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1. Introduction

The role of active large shareholders in improving corporate performance has been discussed
extensively in the last two decades. Although collectively institutional investors such as pension
funds and mutual funds hold a substantial and increasing fraction of shares in public companies in
the U.S., these large shareholders typically play a limited role in overt forms of shareholder activism
such as takeovers, proxy fights, strategic voting, shareholders’ proposals, etc. One possible reason
for this is that many forms of shareholder activism are costly to active shareholders, and these
shareholders arguably realize a relatively small fraction of the benefits. In other words, we have
the classic “free rider” problem. In addition to this, agency problems affecting the incentives of
the large shareholder, legal barriers, and the fact that many large shareholders, particularly mutual
funds, are committed through their charters not to invest resources to monitor their portfolio firms,
have also worked to limit activism.1 If a large shareholder is aware that a firm’s management
does not act in the best interest of shareholders, it may be rational for the shareholder to follow
the so-called “Wall Street Rule” or “Wall Street Walk,” which leads the shareholder to sell his
shares (i.e., “vote with his feet”) rather than attempt to be active.

Since the Wall Street Walk seems to be an alternative to activism, it appears to be inconsistent
with it. This has led some (see, e.g., Bhide (1993) and Coffee (1993)) to argue that market
liquidity that allows potentially active shareholders to exit and therefore not engage in monitoring
and governance activities impairs corporate governance. What seems to have not been widely
recognized is the possibility that the Wall Street Walk itself can be a form of shareholder activism.
One exception is Palmiter (2002, p. 1437-8), who suggests that large shareholders may be able
to affect managerial decisions through the “threat (actual or implied) of selling their holdings and
driving down the price of the targeted company.” If managers’ compensation is tied to share prices,
and if the exit of a large shareholder has a negative price impact, then the presence of a large
shareholder who is potentially able to trade on private information may help discipline management
and improve corporate governance. This form of monitoring is consistent with behind-the-scenes
negotiation with management or ‘jawboning’ activities, which are often considered an alternative
to more costly control mechanisms and which seem to be common and often successful in affecting
managerial decisions.

Note that it is not clear a priori whether and how the ability of a large shareholder to exit
might work to alleviate agency problems between managers and shareholders. First, since exit by
a large shareholder is assumed to drive down the price of the targeted firm, it would appear that
the large shareholder loses when he carries out such a threat to exit. This leads one to question

1 There are many papers in the law and economics literature on the role of large shareholders in
corporate governance and on shareholder activism. With each of them taking a somewhat unique
point of view on the subject, Bainbridge (2005), Bebchuk (2005), Black (1990), Black and Coffee
(1994), Gillan and Starks (1998), Grundfest (1993) Macey (1997), Palmiter (2002), Roe (1994)
and Romano (1993, 2001) discuss how shareholder activism has been practiced, describe some of
the barriers that have limited its use and effectiveness, and suggest ways that large shareholders
can become more involved in corporate governance.
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whether the threat is credible. Second, even if the threat is credible, it is not clear that the threat
will always work to benefit other existing shareholders. Third, it is not clear whether the threat
of exit continues to work when in addition to the price impact created by the large shareholder’s
exit, the large shareholder incurs other costs of carrying out the threat such as transactions costs.
Finally, it is not clear that exit by the large shareholder benefits the remaining shareholders if the
large shareholder’s exit means the loss of future monitoring benefits that would accrue if the large
shareholder did not exit.

In this paper we examine all of these issues within a model where a firm’s manager has
incentives that are not aligned with shareholders. We assume that a large shareholder has private
information about the manager’s actions and/or the consequences of these actions to the value of
the firm, and that he can sell his shares (exit) based on this information. In our model all agents
are rational and prices perfectly reflect all public information, including the large shareholder’s
trading decisions. Our model combines two common elements present in trading models and in
models of executive compensation, namely that (i) large shareholders have incentives to collect
information and use it for trading and (ii) explicit and implicit managerial compensation contracts
generally lead managers to be sensitive to market prices of their firm. The resulting disciplinary
impact of large shareholder exit potentially explains some of the observed interaction between
large shareholders and managers.

Our analysis examines two distinct types of agency problems. In one case, the manager can
take an action that is undesirable (value-reducing or “bad”) from shareholders’ perspective, but
which produces a private benefit to the manager. In the other case, the action is desirable (value-
enhancing or “good”) from shareholders’ perspective, but it is privately costly to the manager.2

Mature firms with large cash reserves (Free Cash Flow) may be more prone to a the first type
of agency problem while the second type of agency problem may arise when profitable projects
entail high cost to the manager in effort or through the risk of failure and job loss. The large
shareholder in our model observes some information privately before other investors, and may be
able to trade on the basis of this information. For each of the agency problems and for a number
of different information structures, we examine how the presence of the privately-informed large
shareholder affects the agency costs associated with the action.

While the two types of agency problems described above may seem to be mirror images of
one another, it turns out that they can lead to dramatically different results with respect to the
disciplinary impact of the large shareholder. This is most striking when all investors observe
whether the action was taken and the large shareholder has private information regarding the
consequences of the action. In this case we show that the threat of sale by the large shareholder
increases, at the margin, the punishment to the manager for taking a bad action but decreases
the reward for taking a good action relative to the benchmark case where the large shareholder is
not present. Thus, the presence of the large shareholder leads to a reduction in the agency costs

2 We assume for most of the paper that investors are aware of which of these agency problems
is present. (Section 8 discusses “model uncertainty.”)
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associated with a value-reducing action but to an increase in the agency costs associated with a
value-enhancing action.

We also examine how potential exit may affect the agency problem when exit has conse-
quences beyond the price impact that is due to its informational content. For example, there may
be transaction costs borne by the large shareholder when she trades, or there may be a further
reduction in the value of the firm due to the loss of future monitoring benefits. The latter cost
is different from a transactions cost, since it is borne by all shareholders and affects managerial
compensation in our model. We show that even in the presence of these exit costs, the threat of
exit can be credible, and it can reduce the agency costs. In fact, the large shareholder may be
more effective in disciplining the manager if exit reduces the subsequent total value of the firm,
because in this case exit inflicts a relatively larger punishment on the manager for not acting in
shareholders’ interests.

It should be noted that, while it is important in our model that the threat of exit be credible,
in many of the equilibria we analyze exit does not necessarily occur frequently in equilibrium.
In some cases where the threat of exit has a strong disciplinary impact, exit actually takes place
with probability zero in equilibrium.

There is an extensive theoretical literature on shareholder activism and on the role of large
shareholders in corporate governance.3 The models in this literature typically assume that the
large shareholder can take a costly action, often called “monitoring,” to affect the value of the
firm. The possibility that the large shareholder can trade is sometimes considered in this literature,
but the focus is generally on the incentives of the large shareholder to engage in monitoring and/or
on the ownership structures that arise endogenously, and the implicit or explicit assumption is that
monitoring is inconsistent with exit. In our model, by contrast, the ability of the large shareholder
to exit is the sole “technology” by which the large shareholder attempts to impact managerial
decisions. While in most of our analysis we take the information structure as given, our results
have immediate implications for the case where information acquisition is endogenous. This is
discussed in the concluding remarks.

The notion that stock prices may play a role in monitoring managers was discussed in
Holmstrom and Tirole (1993). Their model and the focus of their analysis differ from ours in
several ways. In particular, Holmstrom and Tirole focus on how the ownership structure of the firm
affects the value of market monitoring through its effect on liquidity and on the profits speculators
realize in trading on information. In our model, by contrast, we focus on the disciplining impact
of a large shareholder’s threat of exit and examine how the effectiveness of this threat depends
on the nature of the agency problem and the information structure.

More recently Gopalan (2005) and Edmans (2006) have also modeled the possibility that

3 A partial list includes Admati, Pfleiderer and Zechner (1994), Aghion, Bolton and Tirole
(2004), Attari, Banerjee, and Noe (2006), Bolton and Von Thadden (1998), Burkart, Gromb and
Panunzi (1997), Faure-Grimaud and Gromb (2004), Hartzell and Starks (2004), Huddart (1993),
Kahn and Winton (1998), Katz and Owen (2001), Maug (1998), Mello and Repullo (2004), Noe
(2002), Tirole (2001), and Yung (2005).
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potential exit can have positive impact on the firm. In Gopalan (2005), exit by an informed large
shareholder can encourage another bidder to acquire information and implement improvements
through a takeover mechanism. This mechanism for bringing about an improvement is obviously
very different from the one at work in our model, which focuses on managerial incentives. The
main difference between our model and that of Edmans (2006) is that our model addresses fun-
damental agency problem that are most extreme if the manager’s compensation is not sensitive
to prices and which are partly alleviated through the price dependence of the manager’s compen-
sation, while in Edmans (2006) there is no fundamental agency problem — the manager would
always make the optimal decision from shareholder’s perspective if his compensation were fixed
salary. The agency problem in Edmans (2006) arises because of the combined assumptions that
the manager’s compensation depends on short term prices (as in our model), and that his actions
affect the public information available to investors. In particular, in Edman’s model the more
productive the action, the more unfavorable is the public signal that is generated in the short term.

Empirical studies of the role and impact of large shareholders have documented various
facts that are consistent with our model. In particular, Carleton, Nelson and Weisbach (1998)
present evidence that large shareholders can affect firms’ values through private negotiations.
This is consistent with our model, because discipline through exit requires that the manager
knows that the large shareholder is informed. Parrino, Sias, and Starks (2003) provide evidence
to support both the notion that large shareholders are better informed than other investors, as our
model assumes, and the fact that they sometimes use their private information to “vote with their
feet.” They suggest that the price impact of these trade may affect corporate decisions. Sias,
Starks and Titman (2001) also suggest that the price impact of large shareholder trading is likely
due to superior information, consistent with our model. More recently, Massimo and Simonov
(2006) and Qiu (2006) show that non-controlling large shareholders can have meaningful impact
on managerial decisions, particularly in preventing managers from taking value-reducing actions
(such as bad acquisitions). These results are generally consistent with our model. The concluding
remarks offer additional discussion about the empirical implications of our results.

The paper is organized as follows. We introduce our basic model and the two agency problems
in Section 2. Section 3 analyzes the case where the large shareholder’s private information includes
only the manager’s action and no investor observes the effect of the action on the value of the firm
until the final period. In Section 4 we examine what happens when the large shareholder privately
observes both the manager’s decision and its impact on the firm’s value. Section 5 considers the
case where the manager’s action is observed by all investors and the large shareholder’s private
information includes only the action’s implications. For completeness, we analyze in Section 6
the case in which the impact of the action on the firm value is publicly known, and the private
information of the large shareholder only concerns whether the action is taken or not. In Section
7 we consider situations where exit by the large shareholder is costly to the large shareholder
beyond its negative price impact because of transactions costs. We also consider the possibility
that exit results in an additional cost that is borne by all shareholders, specifically a cost that is
associated with loss of future monitoring benefits provided by the large shareholder. Section 8
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discusses briefly two extensions where investors have additional uncertainty, and Section 9 offers
concluding remarks.

2. The General Model

There are three periods in our model. In period 0 the manager, whom we denote by M ,
decides whether or not to take a particular action. An agency problem arises because M and the
shareholders of the firm have conflicting preferences with respect to this action. We will analyze
two distinct models using the same notation. In one model, which we refer to as Model B, the
action available to M is “bad” in the sense that it is undesirable from shareholders’ perspective,
but the action produces a private benefit to M . In another model we analyze, Model G, the action
is “good” for shareholders in that it increases the value of the firm, but it requires M to incur
a private cost. We denote the value of the firm if M does not take the action by ν. If M takes
the action in Model B, then the value of the firm decreases by δ̃ ≥ 0 and becomes ν − δ̃, while
M obtains a private benefit of β > 0. If the action is taken in Model G, then the value of the
firm increases by δ̃ ≥ 0 and becomes ν + δ̃, while M incurs a private cost of β > 0. These two
models may seem like mirror images of one another but, as we will see, in our setting they can
produce dramatically different results.

Our basic assumptions regarding uncertainty and the information structure are as follows. The
status-quo value of the firm ν is fixed and common knowledge. This is without loss of generality
in the sense that ν may be random but it is assumed that no agent has private information about
it. (In fact, the value of ν will not play any significant role in our analysis.) In period zero,
investors assess that δ̃ has a non-trivial continuous distribution f(·) with support on [0, δ], where
δ is positive and possibly infinite. M observes the realization of δ̃ before making the decision
whether to take the action or not. We further assume that the private cost or benefit β is fixed
and known to all investors. (The possibility that β is random is discussed in Section 8.)

Since M makes his decision regarding the action after observing δ̃, his strategy can be
described by a function a(δ̃), where a(δ̃) = 1 denotes the event in which M takes the action and
a(δ̃) = 0 denotes the event in which he does not take it. In most of our analysis, investors will
make inferences regarding the expected change in the firm value, which is given by a(δ̃)δ̃, given
the information they have. To simplify the notation we will use the short-hand ã to represent M’s
action instead of a(δ̃). We assume that in the final period, investors do observe the realizations
of both ã and δ̃. The value of the firm is therefore ν − ãδ̃ in Model B and ν + ãδ̃ in Model G.

We assume that the firm is owned by many small and passive investors as well as by a large
shareholder, whom we denote by L. (For expositional clarity we will use female pronouns to refer
to L.) The exact ownership structure will not matter to our results, since valuation will be done
under risk neutrality. We assume that L observes some private information regarding ã and/or δ̃
in period 1, and that she may be in a position to sell her shares on the basis of this information.
Because it generally reflects her private information, L’s trading decision will have an impact on
the firm’s price in period 1. This in turn has the potential to affect M’s decision if M cares about
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the market price of the firm in period 1.

