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Abstract

We generalize the specifications used in previous studies of the effect of body mass
index (BMI) on earnings by allowing the potentially endogenous BMI variable to enter
the log wage equation nonparametrically. We introduce a Bayesian posterior simula-
tor for fitting our model that permits a nonparametric treatment of the endogenous
BMI variable, flexibly accommodates skew in the BMI distribution, and whose imple-
mentation requires only Gibbs steps. Using data from the 1970 British Cohort Study,
our results indicate the presence of nonlinearities in the relationships between BMI
and log wages that differ across men and women, and also suggest the importance of
unobserved confounding for our sample of males.

1We thank and acknowledge the UK Data Archive (University of Essex, Colchester, UK) for use of data
from the 1970 British Cohort Study. They bear no responsibility for the analysis or interpretation of this
data. All errors are, of course, our own.



1 Introduction

In this paper we investigate the role of body mass index (henceforth, BMI)2 in the produc-

tion of log wages. Given sufficient data, the simplest approach to study this issue would

proceed by running a regression of the outcome, log wages, on the BMI variable and poten-

tially a variety of controls. The resulting coefficient on the BMI variable, however, could not

be convincingly argued to capture any type of “causal” impact, since it fails to control for

the potential endogeneity of BMI. By “endogeneity” we mean a failure of the methodology

to successfully account for factors unobserved by the econometrician which simultaneously

correlate with BMI and log wages. One such confounding variable could be preferences for

long-term investments, which we mean to represent characteristics that simultaneously im-

pact decisions affecting both health and human capital accumulation. The existence of such

unobserved confounding variables produces a bias and inconsistency in the simple regression-

based estimator described above, requiring us to employ a more elaborate procedure that

accounts for potential confounding on unobserved characteristics. To this end, we adopt

in this paper a standard two equation triangular treatment-response model in which the

outcome of interest is log wages and the endogenous treatment variable is BMI.

The primary methodological innovation of our approach is that we permit the BMI variable

to enter the wage equation nonparametrically. The default specification in applied treatment-

response modeling assumes a linear relationship between the treatment and the outcome,

and defines the slope of this line as the causal effect of interest. This linearity assumption,

however, is not credible in all situations. In our study, for example, it is plausible that wages

are relatively unresponsive to marginal changes in BMI in the “underweight” or “normal”

ranges, and relatively more responsive to marginal changes in BMI in the “overweight”

or “obese” ranges. Alternatively, underweight individuals may experience a wage penalty

similar to overweight or obese individuals, producing an inverted U -shaped relationship

between BMI and log wages. Standard linear treatment-response models can not capture

these features of the data if they are present. Although a linear relationship might be found

2BMI is computed as weight (in kilograms) divided by height (in meters) squared. The equivalent calcu-
lation in terms of pounds and inches is 704.5 × weight (in pounds) / height (in inches) squared. Standard
clinical classifications of BMI are “underweight” (BMI < 18.5), “normal” (18.5 ≤ BMI < 25), “overweight”
(25 ≤ BMI < 30), and “obese” (30 ≥ BMI). It is worth mentioning that BMI may not be an ideal measure
of health for all people since, for example, some very muscular people have high BMI values that reflect dif-
ferences in the weight of muscle tissue and lean tissue, and not health. Finding the “best” measure of body
fatness is something that the entire literature must contend with, as there is a tradeoff between methods that
may provide a more accurate measure (e.g. underwater weighing or dual-energy x-ray absorptiometry) and
those that can be applied to a large sample, cheaply (e.g. BMI). Prentice and Jebb (2001) point out some of
the flaws of body mass index, while Deurenberg, Weststrate and Seidell (1991) in their Table 1 report that
the correlation between body mass index and body fat, measured by underwater weighing, for adults aged
26-35 is .92 (men) and .89 (women).
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ex post by “testing down” from more flexible specifications, it does not seem desirable to

impose these restrictions ex ante. To our knowledge, no applied studies in this area have

investigated this possibility extensively. Therefore, we hope that use of a more flexible

empirical specification which can either refute or provide support for the specifications used

in past work offers a useful contribution to this literature.

A second, yet more minor, methodological contribution is that we introduce a model capable

of accommodating skew in the distribution of the continuous endogenous treatment variable.

This particular modeling assumption is made with an eye toward our empirical application,

where the unconditional and conditional BMI distributions have a pronounced right-skew.

Our approach for handling this skew is to generalize the error distribution associated with the

treatment variable to the class of skew-normal type distributions [e.g., Azzalini and Dalla

Valle (1996), Branco and Dey (2002)]. We find that use of the skew-normal distribution

provides an adequate fit to our data, outperforms the standard semi-log specification, and

is parsimonious as it introduces only one additional parameter. In addition, the methods

described here can be easily generalized to handle cases where there is skew in the outcome

variable, skew in both the outcome and the endogenous treatment variable, and when the

variables being modeled are censored, binary or ordered.3 In all cases, however, careful diag-

nostic checking should be performed to assess if the maintained distributional assumptions

are sufficiently flexible. We fit the model from a Bayesian perspective and present a compu-

tationally attractive posterior simulator which handles the endogeneity problem, skew, and

nonparametric component simultaneously, and involves only standard Gibbs steps.

Studies like this one on the effect of “weight-for-height”4 on economic outcomes must con-

tend with observational data. One approach that has been used to identify a causal effect

with such data is differencing, within twins or siblings [e.g., Averett and Korenman (1993),

Behrman and Rosenzweig (2001), and Baum and Ford (2004)] or over time with panel data

[e.g., Baum and Ford (2004), and Cawley (2004)], to purge the model of unobserved con-

founding variables. These approaches require within-sibling variation in weight-for-height or

temporal variation in weight-for-height to identify the effects of interest. Since such variation

may not be substantial, particularly in longitudinal data studies with a short time dimension,

it may often prove difficult to precisely estimate effects of interest with such an approach.

Alternatively, some studies have made use of instrumental variables [e.g., Behrman and

Rosenzweig (2001), and Cawley (2004)] to identify a causal effect.

We follow the instrumental variables approach and use parent BMI as a source of exogenous

3See, for example, Koop, Poirier and Tobias (2007, chapter 14).
4That is, BMI as a continuous variable or obesity as a binary variable.
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variation. The validity of this IV strategy hinges on the assumptions that parent BMI is

conditionally correlated with the child’s adult BMI, and that parent BMI can be excluded

from the child’s adult log wage equation. The first assumption is not controversial (and

is empirically testable), but the second assumption may be met with more skepticism. In

particular, one could argue that the correlation between parent BMI and child BMI is due

partly to learned preferences about the importance of long-run investments in health capital,

which may be correlated with learned preferences regarding investments in human capital,

which in turn are known to have a direct effect on earnings. In this case, parental BMI

may embody unobserved factors that have a structural effect on the child’s adult earnings,

potentially undermining the validity of our identification strategy.

Despite this example of why our instrumental variable strategy may fail, we offer three

reasons why such concerns should not necessarily invalidate the use of parental BMI as valid

instruments. First, and perhaps most importantly, the validity of the instruments relies on

their conditional uncorrelation with the errors, and thus the inclusion of a rich set of proxies

for family preferences and background characteristics will surely bolster the case for the use

of parental BMI in practice. Specifically, the set of variables we include in the wage equation

should reduce the problem a “shared family environment” mechanism may present, as they

serve as proxies for family preferences, even if this problem is likely to exist unconditionally

(i.e., without any controls). To this end, we include in the wage equation covariates capturing

aspects of environment and background including indicators for parental education, parental

occupation, and parental income when the worker was ten years old.

