are the natural projection maps of the
Cartesian product M1 ×M2 onto M1 and M2, respectively. If f : M1 → (0,∞) is a
positive real-valued smooth function, then the warped product manifold M1×f M2

is the product manifold M1 × M2 equipped with the metric tensor g = g1 ⊕ f2g2

defined by

g = π∗
1(g1) ⊕ (f ◦ π1)2π∗

2(g2),

where ∗ denotes the pull-back operator on tensors [11, 12]. The function f is called
the warping function of the warped product manifold M1 ×f M2. In particular, if
f = 1, then M1 ×1 M2 = M1 × M2 is the usual Cartesian product manifold. It is
clear that the submanifold M1×{q} is isometric to M1 for every q ∈ M2. Moreover,
{p} × M2 is homothetic to M2. Throughout this paper we use the same notation
for a vector field and for its lift to the product manifold. Let D, R and Ric be the
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Levi–Civita connection, curvature tensor and Ricci curvature of the metric tensor g.
Their formulas are well-known (see [11, 12]).

The W2-curvature tensor on a pseudo-Riemannian manifold (M, g, D) is defined
as follows [1]. Let X, Y, Z, T ∈ X(M), then

W2(X, Y, Z, T ) = g(R(X, Y )Z, T )

+
1

n − 1
[g(X, Z)Ric(Y, T ) − g(Y, Z)Ric(X, T )],

where R(X, Y )Z = DY DXZ−DXDY Z+D[X,Y ]Z is the Riemann curvature tensor.
It is clear that W2(X, Y, Z, T ) is skew-symmetric in the first two positions. More
explicitly, W2(X, Y, Z, T ) = −W2(Y, X, Z, T ).

Now we redefine W2-curvature tensor as follows. The W2-curvature tensor, as
shown above, is also given by

W2(X, Y, Z, T ) = g(K(X, Y )T, Z),

where

K(X, Y )T : = −R(X, Y )T +
1

n − 1
[Ric(Y, T )X − Ric(X, T )Y ].

The study of the W2-curvature tensor on warped product manifolds contains large
formulas and a huge amount of computations. Thus, this new tool will enable us to
minimize computations in our study.

Remark 1. Let M be a pseudo-Riemannian manifold. Then

K(X, Y )T + K(T, X)Y + K(Y, T )X = 0

for any vector fields X, Y, T ∈ X(M).

The following proposition is a direct consequence of the new definition of the
W2-curvature tensor.

Proposition 2. Let M be a pseudo-Riemannian manifold. Then the W2-curvature
tensor vanishes if and only if the tensor K vanishes.

Now, we will note that the tensor K can be simplified if the last position is a
concurrent field. First, recall that a vector field ζ is called a concurrent vector field
if

DXζ = X,

for any vector field X . It is clear that a concurrent vector field is a conformal vector
field with factor 2. Let ζ be a concurrent vector field, then

R(X, Y )ζ = 0.

Now suppose that ζ is a concurrent vector field. Then

K(X, Y )ζ =
1

n − 1
[Ric(Y, ζ)X − Ric(X, ζ)Y ].

Finally, a Riemannian metric g on a manifold M is said to be of Hessian type
metric if there are two smooth functions k and σ such that Hσ = kg where
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Hσ is the Hessian of σ. This topic is closely related to the research of Shima on
Hessian manifolds (see [13, 14]) and its extension to pseudo-Riemannian manifolds
in [15, 16].

3. W2-Curvature Tensor on Warped Product Manifolds

In this section, we provide an extensive study of W2-curvature tensor on (singly)
warped product manifolds. Throughout the section, (M, g, D) is a (singly) warped
product manifold of (Mi, gi, Di), i = 1, 2 with dimensions ni �= 1 where n = n1 +
n2. R, Ri denote the curvature tensor and Ric, Rici denote the Ricci curvature
tensor on M, M i, respectively. Moreover, ∇f denotes the gradient and ∆f denotes
Laplacian of f on M1, and also the Hessian of f on M1 is denoted by Hf . The
sharp of f is given by f � = f∆f +(n2−1)g1(∇f,∇f). Finally, W2-curvature tensor
and the tensor K on M and Mi are denoted by W2, K and W i

2, K
i, respectively

for i = 1, 2.

The following theorem provides a full description of the W2-curvature tensor on
(singly) warped product manifolds. The proof contains long computations that can
be done using previous results on warped product manifolds (see Appendix A).