The manager’s compensation is assumed to be linear in the realized market price of the
firm in periods 1 and 2, P1 and P2. Specifically, we assume that M’s compensation is equal to
ω1P1 + ω2P2, where ω1 and ω2 are non-negative coefficients representing the dependence of the
compensation on the firm’s short-term (“Period 1”) and long-term (“Period 2”) price performance
respectively.4 We assume for most of our analysis that ω1 and ω2 are positive, but we will also
consider the limit cases where ω2 vanishes. If ω1 = 0, then L will not be able to affect M’s
decision through her trade. The potential impact of L on M ’s decision comes about through the
impact of her trading decisions on P1. We assume that the prices, P1 and P2, are set by risk-
neutral, competitive market makers and therefore reflect all of the information publicly available.
This means that P2 equals ν − ãδ̃ in Model B and ν + ãδ̃ in Model G. In Period 1, P1 reflects
the information contained in L’s trading decision as is described in more detail below.

If M does not take the action, then his utility is simply his compensation, ω1P1 + ω2P2.
If he takes the action in Model B, M ’s utility is equal to the sum of his compensation and the
private benefit β. Similarly, if M takes the action in Model G, then his utility is equal to the
compensation minus the private cost β. We assume that M chooses whether to take the action or
not to maximize his expected utility for every realization of δ̃.

We assume that L may be subject to a liquidity shock in period 1. Specifically, there is
probability 0 < θ < 1 that, independent of her private information, L will need to sell her entire
stake in period 1.5 While the value of θ is common knowledge, only L knows her actual motives
for trading when she trades. We generally assume that θ > 0, but our model is also well defined
in the limit case where θ = 0, i.e., when L is never subject to a liquidity shock. As will become
clear, most of our results will apply to this case as well, and we will often use it for illustration.
The main complication for the θ = 0 case is that additional equilibria can arise that are not the
limit of any equilibrium for the case θ > 0 as θ vanishes.6 The equilibria we analyze for the

4 We take the form of M’s compensation as exogenous here. Presumably, M’s compensation
balances risk sharing and various agency considerations. If the agency problem considered in this
paper was the only relevant problem in the contracting environment between M and shareholders,
then it would be reasonable to endogenize the dependence of the compensation on prices. However,
we believe that in reality M ’s compensation is designed to solve a more complex problem. We
therefore limit ourselves to asking what disciplinary impact L can have given this compensation
function. It might be interesting to examine the robustness of our results to other compensation
functions or to attempt to endogenize the compensation within a more general agency framework.

5 It simplifies our analysis that there is only one quantity that L sells when she is subject
to a liquidity shock. However, our results would not change if the liquidity shock entailed L
selling less than her entire stake. Our model can also be analyzed under the assumption that
L receives a shock that forces her to buy shares or a shock that might involve either buying
or selling. We have not examined systematically all the variations of our model under these
alternative trading assumptions, since our focus is on the disciplinary impact of the Wall Street
Walk, i.e., the possibility of exit by the large shareholder. For those versions of the model that
we have analyzed, however, which are those discussed in Section 3, we have found that having a
positive probability of a liquidity buy trade does not change the qualitative nature of our results.
6 For example, there may be equilibria in which L never sells and therefore never has effect on
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θ > 0 cases always have a well-defined limit as θ goes to zero, and are indeed equilibria of the
model in which θ = 0.7 If she is not subject to a liquidity shock, L chooses whether or not to
sell her shares if the expected value of the firm given all her information is smaller than P1, the
price at which she would exit, where P1 incorporates the information communicated by the sale.

We will analyze the Bayesian-Nash equilibria of Model B and Model G under various as-
sumptions concerning what L and other investors observe in period 1. In such equilibria M , using
his information, makes the optimal decision regarding his action, taking L’s trading strategy as
given. Similarly, L, based on her information, determines whether to sell her shares in the event
that she is not subject to a liquidity shock.8 Both M and L take as given the fact that P1 will
reflect the conditional expectation of ãδ̃ based on the information available to investors, including
L’s trading decision, in period 1.

For most of our analysis we will make the following tie-breaking assumptions: (i) if M is
indifferent between taking the action and not taking the action then he takes the action; (ii) if L
is indifferent between selling her shares and not selling, she sells her shares. Generally, when
we use these assumptions, they will not change the set of equilibria, because δ̃ has a continuous
distribution and indifference will hold for at most one realization of δ̃. We will not employ these
assumptions in cases where they would change the set of equilibria non-trivially, e.g., in the limit
case where ω2 = 0 or in the model where δ̃ is publicly observable in period 1 (which is analyzed
in Section 6).

Given a particular realization of δ̃, M must decide whether to take the action. It is easy
to see that in the benchmark case in which L is not present and ã is not observed by investors
until period 2, M will take the action if and only if δ̃ ≤ β/ω2 in Model B and if and only if
δ̃ ≥ β/ω2 in model G. For most of our analysis we assume that β/ω2 < δ, i.e., that there is a
positive probability that M acts in the interests of the shareholders (refraining from taking the
action in Model B and taking the action in Model G).9 For a strategy of M that specifies whether
he takes the action or not as a function of δ̃, the ex ante expected value of the firm in Model B is
ν −E(δ̃ã). Similarly, in model G, the ex ante value of the firm given M’s strategy is ν +E(δ̃ã).

M ’s decisions through her trading, or equilibria where L sells only some of her shares. Eliminating
these equilibria would require restrictions on out-of-equilibrium beliefs.
7 Thus, whenever we discuss L’s equilibrium strategies for the case θ = 0, we will assume

that they are obtained as the limit of her strategies when θ > 0. For example, if L is indifferent
between selling and not selling her shares for a given value of δ̃ if θ = 0, but she strictly prefers
to sell for the same value of δ̃ in the model whenever θ > 0, then we will assume that L sells her
shares also in the model with θ = 0.

8 We do not need to consider trades by L that cannot arise from a liquidity shock, since such
trades will generally lead to zero expected profits under reasonable assumptions about investors’
beliefs. However, when investors cannot be sure whether L’s trade is based on private information
or liquidity, L makes positive profits when he trades on his information. See the discussion of
L’s information advantage in Section 7.
9 This assumption, which holds trivially when δ is infinite, is made for ease of presentation

only. If ω2 > 0 our results are easily modified when it does not hold. We will address the limit
case where ω2 = 0 separately in some of our analysis.
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Note that the best outcome from shareholders’ perspective in Model B is that M never takes
the action, which means that highest value of the firm in this case is ν. Since the firm value is
reduced by δ̃ whenever ã = 1 relative to this best case, the ex ante expected agency cost associated
with the action in Model B is E(δ̃ã). Analogously, the first best from shareholders’ perspective
in Model G is that M always takes the action, which increases the value of the firm from ν to
ν + δ̃. Since the increase of δ̃ is not realized whenever ã = 1, the ex ante expected agency cost
in Model G is equal to E(δ̃(1 − ã)) = E(δ̃) − E(δ̃ã). Thus, in Model B the ex ante expected
agency cost is reduced if E(δ̃ã) is made lower, while the opposite is true in Model G. We will
be interested in the impact that L’s presence has on the ex ante expected agency cost in the two
models, which from now on we will simply refer to as agency cost. This impact is measured by
the difference between the agency cost in the equilibrium where L is not present and the agency
cost in the equilibrium when L is present. It will be useful to use the following terms:

Definition: Consider the impact that L’s presence has on the agency cost associated with the
action.

(i) An equilibrium is disciplining if L’s presence has a positive impact, i.e., the agency cost is
lower when L is present than when she is not present.

(ii) An equilibrium is non-disciplining if L’s presence has no impact on the agency cost.

(iii) An equilibrium is dysfunctional if L’s presence has a negative impact, i.e., the agency cost
is higher when L is present than when she is not present.

It is easy to see that in order for the equilibrium to be disciplining, L must have some
information about ã in period 1, and that some of her information at that point must be private.
We will examine L’s impact under various information structures that satisfy this condition. We
will at times also compare, for the same model specifications, L’s effectiveness in Model B vs.
Model G. To distinguish the different information structures, we will use superscripts to denote
the information observed by L in period 1, and subscripts to denote the information (if any) that
is publicly observed by all investors in period 1. For example, Model Ba is Model B where L
observes ã in period 1 and investors do not observe either ã or δ̃ directly until period 2; Model
Ga,δ
a is Model G where ã is observed publicly in period 1, and, in addition, L observes δ̃ privately

in period 1. Note that when there is no subscript, investors do not observe either ã or δ̃ in period
1. When there is no superscript, the model is the base or benchmark model where L is not present.

3. Action-Only Monitoring

We start our analysis by assuming that L observes privately whether M has taken the action,
i.e., the realization of ã. However, neither L nor other investors are assumed to observe the
realization of δ̃ until period 2. The models in this section therefore are denoted by the superscript
a (and no subscript).

Consider first Model Ba. It is easy to see that, since the action reduces the value of the firm,
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in every equilibrium of this model L sells her shares whenever she observes that M has taken the
action.10 Let Es be the expected value of ãδ̃ conditional on L selling her shares and Ens be the
expected value of ãδ̃ conditional on L not selling her shares. Then the price of the firm in period
1, P1, can take on two possible values, ν−Es if L sells her shares, and ν−Ens if she does not.
Note that, when θ > 0, L might be forced to sell for liquidity reasons even if M does not take
the action, and this, together with the strategies of L and M , will need to be incorporated into
the determination of Es and Ens.

If M takes the action for a particular δ, P2 is equal to ν − δ. Since L exits with probability
1 when M takes the action, P1 is equal to ν −Es. Thus, M ’s expected utility is

β + ω1(ν − Es) + ω2(ν − δ). (1)

If M does not take the action then P2 = ν, and P1 is equal to ν − Es with probability θ and
ν −Ens with probability 1− θ, because L sells if and only if she is subject to a liquidity shock.
Thus, M ’s expected utility if he does not take the action is

ω1(ν − θEs − (1− θ)Ens) + ω2ν. (2)

Comparing these, we conclude that M will take the action if and only if

β − (1− θ)ω1(Es −Ens)− ω2δ ≥ 0. (3)

The potential impact of L’s presence comes about through the second term in the equation above,
(1− θ)ω1(Es−Ens). This term depends on the difference between the first-period price given a
sale by L and the first-period price given that L retains her shares. To the extent that exit reflects
negative information, this is negative. The absolute value of this difference measures the extent
to which L exerts “punishment” on M by selling her shares and driving the price down when M
takes the action.

Note that, since ω2 > 0, the left-hand side of (3) is decreasing in δ. This implies that if
M prefers to take the action for a given δ, then he must strictly prefer to take it for all smaller
values. An equilibrium of Model Ba will therefore be characterized by a cutoff point x such that
the action is taken if and only if δ̃ ≤ x. Given such a strategy for M , and since L sells her shares
if M takes the action or if she is subject to a liquidity shock, we have

Es(x) =
Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x)
θ + (1− θ)Pr(δ̃ ≤ x) ; Ens(x) = 0. (4)

10 It is immediate that L must weakly prefer to sell if the action is taken, and we can invoke
the tie-breaking assumption that she sells when she is indifferent. As we will see, in the unique
equilibrium of our model L in fact strictly prefers to sell her shares when the action is taken.
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Note that we use the notation Es(x) to signify the dependence of Es on the cutoff point x. Since
investors can infer that ã = 0 (the action was not taken) if L does not sell her shares, Ens(x) = 0
independent of x. The calculation of Es(x) takes into account that with probability θ a sale by L
is due to a liquidity shock and therefore is uninformative about ãδ̃, while with probability 1− θ
a sale implies that ã = 1 and therefore, given M’s strategy, that δ̃ ≤ x. Note that for a given x,
Es(x) is decreasing in θ, and in the limit case where θ = 1, Es(x) = Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x).
Conversely, when θ vanishes, Es approaches E(δ̃ | δ̃ ≤ x) since in this case a sale conveys
perfectly that ã = 1.

Now consider M’s decision whether or not to take the action. Since δ̃ has a continuous
distribution, it is easy to see that in any disciplining equilibrium, M must be indifferent between
taking and not taking the action at the equilibrium cutoff δ̃ = xB.11 Thus, xB must satisfy

β − (1− θ)ω1 Es(xB)− Ens(xB) − ω2xB = 0. (5)

Let us now turn to Model Ga. Since the action increases the value of the firm, in every
equilibrium L sells her shares if the action is not taken (or if she is subject to a liquidity shock),
and retains her shares if the action is taken. Let Es and Ens be the conditional expectations of
ãδ̃ given sale and no sale by L respectively. If M takes the action for δ̃ = δ, then P2 = ν + δ,
and, since L sells if and only if she is subject to a liquidity shock, P1 is equal to ν + Es with
probability θ and ν+Ens with probability 1−θ. Thus, M ’s expected utility if he takes the action
is

−β + ω1 θ(ν + Es) + (1− θ)(ν +Ens) + ω2(ν + δ). (6)

If M does not take the action, then P1 = ν + Es, since L sells with probability 1, and P2 = ν.
Thus, M ’s expected utility if he does not take the action is

ω1(ν + Es) + ω2ν (7)

It follows that M prefers to take the action if and only if

−β + (1− θ)ω1(Ens − Es) + ω2δ ≥ 0. (8)

11 Our tie-breaking assumption is that M takes the action for δ̃ = xB, but of course with
a continuous distribution this does not matter to the calculation of Es(xB) and Ens(xB) and
therefore does not affect the equilibrium.
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The left-hand side of (8) is increasing in δ, so an equilibrium for this model involves a cutoff
point x such that M takes the action if and only if δ̃ ≥ x. Since L sells her shares if she is
subject to a liquidity shock or if M does not take the action, we have for Model Ga, again using
the notation Es(x) and Ens(x) to signify the dependence of prices on M’s cutoff point,

Es(x) =
θPr(δ̃ ≥ x)E(δ̃ | δ̃ ≥ x)
θ + (1− θ)Pr(δ̃ < x)

; Ens(x) = E(δ̃ | δ̃ ≥ x). (9)

In Model Ga, no sale by L communicates to investors that the action was definitely taken (ã = 1),
and thus that δ̃ ≥ x. A sale by L communicates that either the action was not taken (and therefore
ã = 0 and δ̃ < x), or that L was subject to a liquidity shock, which is uninformative about ã and
δ̃. Fixing x, Es(x) is increasing in θ. In the limit when θ = 1, a sale is uninformative about ãδ̃
and thus Es(x) = Pr(δ̃ ≥ x)E(δ̃ | δ̃ ≥ x). As θ vanishes, however, a sale implies that the action
was definitely not taken, and thus in the limit Es(x) = 0.