Second, we appeal to studies in the health literature which suggest that the “learning”

mechanism in determining adult BMI outcomes is relatively weak. Stunkard et al (1986), for

example, obtain a sample of information from Danish adoptees, and find a strong correlation

between the BMIs of adoptive children and their biological parents, yet find no correlation

between weight classifications of adoptees and their adoptive parents. In a review of several

studies of the determinants of BMI, Maes, Neale and Daves (1997) similarly conclude that “...

it is unlikely that environmental factors shared with family members contribute substantially

to variance in BMI” (pp. 329-330). In another review, Grilo and Pogue-Geile (1991) write

“... this suggests little environmental effect of parental weight on offspring weight through

modeling” (pg. 534). Thus, these studies provide suggestive evidence that the correlation

between parent and child BMI may have little to do with shared environmental factors, and

therefore, parental BMI can potentially be excluded from the wage equation, especially given

adequate controls for family characteristics and background characteristics of the child.
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Finally, since we have two instruments available5 we can conduct the standard exercise of

assuming that one parent’s BMI is a valid instrument, including the other in the log wage

equation, and calculating the Bayes factor in favor of the hypothesis that the other parent’s

BMI coefficient in the log wage equation is equal to zero. From a theoretical perspective,

however, it seems reasonable that the BMIs of the parents are either jointly valid as instru-

ments, or jointly invalid, thus potentially calling into question what is actually learned from

this procedure. On the empirical side, however, the correlation between parental BMI was

found to be reasonably small (around .16), suggesting that something can be learned from

this exercise, and that its implementation is not obviously redundant or “circular.” For both

men and women, these Bayes factors are found to support the restricted model, providing

evidence that parent BMI can be excluded from the log wage equation, and informal evidence

of the validity our identification strategy.

Using data from the 1970 British Cohort Study, we apply our estimation algorithm and

find strong evidence that BMI affects log wages. We find that log wages are decreasing

throughout the BMI support, and that this result holds for both men and women. For men,

the wage penalty to marginal increases in BMI is modest provided the individual is in the

“normal” BMI range, whereas penalties are comparably large for overweight and obese men.

For women the results are essentially reversed. The largest penalties for a marginal increase

in a woman’s BMI are found over the “normal” BMI range. In addition to these nonlinearities

within gender groups, we find evidence of differential BMI wage penalties across these groups.

We find some evidence that for individuals with BMIs in the alternatively defined normal

range of 20-25 the wage penalty for a marginal increase in BMI is smaller for men than it is for

women. Overweight and obese men, however, receive substantially larger wage penalties to

marginal increases in BMI than comparably overweight and obese women. To our knowledge,

these results have not been documented before in the literature. These findings also raise

questions about the credibility of the assumption of linearity between log wages and BMI

that has been made in past work.

The outline of this paper is as follows. In the following section we describe our model,

strategy for handling the nonparametric component, skew, and endogeneity issues, and the

associated Bayesian posterior simulator. Section 3 describes our data, while section 4 presents

our empirical results. The paper concludes with a summary in Section 5.

5We have two instruments: mother’s BMI and father’s BMI.
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2 The Model

In our empirical investigation we are primarily interested in determining if the impact of

BMI on log wages is linear, and seek to do so within a framework that permits the potential

endogeneity of BMI. A useful two-equation system which serves as a starting point for

handling these issues is given as follows:6

yi = f(si) + xiβ + εi (1)

si = ziθ + ui, (2)

where [
εi

ui

] ∣∣∣∣xi, zi
iid∼ N

[(
0
0

)
,

(
σ2

ε σεu

σεu σ2
u

)]
, i = 1, 2, · · · , n.

In the above, s is a potentially endogenous variable, and the endogeneity (or unobserved

confounding) problem is handled by introducing a possible correlation between u and ε,

denoted ρεu ≡ σεu/(
√

σ2
uσ

2
ε ). That is, unobservables which are correlated with the process

generating BMI (denoted by s above) may also be correlated with unobservables affecting

the production of log wages (denoted as y above).

Again, it is important to recognize that many applied studies in the treatment-response

literature, and to our knowledge all of those that have been conducted on this specific topic,

assume the relationship between the treatment variable and the outcome variable is linear

(i.e., f(s) = α0 + α1s), and define the slope of this function as the causal effect of interest.

The assumption of linearity is likely made on computational considerations, as IV is simple

to use in this context. In our study, and upon reflection, in many studies in the treatment-

response literature, the relationship between the treatment variable and the outcome may

not be linear, and may not be easily characterized ex ante by a particular parametric form.

This motivates the value of specifications like (1) and (2) that allow for a flexible treatment

of the endogenous variable.

Despite this added flexibility and generalization of existing empirical work on this topic,

it is important to acknowledge that equations (1) and (2) are still restrictive in many as-

pects. First, we maintain the textbook assumption of joint normality, the credibility of

which must largely be determined on an application-specific basis. This assumption, how-

ever, can be generalized using, among other possibilities, finite Gaussian mixtures to flexibly

accommodate the distributions associated with the treatment and outcome variables. Sec-

ond, although we allow treatment effects to be quite heterogeneous in the sense that f ′(s)

6We adopt the conventions of using bold script to denote vector or matrix quantities, and capital letters
to denote matrices.

5



can vary at each point in the BMI support,7 we still maintain treatment effect homogeneity

within a given BMI cell. Thus, our model is one that allows for a degree of treatment effect

heterogeneity through specific observables, but does not explicitly account for other aspects

of heterogeneity, both unobserved and (potentially) observed.

If such treatment effect heterogeneity is present and the treatment variable is binary or

discrete, Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996) and Heckman and

Vytlacil (2006), for example, show that care must be given in the interpretation of the

IV estimate. Specifically, in the binary treatment, binary outcome case, linear IV can be

rationalized as a treatment effect for “compliers,” i.e., those individuals whose behavior can

be manipulated by the availability of the instrument [Imbens and Angrist (1994)]. In more

general settings, linear IV can be shown to converge to a weighted average of treatment

effects [e.g., Heckman and Vytlacil (2006)]. In cases where the outcome and endogenous

variables are continuous, however, (as in our application), and treatment effect heterogeneity

is present, Heckman and Vytlacil (1998) and Wooldridge (2003) provide conditions under

which standard linear IV / 2SLS can still consistently estimate the average treatment effect

(ATE) in the population.8 To map our model in (1) and (2) into a specification where the

results of these studies could potentially be applied seems to require the creation of dummy

variables for each specific BMI value. This construction, however, would lead us back to the

case of a continuous outcome model with multiple binary treatment variables, whence the

assumptions in Wooldridge (2003) would not directly apply, and therefore we can not appeal

to these results to interpret our estimates as capturing ATE within each cell.

In the current paper we maintain the assumption of treatment effect homogeneity within

our narrow cells, though, admittedly, this assumption may not be perfectly satisfactory in

the context of our empirical application. For example, it is possible that one physically fit

male in our sample possesses a BMI of 28 (and is thus inappropriately categorized as “over-

weight”), while another male in our sample has an identical BMI and is correctly classified

as overweight. We should not necessarily expect the slope of the log wage- BMI relationship

to be the same for these two individuals, yet our model, owing primarily to data constraints

and limitations with the construction and interpretation of BMI, imposes equal treatment

effects for these agents. Other sources of treatment effect heterogeneity, such as differential

impacts across industries, are also possible, but are not explicitly captured in (1) and (2).

Our view is that the assumption of homogenous treatment effects within age, gender and

7Actually, in our empirical work, we also allow these functions to differ across men and women, and given
the nature of our sample, these are also conditioned on a cohort of a particular age.

8The additional assumption imposes that the covariance between unobserved components of treatment
effect heterogeneity and the treatment variable itself does not depend on the exogenous variables of the
model.
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BMI cells, though still somewhat restrictive, substantially generalizes those made in earlier

work on this topic, and thus offers a big step in a more general direction. What we offer

in this paper is a framework for flexibly exploring the relationship between an endogenous

treatment variable and an outcome of interest within the assumption of (conditional) treat-

ment effect homogeneity, and seek to apply this methodology to characterize the relationship

between BMI and log wages.9 In the case where our model is misspecified and treatment

effect heterogeneity persists within these cells, care must be taken with respect to the inter-

pretation of our results; they should not necessarily be interpreted as capturing a population

average treatment effect within the cell, but rather, a weighted average of treatment effects

whose value may or may not be of direct policy-relevance.10

2.1 Bayesian Implementation

Though the model described in (1) and (2) offers a useful starting point, the textbook joint

normality assumption made there turns out to be inappropriate for our empirical investi-

gation. That is, we find that the unconditional distribution of BMI in our sample is quite

skewed in general, and that this skew is particularly pronounced for females. Although the

normality assumption made for the error terms posits the shape of the conditional rather

than the unconditional distribution, diagnostic checks revealed that normality was not ap-

propriate, and moreover, that such skew persists even upon taking the log transformation

of BMI and defining s accordingly.11 To this end, we introduce a generalized assumption

regarding the error structure that, though tailored to accommodate specific features of our

application, will also be useful for other empirical analyses where the variables of interest

are skewed.12 Specifically, we generalize (1) and (2) by writing

yi = f(si) + xiβ + εi

si = ziθ + δh̃∗i + ui,

where [
εi

ui

] ∣∣∣∣xi, zi, h̃
∗
i

iid∼ N

[(
0
0

)
,

(
σ2

ε σεu

σεu σ2
u

)]
i = 1, 2, . . . , n,

9Our study is certainly not the first to generalize the standard treatment-response model in a Bayesian
framework and apply this methodology to applications of substantive interest. For example, in a pair of
interesting papers with applications to health economics, Deb, Munkin and Trivedi (2006) derive a posterior
simulator for a two-part model with a multinomial endogenous variable, while Munkin and Trivedi (2006)
derive a related simulator with an ordered outcome. We continue in this tradition of generalizing the standard
framework by considering a nonparametric treatment of the endogenous variable, and allow for possible skew.