Theorem 3. Let M = M1 ×f M2 be a singly warped product manifold with the
metric tensor g = g1 ⊕ f2g2. If Xi, Yi, Ti ∈ X(Mi) for i = 1, 2, then

K(X1, Y1)T1 = K1(X1, Y1)T1

− n2

(n − 1)(n1 − 1)
[Ric1(Y1, T1)X1 − Ric1(X1, T1)Y1]

− 1
n − 1

[
n2

f
Hf (Y1, T1)X1 − n2

f
Hf (X1, T1)Y1

]
, (1)

K(X1, Y1)T2 = K(X2, Y2)T1 = 0, (2)

K(X1, Y2)T1 = −
[

1
n − 1

Ric1(X1, T1) − n + n2 − 1
(n − 1)f

Hf (X1, T1)
]

Y2, (3)

K(X1, Y2)T2 = −fg2(Y2, T2)D1
X1

∇f +
1

n − 1
Ric2(Y2, T2)X1

− f �

n − 1
g2(Y2, T2)X1, (4)

K(X2, Y2)T2 = K2(X2, Y2)T2

− n1

(n − 1)(n2 − 1)
[Ric2(Y2, T2)X2 − Ric2(X2, T2)Y2]

+
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)Y2 − g2(Y2, T2)X2]. (5)

In the following part we investigate the geometry of the base factor of the warped
product when the product is W2-curvature flat.
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Theorem 4. Let M = M1 ×f M2 be a W2-curvature flat singly warped product
manifold with the metric tensor g = g1 ⊕ f2g2. Then

W 1
2 (X1, Y1, Z1, T1) =

2n2

(n1 − 1)f
[Hf (Y1, T1)g1(X1, Z1) − Hf(X1, T1)g1(Y1, Z1)]

(6)

for any vector fields X1, Y1, Z1, T1 ∈ X(M1).

Proof. Suppose that M is W2-curvature flat. Then Eqs. (1) and (3) imply that

0 = K1(X1, Y1)T1 − n2

(n − 1)(n1 − 1)
[Ric1(Y1, T1)X1 − Ric1(X1, T1)Y1]

− 1
n − 1

[
n2

f
Hf (Y1, T1)X1 − n2

f
Hf (X1, T1)Y1

]
,

0 =
1

n − 1
Ric1(X1, T1) − n1 + 2n2 − 1

(n − 1)f
Hf(X1, T1).

Now, from the second equation we have

Ric1(X1, T1) =
n1 + 2n2 − 1

f
Hf (X1, T1). (7)

Using this identity in the first equation which eventually turns out to be:

K1(X1, Y1)T1 =
n2

(n − 1)(n1 − 1)

[
n1 + 2n2 − 1

f
Hf (Y1, T1)X1

− n1 + 2n2 − 1
f

Hf(X1, T1)Y1

]

+
n2

n − 1

[
1
f

Hf(Y1, T1)X1 − 1
f

Hf (X1, T1)Y1

]

=
2n2

2

(n − 1)(n1 − 1)f
[Hf (Y1, T1)X1 − Hf (X1, T1)Y1].

Thus

W 1
2 (X1, Y1, Z1, T1) =

2n2

(n1 − 1)f
[Hf (Y1, T1)g1(X1, Z1) − Hf (X1, T1)g1(Y1, Z1)].

Theorem 5. Let M = M1 ×f M2 be a W2-curvature flat singly warped product
manifold with the metric tensor g = g1 ⊕ f2g2. Then:

(1) M1 is W2-curvature flat if and only if Hf(X1, Y1) = 0 for any vector fields
X1, Y1 ∈ X(M1).

(2) the scalar curvature S1 of M1 is given by

S1 =
n1 + 2n2 − 1

f
∆f.

(3) the scalar curvature of M1 vanishes if M1 is W2-curvature flat.
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Proof. The proof just follows from Eqs. (6) and (7).

Now, we study the geometry of the fiber factor of a warped product admitting
flat W2-curvature.

Theorem 6. Let M = M1 ×f M2 be a singly warped product manifold with the
metric tensor g = g1 ⊕ f2g2. Assume that f satisfies Hf = 0. Then, M is W2-
curvature flat if and only if both M1 and M2 are flat and ∇f = 0.