An equilibrium for Model Ga will be characterized by a cutoff xG such that M is indifferent
between taking and not taking the action when δ̃ = xG, and thus xG satisfies

−β + (1− θ)ω1 Ens(xG)−Es(xG) + ω2xG = 0. (10)

As already observed, if L is not present, then the equilibrium cutoff point in both models
is equal to β/ω2. That is, in this benchmark case the action is taken for δ̃ ≤ xB = β/ω2 in
Model B and for δ̃ ≥ xG = β/ω2 in model G. Note also that in both models, shareholders are
better off the lower is the equilibrium cutoff point, because when δ̃ is below the cutoff point in
both models, M is not acting in their best interests. The discipline L is able to exert on M’s
actions is thus measured in both models by how low the equilibrium cutoff is. The following
result characterizes the equilibrium for both models and compares Model Ba with Model Ga in
terms of L’s effectiveness in disciplining M . The proofs of this and other results are found in
the appendix.

Proposition 1: In both Model Ba and Model Ga there exists a unique equilibrium, and the

equilibrium is always disciplining.

(i) In Model Ba equilibrium is characterized by a cutoff xB < β/ω2 such that the manager

takes the action if and only if δ̃ ≤ xB and the large shareholder sells her shares if the

manager takes the action. The cutoff xB solves (5), where Es(·) and Ens(·) satisfy (4)

(ii) In Model Ga equilibrium is characterized by a cutoff xG < β/ω2 such that the manager

takes the action if and only if δ̃ ≥ xG and the large shareholder sells her shares if the

manager does not take the action. The cutoff xG solves (10), and Es(·) and Ens(·) satisfy

(9).
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(iii) Fixing β, ω1, ω2, and the distribution of δ̃, both xB and xG are increasing in θ.

(iv) Fixing β, θ, ω1, ω2, and the distribution of δ̃, xG < xB. That is, if all else is equal, the

large shareholder is more effective in disciplining the manager in Model Ga than in Model

Ba.

This proposition states that when L observes ã privately and no investor observes δ̃ until
period 2, the credible threat that L will exit if M does not act in shareholders’ interests is
an effective disciplining tool and reduces the agency cost. L’s impact is decreasing in θ, the
probability that she is subject to a liquidity shock, because a higher value of θ makes her trades
less informative and reduces her ability to “punish” M for not acting in shareholders’ interests.

Perhaps surprisingly, since the two models appear as mirror images of one another, part (iv)
of Proposition 1 states that, fixing all the model’s parameters, L is more effective in Model Ga

than she is in Model Ba. To understand this result, note first that given that the action is taken,
the difference between the value of the firm when the action is taken and when it is not is larger
in Model Ga than in Model Ba. This is because the manager takes the action for an interval
of the highest values of δ̃ in Model Ga and for an interval of the lowest values of δ̃ in Model
Ba. (Indeed, this is true for the benchmark models G and B, where L is not present.) This will
translate to L being able to impact the manager’s decision more effectively in Model Ga, because
there will be a bigger price difference when L sells relative to when she does not sell. This is
seen most clearly in the limit case θ = 0, where L is not subject to a liquidity shock. In Model
Ba, Es(x)− Ens(x) = E(δ̃ | δ̃ ≤ x) for any possible cutoff point x. By contrast, in Model Ga,
Ens(x) − Es(x) = E(δ̃ | δ̃ ≥ x). Clearly, for any candidate cutoff point x and any distribution
for δ̃, E(δ̃ | δ̃ ≤ x) < E(δ̃ | δ̃ ≥ x). The result that |Ens(x)−Es(x)| is larger in Model Ga than
in Model Ba for any x holds also when 0 < θ < 1, and the information communicated about ã
by L’s sales is imperfect. This means that L has a larger impact on M ’s compensation for any
cutoff level x in Model Ga than she has in Model Ba, which implies that for the equilibrium
cutoffs we have xG < xB.

A related observation is that L’s disciplining tool, |Es(x) − Ens(x)|, behaves differently
in the two models as the cutoff x goes to zero, i.e., as we approach the best situation (in both
models) from shareholders perspective. In Model Ba, this is equal to E(δ̃ | δ̃ ≤ x), which goes
to zero as x vanishes. Thus, as M’s preferences get better aligned with those of shareholders,
the tool that L can use to discipline M vanishes in Model Ba. This is not true in Model Ga,
where L always has a non-trivial disciplining tool, because the difference between the price when
L does not sell and the price when L sells always remains bounded away from zero. If θ = 0,
Ens(x) − Es(x) = E(δ̃ | δ̃ ≥ x) > E(δ̃) > 0. More generally, Ens(x) − Es(x) has a positive
lower bound that depends on θ. Thus, L is better able to exert discipline in Model Ga than in
Model Ba.12

12 The reader might wonder whether our results might change if the specification of the possible
liquidity trades is different. For example, would the results continue to hold if there is a positive
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It is interesting to examine whether and to what extent L can have a positive disciplinary
impact when ω2 = 0, i.e., M ’s compensation does not depend on the long-term price P2. Note
first that if ω2 = 0 and L is not present, the agency problem is particularly severe since M’s
compensation is independent of his action. Thus, M will always act against the shareholders’
interests, taking the action for every δ̃ in Model B and never taking the action in Model G. It
follows that any equilibrium of Model Ba in which there is a positive probability that M does
not take the action is a disciplining equilibrium, and similarly any equilibrium of Model Ga in
which M takes the action with positive probability is also disciplining.

Now note that when ω2 = 0 and L is present, M’s compensation still does not depend on
the actual realization of δ̃ but only on the absolute difference |Es − Ens| that depends on L’s
trading strategy. This means that it is no longer true that in every equilibrium of Model Ba the
manager takes the action for realizations of δ̃ below a cutoff point and that in every equilibrium
of Model Ga he must take the action for all realizations of δ̃ above a cutoff point, and that M is
only indifferent between taking and not taking the action at the equilibrium cutoff point. In fact,
when ω2 = 0, similar logic to that of (5) and (10) implies that in any disciplining equilibrium M

must be indifferent between taking and not taking the action for every realization of δ̃.

The analysis of the case ω2 = 0 turns out to be quite complicated, but it leads to some
interesting results, which are summarized in the next proposition.

Proposition 2: Assume that ω2 = 0 and ω1 > 0.

(i) In both Models Ba and Ga, the equilibria described in Proposition 1 have well defined limits

as ω2 vanishes. The limit of the equilibria in each case is an equilibrium for the models

with ω2 = 0.

(ii) In any disciplining equilibrium of either model, (1− θ)ω1|Es−Ens| = β, and the manager

is indifferent between taking and not taking the action for all realizations of δ̃.

(iii) If there are multiple equilibria in Model Ba, then

(a) the equilibrium with the lowest agency cost (i.e., the best equilibrium for the share-

holders) is one in which the manager takes the action for all δ̃ ≥ x for some x;

(b) the equilibrium obtained in the limit as ω2 vanishes, where the action is taken for

δ̃ ≤ xB for a cutoff xB, is the one where the agency cost is the largest among all

the equilibria, i.e., where the large shareholder is least effective in disciplining the

manager.

(iv) If there are multiple equilibria in Model Ga, then the equilibrium obtained as ω2 vanishes,

where the manager takes the action when δ̃ ≥ xG for a cutoff xG, is the one where the

probability that a liquidity shock would lead L to buy shares? We have analyzed Model Ba and
Model Ga with this assumption. One complication that arises when there is a positive probability
that L will buy shares due to a liquidity shock is that multiple equilibria may arise. Nevertheless,
it can be shown that the equilibria in both models are disciplining and that the lowest equilibrium
cutoff for Model Ga is smaller than the lowest equilibrium cutoff for Model Ba. Details of this
analysis are available upon request.
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agency cost is the smallest among all the equilibria , i.e., where L is the most effective in

disciplining the manager.

This result shows that L can have a disciplinary impact on M ’s action when ω2 = 0, but
that there are often multiple equilibria in this case.13 Models Ba and Ga may now have equilibria
that have similar forms, but the models continue to produce very different results. Unlike the case
ω2 > 0, it is no longer true in general that L is more effective in Model Ga than she is in Model
Ba in all of the equilibria.

The proposition states that when ω2 = 0, the best equilibria from shareholders’ perspective
in both Model Ba and Model Ga have the form we have encountered earlier for Model Ga, where
M takes the action for realizations of δ̃ above a cutoff. Note that in Model Ga, these relatively
large realizations of δ̃ represent the most beneficial ones from shareholders’ perspective, while in
Model Ba these realizations are the most harmful from shareholders’ perspective. Thus, perhaps
surprisingly, the equilibrium with the lowest agency cost in Model Ba involves M taking the
action for the worst realizations of δ̃. The key to this result is that, although the realizations for
which the action is taken are the worst for shareholders, in this equilibrium the probability that
M takes the action is the smallest among all the equilibria. As we show in the proof of this
result, the agency costs are monotone and decreasing in the probability that the action is taken in
equilibrium.

4. Is L More Effective with More Private Information?

We now assume that L is able to observe privately not only whether M has taken the action,
i.e., the realization of ã, but also the realization of δ̃. We continue to assume that neither ã nor δ̃
is observed by other investors until period 2. As will become clear, the resulting models, denoted
Ba,δ and Ga,δ , produce dramatically different results from one another with this information
structure, and we will therefore discuss them separately.

Consider Model Ba,δ first. Note that with ω2 > 0, any equilibrium must still involve M
taking the action only if δ̃ falls below a cutoff point. This follows immediately from considerations
similar to those in the previous section. Again it is easy to see that in any equilibrium L prefers
not to sell her shares if M does not take the action. However, when L observes δ̃ it is no longer
the case that she always prefers to sell when the action is taken by M . If δ̃ < Es, where Es is
the market’s conditional expectation of ãδ̃ given that L sells her shares, then even if M takes the
action, the price response to the sale, measured by Es, is more severe than the loss to the value
of the firm that L will incur if she retains her shares, which is equal to δ̃. Thus, L will not want
to sell if δ̃ < Es.

13 In fact, in addition to multiple, possibly a continuum, of pure-strategy equilibria, these models
possess a continuum of mixed-strategy equilibria, where M mixes between taking the action and
not taking it.
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The above implies that if M takes the action for δ̃ ≤ x, then we must have14

Es(x) =
θPr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x) + (1− θ)Pr(δ̃ ∈ [Es(x), x])E(δ̃ | δ̃ ∈ [Es(x), x])

θ + (1− θ)Pr(δ̃ ∈ [Es(x), x])
, (11)

and

Ens(x) =
Pr(δ̃ < Es(x))E(δ̃ | δ̃ < Es(x))

1− Pr(δ̃ ∈ [Es(x), x])
. (12)

Note that a sale by L communicates that either the action was taken and L chose to sell, i.e.,
ã = 1 and δ̃ ∈ [Es(x), x], or L was subject to a liquidity shock. No sale by L communicates that
either the action was not taken, or that it was taken and δ̃ < Es(x). An equilibrium cutoff point
xB will satisfy the indifference condition for M given again by

β − (1− θ)ω1 Es(xB)− Ens(xB) − ω2xB = 0, (13)

The following result states that an equilibrium for Model Ba,δ with the characterization
described above exists, and that L always has a disciplinary impact in equilibrium.

Proposition 3: There exists at least one equilibrium in Model Ba,δ, and every equilibrium is

disciplining. For every equilibrium there is a cutoff xB < β/ω2 such that the manager takes the

action if and only if δ̃ ≤ xB, and the large shareholder sells her shares if the action is taken

and δ̃ ≥ Es(xB), where Es(·) and Ens(·) are given by (11) and (12) and xB solves (13). The

probability that the large shareholder sells her shares in equilibrium is positive when θ > 0 and

vanishes as θ goes to zero.

Note that L has a disciplinary impact in this model even though in equilibrium an actual exit
may be observed quite rarely. This is unlike Model Ba, where L sells her shares in equilibrium
whenever δ̃ ≤ xB. In fact, when the probability of a liquidity shock θ is very small, L is
extremely unlikely to exit in the equilibrium of Model Ba,δ. Nevertheless, L can have a significant
disciplinary impact. When L exits, the market concludes that, except for the possibility of a
liquidity shock, ãδ̃ ∈ [Es(xB), xB] and therefore that not only was the action likely to have been
taken, but that, if the action was taken, then δ̃ is in the relatively more “harmful” range of values.
In the limit when θ vanishes, L only exits when δ̃ = xB, i.e., with probability zero. A sale
in this case communicates that the action was taken and that δ̃ is equal to the worst value for

14 Note that Es(x) must be smaller than x, since it is the equal to the weighted average of
Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x) and E(δ̃ | δ̃ ∈ [Es(x), x]), both of which are smaller than x.
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which the action is taken in equilibrium, namely xB.15 Note, however, while the price impact of
a sale is more pronounced, the information content of L not selling, is diminished. In particular,
in the limit case when θ = 0, since L sells with probability zero, no information about ãδ̃ is
communicated if L does not sell, and thus Ens(xB) is equal the unconditional expectation of ãδ̃
given M’s strategy of taking the action for δ̃ ≤ xB, namely Pr(δ̃ ≤ xB)E(δ̃ | δ̃ ≤ xB).