10See Heckman and Vytlacil (2006) for more on this issue. Manning (2004) is a particularly readable
reference on these general issues, as is Angrist (2004).

11Evidence of this is presented in the analysis of section 4.
12For example, s could be modeled in logarithmic form and δh̃∗i simultaneously added to the disturbance

term to accommodate excess skew.
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h̃∗i |λi
ind∼ TN[0,∞)(0, λi), i = 1, 2, . . . , n,

λi
iid∼ IG

(
ν

2
,
2

ν

)
, i = 1, 2, . . . , n,

TN(a,b)(µ, σ2) denotes a normal distribution with mean µ and variance σ2 truncated to the

interval (a, b), and IG(·, ·) denotes an inverse gamma distribution [see Koop, Poirier and

Tobias (2007, pp. 335-341) for parameterizations]. The specification above looks like the

textbook Gaussian model of (1) and (2) apart from the appearance of the terms h̃∗i in the

equation generating the endogenous variable s. Indeed, it is the inclusion of the latent h̃∗i
that enables our model to accommodate the skew of the BMI variable, as we describe in

more detail below.

The construction of the equation generating the endogenous variable s follows similarly to

the formulation of the binary choice model of Chen, Dey and Shao (1999). In that paper the

authors choose h̃∗i to be half-normal (i.e., they set λi = 1) and show that when integrating

the conditional distribution of s|h̃ over the half-normal prior for h̃, the resulting marginal

distribution of s follows a skew-normal distribution [e.g., Azzalini and Dalla-Valle (1996)]

with the parameter δ governing the direction of the skew. Specifically, when δ = 0 we revert

back to the textbook Gaussian model, while δ > 0 yields a marginal density for s with a

right-skew, and δ < 0 yields a marginal density with a left-skew.

Our version of the model is similar, and δ continues to retain the interpretation as a “skew-

ness parameter,” but is introduced at a slightly more general level. Specifically, we do not

restrict the variance of the truncated normal for h̃∗i to unity (which produces the half-normal

specification), but instead add a mixing variable λi in the variance function. A particular

inverse gamma prior for λi is then employed for the mixing variables λi. It is well-known and

easily demonstrated that, when integrating the mixing variables λi out of the conditional

distribution h̃∗i |λi, the the resulting marginal distribution will be (truncated) Student-t and

not half-normal. Thus, our formulation of the model is one that can accommodate skew

through different values of δ, and can also accommodate variation in tail thickness through

different choices of the degrees of freedom parameter ν in the hierarchical prior for λi. While

ν could be added as a parameter of the posterior distribution in principle, and thus one

could learn simultaneously about skew and tail thickness, in practice, we have found that

the addition of ν to the sampler tends to slow convergence. Thus we simply select ν = 8 a

priori, which seems to perform well in the context of our empirical application. In other ap-

plications, alternate values of ν could be explored, and the value which is deemed to provide

the best fit to the data could be employed in practice.13

13Alternatively, marginal likelihoods could be calculated at alternate ν values to either average over various
specifications or to select a particular model.
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As pointed out by Pewsey (2000) and others, a “problem” associated with this parameteri-

zation of the model is that the error terms h̃∗i are not mean zero. Thus, alternate values of δ

affect both the skew of the distribution of s and at the same time alter the mean of s (and

therefore affect the intercept’s value). In practice, this redundancy can lead to slow mixing

of the posterior simulator and also confounds the interpretation of the model parameters.

To resolve this issue, we re-center the latent variables h̃∗i to have mean zero. To this end,

first note that the truncated normal specification for h̃∗i implies

E(h̃∗i |λi) =

√
2λi

π

and thus, by iterated expectations,14

E(h̃∗i ) =

√
2

π
E(

√
λi) =

√
ν

π

Γ[(ν − 1)/2]

Γ[ν/2]
≡ cν .

We can then define a new truncated latent variable h∗i ≡ h̃∗i − cν . Performing a change of

variable, we can then re-formulate the model as follows:

yi = f(si) + xiβ + εi (3)

si = ziθ + δh∗i + ui, (4)

where [
εi

ui

] ∣∣∣∣xi, zi, h
∗
i

iid∼ N

[(
0
0

)
,

(
σ2

ε σεu

σεu σ2
u

)]
i = 1, 2, . . . , n,

h∗i |λi
ind∼ TN[−cν ,∞)(−cν , λi), i = 1, 2, . . . , n, (5)

λi
iid∼ IG

(
ν

2
,
2

ν

)
, i = 1, 2, . . . , n, (6)

so that the latent h∗i have mean-zero and thus δ does not enter the (unconditional) mean

function of s, fixing the interpretation of δ.

It is also important to mention that the model given in (3)-(4) is not the only alternative

that one could take. Our motivation for employing the model in (3)-(4) is that it is sim-

ple, intuitive, and parsimonious, and offers a useful generalization of the textbook model to

account for skew. However, we could account for such skew via the use of finite Gaussian

mixtures, among other possibilities. Indeed, Gaussian mixtures are far more flexible than

the distributional assumptions entertained here and could capture, among other features,

multimodality in the error distributions. However, the flexibility afforded by Gaussian mix-

tures could be argued to come at a cost; they can typically be parameter-rich, though one

14The mean E(
√

λ) can be obtained by performing the necessary integration with respect to the inverse
gamma density, and making a change of variable to represent the integral in terms of the gamma function.

9



can get around this problem by restricting all parameters other than the intercepts to be

equal across mixture components. In addition, the use of Gaussian mixtures typically re-

quires model selection methods or the adoption of reversible jump samplers to determine

the number of mixture components, and often requires restrictions to separately identify the

individual mixture components. These restrictions are not innocuous in practice, and this

problem of component identification (or label-switching) has received considerable attention

in the literature. Stressing the importance of this issue, Celeux, Hurn and Robert (2000, pg.

957) write that “almost the entirety of MCMC samplers implemented for mixture models

has failed to converge” owing to the label-switching problem. Geweke (2007), however, pro-

vides a more moderate view regarding the use of Gaussian mixtures, and stresses that some

parameters of interest, such as predictive densities, are not subject to the label-switching

issue.

The model in (3)-(4) is not subject to many of these concerns; there are no analogous identi-

fication issues to worry about and model selection can be easily carried out.15 Furthermore,

and much like a Gaussian mixture model with a known number of mixture components, a

posterior simulator for fitting this model is rather simple to implement in practice. How-

ever, this model surely does not enjoy the flexibility of Gaussian mixtures or other robust

alternatives, but is a simpler and seemingly valuable alternative when the error distribu-

tions are unimodal and accounting for skew is the salient problem. What is required in

practice, of course, is an application-specific verification that the specification in (3)-(4), or

straightforward generalizations of it, is adequately flexible for the problem at hand.16 We

will perform such diagnostic checking in the context of our specific application in section 4.1.

Our view is that the model in (3)-(4), though making no claims to be fully general, offers

a simple and intuitive generalization of the textbook Gaussian model which can go a long

way in accommodating skew in one, or potentially both of these equations. The use of this

method, however, will not be appropriate in all situations, and in these cases, more flexible

alternatives such as Gaussian mixtures or Dirichlet processes could be implemented.

Aside from the appearance of the truncated latent variables in (4), the biggest departure of

the model in (3)-(6) relative to the “textbook” treatment- response model is the nonpara-

metric specification of the endogenous treatment variable in (3). Though several approaches

could be employed to handle this issue, our approach to a nonparametric treatment of f(s)

follows that described in Koop and Poirier (2004).

