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1. Executive Summary
This document describes an architecture called the Warwick Framework, a result of the April 1996
Metadata Workshop II in Warwick U.K. The purpose of the Warwick workshop was to build on the results
of the March 1995 Metadata Workshop in Dublin, Ohio, from which developed the Dublin Core
metadata set.

The Dublin Core is an attempt to formulate a simple yet usable set of metadata elements to describe the
essential features of networked documents -- what the report of the Dublin meeting terms “document-like
objects”. The focus of the Dublin Core is primarily, but not exclusively, on description of objects. The
Core metadata set is intended  to be suitable for use by resource discovery tools on the Internet, such as the
"webcrawlers" employed by popular World Wide Web search engines (e.g., Lycos and Alta Vista). The
thirteen elements of the Dublin Core include familiar descriptive data such as author, title, and subject. In
the design of the Dublin Core consideration was given to mappings between the elements of the Core and
existing, more specialized descriptive systems such as library cataloging (AACR2/MARC) and the FGDC
metadata scheme. A few fields in the Core, such as coverage and relationship, are less typical of
descriptive cataloging, but attempt to generalize aspects of descriptive cataloging practice without making
the fine distinctions called for by traditional approaches, which require trained catalogers.

The Warwick Workshop was convened to build on the Dublin  core program and provide a  more concrete
and operationally useable formulation of the Dublin Core, in order to promote greater interoperability
among content providers, content catalogers and indexers,  and  automated resource discovery and
description systems. The second workshop also was an opportunity to  assess the results of a year of
experimentation with the Dublin Core.

While there was general consensus among the attendees that the concept of a simple descriptive metadata
set is useful, there were a number of fundamental questions concerning the real  utility of the Dublin Core
as it was defined at the end of the preceding workshop. Does the very loosely defined Dublin Core really
qualify as a "standard" that can be read and processed programmatically? Should the number of the core
elements be expanded, to increase semantic richness, or reduced, to improve ease-of-use by authors and/or
web publishers? Will authors reliably attach core descriptive metadata elements to their content? Should a
core metadata set be restricted to only descriptive cataloging information or should it include other types
of metadata such as administrative information, linkage data, and the like? What is the relationship of the
Dublin core to other developing work in metadata schemes, particularly in those areas such as rights
management information (terms and conditions), which were considered largely outside the scope of the
Dublin Core?
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We concluded that the answer to these questions and the route to progress on the metadata issue lay in our
ability to provide a higher-level context for the Dublin Core. This context should define how the Core can
be combined with other sets of metadata in a manner that addresses the individual integrity, distinct
audiences, and separate realms of responsibility and management that characterize these distinct metadata
sets.

The result of the Warwick Workshop is a  proposal for a container architecture, known as the Warwick
Framework. The framework is a mechanism  for aggregating logically, and perhaps concretely (through
the use of specific data structures), distinct packages of metadata. This is a modularization of the
metadata issue with a number of notable characteristics.

• It allows the designers of individual metadata sets to focus on their specific requirements and to
work within their specific areas of expertise, without concerns for generalization to ultimately
unbounded scope.

• It allows the syntax of metadata sets to vary in conformance with semantic requirements,
community practices, and functional (processing) requirements for the kind of metadata in
question.

• It  distributes management of and responsibility for specific metadata sets among their respective
"communities of expertise".

• It promotes interoperability and extensibility by allowing tools and agents to selectively access
and manipulate individual packages and ignore others.

• It permits access to different metadata sets related to the same object to be separately controlled.

• It flexibly accommodates future metadata sets by not requiring changes to existing sets or the
programs that make use of them.

The separation of metadata sets into packages does not imply that packages are completely  semantically
distinct.  In fact, it is a feature of the Warwick Framework that an individual container may hold
packages, each managed and maintained by distinct parties, with complex semantic overlap, recognizing
the reality of these scoping problems.

2. Organization of this Paper
The remainder of this paper is divided into six major sections.  Section  3 summarizes the two metadata
workshops relevant to the Warwick Framework; the 1995 Dublin Ohio workshop and the 1996 Warwick
U.K. workshop.  Section 4 contains a short description of the Dublin Core, and then Section 5 evaluates
the Core as defined by the first workshop and notes a number of its limitations.  Section 6 sets the context
for the remainder of the paper by considering the metadata issues in a broader context.  Section 7 is the
heart of this paper, containing a description of the Warwick Framework architecture.  Section 8 describes
a number of open issues which need to be resolved before full implementation of the core.  Finally,
Section 9 describes four proposed implementations: HTML, MIME, SGML, and one based on a
distributed object architecture.