Is L’s impact larger in Model Ba,δ, where she has more information, than in Model Ba? It
turns out that the answer to this is ambiguous in general. We will consider first the limit case where
θ = 0, and then discuss the general case θ > 0. Let x be a candidate cutoff point for M’s strategy.
If M takes the action when δ̃ ≤ x, then in Model Ba, Es(x) = E(δ̃ | δ̃ ≤ x) and Ens(x) = 0.
As noted above, in Model Ba,δ, we have Es(x) = x, and Ens(x) = Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x). This
is summarized in the table below:

Es(x) Ens(x)

Model Ba with θ = 0 E(δ̃ | δ̃ ≤ x) 0

Model Ba,δ with θ = 0 x Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x)

M’s decision whether to take the action depends on Es(x)− Ens(x). Note that for any x,
both Es(x) and Ens(x) are larger in Model Ba,δ than they are in Model Ba. When L exits, the
action is likely to be in a relatively more harmful range in Model Ba,δ than in Model Ba, but
when L does not exit, the action may have still been taken in Model Ba,δ but not in Model Ba.
Thus, it is not clear which of the models produces a larger difference Es(x) − Ens(x) at the
equilibrium cutoff point.

Consider as an example the case where δ̃ is distributed uniformly over [0, 1], β = 0.4,
ω1 = 1 and ω2 = 0.5. If L is not present, then for this example M takes the action if and only
if δ̃ ≤ β/ω2 = 0.8. Figure 1 shows the equilibrium cutoffs xB as well as the price impact of
exit, measured by Es(xB) in the equilibrium of both models for all values of θ. We see that xB
is increasing in θ for both models, which is intuitive. When θ is small, L is more effective in
Model Ba,δ than she is in Model Ba. However, for values of θ above 0.25, the reverse is true,
i.e, L is less effective when she has private information about δ̃ in addition to ã. The result that
L is more effective in Model Ba,δ when θ is small (or even just for θ = 0) does not generalize
to other distributions of δ̃, and generally which of the two models produces better discipline is
ambiguous. However, for every distribution of δ̃ and the model’s other parameters, Model Ba

always produces better discipline than Model Ba,δ as θ grows towards 1. This is stated in the

15 To understand this intuitively note that when θ = 0, since L knows both ã and δ̃ and has
no liquidity motivation for trade, it is not possible that in equilibrium L sells for more than one
realization of δ̃ since Es(xB) would have then had to be above one of the possible realizations
of δ̃ for which L sells. This is a contradiction because it entails L selling for some realizations
below Es(xB), which is suboptimal. When θ > 0 then it is possible that Es(xB) < xB and so
there is an interval of realizations of δ̃, between Es(xB) and xB for which L sells in equilibrium.
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Figure 1: Example of equilibrium in Model Ba and Model Ba,δ for the uniform distribution.

following proposition and explained intuitively below.

Proposition 4: For any given distribution of δ̃ and parameters β, ω1 and ω2, there exists θ̂ such

that if θ > θ̂, then the large shareholder is more effective in disciplining the manager in the

equilibrium of Model Ba than in any equilibrium of Model Ba,δ.

To understand this result note that in both models, as θ becomes large Es(x) converges to
E(δ̃ã) = Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x), because the probability that L sells grows to 1 and thus a sale
becomes less informative about ãδ̃. However, in Model Ba,δ, even as θ grows, Ens(x) remains
strictly positive, while in Model Ba, Ens(x) is always equal to zero. Intuitively, as θ becomes
large, exit carries the same (diminishing) information in both models, but the event in which L
does not sell has very different information content in the two models. In Model Ba it guarantees
that the action was not taken by M , while in Model Ba,δ it is also consistent with the action
being taken but δ̃ < Es(x). This means that for θ sufficiently large, Es(x) − Ens(x) is larger
in Model Ba than it is in Model Ba,δ for all positive values of x, which implies that L is more
effective in Model Ba, where she does not have the private information about δ̃.

We now turn to the Model Ga,δ. In stark contrast to the previous discussion, we will show
that L is never more effective in Model Ga,δ than she is in Model Ga, and, moreover, it is
possible that the only equilibrium in Model Ga,δ is non-disciplining even though the equilibrium
for Model Ga is disciplining for the same parameters. Thus, no additional disciplinary impact
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ever arises from the additional information of δ̃ in Model Ga,δ relative to Model Ga, and the
additional information may actually make L completely ineffective in disciplining M . We will
also see that, unlike Model Ba,δ, which possesses at least one and possibly multiple equilibria,
Model Ga,δ has at most one equilibrium and it is possible that a (Bayesian-Nash) equilibrium does
not exist for this model. This is summarized in the following result and discussed and illustrated
further below.

Proposition 5: Model Ga,δ has at most one equilibrium. When an equilibrium exists for this

model either (i) it is identical to the equilibrium of Model Ga, and Es(xG) ≤ xG, or (ii) it is

non-disciplining and has xG = β/ω2.

To obtain some intuition, first observe that for reasons similar to those discussed earlier, in
any equilibrium of Model Ga,δ, M’s strategy must involve taking the action if and only if δ̃ ≥ x
for some cutoff point x. Consider Es(x), the market’s expectation of ãδ̃ given a sale by L. If an
equilibrium cutoff xG exists, there are two possibilities: either Es(xG) ≤ xG or Es(xG) > xG.
Suppose first that Es(xG) ≤ xG. Then we claim that L’s strategy must be the same as her strategy
in the equilibrium of Model Ga, namely to sell if M does not take the action and retain her shares
(unless subject to a liquidity shock) if M takes the action. This follows because, if δ̃ ≥ xG, then
δ̃ ≥ Es(xG), and L does not want to sell her shares, while for δ̃ < xG, L clearly prefers to sell
because the action was not taken and Es(xG) > 0.16 Thus, in every equilibrium of Model Ga,δ

for which Es(xG) ≤ xG, the equilibrium is the same as the one obtained in Model Ga, and L
only uses information about ã but does not use the additional information about δ̃. Moreover, this
argument establishes that if in the equilibrium of Model Ga we have Es(xG) ≤ xG, then this is

also an equilibrium in Model Ga,δ .

Now consider the possibility of an equilibrium for Model Ga,δ in which Es(xG) > xG. In
this case when δ̃ = xG, L sells her shares whether M takes the action or not, which means that
when δ̃ = xG, the first-period price P1 is the same whether M takes the action or not. Thus,
when δ̃ = xG, L cannot have an impact on M’s decision. It follows that xG must be equal to
β/ω2, which is the cutoff when L is not present. We conclude that the only possible equilibrium
of Model Ga,δ in which Es(xG) > xG is a non-disciplining equilibrium with xG = β/ω2. Note
that in this equilibrium L will typically use her private information about δ̃ to sell her shares when
β/ω2 < δ̃ < Es(β/ω2) even though M takes the action. This, of course, has to be factored into
the determination of Es(β/ω2) in this model, but it does not have an impact on M ’s decision.

It is also possible that no equilibrium exists in Model Ga,δ. This occurs when Es(xG) in
Model Ga exceeds xG and at the same time xG = β/ω2 is not an equilibrium for Model Ga,δ

becauseEs(β/ω2) < β/ω2. Such a case is illustrated in Figure 2. For this example we assume that
δ̃ is uniformly distributed on [0, 1], β = 0.33, ω1 = 0.25 and ω2 = 1. For small θ, the equilibrium
in Model Ga,δ is the same as that in Model Ga since for small enough θ, Es(xG) < xG in Model
Ga. For large enough θ, the equilibrium in Model Ga,δ is non-disciplining and has xG = β/ω2,

16 In the limit case θ = 0, Es(xG) = 0 and L is indifferent between selling and not selling.
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Figure 2: An example of existence and non-existence of equilibrium in Model Ga,δ.

since Es(β/ω2) > β/ω2 = xG, and thus L sells her shares for every δ̃ ≤ β/ω2. Note that in
the cases where θ is large and L has no effect on M’s behavior, L would have been effective in
disciplining M if she only observed ã; in these cases xG in Model Ga is strictly less than β/ω2.
It is when L is more informed and knows both ã and δ̃ that she becomes ineffective.

The figure shows that there is an intermediate region (0.265 < θ < 0.5) where an equilibrium
does not exist in this example. In this region Es(xG) > xG in the equilibrium of Model Ga, and
so the equilibrium of Model Ga is not an equilibrium for Model Ga,δ . At the same time, the only
other equilibrium candidate, xG = β/ω2, produces a contradiction because if M takes the action
for δ̃ ≥ β/ω2 and L exits whenever the action is not taken (which is what she does in Model
Ga), then Es(β/ω2) < β/ω2 and so L does not want to sell. Since there is no equilibrium with
Es(xG) > xG and there is no equilibrium with Es(xG) ≤ xG, an equilibrium does not exist.17

In summary, we have seen that if, in addition to observing whether the action is taken, L
has private information about the consequences of the action, her disciplinary impact may be
enhanced, but in many cases it will actually be weakened substantially relative to the case where
she does not have this additional information. In Model Ba,δ, L still has disciplinary impact. Exit

17 One might think that this nonexistence problem would disappear if both L and M were
permitted to use mixed strategies. This is not the case since L can only be indifferent between
selling and not selling when δ̃ = Es(xG), and M can only be indifferent between taking the action
and not taking the action when δ̃ = xG. Since we assume that δ̃ has a continuous distribution,
using a mixed strategy for any particular realization of δ̃ will not affect the equilibrium.
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is a more powerful threat, having a larger price impact because it occurs only for the relatively
more harmful consequences, but, since L may retain her shares even if the action is taken, the
information content of no exit by L is reduced relative to the model where only ã is observed by L.
Whether the overall disciplinary impact is enhanced by the additional information is ambiguous
in general. However, when the probability of a liquidity shock is high, L’s effectiveness tends
to be lower when she has the information about δ̃. We also saw that additional information
about δ̃ never enhances L’s disciplinary impact in Model Ga,δ relative to Model Ga. At best,
the equilibrium of the two models is the same. In other cases, Model Ga,δ only possesses a
non-disciplining equilibrium or no equilibrium at all.

5. Can L’s Presence Exacerbate the Agency Problem?

In the models we have analyzed to this point we have shown that L’s presence generally has
a disciplinary impact on M and the worst equilibrium in terms of the agency cost is one where
L has no impact at all. We have not encountered a dysfunctional equilibrium, one in which L’s
impact is negative. This will change below. We will consider an information structure where
ã is public in period 1, i.e., all investors observe whether M takes the action, and L’s private
information consists of the realization of δ̃. Again, and quite dramatically, our two models will
produce very different results. We first show that the equilibrium of Model Ba,δa is disciplining; in
fact, the agency cost in this model is lower than that in either Model Ba or Model Ba,δ . (However,
this does not imply that L has a higher impact in this model, because the benchmark case where
L is not present is different when ã is public than when it is not.) By contrast, we show that in
Model Ga,δ

a the equilibrium is dysfunctional, and L’s presence increases the agency cost relative
to the case where she is not present.

In the models analyzed so far, where ã is not observed by investors until period 2, if L is not
present, then discipline is only provided by the impact of the action on P2, and so the equilibrium
of Model B is that M takes the action when δ̃ ≤ β/ω2. Now consider Model Ba, where L is not
present and ã is public. Since ω2 > 0, equilibrium must again involve a cutoff x such that M
takes the action if and only if δ̃ ≤ x. If M is observed taking the action, investors conclude that
δ̃ ≤ x. Without any additional information, the expected value of ãδ̃ is E(δ̃ | δ̃ ≤ x), and thus
P1 = ν − E(δ̃ | δ̃ ≤ x). Since P1 = ν if M does not take the action, the equilibrium cutoff xB
is determined by

β − ω1E(δ̃ | δ̃ ≤ xB)− ω2xB = 0. (14)

Note that this is the same as the equilibrium cutoff in Model Ba when θ = 0, i.e., where L
observes ã privately and she is never subject to a liquidity shock (see Proposition 1). This is
intuitive, since in this case L exits if and only if the action is taken, and so in equilibrium investors
know exactly when the action is taken in both Model Ba with θ = 0 and in Model Ba.
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Now consider Model Ba,δa , where ã is public and L observes δ̃ privately. If the action is
not taken, then the price in period 1 is ν independent of L’s trade, and L sells only when she is
subject to the liquidity shock. If the action is taken, then, as in Model Ba,δ, L sells whenever
δ̃ ≥ Es(x), where x is the cutoff value of δ̃ below which the action is taken. This means that we
must have

Es(x) =
θPr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x) + (1− θ)Pr(δ̃ ∈ [Es(x), x])E(δ̃ | δ̃ ∈ [Es(x), x])

θPr(δ̃ ≤ x) + (1− θ)Pr(δ̃ ∈ [Es(x), x])
, (15)

and

Ens(x) = E(δ̃ | δ̃ < Es(x)). (16)

In equilibrium, M must again be indifferent between taking and not taking the action at the
cutoff δ̃ = xB. This means that any equilibrium cutoff xB in Model Ba,δa must satisfy

β − ω1Es(xB)− ω2xB = 0. (17)

Note that Ens(xB), which measures the price impact of no sale, does not affect the determination
of xB in this model, because if M takes the action when δ̃ = xB, then L sells her shares for
sure, while if M does not take the action, P1 = ν independent of L’s trading. In other words,
since M can be sure that P1 = ν if he does not take the action, and since L always exits when
δ̃ = xB, the inference investors would make if L retains her shares is irrelevant to M’s decision
when δ̃ = xB.