Proof. Suppose that M is W2-curvature flat, then M1 is flat due to Eq. (7) and
the first item of Theorem 5. Moreover, from Theorem 3 we have

0 = −fg2(Y2, T2)D1
X1

∇f +
1

n − 1
Ric2(Y2, T2)X1 − f �

n − 1
g2(Y2, T2)X1,

0 = K2(X2, Y2)T2 − n1

(n − 1)(n2 − 1)
[Ric2(Y2, T2)X2 − Ric2(X2, T2)Y2]

+
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)Y2 − g2(Y2, T2)X2].

Since Hf (X1, Y1) = 0, the first equation becomes

Ric2(Y2, T2) = f �g2(Y2, T2),

where f � = f∆f + (n2 − 1)g1(∇f,∇f) = (n2 − 1)c2 where c2 = g1(∇f,∇f), i.e.
M2 is Einstein with factor µ = (n2 − 1)c2 and

Ric2(Y2, T2) = (n2 − 1)c2g2(Y2, T2).

The second equation becomes

K2(X2, Y2)T2 =
2(n2 − 1)c2

(n − 1)
[g2(Y2, T2)X2 − g2(X2, T2)Y2].

Thus the W2-curvature tensor of M2 is given by

W 2
2 (X2, Y2, Z2, T2) =

2(n2 − 1)c2

(n − 1)
[g2(Y2, T2)g2(X2, Z2) − g2(X2, T2)g2(Y2, Z2)].

But

W 2
2 (X2, Y2, Z2, T2) = R2(X2, Y2, Z2, T2)

+
1

n2 − 1
[g2(X2, Z2)Ric2(Y2, T2) − g2(Y2, Z2)Ric2(X2, T2)]

= R2(X2, Y2, Z2, T2)

+ c2[g2(X2, Z2)g2(Y2, T2) − g2(Y2, Z2)g2(X2, T2)].

Therefore,

R2(X2, Y2, Z2, T2) =
(n2 − n1 − 1)c2

(n − 1)
[g2(X2, Z2)g2(Y2, T2) − g2(Y2, Z2)g2(X2, T2)],
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i.e. M2 has a constant sectional curvature

κ2 =
(n2 − n1 − 1)c2

(n − 1)
.

But the Einstein factor should be (n2 − 1)κ2 and hence

n1(n2 − 1)c2 = 0.

Thus M2 is flat. The converse is straightforward.

Theorem 7. Let M = M1 ×f M2 be a W2-curvature flat singly warped product
manifold with the metric tensor g = g1 ⊕ f2g2. If M2 is Ricci flat, then the W2-
curvature of M2 is given by

W 2
2 (X2, Y2, T2, Z2)

=
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)g2(Y2, Z2) − g2(Y2, T2)g2(X2, Z2)]

and M1 is of Hessian type. Moreover, M2 is flat if n2 ≥ 3.

Proof. Suppose that M is W2-curvature flat, then from Theorem 3 we have

0 = −fg2(Y2, T2)D1
X1

∇f +
1

n − 1
Ric2(Y2, T2)X1 − f �

n − 1
g2(Y2, T2)X1,

0 = K2(X2, Y2)T2 − n1

(n − 1)(n2 − 1)
[Ric2(Y2, T2)X2 − Ric2(X2, T2)Y2]

+
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)Y2 − g2(Y2, T2)X2].

Now suppose that M2 is Ricci flat, then the first equation implies that

D1
X1

∇f =
−f �

(n − 1)f
X1

and so

Hf =
−f �

(n − 1)f
g1,

i.e. M1 is of Hessian type. The second equation implies that

K2(X2, Y2)T2 =
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)Y2 − g2(Y2, T2)X2]

and hence

W 2
2 (X2, Y2, T2, Z2)

=
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)g2(Y2, Z2) − g2(Y2, T2)g2(X2, Z2)].
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Moreover,

R2 (X2, Y2, T2, Z2)

=
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)g2(Y2, Z2) − g2(Y2, T2)g2(X2, Z2)].

Thus M2 has a pointwise constant sectional curvature given by

κ2 = ‖∇f‖2
1 +

f �

n − 1
.

If n2 ≥ 3, then by Schur’s Lemma, M2 has a vanishing constant sectional curvature
κ2 = 0 since M2 is Ricci flat.