3. The Metadata Workshops
The idea for metadata workshops grew out of an informal meeting at the Second International World
Wide Web Conference in Chicago in 1994. The participants at this meeting recognized that the number of
resources on the Web was exploding and the ability to find or discover resources was becoming
correspondingly complex.

The problems that existed two years ago with resource discovery and location on the Web still plague us.
Web documents have no descriptive data, or metadata, associated with them and resource discovery tools,
such as Lycos and Alta Vista, have no alternative than to create indexes from the contents of the
documents.  At best, these tools apply heuristics based on the use of HTML presentation markup as a
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method of moving beyond pure full-text based indexing. The problems with these full text indexes are
apparent when one searches for documents about "Mercury" and find a mixture of pages about the planet
Mercury, the element Mercury, the Greek God Mercury, and articles from the San Jose Mercury-News.
Further, it is clear that the full text indexing approach does not extent reasonably to the growing collection
of non-textual data moving onto the network. The full text based indexing approaches are completely
useless for non-textual documents such as the plethora of images, audio, video, and even executable
programs (accessible through CGI gateways) on today's Web.

While there have been some attempts to apply intellectual classification and cataloging practices to some
resources on the net, such as the Yahoo catalog, the costs of employing human labor to construct these
catalogs means that they can only provide a guide to a very small part of the rich resources accessible
through the network; most commonly they operate on the level of entire web sites rather than at the
document level. And the time delay inherent in human review and classification means that the cataloging
approach is primarily applicable to relatively stable sites; it cannot be effectively and affordably extended
to cover the large amount of relatively ephemeral material on the net.

The first Metadata Workshop, sponsored by the Online Computer Library Center (OCLC) and the
National Center for Supercomputer Applications (NCSA), was held in March, 1995 in Dublin, Ohio. The
Dublin Workshop convened a mixture of computer and information scientists, librarians, and information
providers to attempt to formulate solutions to the growing resource discovery problem.

The goals of the Dublin Workshop were purposely quite modest. The decision was made to set aside the
“general purpose” metadata problem, and limit the scope to metadata useful in  describing what were
termed "document-like objects" (DLOs), which correspond generally to a textual WWW page. The scope
of the descriptive data was further restricted to what is commonly known as descriptive cataloging and, to
a lesser extent, classification -- for example, little consideration was given to evaluative information which
might reasonably be part of an object’s description. Furthermore, the focus of the workshop was on
conceptual  consensus building, to which syntax wars are especially anathema. By agreeing not to argue
over syntax, the Workshop participants were limited to enumerating the set of metadata elements that are
elemental to the description of DLOs and defining the semantics of those elements.

The primary result of this Dublin Workshop was a set of thirteen metadata elements, named the Dublin
Core Metadata  Set1, or Dublin Core. The Dublin Core is intended as a relatively simple set of descriptive
data that can be provided by a majority of authors or maintainers of WWW documents, and which will be
usable by WWW locator services.

The results of the Dublin Workshop met with a considerable level of interest. The Workshop Report and
summary article2 in d-Lib Magazine3 attracted substantial readership. A number of prototype
implementations using the Dublin Core were undertaken in North America, Europe, and Australia.

To build on these results of the Dublin Workshop, a follow on workshop was held in Warwick U.K. in
April, 1996, this time sponsored by OCLC and the United Kingdom Office for Library and Information
Networking  (UKOLN). The announcement to this second workshop contained two stated goals:

• promote semantic interoperability across disciplines and languages, and

• define mechanisms for extensibility to support richer descriptions and linkages to other
description models.

As the participants convened for this second workshop there was consensus that these goals would be
more difficult to meet than the conceptual consensus-building goal of the earlier workshop.
Interoperability among systems requires  a more concrete description of syntax and semantics than that
provided by the original Dublin Core. Extensibility entails determining how the Dublin Core interacts
with other types of metadata. An examination of interoperability and extensibility issues also involves a
detailed consideration of usage scenarios for Dublin Core (and other metadata): how it is created, how it is
located and interchanged, and how it is employed by various applications.
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4. Summary of the Dublin Core
Readers of the document who are interested in complete details on the Dublin Core are encouraged to read
the complete Dublin Workshop Report4. This section is intended as a brief summary of the Dublin Core
metadata set -- as defined by the Dublin Metadata Workshop -- providing context for the remainder of this
document.

Readers should note that there is a terminology problem in talking about the Dublin Core. Part of the
work of the Warwick workshop was to reassess the Dublin Core per se, as well as to examine it in the
larger context described here. Other parts of the overall workshop report will discuss some changes and
refinements to the definition of the Dublin Core as a result of the Warwick meeting; further, some of the
open issues covered later in this paper will point towards additional areas of potential change within the
Core definition. The focus of this section and the next is to describe and evaluate the state of the Dublin
Core as it existed prior to the start of the Warwick meeting.