The next result confirms that there exists a unique equilibrium to Model Ba,δa and compares
the agency cost associated with the action in this model to that in the equilibria of Models Ba

and Ba,δ analyzed in previous sections.

Proposition 6: There exists a unique equilibrium in Model Ba,δa and the equilibrium is disciplin-

ing. In equilibrium

(i) the manager takes the action if and only if δ̃ ≤ xB, where xB is determined by (17);

(ii) the large shareholder sells her shares if the action is taken and δ̃ ≥ Es(xB), where Es(·)
is determined by (15);

(iii) the agency cost is lower than the agency cost in the unique equilibrium of Model Ba and is

also lower than the agency cost in any equilibrium of Model Ba,δ.

The key to understanding how L’s presence affects M ’s behavior is to examine M’s incen-
tives at the cutoff realization δ̃ = x below which the action is taken. In general, this depends on
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the difference between the (expected) first-period price, P1, when M takes the action and when
he does not. While the short-term compensation difference between taking and not taking the
action is only a function of L’s trading decisions in Models Ba and Ba,δ, this is no longer true
when M’s action is publicly observable in period 1. The following table shows the first-period
price in the three models when M does and does not take the action. All prices are given as a
function of the cutoff point x under the assumption that θ = 0.

P1 if M Does P1 if M
Model Not take Action Takes Action Difference

Ba with θ = 0 ν ν − E(δ̃ | δ̃ ≤ x) E(δ̃ | δ̃ ≤ x)
Ba,δ with θ = 0 ν − Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x) ν − x x− Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x)
Ba,δa with θ = 0 ν ν − x x

First consider the comparison between Model Ba,δ and Model Ba,δa . When θ = 0 and δ̃

is at the cutoff x, if M takes the action, L exits and this reveals perfectly that ãδ̃ = x in both
models, since this is the only realization of δ̃ for which L exits. If M does not take the action,
however, then in Model Ba,δa , P1 = ν since this will be observable to investors, but in Model
Ba,δ investors only observe that L is not selling, which provides no information about ãδ̃ and the
resulting first-period price is ν − E(δ̃ã) = ν − Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x). In other words, in both
of these models M will suffer the “maximal hit” to his compensation when he takes the action at
the cutoff point, but the consequences of not taking the action are quite different. In Model Ba,δ

investors do not learn anything from L not exiting, since they do not observe ã and since L only
exits when δ̃ = x. However, since ã is public in Model Ba,δa , the first-period price will reflect
the fact that the action was not taken. This means that the consequences of taking the action are
greater in Model Ba,δa and thus the agency cost in the equilibrium of Model Ba,δa is lower than
that in any equilibrium of Model Ba,δ.

We now compare Model Ba, where L observes ã privately and no investor observes δ̃, and
Model Ba,δa , where ã is public and L observes δ̃ privately. In both of these models, although for
different reasons, P1 = ν if M does not take the action. In Model Ba this is because L retains her
shares only if the action is not taken, while in Model Ba,δa this is because it is publicly observed
that the action was not taken. The difference in discipline comes about because if M takes the
action at the cutoff δ̃ = x, then in Model Ba L sells her shares and investors only know that
δ̃ ≤ x, and thus P1 = ν − E(δ̃ | δ̃ ≤ x), while in Model Ba,δa investors know from the fact that
L exits that δ̃ = x. It follows that at any possible cutoff point x the difference between P1 when
M does not take the action and when he does is again greater in Model Ba,δa than it is in Ba,
which implies the equilibrium cutoff point in Model Ba,δa is always lower than that in Model Ba,
and thus again that the agency cost is smaller.

The above discussion, with appropriate modifications, applies to the model with θ > 0. Model
Ba,δa produces the best outcome from shareholders’ perspectives among the models considered so
far, because, as in Model Ba, M is able to obtain the highest compensation when he does not
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take the action and at the same time, as in Model Ba,δ, he suffers the most severe consequences
when he does take the action at the cutoff point. Note, however, that this does not imply that
L has a larger disciplinary impact in Model Ba,δa than she does in the other models, because the
benchmark situation where L is not present is different when ã is public information than when
ã is not public information in period 1. In fact, it can be shown that the L’s impact can be higher
or lower in Model Ba,δa relative to Models Ba and Ba,δ.

Let us now turn to Model Ga,δ
a , and again let us start with Model Ga where L is not present

and ã is public. If M is observed taking the action and L is not present, the expected value of
δ̃ will be E(δ̃ | δ̃ ≥ x), and thus the price in period 1 will be ν + E(δ̃ | δ̃ ≥ x), where x is the
cutoff such that M takes the action if and only if δ̃ ≥ x. Since the price if M does not take the
action is ν, the equilibrium cutoff xG is determined by

−β + ω1E(δ̃ | δ̃ ≥ xG) + ω2xG = 0. (18)

Note that again this is the same as the equilibrium cutoff point in Model Ga when θ = 0, i.e.,
where L observes ã privately and is never subject to a liquidity shock. This is because a sale
by L in Model Ga with θ = 0 communicates perfectly that the action was not taken. Now
consider Model Ga,δ

a . Since ã is publicly observed, if the action is not taken, then again P1 = ν

independent of whether L sells. If the action is taken for δ̃ ≥ x, then L exits when δ̃ ≤ Es(x).
Note that we must have x ≤ Es(x) because if ã = 1 then it is publicly known that ãδ̃ ≥ x. This
means that

Es(x) =
θPr(δ̃ ≥ x)E(δ̃ | δ̃ ≥ x) + (1− θ)Pr(δ̃ ∈ [x,Es(x)])E(δ̃ | δ̃ ∈ [x,Es(x)])

θPr(δ̃ ≥ x) + (1− θ)Pr(δ̃ ∈ [x,Es(x)])
. (19)

The equilibrium cutoff xG in model Ga,δ
a must solve

−β + ω1Es(xG) + ω2xG = 0. (20)

Note that, analogous to the case of Model Ba,δa , if the action is taken for δ̃ ≥ x, then Ens(x) =
E(δ̃ | δ̃ > Es(x)), but Ens(·) does not affect the determination of the equilibrium cutoff xG,
because when δ̃ is equal to the cutoff point, which is the lowest possible value of δ̃ for which the
beneficial action is taken, L strictly prefers to sell her shares whether the action is taken or not,
and thus P1 = ν +Es(xG) with probability 1.

The next result states the existence of a unique equilibrium for Model Ga,δ
a . Most interest-

ingly, it shows that when ã is public information in period 1, having L privately observe δ̃ and
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potentially trade on this information actually reduces the discipline placed on M . In other words,
the agency cost in Model Ga,δ

a is higher than that in Model Ga where L is not present, which
means that the equilibrium of Model Ga,δ

a is dysfunctional.

Proposition 7: There exists a unique equilibrium in Model Ga,δ
a and the equilibrium is dysfunc-

tional. In equilibrium

(i) the manager takes the action if and only if δ̃ ≥ xG, where xG is determined by (20),

(ii) the large shareholder sells her shares if the action is taken and δ̃ ≤ Es(xG), where Es is

determined by (19), and

(iii) the agency cost is higher than that in Model Ga, i.e., large shareholder’s impact on the

agency costs is negative.

To understand why L’s presence is harmful in this model, consider again M ’s incentives at
a cutoff point x. When L is not present, if M takes the action, he is rewarded by increase in his
first-period compensation equal to ω1E(δ̃ | δ̃ ≥ x), because investors have no information about
δ̃ other than what is revealed by the fact that M has chosen to take the action, which means that
δ̃ ≥ x. In Model Ga,δ

a , L exits when δ̃ = x, since the selling price, ν +Es(x), is larger than the
value of the firm given that M takes the action, given by ν + x. Exit by L communicates that
the realization of δ̃ is relatively low among the values of δ̃ for which the action is taken, since
L only chooses to sell when δ̃ ∈ [x,Es(x)]. (In the extreme case in which θ = 0, L only sells
when δ̃ = x, and thus Es(x) = x.) Thus, when δ̃ = x, L’s trading causes the market to revise
downward its expectation of δ̃ relative to the expectation based only on M’s willingness to take
the action. For any potential cutoff x, this lowers the differential compensation for M between
taking the action and not taking the action in Model Ga,δ

a relative to Model Ga. It follows that
L’s presence reduces M ’s incentives to take the value-enhancing action and shareholders would
be better off if L was not present.

Note that this implies that for θ = 0, the agency cost in Model Ga,δ
a is strictly higher than that

in Model Ga, because in this case Model Ga is identical to Model Ga: in both of these models
investors know perfectly when the action is taken but nothing more about δ̃. Since we already
observed that Model Ga,δ produces the same or a worse outcome than Model Ga, it follows that,
for θ = 0, Model Ga (equivalently Model Ga) produces a lower agency cost than either Model
Ga,δ or Model Ga,δ

a . When θ > 0 the comparison between the agency cost in Models Ga,δ
a

and Ga is ambiguous since ã is publicly observed in Model Ga,δ
a , while this information is only

communicated with some noise in Model Ga. The lowest agency cost for Model G is obtained
in Model Ga where ã is publicly observed and L is not present.

6. The Model with Action-Only Uncertainty

For completeness, we now discuss the one remaining information structure in which L’s
trading potentially has an impact on M ’s actions. Here all investors are assumed to observe δ̃ in

24



period 1, while L observes, in addition, whether M has taken the action. In other words, there is
no uncertainty about δ̃, but only L observes ã in period 1. As we will show, this is actually an
information structure where Model B and Model G behave like mirror images of one another and,
for the same parameters, produce the same type of results in terms of L’s impact. This highlights
the critical role played by the inferences investors need to make about δ̃ for some of our results
so far.

When investors know the realization of δ̃, equilibrium will depend on the realized value
δ. The prior distribution of δ̃ will not play any role in determining the equilibrium. However,
to the extent that δ̃ is drawn from a particular distribution, one can still discuss the agency
costs averaging over the possible values of δ that investors observe in period 1. The next result
characterizes the equilibrium and the agency cost in Models Ba,δδ and Ga,δ

δ . Note that even with
ω2 > 0, equilibrium necessarily involves a mixed strategy for M for a range of values of δ.

Proposition 8: In each of Model Ba,δδ and Model Ga,δ
δ there exists a unique equilibrium, which

is always disciplining.

(i) In Model Ba,δδ equilibrium is characterized by a function mB(δ) such that for a given δ the

manager takes the action with probability mB(δ) and the large shareholder sells her shares

if the manager takes the action. The mixing probability is given by:

mB(δ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if δ < β

(1− θ)ω1 + ω2

θ
1− θ

β − ω2δ
(ω1 + ω2)δ − β , if β

(1− θ)ω1 + ω2
≤ δ ≤ β

ω2

0, otherwise.

(21)

(ii) In Model Ga,δ
δ equilibrium is characterized by a function mG(δ) such that for a given δ the

manager takes the action with probability mG(δ) and the large shareholder sells her shares

if the manager does not take the action. Furthermore, mG(δ) = 1−mB(δ) where mB(δ)

is given in (21).

(iii) Holding fixed θ,β,ω1,ω2 and the distribution of δ̃, the impact of the large shareholder’s

presence on the agency cost is equal in Model Ba,δδ and Model Ga,δ
δ .

Note that this is the only information structure we have studied in which there is complete
symmetry between Model B and Model G, as one might expect in a standard principal-agent
setting. This suggests that the results in previous sections were driven by the inference investors
must make in period 1 about the consequences of the action, δ̃, based on L’s trading behavior.

7. Discipline when Exit is Costly

So far we have assumed that L incurs no costs in exiting other than the price impact of
her sale, which is due to the information revealed by L’s willingness to sell. In this section we
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assume that exit entails additional costs to L and possibly to other shareholders. For example,
there may be a transactions cost that L must pay when she trades. Alternatively, L’s exit may
lower the value of the firm, because exit results in a loss of future benefits to the firm that would
be realized through L’s continued presence as a shareholder. Additional exit costs, no matter
what the source, generally affect L’s willingness to exit, and this can affect discipline by making
L’s threat of exit less credible. The two types of costs are different, however, in that a simple
transactions cost is borne only by L, whereas a loss in the value of the firm created by L’s exit is
borne by all shareholders and enters M ’s compensation directly. As we will see, these two types
of exit costs will lead to different results.

Below we analyze Model Ba in the presence of each of these two types of exit costs. (To focus
on the different issues that arise in the two cases, we analyze each type of exit cost separately.)
Relative to the case analyzed in Section 3, we show the following: (i) L’s disciplinary impact is
either the same or lower when she must incur a transactions cost to exit; (ii) with either type of
exit cost, equilibrium may involve L using a mixed strategy where she exits with a probability
smaller than 1 if M takes the action; (iii) L’s impact may be increasing in the probability of a
liquidity shock θ; and (iv) L may be more effective in disciplining M if her exit lowers the value
of the firm than in the base case where it does not.

Suppose first that in Model Ba, L must incur a transactions cost of τ whenever she sells
her shares. Assume that L still sells whenever she is subject to a liquidity shock and that a
liquidity-motivated sale occurs with probability θ. With ω2 > 0, M again takes the action when
δ̃ ≤ x for some x. If L is not subject to a liquidity shock, she will sell only if the difference
between E(δ̃ | δ̃ ≤ x), the expectation of ãδ̃ given her information, and Es(x), the price impact
of her sale, exceeds the transactions cost τ . We will refer to the difference E(δ̃ | δ̃ ≤ x)−Es(x)
as L’s information advantage.