15For example, a test of symmetry can be conducted by testing δ = 0 which can easily be implemented
via the Savage-Dickey density ratio.

16It is also worth noting that we suppose independence between h∗ an ε, which may or may not be
appropriate. The adequacy of this assumption can also be assessed with diagnostic checks via posterior
predictive simulation (see section 4).
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First, we sort the data by values of s, so that s1 refers to the lowest value in the sample,

sj < sj+1, j = 1, 2, . . . , kγ − 1, and skγ denotes the largest value. (In practice, different

observations may have the same values of s, and thus kγ ≤ n. In our data, for example, we

have information on n = 1, 782 females, which produces kγ = 672 unique values of BMI).

Stacking (3) and (4) over i, we can then obtain

y = Dγ + Xβ + ε (7)

s = Zθ + δh∗ + u, (8)

[ε′ u′]′
∣∣x, z,h∗ ∼ N(02n,Σ⊗ In),

where

γ ≡




f(s1)
f(s2)

...
f(skγ )


 ,

D is a n×kγ matrix with ith row di, which is constructed to select off the appropriate element

of γ for that observation, and the quantities y,X, ε, s,Z,h∗ and u have been stacked over i

in the obvious fashion.

As described in Koop and Poirier (2004), an informative prior on γ can be used to surmount

the problem of insufficient observations when kγ = n, and also to introduce the possibility

of smoothing the regression curve. To this end, we reparameterize the model in terms of the

quantity ψ ≡ Hγ, where

H ≡




1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0

∆−1
2 −∆−1

2 −∆−1
3 ∆−1

3 0 · · · 0 0 0
0 ∆−1

3 −∆−1
3 −∆−1

4 ∆−1
4 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · ∆−1
kγ−1 −∆−1

kγ−1 −∆−1
kγ

∆−1
kγ




,

and ∆j ≡ sj − sj−1. The elements of ψ = Hγ thus consist of a pair of “initial conditions”

ψ1 = γ1 and ψ2 = γ2 (i.e., the first two points on the regression curve) as well as differences

of the form

ψj =
γj − γj−1

sj − sj−1

− γj−1 − γj−2

sj−1 − sj−2

, j = 3, 4, ..., kγ

≈ f ′(sj−1)− f ′(sj−2),

so that the final kγ − 2 elements of ψ are first-differences of the pointwise slopes.

To introduce the potential of smoothing the regression curves, we place an informative prior

on the vector ψ. Specifically, we will place a reasonably flat (but proper) prior on the initial
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conditions ψ1 and ψ2 of the form

[ψ1 ψ2]
′ ∼ N [02, 10I2] , (9)

with I2 denoting the 2 × 2 identity matrix. As for the remaining elements of ψ, we specify

a prior of the form

[ψ3 ψ4 · · · ψkγ ]
′|η ∼ N

[
0kγ−2, ηIkγ−2

]
, (10)

with η acting as a smoothing parameter, similar in spirit to the frequentist bandwidth para-

meter in local polynomial regression. In the limiting case where η → 0, the first-differences

of pointwise slopes are imposed to be equal, resulting in f being linear (with ψ1 and ψ2

defining the intercept and slope of the line). Moderate values of η will result in smoothed

regression curves, while choosing η to be too large will produce regression functions that

are excessively erratic (see Koop and Poirier (2004) for more details). Putting (9) and (10)

together, we obtain a prior for ψ of the form

ψ|η ∼ N [0,Vψ(η)],

where Vψ(η) is a kγ × kγ block diagonal matrix with 10I2 on the upper block and ηIkγ−2 on

the lower block. The following priors complete the specification of the model:

β ∼ N(0,Vβ) (11)

θ ∼ N(0,Vθ) (12)

Σ−1 ∼ W (R, ρ) (13)

η ∼ IG(a, b) (14)

δ ∼ N(0, Vδ), (15)

with W (·, ·) denoting the Wishart distribution [see, e.g., Koop, Poirier and Tobias (2007, pg.

339)].

2.2 The Posterior Simulator

The complete model is given by the likelihood implied from (7) and (8) together with the

distributional assumptions on h∗i and λi in (5) and (6) and the priors in (9)-(15). Since

our priors are conditionally conjugate, posterior simulation is straightforward via the Gibbs

sampler,17 and proceeds in five steps. Before describing these in detail, let us first define

X =

[
DH−1 X 0n×kθ

0n×1

0n×kγ 0n×kβ
Z h∗

]
,π =




ψ
β
θ
δ


 ,

17Note that the triangularity of our model in (3) and (4) implies a unit Jacobian, regardless of the form
of f(s).
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and note that the priors given in (9)-(12) and (15) imply that π ∼ N(0,Vπ), where Vπ is

the (kγ + kβ + kθ + 1)× (kγ + kβ + kθ + 1) block diagonal matrix with Vψ(η), Vβ, Vθ and Vδ

stacked along the main diagonal. The five steps of our posterior simulator are enumerated

below:

Step 1: π|Σ−1, η,h∗,λ,y, s

π|Σ−1, η,h∗,λ,y, s ∼ N(Dπdπ,Dπ), (16)

where

Dπ =
(
X
′
(Σ−1 ⊗ In)X + V−1

π

)−1

, dπ = X
′
(Σ−1 ⊗ In)y, and y ≡ [y′ s′]′.

Step 2: Σ−1|π, η,h∗,λ,y, s

Σ−1|π, η,h∗, λ,y, s ∼ W




(
R−1 +

n∑
i=1

[
εi

ui

]
[εi ui]

)−1

, n + ρ


 . (17)

Note that εi are ui are “known” given the data and parameters π.

Step 3: η|π,Σ−1,h∗,λ,y, s

η|π,Σ−1,h∗, λ,y, s ∼ IG


kγ − 2

2
+ a,

[
b−1 +

1

2

kγ∑
j=3

ψ2
j

]−1

 . (18)

Step 4: h∗|π,Σ−1, λ, η,y, s

The assumptions of our model imply that each h∗i can be sampled independently from their

respective posterior conditionals. Completing the square on terms involving h∗i in the pos-

terior, we obtain

h∗i |Σ−1, π, η, λ,y, s
ind∼ TN[−cν ,∞)(µh∗i , σ

2
h∗i

), i = 1, 2, . . . , n, (19)

where

σ2
h∗i

=

(
λ−1

i +
δ2

σ2
u

+
σ2

εuδ
2

σ4
uσ

2
v

)−1

and µh∗i = σ2
h∗i

(
δs̃i

σ2
u

− cν

λi

− δσεuỹi

σ2
uσ

2
v

)
,

with

s̃i ≡ si − ziθ, ỹi ≡ yi − (DH−1)iψ − xiβ − σεu

σ2
u

s̃i and σ2
v ≡ σ2

ε (1− ρ2
εu).
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Step 5: λ|Σ−1,π, η,h∗,y, s

Equations (5) and (6) imply that each mixing variable λi can be sampled independently from

its posterior conditional, which is of the form

λi|Σ−1,π, η,h∗,y, s
ind∼ IG

(
ν + 1

2
,

[
ν

2
+

1

2
(h∗i + cν)

2

]−1
)

, i = 1, 2, . . . , n. (20)

The Gibbs sampler is implemented by drawing from (16)-(20), updating parameters in all

conditioning sets to equal their most recent values drawn from the algorithm.

3 The Data

In our empirical analysis we use the 1970 British Cohort Study, a longitudinal survey which

tracks the cohort of all people born in Great Britain between April 5 and April 11, 1970.

In this data set, cohort members and/or their parents are interviewed at the birth of the

cohort and when the cohort is five, ten, sixteen, twenty-six, and twenty-nine/thirty years

old18. During the first four interview waves, the parents were surveyed. Of particular interest

to this study, the parents reported their height and weight during the interview wave when

the cohort was ten years old. This allows for the creation of parent BMI variables. Finally,

we also exclude observations not pertaining to individuals living with his or her biological

parents at 10 years of age.

