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1. Introduction

Various Markovian processes have been found for traffics arising in telecommunica-
tion networks, especially when the traffics exhibit high autocorrelations. Many authors
modeled correlated arrival processes as MAPs (Markovian Arrival Processes) which
generalize MMPP (Markov Modulated Poisson Process) in a continuous time frame-
work and MMBP (Markov Modulated Bernoulli Process) in a discrete time framework.
However, the drawback of these models is to estimate many parameters of MAP which
should be extracted from the marginal distribution and the correlation structure of the
measured data, and such estimation requires time consuming works. Consequently, in
order to reduce the number of parameters, we use the 2-state MMPP/MMBP simply
because they have only 4 parameters or less to estimate and their autocorrelations
are exponentially/geometrically decaying, which is one of the salient features of the
traffics in telecommunication networks such as ATM (Asynchronous Transfer Mode).
Although the 2-state MMPP and MMBP have many applications, marginal distri-
butions of both processes are fixed in the sense that, the arrival processes at each
state of underlying Markov chain are Poisson and Bernoulli, respectively. In contrast,
there are some works based on time series such as Gaussian-based Time Series (GTS)
[5], discrete autoregressive process [6, 10] and MA (Moving Average) [7, 13]. Refer
to [10] for details. Among those time series, the discrete autoregressive process of
order 1 (shortly, the DAR(1)) is a Markov process of which autocorrelation function is
geometrically decaying, and it can exhibit general distribution (Refer to section 2 for
details). In addition, the DAR(1) is much simpler than the BMAP (Batch Markovian
Arrival Process) which can exhibit general distribution. In spite of such merits of
the DAR(1), relatively little attention has been paid to the DAR(1) in performance
analysis of telecommunication networks because the analytical method of the queue
with the DAR(1) is not easy to develop. Elwalid, Heyman, Laksman, Mitra and Wiss
[6] analyzed the queueing system with the DAR(1) based on large deviation theory, but
they assumed that the distribution of the size of an arriving batch has a finite support.
Recently, Hwang and Sohraby [10] developed an exact analysis of a queue fed by the
DAR(1) where the size of an arriving batch has a general distribution with infinite

support. They obtained closed form expressions for the PGF (Probability Generating
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Function) of the queue length and the mean queue length of the system in a discrete

time framework.

Despite their success in the analysis of the queue with the DAR(1), the PGF of the
queue length in [10] is of quite complex form, which is not convenient for numerical
computation of queue length distribution. The aim of this paper is focused on how to

compute and approximate the waiting time distribution for the DAR(1)/D/1 queue.

In this paper, we consider a discrete time queueing system with the DAR(1) and
obtain the actual waiting time distribution and the virtual waiting time distribu-
tion. We assume the time is divided into slots of equal size and one slot is needed
to serve a customer. In this paper we will use the term “cell’instead of the term
“customer”because our model has applications in ATM networks. We consider the
early arrival model [16] which means that the cells arrive just after the beginning of
each slot, so that one of the cells newly arriving in the slot may be served if there is no
cell waiting in the queue at the arrival epoch. We analyze the system by constructing
an embedded Markov chain for the waiting time of the GI/G/1 queue, and obtain the
PGFs of the actual waiting time distribution and the virtual waiting time distribution.
As will be shown in the analysis, our approach provides natural numerical algorithm
to compute both waiting time distributions, based on the theory of the GI/G/1 queue,
and consequently we can easily investigate the effect of the parameters of the DAR(1)
on the waiting time distributions. We also present a simple approximation of the
asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy

traffic case.

The organization of the paper is as follows: In section 2 we provide a mathematical
description of the system. In section 3 we investigate the queue with the DAR(1) and
derive the PGFs of the actual waiting time distribution and the virtual waiting time
distribution. We also provide some numerical results on the waiting time distribution.
In section 4 we present an approximation of the asymptotic decay rate for the virtual
waiting time distribution in terms of 1 — p where p denotes the offered load of the

system.
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2. Mathematical Description

In this paper, we consider a discrete time single server queueing system with the
DAR(1). To introduce the DAR(1), we consider a sequence of independent and
identically distributed (i.i.d.) random variables {B,},>0 with PGF B(z) = E[2P].
We assume that B,, takes its values on {0,1,2,---} and denote by, = P{B,, = k},k > 0.
We further assume that the mean and the second moment of the random variable By

exist. We define the DAR(1) {A,}.>0 by the following regression equation, for n > 0

AO =d Bo,

An—i—l = (]- - an)An + aan, (1)

where {ay, }n>0 are i.i.d. Bernoulli random variables with P{a,, =1} =p (0 <p <1),
and independent of the sequence {B,}. We assume that Ay is independent of B,, as
well as a,, for n > 0.