4. W2-Curvature on Space-Times

The study of W2-curvature tensor on space-times is of great interest since this
concept provides an access to several geometrical and physical properties of space-
times. Among such applications, we want to mention that a W2-curvature flat 4-
dimensional space-time is an Einstein manifold [2, 5]. This section is subsequently
devoted to the study of the W2-curvature tensor on generalized Robertson–Walker
space-times and standard static space-times. We will first consider some classical
space-times. Obtaining the W2-curvature tensor for these space-times contains long
computations, and hence we omitted them.

• The Minkowski space-time is W2-curvature flat since it is flat.
• The Friedman–Robertson–Walker with metric

ds2 = −c2dt2 + a(t)
[

dη2

1 − kη2
+ r2(dθ2 + sin2 θdφ2)

]

is W2-curvature flat if ȧ(t) = k = 0.
• The de Sitter space-time metric with cosmological constant Λ > 0 in conformally

flat coordinates reads

ds2 =
α2

τ2
[−dτ2 + dr2 + r2(dθ2 + sin2 θdφ2)], (8)

where α2 = (3/Λ). This metric is Einstein with factor 3
α2 and has a constant sec-

tional curvature 1
α2 . The non-vanishing components of the W2-curvature tensor

are

W2(∂i, ∂j , ∂i, ∂j) = R(∂i, ∂j , ∂i, ∂j) +
1
3
(g(∂i, ∂i)Ric(∂j , ∂j))

= R(∂i, ∂j , ∂i, ∂j) +
1
α2

(g(∂i, ∂i)g(∂j , ∂j))

= 2R(∂i, ∂j , ∂i, ∂j),

W2(∂i, ∂j , ∂j , ∂i) = −W2(∂i, ∂j , ∂i, ∂j),
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where i �= j. Direct computations show that the de Sitter space-time with metric
(8) is not W2-curvature flat. Similarly, the anti-de Sitter is not W2-curvature flat.

• Kasner space-time in (t, x, y, z) coordinates is given by

ds2 = −dt2 + t2λ1dx2 + t2λ2dy2 + t2λ3dz2,

where λ1 + λ2 + λ3 = 1 and λ2
1 + λ2

2 + λ2
3 = 1. This space-time is W2-curvature

flat if λ1 = 1.
• The Schwarzschild metric is given by

ds2 = −
(
1 − rs

r

)
c2dt2 +

(
1

1 − rs

r

)
dr2 + r2(dθ2 + sin2 θdφ2),

where rs is the Schwarzchild radius and c is the speed of light. The Ricci cur-
vatures are all identically zero and so the W2-curvature tensor is equal to the
Riemann tensor.

• A cylindrically symmetric static space-time in (t, r, θ, φ) coordinates can be given
by

ds2 = −evdt2 + dr2 + evdθ2 + evdφ2,

where v is a function of r. A cylindrically symmetric static space-time is W2-
curvature flat if and only if v is constant. If v is a nontrivial function of r, θ, φ

the situation is more complicated.

4.1. W2-curvature on generalized Robertson–Walker space-times

We first define generalized Robertson–Walker space-times. Let (M, g) be an n-
dimensional Riemannian manifold and f : I → (0,∞) be a smooth function. Then
(n + 1)-dimensional product manifold I × M furnished with the metric tensor

ḡ = −dt2 ⊕ f2g

is called a generalized Robertson–Walker space-time and is denoted by M̄ = I×f M

where I is an open, connected subinterval of R and dt2 is the Euclidean metric tensor
on I. This structure was introduced to the literature to extend Robertson–Walker
space-times [17–20].

From now on, we will denote ∂
∂t ∈ X(I) by ∂t to state our results in simpler

forms.

Theorem 8. Let M̄ = I ×f M be a generalized Robertson–Walker space-time
equipped with the metric tensor ḡ = −dt2 ⊕ f2g. Then the curvature tensor K̄

on M̄ is given by

(1) K̄(∂t, ∂t)∂t = K̄(∂t, ∂t)X = K̄(X, Y )∂t = 0,

(2) K̄(∂t, X)∂t = − f̈
f X,

(3) K̄(X, ∂t)Y = [n−1
n g(X, Y )(f f̈ − ḟ2) − 1

nRic(X, Y )]∂t,
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(4) K̄(X, Y )Z = −R(X, Y )Z + ḟ2[g(Y, Z)X − g(X, Z)Y ] + 1
n [Ric(Y, Z)X −

Ric(X, Z)Y ] + 1
n [g(Y, Z)X − g(X, Z)Y ](f f̈ + (n − 1)ḟ2)

for any X, Y, Z ∈ X(M).