We observe labor market outcomes for the cohort when they were twenty-nine/thirty years

old. STATA code provided by the Centre for Longitudinal Studies is used to calculate hourly

wages from the raw data. Individual-level controls that we are able to extract from the data

include tenure on the current job (measured in months and denoted as JobTenure), labor

market experience (Experience), an indicator denoting the completion of a lower level of

secondary education (Highschool), an indicator denoting the completion of a higher level

of secondary education (ALevel), and an indicator for the completion of a college degree

program (Degree).19

We additionally include controls denoting if the individual is married (Married) or has a

18This wave of interviews was conducted between October 1999 and September 2000.
19The education variables indicate highest level of educational attainment. We consider an individual to

have a lower amount of secondary education if he or she has passed at least one GCSE, O-level, or CSE
exam. An individual has a higher level of secondary education if he or she has passed at least one A-level
exam.
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union job (Union). With the exception of parent BMI, all variables enumerated to this point

are employed in both the log wage and BMI equations.

For family background characteristics, we obtain the cohort members’ family incomes at ten

years of age (FamilyIncome), indicators denoting whether the cohort members’ mothers or

fathers held a college degree (MomDegree,DadDegree), and indicators denoting if the cohort

members’ mothers or fathers worked in a managerial or professional position (MomManProf,

DadManProf). Family income is included in both equations (3) and (4), as it was found

to be empirically important, while the remaining demographic controls are included in the

wage equation primarily to mitigate the “learned preferences” link between parent and child

BMI, which may undermine the instruments’ validity.20 Finally, heights and weights of the

parents are used to create parent BMIs (MomBMI,DadBMI), which we then employ as our

exclusion restrictions to identify our model.

We abstract from issues related to missing observations, and also focus on those individuals

in the sample who are engaged in full time employment. This last sample restriction is

potentially limiting, since BMI may play an important role in the decision to work and not

just the level of wages given that one is employed.21 We choose, however, to focus on the

employed to remain consistent with the model discussed in section 2, and also because a

more general model that accounts for the decision to work raises new endogeneity issues.

Specifically, an elaborated model of this type would require an additional source of exogenous

variation - some characteristic that influences the decision to work, but not log wages - and

we are not able to credibly determine such an exclusion restriction from our data. Following

the precedent set by other studies in the literature, we choose to conduct separate analyses

for men (n = 2, 561) and women (n = 1, 782). This yields kγ = 817 and kγ = 672 unique

values of BMI for our samples of men and women, respectively.

20The variables MomDegree, DadDegree, MomManProf and DadManProf were also added to the BMI
equation, and the analysis was repeated. We found little role for these variables in the production of BMI
(given the other set of employed controls) and moreover, their inclusion produced no meaningful changes in
the remaining parameters of the model.

21To investigate this issue we fit a probit model on the decision to work, which, like the outcome equation
in (3), included a nonparametric component of BMI as well as the other controls employed in this analysis.
Given the lack of an exclusion restriction in this exercise, the results should not be interpreted as causal,
but instead, simply summarize the association between BMI and the probability of employment across the
BMI support. For both men and women, we found that the probability of employment when plotted over
the BMI support has a (slight) inverse U -shape, with both tails of the BMI distribution associated with
relatively lower probabilities of employment. For women, the maximum probability of employment was
around .75, occurring at a BMI value near 28. At the 5th and 95th percentiles of the BMI distribution,
the probabilities of employment were .69 and .73, respectively. For men, the maximum probability of
employment was approximately .88, occurring at a BMI value near 25. At the 5th and 95th percentiles of the
BMI distribution, the probabilities of employment were both approximately .85. Thus, although curvature is
present, the shapes of these relationships are reasonably flat throughout a large portion of the BMI support.
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4 Results and Diagnostic Checks

Before diving into the results of our analysis, we first provide some evidence that our elab-

orated treatment-response model described in equations (3) - (6) provides an adequate fit

to our data. This exercise seems particularly important in light of the fact that instrumen-

tal variables, the dominant estimation technique in these types of models, does not require

the distributional assumptions made in our analysis.22 In the following section we provide

evidence that the assumptions made here are not introduced arbitrarily, with the singular

purpose of simplifying the posterior calculations, but instead, the model in (3) - (6) appears

capable of adequately modeling the observed log wage and BMI data in our application.

4.1 Diagnostic Checking

To begin our diagnostic checks, it is useful to start with what might be considered the “de-

fault” assumption regarding the error structure and to document some deficiencies associated

with this specification. We will then illustrate that our preferred model, as described in (3) -

(6), can overcome these deficiencies. We thus begin with the “textbook” Gaussian selection

model, as described in (1) and (2), and for the sake of brevity, we illustrate its performance

using the subsample of females.23

We fit the model in (1)-(2) using a restricted version of the Gibbs sampler described in section

2, noting that the mixing variables λ, latent variables h∗ and nonparametric component do

not appear in this posterior simulator. Instead, wages are imposed to be linearly related to

BMI, and joint normality is assumed. The sampler for this case (and all other cases) is run

for 10,500 iterations and the first 500 of these are discarded as the burn-in period.

There are numerous diagnostic checks for investigating the reasonableness of a model’s as-

sumptions, including, for example, the use of QQ plots [e.g., Lancaster (2004, Chapter 2)],

posterior predictive p-values [e.g., Gelman, Carlin, Stern and Rubin (2004, section 6.3)], and

other comparisons of specific features of the model to their counterparts in the observed data

22Note, however, that our model is non-standard in the sense that we provide a nonparametric treatment
of the endogenous treatment variable and thus linear IV can not be immediately applied. In addition, we
are able to obtain posterior inference that is exact rather than relying on large-sample approximations to
the sampling distribution of the IV estimator.

23The BMI distribution for males was decidedly less skewed, and the differences in the performances across
models were not as stark as those given here. For this reason, we focus on the female subsample to highlight
the performance of our method.
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[e.g., Koop, Poirier and Tobias (2007, Chapter 11)]. We focus here on one such exercise,

which we feel offers a reasonable global assessment of the adequacy of our model.

We first obtain histograms of the observed BMI and log wage data. The bin centers and

observed frequencies associated with these histograms are noted and stored. Once a model is

fit using the Gibbs sampler, we then obtain draws from the posterior predictive distribution.

That is, we obtain a vector yrep
j from p(yrep|y) where

p(yrep|y) =

∫

Θ

p(yrep|θ, y)p(θ|y)dθ, (21)

and yrep
j ∼ yrep|θ = θj, y, with θj representing the jth post-convergence draw from our

posterior simulator. The density p(yrep|θ, y) is simply the likelihood function assumed by

the given model (which does not depend on y given θ). In these simulations, we obtain a

vector yrep
j from the conditional density p(yrep|θ = θj, y) by choosing exactly the same x

and z values as those that our found in our sample of data. This motivates our use of the

notation “rep” to denote replications of the observed data from the posterior predictive, i.e.,

they are “a re-run of history on the assumption that the model is what generates histories”

[Lancaster (2004, pp. 90-91)].

The act of generating a series of yrep variates in this way can reveal how well the model

fares in reproducing the actual BMI and log wage distributions in the sample. Each yrep is

an n × 1 vector, whose distribution should mimic the actual distribution of y and s if our

model’s assumptions are reasonable. To compare the predictions of our model to those found

in the actual data, we obtain a histogram of the log wage and BMI values that are replicated

from the posterior predictive, using the same bin centers and bin widths that were used

to obtain the histograms associated with the observed log wage and BMI data. We obtain

such a histogram for each post-convergence draw θj. The posterior predictive frequencies

within each bin are then averaged across iterations to produce a final histogram. This final

histogram is then graphed alongside the histogram of the actual data, using the same scales

for the x and y axes.

In Figure 1, we compare the posterior predictive and observed BMI histograms under the

textbook Gaussian treatment-response model. Not surprisingly, the Gaussian histogram ap-

pears symmetric and is clearly not capable of reproducing the skew in the observed BMI

distribution. The leftmost bin of the Gaussian histogram is also quite large, revealing that

as the Gaussian model matches the (conditional) error variance in the data, many replica-

tions are produced in the far left-tail of the BMI distribution. These replications are then

lumped into the first (smallest) bin, resulting in the spike appearing in the graph. These
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Figure 1: Actual (Top) and Replicated (Bottom) BMI Histograms obtained from Gaussian Model.

results suggest that the default treatment-response assumptions are not appropriate for this

application.24

A remedy to the problem of modeling a skewed variable which is ubiquitous in empirical

practice is to model its logarithm. In our application the log transformation does not elimi-

nate the skew associated with BMI, as the natural log of BMI retains a skewness coefficient

of approximately .74. To investigate the performance of the lognormal model more formally,

we repeat the analysis described above, this time defining s to be log BMI, and retaining the

assumption of joint normality. The posterior predictive and observed histograms associated

with log BMI from this exercise are presented in Figure 2. As seen in this figure, the distribu-

tion of observed log BMI continues to have a right-skew, and, not surprisingly, the replicated

log BMI distribution is approximately symmetrically distributed. Again, this suggests that

the lognormal model, though an improvement over the textbook Gaussian model,25 is not

ideally suited to this data.