The information advantage L has depends on how much of her information is revealed in
equilibrium. If L sells whenever the action is taken, then it is straightforward to show that her
information advantage is given by

E(δ̃ | δ̃ ≤ x)−Es(x) =
θ 1− Pr(δ̃ ≤ x)) E(δ̃ | δ̃ ≤ x)

θ + (1− θ)Pr(δ̃ ≤ x) . (22)

Note that L only has an information advantage when θ > 0. If θ = 0, then a sale by L reveals
that the action was taken with probability 1, and thus Es(x) = E(δ̃ | δ̃ ≤ x). It follows that when
θ = 0, L will not be willing to pay the transactions cost, and the equilibrium must therefore be
non-disciplining. When θ is positive, L has an information advantage since she knows whether
she is trading for information or liquidity reasons. This information advantage may, however, be
insufficient to cover the transactions cost. In such a case there may be no equilibrium in pure
strategies. To see this, let x̄ = β/ω2 be the cutoff in a non-disciplining equlibrium and let xB be
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the equilibrium cutoff if L exits whenever the action is taken. Assume that

1− Pr(δ̃ ≤ x̄) E(δ̃ | δ̃ ≤ x̄) > τ >
θ 1− Pr(δ̃ ≤ xB)E(δ̃ | δ̃ ≤ xB)

θ + (1− θ)Pr(δ̃ ≤ xB)
. (23)

The term on the left of (23) is the information advantage L has in a non-disciplining equilibrium.
The term on the right of (23) is L’s information advantage in equilibrium assuming she sells
whenever M takes the action. If (23) holds, then L strictly prefers to trade on her information
when it is assumed she does not trade on her information, and L strictly prefers not to trade on
her information when it is assumed that she trades on it whenever she is not subject to a liquidity
shock. There is therefore no equilibrium in which L uses a pure strategy.

To analyze mixed-strategy equilibria, suppose that when M takes the action and L is not
subject to a liquidity shock, L sells with probability ψ. Then for a given cutoff point x and a
mixing probability ψ, Es(x) and Ens(x) are given by:

Es(x) =
θ + (1− θ)ψ Pr(δ̃ ≤ x) E(δ̃ | δ̃ ≤ x)

θ + (1− θ)ψ Pr(δ̃ ≤ x) ;

Ens(x) =
(1− ψ)Pr(δ̃ ≤ x)E(δ̃ | δ̃ ≤ x)

1− ψ Pr(δ̃ ≤ x) .

(24)

Note that when ψ < 1, investors can no longer conclude from L retaining her shares that the
action was not taken. Thus, unlike Model Ba without transactions costs, Ens(x) is not equal to
zero. L’s information advantage when she uses a mixing probability ψ is given by

θ 1− Pr(δ̃ ≤ x) E(δ̃ | δ̃ ≤ x)
θ + (1− θ)ψPr(δ̃ ≤ x) . (25)

Note that this is decreasing in the mixing probability ψ.

In a mixed-strategy equilibrium, the equilibrium cutoff forM , xB, and the equilibrium mixing
strategy for L, ψ, are such that (i) M is indifferent between taking and not taking the action when
δ̃ = xB and (ii) L is indifferent between selling and not selling when M takes the action. For
the latter to occur, the information advantage given in (25) must equal τ .

We do not offer a general existence result for the model with a transactions cost. However,
Figure 3 illustrates some examples, where we assume that δ̃ has a uniform distribution on [0, 1],
ω1 = ω2 = 0.4, and β = 0.2. Three different values for the transactions cost are considered:
τ = 0 (the base case with no transactions cost), τ = 0.05, and τ = 0.10. When τ = 0, the
equilibrium is the one we discussed in Section 3. In this case L has an information advantage for
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Figure 3: Example of equilibrium in Model Ba with transactions cost τ . Parameters are β = 0.2
and ω1 = ω2 = .4. Transactions cost levels are set at 0.00, 0.05 and 0.10.

all positive θ, and she never uses a mixed strategy, so ψ = 1 for all θ. If τ > 0, then L uses a
mixed strategy when θ is sufficiently small. The top panel of Figure 3 shows that the equilibrium
mixing probability ψ is an increasing function of θ. That is, the higher the probability of liquidity
shock, the higher is the probability that (if she is not subject to a liquidity shock) L will sell
when M takes the action. Intuitively, an increase in θ means that L does not need to refrain from
trading on her information as much to create an information advantage sufficiently large to cover
the transactions cost.

The bottom panel of Figure 3 shows L’s disciplinary impact, i.e., the reduction in the agency
cost brought about by L’s presence. Note first that, as can be expected, L’s impact is lower when
ψ < 1. If θ is such that ψ = 1 (L sells whenever the action is taken), then her disciplinary impact
is the same no matter what the exact level of the transactions cost. Second, while L’s disciplinary
impact is decreasing in the probability of a liquidity shock θ when she uses the pure strategy, this
is not true over the range of θ for which L is using a mixed strategy. When the mixed strategy
is used, L’s disciplinary impact is actually increasing in θ. This is because when θ increases,
L’s information advantage increases and L trades more aggressively on her information, i.e., ψ is
larger. This makes the difference between Es(x) and Ens(x) larger and ultimately increases the
disciplinary impact that L’s trading has. Thus, over the range where L is mixing, L’s disciplinary
impact is actually enhanced when θ is larger. Once θ is large enough that L sells with probability
1 when the action is taken, an increase in θ only has the effect of lowering the informativeness
of a sale, which reduces L’s disciplinary impact.
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We now turn to a different type of exit cost, one that arises when L’s continued presence is
beneficial to the firm, due to any type of monitoring that L employs in later periods. We assume
specifically that if L exits in period 1 for any reason, the value of the firm is reduced by π,
independent of both ã and δ̃. (We assume that exit entails no other costs.) From L’s immediate
perspective, π is no different than the transactions cost τ , because it is a cost incurred in selling
that must be factored into her trading decision. However, unlike the case of a transactions cost,
the loss of π associated with L’s exit affects the value of the firm to all investors and thus enters
M ’s compensation directly.

It is not intuitively clear whether L is more or less effective in disciplining M when her exit
reduces the value of the firm. On the one hand, as in the case of the simple transactions cost,
to the extent that the exit “punishment” will be used less frequently, this would generally tend to
reduce L’s disciplinary impact. However, when L does choose to exit, the negative effect this has
on M ’s compensation is larger when π is positive than when it is zero, which would generally
tend to increase L’s disciplinary impact. Below we examine the nature of the tradeoff between
these two effects.

Consider Model Ba with an exit cost of π, and suppose that, absent a liquidity shock, L
sells with probability ψ if M takes the action. In this case, if M takes the action for δ̃ ≤ x, his
expected utility when δ̃ = δ is

β + ω1 ν − (θ + (1− θ)ψ)(Es(x) + π)− (1− θ)(1− ψ)Ens(x)
+ ω2 ν − δ − (θ + (1− θ)ψ)π , (26)

where Es(x) and Ens(x) are given in (24). If M does not take the action, his expected utility is

ω1 ν − θ(Es(x) + π)− (1− θ)Ens(x) + ω2(ν − θπ). (27)

It follows that the equilibrium cutoff point xB must solve

β − (1− θ)ψ(ω1 + ω2)π − (1− θ)ψω1 Es(xB)−Ens(xB) − ω2xB = 0. (28)

This condition is quite similar to that obtained for Model Ba in Section 3. The main difference
is that the private benefit here is effectively lowered by (1− θ)ψ(ω1 + ω2)π. The reason is that
the loss to the value of the firm that accompanies L’s exit is felt directly by M . This works to
alleviate the agency problem and potentially to enhance L’s disciplinary impact.

An illustration of equilibria in the model where π > 0 is provided in Figure 4. We assume
again that δ̃ is uniformly distributed on [0, 1], β = 0.2, ω1 = ω2 = 0.4. Note that for relatively
small values of π, the middle panel shows that ψ = 1, i.e., L sells with probability 1 if the action
is taken. The range of π values where this is true is larger when θ is relatively large, because
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Figure 4: Example of equilibrium in Model Ba where L’s exit leads the value of the firm to
be reduced by π. The example assumes that δ̃ is distributed uniform on [0, 2], β = 0.2, and
ω1 = ω2 = .4.

L’s information advantage is increasing in θ. For this range we see in the top panel that the
equilibrium cutoff point xB is decreasing as π increases, and this means that over this range L’s
disciplinary impact is greater the larger is the continuation value π. When π is large enough
relative to θ so that L uses a mixed strategy in equilibrium, then L becomes less effective in
disciplining M when π increases, and the cutoff point xB increases.

Note that the highest possible information advantage obtains when the equilibrium is non-
disciplining, i.e., when xB = β/ω2 = 0.5 (or, equivalently, when θ = 1), and this information
advantage is equal to 0.125. The figure shows that the probability that L trades on her information
vanishes when the continuation value π exceeds 0.125. For such large continuation values, exit is
so costly that it is never done in equilibrium and thus the equilibrium becomes non-disciplining.
Note also that if π is relatively low (below about 0.04), then L is more effective when θ = 0.1

than when θ = 0.5 (i.e., when the probability of a liquidity sale is higher), but the reverse is true
when π is relatively large, as long as discipline is still possible, i.e., for π < 0.125. To see this,
note that when π increases, L must at some point start mixing, which reduces her effectiveness.
This occurs for lower values of π when θ is low because, other things equal, the information
advantage increases in θ. Thus, for intermediate values of π, L’s disciplinary impact is increasing
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in θ.

The bottom panel of Figure 4 plots L’s “net impact,” which is defined as the decrease in
agency costs associated with the action (in period 1) minus the expected exit cost associated with
L’s informed trading in equilibrium, which is given by (1− θ)ψPr(δ̃ ≤ xB)π. If the net impact
is positive, then shareholders are better off when L disciplines M through exit in period 1 even
though exit leads to a reduction in the value of the firm. In this example L’s net impact is
always non-negative, and it is increasing in π over range where L is not mixing (and where xB
is decreasing). For other distributions than the uniform, however, it can be shown that L’s net
impact can actually be negative. In those cases the loss of π that occurs when L exits is larger
than the savings in agency cost brought about by the discipline she exerts in period 1.

In summary, we have seen that exit costs may not eliminate, and in some cases can even
enhance, L’s ability to discipline through exit. We have also seen that with exit costs, an increase
in the probability of a liquidity shock θ can enhance L’s disciplinary impact.

8. On Extensions with Additional Uncertainty

One of the assumptions made throughout our analysis is that β, the private benefit or cost,
is constant and its value is common knowledge across all agents. If β is random and known
only to M , then the inference of ãδ̃ by L and the other investors is more complicated, because
M ’s decision clearly depends on the value of β and not just on δ̃. One special case that is
covered by our analysis so far is one where β̃ = γ0 + γ1δ̃ with γ0 > 0 and γ1 < ω2. For
example, consider Model Ba and recall that when δ̃ = δ, M takes the action in Model Ba when
β − (1− θ)ω1 Es − Ens − ω2δ ≥ 0. If β = γ0 + γ1δ, this becomes

γ0 − (1− θ)ω1 Es −Ens − (ω2 − γ1)δ ≥ 0. (29)

Similarly, in Model Ga the condition is

−γ0 + (1− θ)ω1 Ens −Es + (ω2 − γ1)δ ≥ 0. (30)

Conditions (29) and (30) are the same as those in Section 3 for the case of fixed β, with γ0 playing
the role of the “fixed” value of β of Section 3, and ω2 − γ1 playing the role of the coefficient
ω2 in Section 3. Since our analysis in Section 3 as well as in the rest of the paper relied on
the assumption that ω2 > 0, the analysis applies fully to the model with β̃ = γ0 + γ1δ̃ if have
γ1 < ω2.18

18 If γ1 > ω2, then some of our results would be “switched,” because in Model B the manager
will now take the action for all realizations of δ̃ above a cutoff, and in Model G he will take
the action for realizations below a cutoff value. The general observations, however, e.g., that
additional information may lead to lower disciplinary impact and that L’s presence may exacerbate
the agency problem, will not change.
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We have also assumed implicitly throughout our analysis that the nature of the agency problem
is common knowledge, i.e., that investors know whether Model B or Model G captures the situation
at hand. We now consider the possibility that investors are uncertain about whether Model B or
Model G is appropriate, i.e., whether they would like to encourage or discourage M to take the
action. Specifically, assume that with probability α the agency problem is that of Model B, with
a (known) private benefit denoted by βB a loss of value to the firm denoted by δ̃B, and with
probability 1 − α the agency problem is described by Model G, with a (known) private benefit
denoted by βB a loss of value to the firm denoted by δ̃B. Suppose that L can observe whether M
has taken the action and that she also knows whether the action it is good or bad. However, as
in the models of Section 3, no investor has information about the realization of δ̃B or δ̃G. Then,
under the maintained assumption that L can only exit or retain her shares, it can be shown that
L can only provide discipline for one of the two types of agency problems, but not both.