Now we investigate the implications of a W2-curvature flat generalized
Robertson–Walker space-time to its fiber.

Theorem 9. Let M̄ = I ×f M be a generalized Robertson–Walker space-time
equipped with the metric tensor ḡ = −dt2 ⊕ f2g. Then, M̄ is W2-curvature flat
if and only if M has a constant sectional curvature κ = −ḟ2.

Proof. Assume that M̄ = I ×f M is W2-curvature flat, then

0 = −f f̈g(X, Y ),

0 =
1
n

Ric(X, Y ) − n − 1
n

g(X, Y )(f f̈ − ḟ2),

0 = −f2R(X, Y, Z, T ) + f2ḟ2[g(Y, Z)g(X, T )− g(X, Z)g(Y, T )]

+
f2

n
[Ric(Y, Z)g(X, T )− Ric(X, Z)g(Y, T )]

+
f2

n
[g(Y, Z)g(X, T )− g(X, Z)g(Y, T )](f f̈ + (n − 1)ḟ2).

The first equation implies that f̈ = 0, i.e. f = µt + λ and so the second equation
yields

Ric(X, Y ) = −µ2(n − 1)g(X, Y ).

The third equation implies that

R(X, Y, Z, T ) = µ2[g(Y, Z)g(X, T )− g(X, Z)g(Y, T )].

Thus the sectional curvature of M is

κ = −µ2.

The converse is direct by using the fact that M̄ is Einstein with factor (n − 1)κ.

A 4-dimensional space-time is called Petrov type O if the Weyl conformal tensor
vanishes. There are many generalizations of Petrov classification for higher dimen-
sions (see for instance [21]) but type O still has the same definition. From the above
theorem, we conclude that M̄ is flat and hence the Weyl conformal tensor vanishes.

4.2. W2-curvature tensor on standard static space-times

We begin by defining standard static space-times. Let (M, g) be an n-dimensional
Riemannian manifold and f : M → (0,∞) be a smooth function. Then
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(n + 1)-dimensional product manifold I × M furnished with the metric tensor

ḡ = −f2dt2 ⊕ g

is called a standard static space-time and is denoted by M̄ = If ×M where I is an
open, connected subinterval of R and dt2 is the Euclidean metric tensor on I.

Note that standard static space-times can be considered as a generalization of
the Einstein static universe[22–25].

Now, we are ready to study both K and W2 tensors on M̄ =f I × M . The
following two theorems describe both tensors on M̄ =f I × M .

Theorem 10. Let M̄ =f I × M be a standard static space-time with the metric
tensor ḡ = −f2dt2 ⊕ g. If ∂t ∈ X(I) and X, Y, Z ∈ X(M), then

(1) K̄(∂t, ∂t)∂t = K̄(∂t, ∂t)X = K̄(X, Y )∂t = 0,

(2) K̄(∂t, X)∂t = −f(DX∇f + ∆f
n X),

(3) K̄(∂t, X)Y = 1
n (Ric(X, Y ) − (n + 1)Hf (X,Y )

f )∂t,

(4) K̄(X, Y )Z = −R(X, Y )Z + 1
n [Ric(Y, Z)X − Ric(X, Z)Y ] + 1

nf [−Hf(Y, Z)X +
Hf(X, Z)Y ].

Theorem 11. Let M̄ =f I × M be a standard static space-time with the metric
tensor ḡ = −f2dt2 ⊕ g. Then, M̄ is W2-curvature flat if and only if M is flat and
Hf = −∆f

n g.

Proof. Suppose that M̄ =f I × M is W2-curvature flat, then the second item of
Theorem 10 implies that

DX∇f = −∆f

n
X, Hf = −∆f

n
g.

Taking the trace of both sides implies ∆f = 0 and consequently Hf = 0. The third
item implies that

Ric(X, Y ) = 0

and so M is Ricci flat. The last item of Theorem 10 implies that

R(X, Y )Z =
1
n

[Ric(Y, Z)X − Ric(X, Z)Y ] +
1

nf
[−Hf(Y, Z)X + Hf (X, Z)Y ],

R(X, Y )Z = 0.

Thus M is flat. The converse is straightforward.