Note that the DAR(1) {Ay}»>0 is a Markov chain and determined by the parameter
p and the probability mass function {by}r>0 of B,. The state space of {Ay}n>0 is
{0,1,2,---} and the one step transition probability matrix for {A,},>0 is given by

100 -- bo b1 by

= ) 010 --- bo b1 by
= -p +p )

001 --- bo b1 b

so that the smaller p generates the stronger correlation of consecutive arrivals, and we

have
A,  with probability 1 — p,

Apt1 =
B, with probability p.
We can show that A, and B, have the same distribution, i.e., P{A, = k} = b. This
statement implies that A,, can have any given distribution. Let A and B be the generic
random variables for A,, and B,,, respectively.
In order to find the autocorrelation function of {A,},>0, observe that

E[Am+nAm] = / L Bm+n—1AmdP+/ Am+n—1AmdP
Am4n—1—

AUm4n—1=0

p E[BIE[A] + (1 — p)E[Apin-14m]- 2)
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Now we apply above relation (2) inductively

E[Am-‘rnAm] = p(E[A])2 + (1 _p) {p(E[A])2 + (1 _p)E[Am+n—2Am]}
= p(E[AD* +p( - p)(E[A])* + (1 - p)* E[Am4n—24m]

= p(B[AD® +p(1 — p)(E[A]? + p(1 — p)*(E[4])*
+-+p(l - ) HE[A])? + (1 - p)"E[4%)

_ 2 p)n n 2
— pEA)? { T P[4
= (1 - p)"(BLA%] - (BLA)?) + (BLA)? 3)

Hence the autocorrelation +, of the sequence {A4,} can be obtained from (3) as

follows:

— E[(Aq — E[Ao]) (A, — E[A,])]
" E[(A - E[A])(A - E[A])]
= (1-p" n>0 (4)

Equation (3) shows that the DAR(1) is a short range dependent process and the smaller
p gives the stronger correlation of {4,,}. When p = 1, A, is the same as B,, and so
the DAR(1) generates i.i.d. arrivals.

Since we consider a discrete time system, we assume that time is divided into slots
of equal size. We also assume that a batch of size A,, arrives during (n — 1,n) (which
is called the nth slot). Let g, be the queue length at the beginning of the nth slot.
Then ¢, satisfies

Gny1 = (gn — 1+ An)+7

where (X)T = max(0,X). Even though the above evolution equation for {g,} seems
to be the same as the Lindley equation of the GI/G/1 queue, the standard GI/G/1
queueing theory cannot be applied directly to {g,} because there is correlation in the
sequence {4, } when 0 < p < 1. Hence, it seems to be inevitable to consider a sequence
of supplementary variables, say, {s,} to capture the correlation in the sequence {4,}
and construct a two-dimensional Markov chain {(gy, s,)} in the analysis. For example,

one candidate for {s,} is the sequence {4, 1}, and in this case we have {(¢,, 4n_1)}
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Figure 1. Basic Periods and Embedded Points

as the two-dimensional Markov chain. Another candidate for {s,} is that s, denotes
the discrete time since the sequence {ay} last changed its value. However, it seems
to be hard or at least complex to obtain the steady state joint PGF of (g, s,) or the
steady state PGF of g, in general. In this paper, by choosing suitable time epochs
as our embedded points and constructing a one-dimentional embedded Markov chain
we show that the analysis to obtain the actual and virtual waiting time distributions
resembles the analysis of the standard GI/G/1 queue and consequently, the analysis
would be relatively simple and efficient.

Let p be the offered load of the system, defined by p = E[A]. Since A and B have
the same distribution, we also have p = E[B]. We assume that p is less than 1 for

stability.

3. Waiting Time Distributions

In this section we derive the PGFs of the actual waiting time distribution and the
virtual waiting time distribution. To do this, it is quite helpful to introduce a basic
period. A basic period is defined by the time period which begins with the slot, say n,
satisfying a, = 0 and a,—1 = 1, and ends with the slot, say k(> n), satisfying oy = 1.
If we have consecutive slots, say n and n + 1, satisfying a,, = 1 and a,, 41 = 1, then the
basic period is defined by the last slot of the two consecutive slots. Refer to figure 1.