To obtain some intuition, denote by ãB the random variable indicating that M has taken a
“bad” action (i.e., that the appropriate model is Model B and M has taken the action) and ãG to
be the random variable indicating that M has taken a “good” action. Define Es and Ens be the
expectation of ãGδ̃G − ãB δ̃B conditional on L selling or not selling respectively. It is easy to see
that if Es > 0 in equilibrium, then L will exit in all cases except when M takes a good action.
This implies that L provides no discipline when the action is bad, since she exits whether the bad
action is taken or not. Similarly, if the equilibrium value of Es is negative, then L will exit only
when a bad action is taken. In this case L provides no discipline when the action is good, since
she retains her shares no matter what M does.19

Interestingly, it can be shown that “model uncertainty” of the type discussed above can
enhance the disciplinary impact of L in the following sense. Define xB(α) to the cutoff in the
case where the agency problem is described by Model B as a function of the probability that this
is the model, α. In the equilibria where Es < 0 and L provides discipline only for Model B,
xB(α) can be increasing in α, especially for α near 1. The same can occur for xG(α). When
Es > 0 and M provides discipline for Model G, xG(α) can be decreasing in α, especially for α
near zero. Both of these effects occur because the possibility that the agency problem is of the
other type can increase Es − Ens relative to the case where it is common knowledge what the
agency problem is.20

9. Concluding Remarks

Our analysis suggests that the ability of large shareholders to vote with their feet and exit

19 It is possible that there are two equilibria, one in which Es > 0 and one in which Es < 0.
20 It should also be noted that the conclusion that L can only discipline in of the two agency

problems is due to L having only two possible trades, namely exit or retain her shares. If L had
a third possible trade, e.g., to increase her stake by buying more shares, then it would in principle
be possible for her to provide discipline in both the Model B and Model G. A full examination
of this is beyond the scope of this paper.
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does not necessarily weaken corporate governance. If a manager cares about the market value of
his firm, then the possibility that informed large shareholders can sell their shares and affect prices
has the potential to reduce agency costs. However, we found that the extent to which the threat
of exit can have a disciplinary impact depends on the nature of the agency problem as well as on
the information structure. Potential exit in our model is generally useful in preventing managers
from taking value-reducing actions, but not always in motivating them to take value-enhancing
actions. Since it is the credible threat of exit that provides the discipline, we find that disciplinary
gains can be realized even if actual exit occurs quite infrequently in equilibrium.

The large shareholder in our model, whom we refer to as L, was assumed to be endowed with
her private information, but our analysis has immediate implications for the case where private
information is costly. First note that L’s ex ante expected trading profits in our model are zero
— before she observes private information and before finding out whether she is subject to a
liquidity shock, the expected profits L obtains when trading on private information are just offset
by the expected losses she suffers when she is subject to a liquidity shock. Thus, the value of
any private information acquired by L is only realized through the increase in the value of her
initial share holdings brought about by her disciplinary impact. This implies that if information
acquisition is costly, L would not acquire information in those cases where her trading is non-
disciplining or dysfunctional, i.e., has no affect on the agency problem or exacerbates the agency
problem. This means, in particular, that L will not acquire information about the consequences
of a value-enhancing action.

While it is important to our results that L’s trade has a price impact, it is not necessary
that L sells her entire holdings in the firm. For some shareholders, such as very large public
pension funds like CalPERs, complete exit may not be a viable option. Yet these shareholders
have the potential to affect the price even if they sell a fraction of their holdings, and they certainly
have incentives to gather information if they can increase the value of their holdings through a
decrease in the agency costs. Note that index funds, compensated for tracking a pre-specified
index, have no incentives to gather information for any purpose, and no incentives to otherwise
monitor portfolio firms.21

In our model L’s trade has an immediate and direct effect on the price and M’s compensation
depends on the price at which L trades. Suppose instead that L trades anonymously in a noisy
market, i.e., one that includes other traders potentially subject to liquidity shocks. Then two
seemingly conflicting effects emerge. First, when L trades anonymously in a noisy market, the
direct impact of her trade on the price is generally lower than when the price is based on L’s
trade alone. Other things equal, this would seem to reduce L’s ability to discipline M , since her
trade would have less impact on the price and on M ’s compensation. Second, when L trades
anonymously, her information advantage is larger and, in fact, her ex ante expected trading profits

21 In Qiu (2006) the main positive impact of institutional investors in reducing the incidence
of value-reducing mergers seems to occur for public pension funds. The fact that she does not
find the same effect for other institutional investors can potentially be explained by conflicts of
interest or lack of sufficient incentives or the technology to collect private information.
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are positive. In general, this would increase L’s willingness to gather information and trade on
it, which can potentially increase her disciplinary impact.

It is interesting to note that in this noisy market situation, a variation on our model can actually
provide a role for trade disclosure that enables information-based trade to have a disciplinary
impact. Suppose L trades in a noisy market and that M’s compensation is sensitive to prices
beyond the price at which L trades, but before all her information becomes public. If L’s trade,
and possibly also the motive for her trade, becomes public after the trade takes place, e.g., as a
result of trade disclosure, then there will be further price impact at the time when information about
L’s trade becomes public. This in turn would affect M ’s compensation, which, in equilibrium,
may affect M’s decisions. Since trading in a noisy market increases L’s trading profits, it would
lead to additional information acquisition, which would generally enhance L’s disciplinary impact.
Thus, the disciplinary impact of exit would be enhanced by trade disclosure. To see this suppose,
for example, that M ’s short-term compensation is based on the price prevailing at the end of the
calendar year. Suppose L exits anonymously in October, and then in November it becomes known
or is disclosed that she has exited. Then the price in December would fully reflect the fact that L
has exited and this would affect M’s compensation. At the same time, L is able to benefit from
her information advantage by trading in October, potentially allowing her to recover the cost of
information and any transactions costs.22

Our model is consistent with a number of activities that large shareholders are known to
engage in at times, which may be more common than many overt forms of shareholder activism.
These include the ‘targeting’ of firms and various forms of behind-the-scene communication and
negotiation between large shareholders and managers, often referred to as ‘jawboning.’ Such
activities have been reported to be successful in affecting managerial decisions, for example,
in Carleton, Nelson and Weisbach (1998). Note that in our model there is no need for the
manager and the large shareholder to communicate. However, the model implicitly assumes that
the manager is aware of the presence of the large shareholder and understands the price impact
of the large shareholder’s trade, which means that he knows what type of information the large
shareholder has. If the manager is not fully aware of the large shareholder’s presence or the type
of information she possesses, then achieving the disciplinary impact may require that the large
shareholder communicate with the manager prior to the “onset” of our model. The threat to exit
that may be implicit or explicit when the large shareholder communicates with the manager is
indeed likely to be more credible than threats to engage in proxy fights or to submit shareholder
proposals, both of which are costly and often unlikely to succeed.

Finally note that in our model disciplinary impact through the threat of exit is only effective
if the large shareholder has some information about the manager’s action. If the action is not
publicly observable, then our model predicts that the large shareholder would have incentives to
gather private information about the action. We have also shown that if the manager’s actions are

22 Of course, when L trades anonymously she generally imposes a trading cost on other investors
who may be subject to a liquidity shock. The additional cost on other investors should also be
taken into account in a full analysis of this case.
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publicly observable, the threat of exit has a potential disciplinary impact only when the agency
problem is of the “bad action” type, but not if it involves a “good action.” Thus, our model
predicts that in the case of acquisitions and other publicly observable managerial actions, the
disciplinary role of a large shareholder’s exit will be evident in cash-rich firms prone to the “free
cash flow” agency problems. More generally, to the extent that it is possible to identify situations
where specific agency problems and information structures are likely to emerge, our model can
be used to examine existing evidence and to provide additional predictions regarding the potential
role of informed trading in corporate governance.
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Appendix

Proof of Proposition 1: Let A(x) = δ̄

x
δ dF(δ) , B(x) = x

0
δ dF(δ) , and C(x) = δ̄

x
dF(δ) .

Consider first Model B. If xB < δ̄ is an equilibrium cutoff, then β−(1−θ)ω1 (EB
s (xB)−EB

ns(xB))−
ω2xB = 0, where

EB

s (x) =
B(x)

θ + (1− θ) (1− C(x)) , EB

ns(x) = 0. (A1)

The equilibrium will be unique if EBs (x)−EBns(x) is nondecreasing in x. We have

EB

s (x)−EB

ns(x) =
B(x)

1−C(x)
1− C(x)

1− (1− θ)C(x) . (A2)

The first part of the product on the right hand size of (A2), namely B(x)/(1−C(x)), is equal to
E(δ̃ | δ ≤ x) which is nondecreasing in x. The second part is nondecreasing in x since C (x) ≤ 0
and 0 < θ < 1. It is easy to see that xB < β/ω2, which means that the equilibrium must be
disciplining.

Now consider Model Ga. If xG < δ̄ is an equilibrium cutoff, then

−β + (1− θ)ω1 (EG

ns(xG)−EG

s (xG)) + ω2xG = 0, (A3)

where

EG

s (x) =
θA(x)

θ + (1− θ) (1−C(x)) , EG

ns(x) =
A(x)

C(x)
. (A4)

In this case the equilibrium will be unique if EGns(x)−EGs (x) is nondecreasing in x. We have

EG

ns(x)−EG

s (x) =
A(x)

C(x)

1− C(x)
1− (1− θ)C(x) . (A5)

The first part of the product on the right hand side of (A5), namely A(x)/C(x), is equal to
E(δ̃ | δ̃ ≥ x), which is nondecreasing in x. The second part is the same as the second part in
(A2) and is nondecreasing in x. To show that xG < xB whenever xB < δ̄, it is sufficient to show
that for all x in the support of δ̃, EGns(x)− EGs (x) > EBs (xB)−EBns(xB), or

A(x)

C(x)

1−C(x)
1− (1− θ)C(x) >

B(x)

1−C(x)
1− C(x)

1− (1− θ)C(x) . (A6)
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This follows immediately since A(x)/C(x) = E(δ̃ | δ̃ ≥ x), which is clearly greater than
B(x)/(1− C(x)) = E(δ̃ | δ̃ ≤ x).

Proof of Proposition 2: Let p be the probability that M takes the action and let e be the
expectation of δ̃ conditional on M taking the action. Consider first Model Ba. Since EBns = 0,
the equilibrium condition for a disciplining equilibrium is β−ω1EBs = −θω1EBs or (1−θ)EBs =
β/ω1, where EBs = pe/ (θ + (1− θ)p). If we let c = β/ω1, the equilibrium condition becomes
(1− θ)pe/ (θ + (1− θ)p) = c or p(e− c) = θc/(1− θ). Thus any strategy for M that results in
a p and an e satisfying this relation is an equilibrium. In general there are many equilibria since
there are many strategies for M that lead to p’s and e’s that satisfy the equilibrium condition. It
will be useful to write the equilibrium condition in two ways:

pe =
θc

1− θ + cp, (A7)

and

p =
θc

(1− θ)(e− c) . (A8)

From the equilibrium condition given in (A7) we can conclude that pe, i.e., the expected loss
in Model Ba, is increasing in p, the probability that M takes the action, since c is fixed and
positive. From the equilibrium condition given in (A8), we can conclude p is decreasing in e,
the expectation of δ̃ given that M takes the action. Thus the expected loss is the lowest in that
equilibrium that has the highest e.

Now consider Model Ga. The equilibrium condition for a disciplining equilibrium is −β +
θω1E

G
s = θω1E

G
s + (1 − θ)ω1E

G
ns, which is equivalent to (1 − θ)(EGns − EGs ) = β/ω1, where

EGs = θpe/ (θ + (1− θ)(1− p)) and EGns = e. Again, letting c = β/ω1, we find that the
equilibrium condition is (1− p)(e− c) = θc/(1− θ), or

p =
1

1− θ 1− θe

e− c . (A9)

Once again any strategy for M that results in a p and an e satisfying this relation is an equilibrium.
Now in model Ga we want to maximize pe, which is the expected gain. It is clear from (A9)
that p is increasing in e, which means that to maximize pe we want the equilibrium that has the
highest e. Thus, in both Model Ba and Model Ga the best equilibrium is the one with the highest
e.

We now show that for both Model Ba and Model Ga the best disciplining equilibrium (when
such an equilibrium exists) is achieved when M follows an “upper” strategy, i.e., one in which
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M takes the action if and only if δ̃ > x for some x. First consider Model Ba where equilibrium
requires p(e− c) = θc/(1− θ). If M follows an upper strategy, then

p(e− c) =
δ̄

x

(δ − c) dF (δ). (A10)

Note that δ̄

x
(δ − c) dF (δ) is maximized at x = c and is decreasing for all x > c. Moreover the

maximum attained at x = c is the maximum attained across all strategies. Thus if a disciplining
equilibrium exists, there exists an x◦ > c such that

p(e− c) =
δ̄

x◦
(δ − c) dF (δ) =

θc

1− θ . (A11)

Moreover, this upper strategy equilibrium will have the highest expectation of δ̃ conditional on M
taking the action, i.e. the highest e, and is therefore the best. (Note that there cannot be another
upper strategy equilibrium with an x greater than x◦ since δ̄

x (δ − c) dF (δ) is decreasing in x
for x > c.) Now consider Model Ga. The equilibrium condition is (1− p)(e− c) = θc/(1− θ).
Assume that M follows an upper strategy equilibrium in which he takes the action if and only if
δ̃ > x and let p(x) and e(x) be the values of p and e for this equilibrium as functions of x. Let
xc be such that e(xc) = c. Such an x will exist and is unique as long as c ≤ δ̄. (If c > δ̄ there is
no disciplining equilibrium.) Now (1− p(x))(e(x)− c) is increasing in x for all x > xc and it
attains its maximum (δ̄− c) as x approaches δ̄. Moreover, this maximum is the maximum across
all strategies M might follow. This means that if there is a disciplining equilibrium, then there is
a unique x◦ > xc such that (1 − p(x◦))(e(x◦) − c) = θc/(1 − θ). Since e(x◦) is the highest e
possible, this is the optimal strategy in Model Ga.

Proof of Proposition 3: Let g(x) = β − (1 − θ)ω1 Es(x) − Ens(x) − ω2x, where Es(x)
and Es(x) are defined by (11) and (12). Since we assume that δ̃ is continuously distributed,
it follows that Es(x) and Ens(x) are continuous functions of x. Moreover for all x > 0,
Es(x)−Ens(x) > 0. Since g(0) > 0 and g(β/ω2) < 0, there must be at least one xB ∈ (0,β/ω2)
such that g(xB) = 0 and this is an equilibrium cutoff for Model Ba,δ. For any given value of x,
Es(x) solves

θ
x

0

δ dF(δ) − θEs(x) + (1− θ)
x

Es(x)

δ −Es(x) dF(δ) = 0. (A12)

As θ → 0, it is clear that Es(x)→ x. Since L sells on the interval [Es(x), x], the probability of
L selling vanishes as θ → 0.