Appendix A. A Proof of Theorem 3

Let M = M1×f M2 be a warped product manifold equipped with the metric tensor
g = g1 ⊕ f2g2 where dim(Mi) = ni, i = 1, 2 and n = n1 + n2. Let Xi, Yi, Zi, Ti ∈
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X(Mi) for i = 1, 2. Then

K(X1, Y1)T1 = −R(X1, Y1)T1 +
1

n − 1
[Ric(Y1, T1)X1 − Ric(X1, T1)Y1]

= −R1(X1, Y1)T1 +
1

n − 1

(
Ric1(Y1, T1) − n2

f
Hf(Y1, T1)

)
X1

− 1
n − 1

(
Ric1(X1, T1) − n2

f
Hf (X1, T1)

)
Y1

= −R1(X1, Y1)T1 +
1

n − 1
[Ric1(Y1, T1)X1 − Ric1(X1, T1)Y1]

− 1
n − 1

[
n2

f
Hf (Y1, T1)X1 − n2

f
Hf (X1, T1)Y1

]

= K1(X1, Y1)T1

− n2

(n − 1)(n1 − 1)
[Ric1(Y1, T1)X1 − Ric1(X1, T1)Y1]

− 1
n − 1

[
n2

f
Hf (Y1, T1)X1 − n2

f
Hf (X1, T1)Y1

]
.

The second case is

K(X1, Y1)T2 = −R(X1, Y1)T2 +
1

n − 1
[Ric(Y1, T2)X1 − Ric(X1, T2)Y1]

= 0.

The third case is

K(X1, Y2)T1 = −R(X1, Y2)T1 +
1

n − 1
[Ric(Y2, T1)X1 − Ric(X1, T1)Y2]

=
1
f

Hf (X1, T1)Y2 − 1
n − 1

Ric1(X1, T1)Y2 +
n2

(n − 1)f
Hf (X1, T1)Y2

= −
[

1
n − 1

Ric1(X1, T1) − n + n2 − 1
(n − 1)f

Hf(X1, T1)
]

Y2.

The next case is

K(X1, Y2)T2 = −R(X1, Y2)T2 +
1

n − 1
[Ric(Y2, T2)X1 − Ric(X1, T2)Y2]

= −fg2(Y2, T2)D1
X1

∇f +
1

n − 1
Ric2(Y2, T2)X1

− f �

n − 1
g2(Y2, T2)X1.

Also,

K(X2, Y2)T1 = −R(X2, Y2)T1 +
1

n − 1
[Ric(Y2, T1)X2 − Ric(X2, T1)Y2]

= 0.
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Finally,

K(X2, Y2)T2 = −R(X2, Y2)T2 +
1

n − 1
[Ric(Y2, T2)X2 − Ric(X2, T2)Y2]

= −R2(X2, Y2)T2 + ‖∇f‖2
1[g2(X2, T2)Y2 − g2(Y2, T2)X2]

+
1

n − 1
[Ric2(Y2, T2) − f �g2(Y2, T2)]X2

− 1
n − 1

[Ric2(X2, T2) − f �g2(X2, T2)]Y2.

Then

K(X2, Y2)T2 = −R2(X2, Y2)T2 +
1

n − 1
Ric2(Y2, T2)X2 − 1

n − 1
Ric2(X2, T2)Y2

+ ‖∇f‖2
1[g2(X2, T2)Y2 − g2(Y2, T2)X2]

− f �

n − 1
(g2(Y2, T2)X2 − g2(X2, T2)Y2)

and so

K(X2, Y2)T2 = −R2(X2, Y2)T2 +
1

n − 1
[Ric2(Y2, T2)X2 − Ric2(X2, T2)Y2]

−
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(Y2, T2)X2 − g2(X2, T2)Y2]

= −R2(X2, Y2)T2 +
1

n − 1
[Ric2(Y2, T2)X2 − Ric2(X2, T2)Y2]

+
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)Y2 − g2(Y2, T2)X2].

Thus

K(X2, Y2)T2

= K2(X2, Y2)T2 − n1

(n − 1)(n2 − 1)
[Ric2(Y2, T2)X2 − Ric2(X2, T2)Y2]

+
(
‖∇f‖2

1 +
f �

n − 1

)
[g2(X2, T2)Y2 − g2(Y2, T2)X2]

and the proof is now complete.
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