Based on the concept of the basic period, we define an active period by a basic
period during which there arrives a batch of size greater than 0, and define an idle

period by the time period between two consecutive active periods. Note that we might
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have an active period immediately followed by the next active period. In this case,
we assume that an idle period between two consecutive active periods is of length 0.
Introduce two random variables X,, and Y,, which denote the lengths of the n-th active

period and the n-th idle period, respectively. Then, from the definitions of two periods,

we know
P{X,=1} = (1-p''p, I>1,
P{Y, =0} = 1-—b,
P{Y, =m} = bo[l—p(1—bo)]™ *p(1 —boy),m > 1.

For the analysis we consider the beginnings of active periods as our embedded points,
and refer to the beginning epoch of the n-th active priod as the n-th embedded point.
We assume that a batch of size greater than 0 arrives to an empty queue at slot 1.
Since the batches arriving in a sigle active period are of the same size, we let B, to
denote the batch size during the n-th active period. It is known that

by,

P{B, = k} = 125,

k> 1.

Note that {B,,} are i.i.d.. In the analysis we exclude the trivial case where by +b; = 1,
so that we have by > 0 for some k > 2.
Let g, be the queue length at the n-th embedded point. Then §, satisfies the

following evolution equation:
q_n—f-l = (Qn + Xn X (Bn - 1) - Yn)+7 (5)

which is equivalent to the evolution equation for the waiting time of the GI/G/1
queue (called the induced GI/G/1 queue in this paper) where the interarrival times
are according to {Y,,} and the service times are {X,, x (B, — 1)}. Let p be the offered
load of the induced GI/G/1 queue. Then, from the fact that p = E[B] > P{B > 1} it
is easy to show that

EX|(EB] - 1)
E[Y]
p— (1 —bo)
bo ’
and 0 < g < 1. Here, X and Y denote the generic random variables for {X,} and
{Y,.}, respectively. So, the induced GI/G/1 queue is stable and hence the limiting
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steady state distribution of {g,} exists and its PGF §(z) satisfies [4, 14]

1- R*(1)

q(z) = 1—R'(2)’ (6)

where Rt (2) = )50, rf 2% is the generating function of a strictly ascending ladder
height random variable of the random walk generated by {X, x (Bn -1)-Y,}.!
Now we are ready to derive the PGF of the actual waiting time distribution. For
doing this, let’s tag an arbitrary cell in the arrivals in the steady state. Let B, be the
size of the batch to which our tagged cell belongs. From Renewal theory we know the

distribution of B, is given by

_ nb,
PiB=n} = FE0 -t
nb,,
= E[A]a n Z ]-7

where B denotes the generic random variable for {B,}. Consider the active period
in which our tagged cell arrives. Let T" denote the elapsed time in the active period
until the slot in the active period where our tagged cell arrives. Using Renewal theory
again, we know the distribution of T is given by
P{X > m}

E[X]

P{T=m} =

Observe the following facts:

1. The lengths between two consecutive embedded points are i.i.d.. Hence, by
Markov renewal theory, the number of cells in the queue, seen by the first batch

arriving in the active period, has the same distribution as the random variable §.

2. The increase in the number of cells in the queue during the elapsed time T is
(n — 1)m, given that the elapsed time T is m and the batch size arriving at the

slot in the active period is n. We denote this number of cells by Kj.

1For a random walk {S,} generated by {Z,}, i.e., So = 0 and Sp, = Z1 + --- + Z,, the strictly
ascending ladder epoch 7 = inf{n > 1: S, > 0} and the strictly ascending ladder height (defined
only on {74 < oo} only) is defined by S- .
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3. The number of cells prior to our tagged cell in the batch to which our tagged cell
belongs is according to a uniform distribution depending on the size of the batch.

We denote the number of cells prior to our tagged cell in the batch by Ks.

From the above observations and the fact that a single slot is needed to serve a cell, it

is easy to show that the actual waiting time W, of the system satisfies
W, =d qd+ K1 + K. (7)

Consequently, the PGF W, (z) of the actual waiting time distribution is derived from

(6) and (7) as given in the following theorem.

Theorem 3.1.