In Figure 3 we present results associated with the skew-normal model of (3)-(6), but to keep

comparisons with earlier exercises consistent, we restrict the nonparametric specification

24This conclusion was not guaranteed, since other variables, such as parental BMI, are also skewed, which
could induce a skew in the predictive histogram even under normality. Our results show that the predictive
essentially remains symmetric despite this issue.

25Note that, in levels, the predictive BMI distribution from the lognormal model will have a right-skew, a
feature that the textbook Gaussian model does not reproduce.
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Figure 2: Actual (Top) and Replicated (Bottom) Log BMI Histograms. Gaussian Model with s defined as Log

BMI.

in (3) to a linear one. As is evident from Figure 3, the predictions (replications) from our

model with skew-normality fare well, and clearly perform better than the lognormal model in

producing a histogram that reproduces the overall shape of the observed sample distribution

of log BMI. Though the results of Figures 1-3 offer a reasonably complete picture of this

comparison, we can also focus on specific features of the BMI distribution to illustrate the

relative and absolute performance of the skew-normal model. These results are presented in

Table 1.

In Table 1, we record the skewness, maximum, minimum, median, 15th and 85th percentiles

of the actual BMI data as well as the skew of log BMI and Corr(y, s). Posterior replications

of each of these statistics are then obtained from posterior predictive distributions associated

with the skew-normal, lognormal and Gaussian models. As Table 1 illustrates, the skew-

normal model performs the best of those considered in all but one category (where the best

in each category is marked with a “*”), and the lognormal model does not perform well in

statistics related to the skewness of the BMI variable and its natural logarithm. Finally, the

skew-normal model also fares well in matching Corr(y, s) in the data, suggesting that the

assumed independence between h∗ and ε is not obviously problematic for this application.
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Figure 3: Actual (Top) and Replicated (Bottom) BMI Histograms obtained from Skewed Treatment Response

Model

4.2 Empirical Results

We are interested in applying the algorithm of section 2 to the 1970 British Cohort Study

data to address the following questions: (1) Does BMI play a role in the production of wages

for men or women? (2) If so, is there evidence of a differential impact of BMI across gender?

(3) Is there evidence of unobserved confounding, or that BMI needs to be treated as an

endogenous variable? (4) Are there any nonlinearities in the relationships between BMI and

log wages? (5) If so, do these nonlinearities align with clinical classifications of the body

mass index? That is, are the wage penalties different for individuals in the “normal” BMI

range (18.5-25), in the “overweight” range (25-30) and in the “obese” range (30+)? 26

For both the male and female samples, we fit the model using the Gibbs sampler, as described

26Sargent and Blanchflower (1996) study workers in Great Britain and find evidence that weight-for-height
has an effect on wages of females, but do not find evidence that weight-for-height has an effect on the wages
of males. Specifically, they find that females in the top 10% of the BMI distribution (which they report to
be a BMI of at least 26.1) earn roughly 5% less than females in the bottom 90%. Females in the top 1% (a
BMI of at least 33.3) earn roughly 14% less than females in the bottom 99%. These results are similar to
those of Harper (2000), another study of workers in Great Britain. The results of Sargent and Blanchflower
(1996) are also in general agreement with what is reported by studies of the same relationships in samples
of U.S. workers. Cawley (2004) studies the sample of U.S. workers in the 1979 National Longitudinal Survey
of Youth and finds that a one point increase in BMI decreases wages by about 1% for white females, and
does not affect wages for white males.
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in section 2, setting a = 3, b = 1.0 × 105, ρ = 5, R = I2, Vβ = Ikx , Vθ = Ikz and Vδ = 10.

Without question, the most influential of these choices on our posterior results is the choice

of hyperparameters a and b, which govern the smoothness of our regression function. This

choice of a and b sets the prior mean and prior standard deviation of the smoothing parameter

η equal to 5.0× 10−6. These hyperparameters were settled upon after some experimentation

and model checking, and were found to produce posterior results that were smooth ( in

accord with our prior beliefs), yet did not constrain the regression function to be necessarily

linear.

To expedite convergence of the sampler, we started the parameter chain at reasonable values

based on separate single-equation analyses of (3) and (4). Specifically, we first employed a

posterior simulator to fit equation (3) only, and from the Gibbs output, we obtained poste-

rior means of β, f(s) and σ2
ε to use as starting values. Similarly, a posterior simulator for

equation (4) was also employed, which produced posterior means of θ, δ, and σ2
u to use as

starting values. Since these single-equation analyses are appropriate in the absence of unob-

served confounding, we set the initial value of the covariance parameter σεu to zero. With

these starting values, standard diagnostic checks suggested convergence within a hundred

iterations. In practice, we obtained 10,500 posterior simulations and discarded the first 500

as the burn-in.27

4.2.1 Results for the Females Sample

Coefficient posterior means, standard deviations, and probabilities of being positive for the

female sample are presented in Table 2 of the appendix. For the log wage equation [i.e.,

equation (3)], the results presented in the table are generally consistent with our prior ex-

pectations. Specifically, we see moderate evidence of a quadratic relationship in both tenure

on the current job and labor market experience. Family income also plays a significant role

in the wage equation, as does the education level of the worker. The posterior distribu-

tions associated with the parental education and occupation parameters, however, generally

placed a reasonable mass near zero, though having a father employed in a management or

professional position does seem to be strongly associated with higher wages.

In terms of the reduced form BMI equation [i.e., equation (4)], we see clear evidence that

parental BMI plays a strong role in the production of BMI of the child. Specifically, a unit

27We also performed generated data experiments in attempt to find errors in the posterior simulator and
to investigate the performance of the algorithm. These experiments suggested that the program performed
adequately in recovering the parameters used in the data generating process.
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increase in the BMI of the mother or the father tends to increase the BMI of the child by

approximately .3 points. The posterior standard deviations associated with these coefficients

are also quite small relative to their means, and our posterior simulator produced no draws

of these regression parameters whose values were negative.

In addition, as an informal check of the instruments validity, we performed a version of

the standard overidentification-type test. That is, we first assumed that MomBMI was a

valid instrument and then included DadBMI in both the BMI and log wage equations. We

then calculated the relevant Bayes factor, which under equal prior odds gives the posterior

odds in favor of imposing the restriction that the coefficient associated with DadBMI in the

wage equation is zero. Performing these calculations via the Savage-Dickey density ratio, we

obtained a Bayes factor of 290.27, indicating strong support that DadBMI can be excluded

from the log wage equation. Repeating this exercise, but this time assuming that DadBMI

was a valid instrument, we obtained a Bayes factor of 115.95 associated with the hypothesis

that the MomBMI coefficient was equal to zero. These results provide intuitive support

(though certainly not formal proof) for the validity of the instruments.

For the remaining parameters of our model, we note that the posterior mean and standard

deviation of the skewness parameter δ were 3.91 and .141, respectively, providing strong

evidence of a pronounced right-skew in the BMI distribution. The correlation parameter

ρεu, which quantifies the degree of unobserved confounding, had a posterior mean of .082

and a posterior standard deviation of nearly equal magnitude. A formal Bayes factor in favor

of the restriction ρεu = 0, calculated via the Savage-Dickey density ratio,28 yielded a value

of 5.26. This suggests that, for our sample of females, concerns regarding the endogeneity

of BMI seem rather minimal, as the restricted model with no confounding is favored by a

factor of approximately 5.26 to 1 under the employed priors.