Proof of Proposition 4: Let x = β/w2 < δ̄, x1(θ) be the highest type manager that takes the
action in Model Ba for a given θ, and x2(θ) be the same for Model Ba,δ. We want to show that
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for θ sufficiently close to 1, the gain produced by L in Model Ba is greater than that produced
in Model Ba,δ. The gain is related to the size of the interval of δ̃ realizations that refrain from
taking the action due to L’s presence. For Model Ba this is

x − x1(θ) = β

w2
− β − (1− θ)w1Q(x1(θ), θ)

w2
=
(1− θ)w1Q(x1(θ), θ)

w2
, (A13)

where

Q(x1(θ), θ) =

x1(θ)

0 δ dF(δ)

θ + (1− θ) x1(θ)

0 dF(δ)
. (A14)

Note that

lim
θ→1

Q(x1(θ), θ) =
x

0

δ dF(δ) . (A15)

For Model Ba,δ this is

x − x2(θ) = β

w2
− β − (1− θ)w1R(x2(θ), θ)

w2
=
(1− θ)w1R(x2(θ), θ)

w2
, (A16)

where

R(x2(θ), θ) =
θ

x2(θ)

0 δ dF(δ) + (1− θ) x2(θ)

y(θ) δ dF(δ)

θ + (1− θ) x2(θ)

y(θ) dF(δ)
−

y(θ)

0 δ dF(δ)

1− x2(θ)

y(θ) dF(δ)
, (A17)

and where y(θ) solves

y(θ) =
θ

x2(θ)

0 δ dF(δ) + (1− θ) x2(θ)

y(θ) δ dF(δ)

θ + (1− θ) x2(θ)

y(θ) dF(δ)
. (A18)

Note that

lim
θ→1

R(x2(θ), θ) =
x

0

δ dF(δ) −
y

0
δ dF(δ)

1− x

y dF(δ)
, (A19)
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where y =
x

0 δ dF(δ) . We now take the limit of (x −x1(θ))/(x −x2(θ)) as θ→ 1. This is

lim
θ→1

x − x1(θ)
x − x2(θ) = lim

θ→1
Q(x1(θ), θ)

R(x2(θ), θ)
=

x

0

δ dF(δ)

x

0

δ dF(δ) −
y

0
δ dF(δ)

1− x

y
dF(δ)

, (A20)

which is strictly grater than 1 since y > 0. This means that for θ sufficiently close to 1, the
cutoff below which the action is taken in Model Ba is strictly smaller than that in Model Ba,δ.

Proof of Proposition 5: If there are two equilibria to Model Ga,δ, one must be the equilibrium
of Model Ga and the other must be non-disciplining. Let x be the cutoff in the equilibrium of
Model Ga and let z be the cutoff in the non-disciplining equilibrium, i.e., β/ω2. Then, for the
equilibrium of Model Ga to be an equilibrium of Model Ga,δ we must have

Es =
θ

δ̄

x
δ dF (δ)

θ + (1− θ) δ̄

x dF (δ)
≤ x < z. (A21)

The second inequality must be strict if there are two distinct equilibria. Now consider the condition
for the non-disciplining equilibrium. Let y = Es in the non-disciplining equilibrium. We have

y =
θ

δ̄

z
δ dF (δ) + (1− θ) y

z
δ dF (δ)

θ + (1− θ) y

0 dF (δ)
. (A22)

Now let θm be the minimum value of θ that is consistent with a non-disciplining equilibrium. At
this value y = z and we have

z =
θm

δ̄

z δ dF (δ)

θm + (1− θm) z

0
dF (δ)

. (A23)

This means that for a non-disciplining equilibrium to exist, θ must be such that

θ ≥ θm =
z

z

0
dF (δ)

δ̄

z
δ dF (δ) + z z

0
dF (δ)− z

. (A24)
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Now, since z > x, it follows that

θ
δ̄

z
δ dF (δ)

θ + (1− θ) z

0
dF (δ)

<
θ

δ̄

x
δ dF (δ)

θ + (1− θ) x

0
dF (δ)

. (A25)

Using the condition for equilibrium in Model Ga to be an equilibrium for Model Ga,δ, i.e., (A21),
we have

θ
δ̄

z
δ dF (δ)

θ + (1− θ) z

0
dF (δ)

<
θ

δ̄

x
δ dF (δ)

θ + (1− θ) x

0
dF (δ)

≤ x < z. (A26)

This implies that

θ <
z

z

0
dF (δ)

δ̄

z δ dF (δ) + z z

0 dF (δ)− z
= θm, (A27)

which contradicts (A24), which is necessary for the existence of a non-disciplining equilibrium.
Thus we cannot have both types of equilibria.

Proof of Proposition 6: Let

Qa(x) =
θ

x

0 δ dF(δ) + (1− θ) x

Qa(x) δ dF(δ)

θ
x

0
dF(δ) + (1− θ) x

Qa(x)
dF(δ)

;

Qb(x) =

x

0 δ dF(δ)

θ + (1− θ) x

0
dF(δ)

;

Qc(x) =
θ

x

0 δ dF(δ) + (1− θ) x

Qc(x) δ dF(δ)

θ + (1− θ) x

Qc(x)
dF(δ)

.

(A28)

To show that Model Ba,δa produces the highest ex ante value for the firm, it is sufficient to show
that for all x in the support of the distribution of δ, Qa(x) is at least as large as Qb(x) and Qc(x).
To see why this is sufficient first note that any equilibrium cutoff x for Model Ba,δa must solve

β −w2x = w1Qa(x), (A29)
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while equilibrium cutoffs for Model Ba and Model Ba,δ solve respectively:

β −w2x = (1− θ)w1Qb(x), (A30)

and

β −w2x = (1− θ) (w1Qc(x)−Ens(x)) . (A31)

If Qa(x) is at least as large as Qb(x) and Qc(x), then there is an equilibrium cutoff solving (A29)
that is no greater than any solving (A30) and (A31). Moreover, if Qa(x) is strictly larger than
Qb(x) and Qc(x) (which will generally be the case), then there is an equilibrium cutoff solving
(A29) that is strictly less than any solving (A30) and (A31).

We will first show that Qa(x) ≥ Qb(x) for all x. Define Πba =
b

a
dF(δ) and ∆ba =

b

a
δ dF(δ) ,

and let Qa be shorthand for Qa(x). It is straightforward to show that the sign of Qa(x)−Qb(x)
is the same as the sign of

θ2 (1−Πx0)∆x0 + θ(1− θ) ∆xQa −ΠxQa∆x0 − (1− θ)2 Πx0∆
x
Qa −ΠxQa∆x0 . (A32)

The first term in (A32) is clearly nonnegative. Consider now the last term. Observe that

Πx0∆
x
Qa −ΠxQa∆x0 = ΠxQa∆xQa +Π

Qa

0 ∆xQa − ΠxQa∆xQa +ΠxQa∆
Qa

0

= ΠQ
a

0 ∆xQa −ΠxQa∆
Qa

0 .
(A33)

Now since x ≥ Qa ≥ 0 we have

ΠQ
a

0 ∆xQa ≥ QaΠQa

0 ΠxQa

ΠxQa∆
Qa

0 ≤ QaΠQa

0 ΠxQa .
(A34)

This means that the last expression in (A32) is nonnegative (and strictly positive if x > Qa > 0).
It is easy to see that the non-negativity of the last expression in (A32) implies that the second
expression in (A32) is also nonnegative. This is because ∆xQa ≥ Πx0∆xQa .

Now consider Qc(x). First note that if θ = θ
x

0 dF(δ) , Qa(x) = Qc(x). We need only consider
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the cases where θ > θ
x

0
dF(δ) , i.e., θ > 0 and x

0
dF(δ) < 1. From the definition of Qc(x) we

know that Qc(x) is equal to y such that y solves

y −
θ

x

0
δ dF(δ) + (1− θ) x

y
δ dF(δ)

θ + (1− θ) x

y
dF(δ)

= 0. (A35)

Using the definition of Qa(x), one can easily see that

Qa(x)−
θ

x

0
δ dF(δ) + (1− θ) x

Qa(x)
δ dF(δ)

θ + (1− θ) x

Qa(x) dF(δ)
> 0. (A36)

when θ > θ
x

0 dF(δ) . To show that Qa(x) ≥ Qc(x) it is sufficient to show that there is a unique
solution to (A35) and that the left hand side of (A35) is increasing in y at the solution. Let S(y)
be the left hand side of (A35). It is straightforward to show that

S (y) = 1 +
(1− θ)f(y)

θ + (1− θ) x

y
dF(δ)

S(y). (A37)

One can see from (A37) that S(y) is increasing for at all values of y that solve (A35). Since
S(y) is continuous, this means that there is a unique y that solves (A35). From this and (A36) it
follows that Qa(x) ≥ Qc(x).

Proof of Proposition 7: First we prove that an equilibrium exists and is unique. To do this we
first show that for all x in the support of the distribution of δ̃, there is a unique Es(x) that solves
the defining equation given by (19) in Section 5, and that Es(x) is increasing in x. From (19)
we see that Es(x) is any value of y that solves

y =
θ

δ̄

x
δ dF(δ) + (1− θ) y

x
δ dF(δ)

δ̄

x dF(δ) + y

x
dF(δ)

, (A38)

or, equivalently, which solves

S(y) = θ
δ̄

x

(y − δ)dF(δ) + (1− θ)
y

x

(y − δ)dF(δ) = 0. (A39)

It is easy to see that S(x) < 0, S(δ̄) > 0, and S (y) > 0 for all y ∈ (x, δ̄). This means that there
is a unique y > x that solves (A39).1 Using the fact that (A39) implicitly defines y as a function

1 Note that we are assuming that θ > 0. In the limit case where θ = 0, we have y = x as a
solution to (A39).
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of x, it is easy to show that

y (x) =
y(x)− x f(x)

θ
δ̄

x
dF(δ) + (1− θ) y

x
dF(δ)

> 0. (A40)

Thus Es(x) is an increasing function of x. Now for an interior equilibrium in Model Ga,δ
δ (i.e.,

one for which 0 < xG < δ̄), we must have −β + ω1Es(xG) + ω2xG = 0. Since we have shown
that Es(x) is monotone increasing in x, it follows that if there is an interior equilibrium, it is
unique. (Otherwise, the equilibrium is not interior and either xG = 0 if −β + ω1Es(0) > 0 or
xG = δ̄ if −β + ω1Es(δ̄) + ω2δ̄ < 0.)

Define Ea(x) = E(δ̃ | δ̃ ≥ x). As discussed in Section 5, when L is not present, the
equilibrium cutoff x is determined by −β + ω1Ea(x) + ω2x = 0, while if L is present, the
equilibrium cutoff point is determined by −β + ω1Es(x) + ω2x = 0. To show that there is less
discipline when L is present, it is sufficient to show that Ea(x) > Es(x) for all x < δ̄. We have

Ea(x)−Es(x) =
δ̄

x δ dF(δ)
δ̄

x
dF(δ)

− θ
δ̄

x δ dF(δ) + (1− θ) Es(x)

x
δ dF(δ)

δ̄

x
dF(δ) + Es(x)

x
dF(δ)

=
(1− θ) Es(x)

x
dF(δ)

δ̄

x dF(δ) + Es(x)

x
dF(δ)

δ̄

x δ dF(δ)
δ̄

x dF(δ)
−

Es(x)

x
δ dF(δ)

Es(x)

x
dF(δ)

> 0

(A41)

The inequality in (A41) follows since Es(x) < δ̄ if x < δ̄ and

δ̄

x
δ dF(δ)
δ̄

x
dF(δ)

−
Es(x)

x
δ dF(δ)

Es(x)

x
dF(δ)

= E(δ̃ | x ≤ δ̃)−E(δ̃ | x ≤ δ̃ ≤ Es(x)) > 0. (A42)

Proof of Proposition 8: Consider first Model Ba,δδ . It is clear that in any equilibrium, L exits
whenever M takes the action and retain them whenever M does not take the action (unless
subjected to a liquidity shock). Let mB(δ) be the probability that M takes the action in Model
Ba,δδ when the realization of δ̃ is δ. This means that

Es(δ) =
mB(δ)δ

θ + (1− θ)mB(δ)
; Ens(δ) = 0. (A43)

M is indifferent between taking the action and not taking it if and only if

β − ω1Es(δ)− ω2δ = −ω1 θEs(δ) + (1− θ)Ens(δ) . (A44)
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or,

β − (1− θ)ω1 mB(δ)δ

θ + (1− θ)mB(δ)
− ω2δ = 0. (A45)

Now consider Model Ga,δ, and denote by mG(δ) be the probability that M takes the action
for a given δ. In this case in any equilibrium L will retain her shares when M takes the action
(unless she is subject to a liquidity shock) and sell if M does not take the action. This means
that when δ̃ = δ we have

Es(δ) =
θmG(δ)δ

θ + (1− θ)(1−mG(δ))
, Ens(δ) = δ. (A46)

It follows that in Model Ga,δ
δ M is indifferent between taking the action and not taking it if and

only if

−β + ω1 θEs(δ) + (1− θ)Ens(δ) + ω2δ = ω1Es(δ), (A47)

or,

−β + (1− θ)ω1 (1−mG(δ))δ

θ + (1− θ)(1−mG(δ))
+ ω2δ = 0. (A48)

Note that (A45) defines the function mB(δ) over the range of δ for which mB(δ) ∈ (0, 1)
and (A48) does the same for mG(δ).
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