Wo(2) = §(2) Z p(l —p)™ Z gﬁz] Z %z(n—l)m-i-l

m=0 n=1 =0
1— R+(1) e’} [e%s} b n—1 B
— 1 —p)™ n (n 1)m+l_

Next, we derive the PGF of the virtual waiting time distribution. For doing this,
consider an arbitrary slot and refer to it as our tagged slot. Introduce a random variable
1, which is defined by 1 if our tagged slot is in an active period and by 0 otherwise.

Then, we know

P12,
P{I, =0} = % = bo, (9)

Consider the case where our tagged slot is in an active period. In this case, let T}, denote
the elapsed time (including our tagged slot) in the active period until our tagged slot.

Then, we know

P =m} = T - 1, (10)

Next, consider the case where our tagged slot is in an idle period. In this case, let T;
denote the elapsed time (including our tagged slot) in the idle period until our tagged
slot. Then we know

P{Y 2n} _

P{T, = n} = E[Y]

p(1=bo)[l = p(1 =bg)]" ™, n > 1. (11)
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From the above notations, it is easy to show that the virtual waiting time W at the

end of our tagged slot, satisfies
W=I,x[g+T,x(B=1)]+(1-1,)x[§"+X x (B*-1)-Ty]", (12)

where the random variables with superscript * have the same distributions as the ran-
dom variables without superscript *, respectively. Note that all the random variables
involved are mutually independent. Hence, from (9), (10), (11) and (12) we obatin the

following theorem.

Theorem 3.2. Let W(z) be the PGF of the virtual waiting time distribution. Then
we have W(z) = q(z), that is, the distribution of the virtual waiting time W is the
same as that of the queue length q at an embedded point.

Proof. Note that the random variable T, has the same distribution as X, which
is a well-known property of a geometric random variable. In addition, note that the
distribution of Tj is the same as the conditional distribution of Y, given that Y > 1.
We use Y, to denote the random variable having the conditional distribution of Y,

given Y > 1. So, from (12) we have

W =4 IL,x[@+T.x(B-1)]+1-L)x[+Xx(B*-1)-T"
= Y =0}x[g+ X x(B-1D]+H{Y >1}x[¢"+X*x (B*-1)-Y]*"

=1 [g+X x(B-1)-Y]"

where I{-} denotes the indicate function. Therefore, the proof is completed.

In the rest of this section, we mention the numerical algorithm that our approach
naturally provides. To obtain the waiting time distributions of our system, as seen in
(8) and Theorem 3.2 it is quite inevitable to compute the waiting time distribution
of the GI/G/1 queue induced from our embedded method. A number of authors
proposed the numerical algorithms to compute the waiting time distribution of the
GI/G/1 queue. Ackroyd [3], Fryer and Winsten [8], Konheim [12] and Grassmann
and Jain [9] considered a discrete time GI/G/1 queue. The first three works used

root finding algorithms to compute the waiting time distribution, while, the work in
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[9] used iterative schemes to compute the waiting time distribution. Here we use the
iterative scheme proposed in [9] to obtain our numerical results simply because the
task of finding all roots of a complex polynomial is very difficult, in general. Once we
compute the waiting time distribution of the induced GI/G/1 queue, it is quite easy
to obtain the actual/virtual waiting time distribution of our system from Theorem 3.1

and Theorem 3.2.

Now, we give a numerical example to see the effect of the change in the actual waiting
time distribution as p varies. In our numerical example, we use B(z) = (gz + 1 — q)¥,
i.e., the marginal distribution is according to a Binomial distribution. We put ¢ = 0.15
and N = 5, which means the offered load p = 0.75. Figure 2 displays the change of the
actual waiting time distribution as p varies from 0.1 to 1.0. Figure 2 shows that the
value of p significantly affects the tail probabilities and the effect due to the change in

the value of p is getting more significantly when the value of p is getting smaller.

4. Decay Rate Approximation

In most discrete time queueing systems with short range dependent process as arrival
process, it is quite remarkable to approximate the tail probability of the waiting time

distribution by a simply geometric form
lim 25 P{W >k} = 8.
k—o0

Here, 8 and 1/zy are called the asymptotic decay constant and the asymptotic decay
rate, respectively. Such exponential asymptotic result for the GI/G/1 queue was first
established by Smith [15] and has been recently extended by many authors. Refer to

[1, 2] and the references therein.

Heavy traffic expansion was also first proposed by Smith [15]. For further extension,
see [1]. In this section we first derive the upper and lower bounds of asymptotic
tail probability of the virtual waiting time distribution and next we approximate the

parameter 1/z¢ in terms of 1 — p when the offered load p is near to 1.