Finally, in Figure 4, we present a point estimate (i.e., posterior mean) of the function f(s) in

equation (3). For the sake of comparison, we also include a plot of the same function under

the restricted model in (1) and (2) where the relationship between BMI and log wages is

assumed to be linear. In terms of the point estimates, the linear model is found to overstate

the magnitude of the BMI penalty (i.e., the slope of the regression curve) over both very

small and reasonably large values of BMI, and understate this magnitude for moderate BMI

values. These results are somewhat consistent with our prior intuition, where we speculated

that marginal increases in BMI would not be penalized severely, if at all, for an individual

with low values of BMI, but would become increasingly penalized as the individual moves

28See, for example, Koop, Poirier and Tobias (2007, page 69) for more on the implementation of this test.
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Figure 4: Posterior Means of Functions Relating BMI to Log Wages from Nonparametric and Linear Models.

Females Sample.

toward the right of the BMI distribution. We find empirical support for this hypothesis

until we reach a BMI value of approximately 28 (roughly the 85th percentile of the BMI

distribution), where, somewhat surprisingly, the BMI penalty tends to level off and continues

to do so even for obese females with BMI values exceeding 30. These results are also robust

to moderate changes in the prior (i.e., the general shape of Figure 4 is unchanged when

choosing hyperparameters similar to those currently employed), though, of course, strong

(or weak) priors on η can essentially force linearity (or yield an estimated function that is

unreasonably erratic).

It is also relevant to question whether the data support the nonlinear specification relative

to the more parsimonious linear model. We do not report a formal marginal likelihood

calculation in this regard, as Bayes factors are highly sensitive to the prior specification,

particularly in this situation where the prior plays an important role in governing the shape

(smoothness) of f(s).29 However, we note that the posterior mean of the smoothing para-

meter η is approximately one-half of its prior mean, and the posterior standard deviation

is approximately one-third the magnitude of the prior standard deviation. This suggests

29For example, if the prior for η essentially imposes linearity, yet the data pull our prior toward slightly
larger values of η, we will tend to reject the hypothesis of linearity, even if our point estimates are indistin-
guishable from a linear model. Conversely, if the prior for η concentrates over “large” values, and the data
pull our prior slightly toward zero, marginal likelihood calculations will tend to support linearity, even if the
resulting posterior estimates seem quite nonlinear.
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that the data have moved our prior toward smaller values of the smoothing parameter, thus

leading us to favor linearity, even though our point estimates under this prior suggest some

nonlinearities in the regression function.

A seemingly useful exercise here involves changing the prior hyperparameters for the smooth-

ing parameter, and keeping track of when the data move our prior toward larger values of

η (and thus away from linearity). If we can find a value of b (keeping a = 3) such that the

posterior becomes shifted to the right relative to the prior, yet the results in Figure 2 still

suggest the same general pattern of nonlinearities, this suggests data-provided evidence in

favor of the existence of these nonlinearities. Conversely, if such a movement to the right is

difficult to document under any reasonable choice of b, or only happens under a b where the

prior and posterior means of f appear linear, then little support seems to be offered against

the linear model.30 With this exercise in mind, we find that when setting b = 1.0 × 106

(which implies a prior mean and standard deviation for η equal to 5.0× 10−7), the posterior

mean of η becomes larger than the prior mean and the posterior distribution becomes more

concentrated than the prior. This suggests that our data do not support such a large degree

of smoothing. This trend of right-shifting persists for values of b larger than b = 1.0 × 106,

though, again, if b is sufficiently large, both the prior and posterior mean of f(s) will appear

linear. Interestingly, under this prior with b = 1.0× 106, the posterior mean of f retains the

same general shape as presented in Figure 4, suggesting that such departures from linearity

appear to be supported by the data. We will also revisit this issue of nonlinearities and their

empirical importance in a formal comparison of average derivatives in the following section.

4.2.2 Results for the Males Sample

Coefficient posterior means, standard deviations and probabilities of being positive for the

males sample are provided in Table 3. Figure 5, like Figure 4, plots the posterior mean of

the function f(s) for our sample of males, as well as the mean obtained from the restricted

linear model in (1) and (2).

The results of Table 3 are, for the most part, very similar to those obtained for the females

analysis. In particular, we see strong evidence of a quadratic profile in job tenure, modest

evidence of a quadratic profile in labor market experience, family income and educational

30Note that this technique, unlike traditional Bayes factors calculations, explicitly makes use of different
priors rather than a single prior in the model comparison exercises. The spirit of this approach, as we search
for a prior that is “inline” with the posterior, is somewhat similar to an empirical Bayes procedure, where η
would be chosen to maximize the marginal likelihood.
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attainment are clearly important explanatory variables in the log wage outcome equation,

the parental BMI instruments play strong roles in the production of child BMI, and the

posterior mean of δ again provides evidence of a right skew in the BMI distribution. This

skew, however, is not as pronounced as the skew found in the females sample. We also

obtain similar results when performing the overidentification-type tests. When assuming

that DadBMI is a valid instrument and including MomBMI in the log wage equation, we

calculated a Bayes factor equal to 36.41 in favor of the model that excludes MomBMI.

Similarly, when assuming that MomBMI is a valid instrument and including DadBMI in the

log wage equation, we calculated a Bayes factor equal to 60.56 in favor of the model that

excludes DadBMI. These results, like those of the female sample, provide suggestive evidence

supporting the validity of our identification strategy.

One important difference relative to our females sample, however, is that we find evidence

of an endogeneity problem for males. Specifically, the posterior mean of the correlation

parameter ρεu is .26, and all post-convergence simulations associated with this parameter

were positive. These posterior statistics clearly illustrate the importance of controlling for

unobserved confounding for our males sample. In our view, the positive correlation can also

be provided with a reasonable economic interpretation. To this end, consider the case of

a male worker who is (unobservably) dedicated to his job, and thus earns a higher wage

than would otherwise be predicted based solely on observables. This “dedication” would, at

least in part, likely require the worker to spend less time engaged in other activities, such as

exercise, or home preparation of meals, which we might associate with lower values of BMI.

Such a story is consistent with the finding of a positive correlation among the unobservables,

which is also consistent with our prior expectations. The fact that such a correlation was

not found among our females sample, however, leaves something of a quandary, although

the point estimate for females was also positive (.082), with a reasonably high posterior

probability of being positive (.897), which is broadly consistent with our finding for the

males sample. We have little explanation, however, for the remaining differential impact

across genders, other than to suggest that similarly dedicated females may be less willing,

on average, to substitute away from activities which affect health and lower BMI.

The graphs in Figure 5, like those of Figure 4, again suggest some evidence of nonlinearities

in the relationship between BMI and log wages. Interestingly, for the males subsample,

the function is reasonably flat (though clearly downward sloping) over BMI values in the

“normal” range. However, unlike our results for the females subsample, we see comparably

large wage penalties for males who are overweight or obese.

Table 4 offers a clearer picture of the nonlinearities found within the male and female sam-
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Figure 5: Posterior Means of Functions Relating BMI to Log Wages from Nonparametric and Linear Models.

Males Sample.

ples and a more careful comparison of slopes across gender groups. We focus in particular

on how BMI wage penalties change across common clinical divisions of the body mass in-

dex. To this end, we focus on obtaining distributions associated with the average derivative

within a given region. The average derivative is simply the expected rate of change of the

function f , where the averaging is performed with respect to the density of the data, which

in our application, would be the density of BMI.31 Focusing on the average derivative, un-

like nonparametric estimation of the function of itself, can prove to be insightful since
√

n

asymptotics are applicable regarding its estimation,32 leading to more precise calculations

regarding the possible existence of nonlinearities. Our idea is to make use of the average

derivative to investigate the possible existence nonlinearities across various “clinical” clas-

sifications of BMI, and to see if these average rates of change within a given region vary

across gender groups. Formally, within a given BMI region C, the average derivative can be

31Formally, the average derivative is obtained as
∫

f ′(s)g(s)ds, where g(s) denotes the density of BMI.
32See, for example, Banerjee (2007).
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calculated as follows:

AvgDerC ≡ E[f ′(s)|s ∈ C]

≈
n∑

i=1

f ′(si)Pr(s = si|s ∈ C)

=
n∑

i=1

f ′(si)

[
Pr(s = si)

Pr(s ∈ C)
I(si ∈ C)

]

=
1

Pr(s ∈ C)

∑
i:si∈C

f ′(si)Pr(s = si)

≈
∑

i:si∈C wif
′(si)∑

i:si∈C wi

.

The second line above notes that the actual distribution of BMI in our sample is discrete,

with multiplicities occurring at “common” BMI values. The final line notes that the average

derivative for the region C can be calculated as a weighted average of pointwise derivatives

within that region (which are produced from our posterior simulator), with weights denoted

as wi. These weights can be easily obtained from our sample as the fraction of observations

with the given BMI value: wi = [1/n]
∑n

j=1 I(sj = si). Since AvgDerC is a function of the

parameters ψ, we can use our posterior simulations to approximate the posterior distribution

of this average derivative. The results of these calculations are provided in Table 4.

First, we focus on within-gender comparisons. For females, the posterior means of the average

derivatives are -.016, -.014, and -.002 for our three BMI classifications. These results indicate

that the average percentage decreases to wages resulting from a one-point increase in BMI

are 1.6, 1.4 and .2 for normal weight, overweight, and obese females, respectively. The final

row in this top section of the table calculates the likelihood that the normal weight average

derivative exceeds the average derivatives in the overweight and obese ranges. Although the

probability that the average slope for normal weight women exceeds (i.e., is less negative

than) the average slope for overweight women is rather modest (.314), we do see strong

evidence that the slope is less negative for obese women than it is for normal weight women.

(The posterior probability associated with this statement is 1 − .031 = .969). For men,

the results are somewhat reversed, as the average slopes in the overweight and obese ranges

are -.03 and -.027, respectively, which are far more negative than the average slope in the

normal weight range (-.014). In fact, the probability that the average slope in the normal

range exceeds (i.e., is less negative than) the average slopes in the overweight and obese

ranges are .986 and .899, respectively.

The final row of the table helps quantify how different the average BMI wage penalties are

across men and women over different regions of the BMI support. For the normal BMI region,
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there is little evidence of a differential penalty across men and women, though, when defining

the normal BMI region as [20, 25], (as occasionally done in the literature), we do see modest

evidence that men receive a smaller average penalty to marginal increases in BMI than

women receive. (The posterior probability that this statement is true was approximately .7).

However, overweight and obese men experience a significantly steeper average BMI penalty

than comparably overweight and obese women. (The posterior probability that overweight

women had a smaller average BMI penalty than overweight men was approximately 1−.024 =

.976 and the posterior probability that obese women had a smaller average BMI penalty than

obese men was approximately 1− .006 = .994). As a whole, the results of Table 4 attest to

the importance of nonlinearities in the BMI-log wage relationships since, for a given gender

group, we find strong evidence that average slopes differ across BMI regions. In addition,

the results suggest that men and women are not penalized in the same way for increases to

BMI, and perhaps surprisingly, men tend to receive the largest penalties for being overweight

or obese. The pattern of these results are quite interesting, and illustrate the value of the

methodology of section 2, which enables the researcher to flexibly explore the relationship

between the endogenous BMI variable and the log wage outcome.

5 Conclusion

In this study we extended earlier analyses of the effect of BMI on wages by providing a

nonparametric treatment of the function relating these variables. We derived and employed

a Bayesian posterior simulator for fitting this model, which not only allowed for a non-

parametric treatment of a potentially endogenous BMI variable within a treatment-response

framework, but also flexibly allowed for possible skew in the conditional BMI distribution.

We found some evidence of nonlinearities in the relationships between BMI and log wages,

and that the shapes of the estimated regression functions were different for men and women.

We found that males receive relatively small penalties to increases in BMI provided their BMI

falls in the “normal” range, while overweight or obese males receive comparably large wage

penalties for further increases to BMI. Conversely, women were found to receive the largest

wage penalty at relatively low BMI, and smaller penalties as BMI increased. Our finding

in the males sample that BMI affects wages at all is somewhat novel in the literature. It is

our hope that the results presented here not only add value to this specific field of inquiry,

but that the general methodology described in section 2 will be useful to other researchers

whose empirical models share a similar structure.
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Table 1: Replication Summaries Across Alternate Models
Model Statistic/Percentile

Corr(s, y) Skew(s) Skew[log(s)] Min(s) 15th 50th 85th Max(s)
Raw Data -.155 1.33 .74 13.75 20.34 23.03 28.16 43.85

Skew- E(·|y) -.119(*) 1.24(*) .60(*) 13.47(*) 20.17(*) 23.36(*) 27.99 44.81(*)
Normal Std(·|y) .029 .078 .075 .952 .112 .101 .135 1.79
Log- E(·|y) -.015 .55 .029 13.30 19.85 23.65 28.22(*) 42.74
Normal Std(·|y) .050 .079 .060 .770 .150 .143 .212 2.70
Normal E(·|y) .014 .078 -.57 9.19 19.39 23.93 28.59 40.51

Std(·|y) .047 .061 .099 1.43 .190 .157 .198 1.95

Table 2: Parameter Posterior Means, Standard Deviations
and Probabilities of Being Positive. Females Subsample (n = 1, 782)

Wage Equation

Variable E(·|y)
√

Var(·|y) Pr(· > 0|y)
JobTenure .0210 .0074 .998
JobTenure2 -.0009 .0006 .044
Experience .0247 .0148 .954
Experience2 -.001 .0008 .109
FamilyIncome .0007 .0002 1.00
HighSchool .0694 .0227 1.00
ALevel .2764 .0323 1.00
Degree .3414 .0307 1.00
Union .0346 .0191 .967
Married -.0139 .0174 .213
MomDegree .0559 .0501 .868
MomManProf -.0024 .0252 .462
DadDegree -.0149 .0278 .297
DadManProf .0556 .0224 .993

BMI Equation

Variable E(·|y)
√

Var(·|y) Pr(· > 0|y)
Constant 7.80 .656 1.00
FamilyIncome .002 .001 .977
HighSchool .304 .193 .945
ALevel .391 .291 .905
Degree -.379 .220 .045
Union .158 .162 .839
Married .278 .154 .968
MomBMI .326 .021 1.00
DadBMI .309 .023 1.00

Other Parameters

Parameter E(·|y)
√

Var(·|y) Pr(· > 0|y)
δ 3.91 .141 1.00
η 2.98× 10−6 1.77× 10−6 1.00
σ2

ε .125 .004 1.00
σ2

u 4.19 .464 1.00
ρεu .082 .063 .897
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Table 3: Parameter Posterior Means, Standard Deviations
and Probabilities of Being Positive. Males Subsample (n = 2, 561)

Wage Equation

Variable E(·|y)
√

Var(·|y) Pr(· > 0|y)
JobTenure .0234 .0074 .999
JobTenure2 -.0011 .0005 .011
Experience .0325 .0139 .991
Experience2 -.0008 .0007 .142
FamilyIncome .0008 .0002 1.00
HighSchool .0674 .0199 1.00
ALevel .3045 .0369 1.00
Degree .377 .0294 1.00
Union .0318 .0196 .947
Married .1106 .0174 1.00
MomDegree .0605 .0490 .891
MomManProf -.0019 .0297 .480
DadDegree .1388 .0288 .9998
DadManProf -.0148 .0241 .266

BMI Equation

Variable E(·|y)
√

Var(·|y) Pr(· > 0|y)
Constant 11.08 .563 1.00
FamilyIncome .003 .001 .997
HighSchool .118 .134 .807
ALevel .030 .263 .540
Degree -.423 .189 .000
Union .199 .143 .922
Married .706 .127 1.00
MomBMI .224 .017 1.00
DadBMI .334 .020 1.00

Other Parameters

Parameter E(·|y)
√

Var(·|y) Pr(· > 0|y)
δ 2.49 .139 1.00
η 3.45× 10−6 1.85× 10−6 1.00
σ2

ε .169 .006 1.00
σ2

u 7.19 .526 1.00
ρεu .261 .052 1.00

Table 4: Average Derivative Statistics Across BMI Regions
BMI Region

Normal Overweight Obese
BMI ∈ [18.5, 25) BMI ∈ [25, 30) BMI ≥ 30

E(·|y) -.0164 -.0137 -.0020
Women Std(·|y) .0062 .0045 .0051

Pr(· > 0|y) .0057 .0000 .3320
Pr(AvgDer. Normal > ·|y) —- .314 .031
E(·|y) -.0140 -.0306 -.0264

Men Std(·|y) .0082 .0071 .0083
Pr(· > 0|y) .0500 .0000 .0000
Pr(AvgDer. Normal > ·|y) —- .986 .899

Pr(AvgDer. Men > AvgDer. Women|y) .581 .0235 .0057
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