Let’s begin with the equation (5) for the waiting time of the induced GI/G/1 queue.

From the theory of the GI/G/1 queue we know there are three constants ¢,, ¢; and 5
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which satisfy the inequalities: (for example, see [11])
e ™ < P{G>k} <cue ™, k>0, (13)

where (> 0) satisfies

ElenXx(B-1)-Y)] — 1, (14)

For the existence of such 7 we further assume that X x (B — 1) has a finite moment
generating function around the origin in this section.

From Theorem 3.2 and (13) we know the asymptotic decay rate 1/z of tail probabil-
ities for the virtual waiting time is e~". Consequently, our next step is to approximate
7 in terms of 1 — p when p is near 1.

Observe that

5_1—b0+ 2

B (4 5 — D+ 28 ) o), 19)

E[e"X*E-D] = 14 pE[X] (—1+L)+n2E[x2](

1 p E[B?]
1—bo )

and that

Ele™™]=1-nE[Y]+ n2E2[Y2] - n3E6[Y3] + o(n®). (16)

Further, from the definition of the random variables X and Y we know

1 bo
EX] = -, E]Y]= ,
X= g EVI= Ty
2-p 2~ p(1— by)
2 _ 27 _
BXTT = 5 EVI=bemm e
_ 2
E[X3] — 6(;#’
6 — 6p(1 — bo) + p(1 — bo)”
3 —
BV = e by |

Substituting (15), (16) and the above equations into (14) we have, after some manip-

ulations

1—p = n{hi(1—p)+h2}+1°{hs(1—p) + ha} + o(n?), (17)
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where
—2+bo + p — pho
hy =
(=1+bo)p
—2+p+(2-p)(1 - bo)E[B?]
he =
2p
he = _6—6p+p° +bo(—6+9p—2p*) +b3(2—3p+p°)
2(1 — bo)2p?
he = (-2 +3E[B? - E[B®))(6 — 6p+p)
6(—1 + bo)p?
N bo[6 — 9p + 2p* + E[B?](—30 + 33p — 6p?) + 2E[B3](6 — 6p + p?)]
6(—1 + bo)p?
| BI=ELB(6 = 6p+17) + 3E[B](4 = 5p + )] .
6(—1 + bo)p? '
Recursive substituting (17) into itself yields, after some manipulations
1 — p = nha +n*(h1hs + hs) + o(n?). (19)

From (19) and using the same technique given in section 4 of [1] we obtain the

expression of 7 in terms of 1 — p as follows:
1 _ hiho + hg

n=s.0-0) 7 1= p)%+o0((1 - p)*). (20)
In addition, from (18) the coefficients of 1 — p and (1 — p)? can be derived as follows:
1 2p
hy — (2-p)(B[B?-1)
hihe + by Ap[—p® — 6(1 — p) E[B?] + (6 — 6p + p*) E[A%]] (21)
h3 3(2-pB(EB?]-1) '

Here we use E[B*] = (1 — bo)E[B*],k > 1.
Hence, we finally obtain the following approximation of the asymptotic decay rate

of the tail probabilities for the virtual waiting time when p is near 1:

Theorem 4.1. Under heavy traffic condition, the asymptotic decay rate 1/z¢ of the

tail probabilities for the virtual waiting time, can be approrimated as follows:
1/zg = 14c(1=p)+ec(l—p)?+o((1-p)?),

where the coefficients ¢1 and co are given as

_ 2p
‘T Te-pEBI-
¢ = 2plp(p—6)—3(4—6p+p*) BB + 26 — 6p+p*) BB

3(2-pP’[E[B?] - 1]°
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Proof. From the fact that 1/29 = e, we have

,',’2
1z = 1=n+- +o®’)

L hiho + hg N2 N2
(372 + 2122 ) (- g7+ o1 - "),

1
1——(1-
h2( p) +

The coefficients of (1 — p) and (1 — p)? can be computed from (21) as given in the

theorem, which completes the proof.

Remark: When we have found an approximation for the decay rate, we can obtain

an approximation for the asymptotic decay constant § as follows: [1]
B =nEW]+0((1-p)*) asp—1,

where 7 is given by (20) and (21) and an approximation for the mean virtual waiting
time E[W] can be obtained from, for example, Tijms [17]. Interesting reader may refer

to the discussion below Theorem 4 of [1].
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Figure 2. The effect of p on the waiting time distribution