The goal of the Dublin Core is to provide a minimal set of descriptive elements that facilitate the
description and the automated indexing of document-like networked objects. In addition, the core is meant
to be sufficiently simple to be understood and used by the wide range of authors and casual publishers who
contribute information to the Internet. As stated earlier, the original Dublin Core proposal purposely
avoids the question of syntax.

The thirteen elements of the Dublin Core are shown in Figure 1.

In addition to enumerating these data elements,  the Dublin Workshop report specifies a number of
underlying principles that apply to the entire core metadata set.

• The core metadata set is extensible to permit inclusion of additional site specific or domain
specific data elements .

• All elements in the Core metadata set are optional in any specific description of an object using
the Core.  The reason for this is two-fold.  First, some of the elements of the Core are meaningful
for only certain documents – for example, the coverage field is useful mainly for geospatial
resources.  Second, incomplete descriptions are inevitable under precisely those usage scenarios
that the Dublin Core was intended to address; description of documents by authors, site

Subject The topic addressed by the object.
Title The name of the object.
Author The person(s) primarily responsible for the intellectual content of

the object.
Publisher The agent or agency responsible for making the object available.
OtherAgent The person(s), such as editors and transcribers, who have made

other significant intellectual contributions to the work.
Date The date of publication.
ObjectType The genre of the object, such as novel, poem, or dictionary.
Form The data representation of the object, such as PostScript file.
Identifier String or number used to uniquely identify the object.
Relation Relationship to other objects.
Source Objects, either print or electronic, from which this object is

derived.
Language Language of the intellectual content.
Coverage The spatial locations and temporal duration characteristic of the

object.

Figure 1 - Dublin Core fields
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managers, and non-professional publishers or information distributors, rather than professional
catalogers and indexers.

• All elements are repeatable allowing, for example, multiple author elements.

• The semantics of each element can be modified by either:

∗ the use of qualifiers, borrowed from other existing metadata schemes,  which permit more
detailed or specific semantics to be imported into the Dublin Core from these pre-existing
external metadata schemes, or

∗ ad-hoc specializations and extensions developed specifically for use with the Core so as to
refine the normal meanings of the core data elements.

No consideration was given to registry of these extensions in the original Dublin Core document,
or to their implications for interoperability and extensibility -- or indeed to the utility of the
qualifier provision in the context of typical usage scenarios.

5. Evaluating the Dublin Core
The results of the 1995 Dublin Metadata Workshop were intended as an initial step towards defining a
core descriptive  metadata set, not as a complete definition of that set.  Making progress at the Warwick
Workshop required evaluating the Dublin Core definition and determining the work that was necessary to
provide a platform for implementation.  We summarize that evaluation in this section.  Some of the issues
described here are addressed by the Warwick Framework.  Other issues, such as syntax for Dublin Core
elements and guidelines for authors, are addressed by other documents resulting from the Warwick
Workshop. A few remain for further work.

It is important to recognize that many of these criticisms are in some real sense unfair. The Dublin
workshop deliberately set goals that were not intended to produce a fully defined final product but rather
to make progress and build consensus towards the ultimate definition of a final product.   

5.1 The Dublin Core is loosely defined.

The authors of the Dublin Core readily admit that the definition is extremely loose. With no definition of
syntax and the principles that "everything is optional, everything is extensible, everything is modifiable"
the Dublin Core definition does not even approach the requirements of a standard for interoperability. The
specification provides no guidance for system designers and implementers of web crawlers and spiders
that may use the Dublin Core as the source for resource discovery and indexing. Achieving this level of
precision and concreteness was beyond the scope of the Dublin workshop but is essential for further
progress.

5.2 Authors and publishers of networked material may not provide the Core information.

The simplicity of the Dublin Core was motivated by the desire to make it useable by the general class of
"non-professional" authors and publishers so common on the World Wide Web. Yet, there is some
empirical evidence that this class of providers will not even provide the simplest of descriptive
information. Furthermore, with only very vague semantics, no controlled vocabulary  and no definition of
appropriate syntax within the fields of the Dublin Core there is the possibility that any information
provided will be questionable or even meaningless; at the very least it may be impossible to process
algorithmically. The Dublin Core data elements in effect serve as a transport mechanism and a labeling
mechanism for information that is going to be displayed to human end-users; or at best processed
heuristically, with some consideration given to the Dublin Core tagging in developing the heuristics.

 It is important to recognize here that this is less a critique of the Dublin Core per se than it is a
recognition of the problems in developing implementation scenarios that include author-provided
descriptive metadata elements. Facilitating the creation of such information as part of authoring and
network “publishing” is a key to making progress. A major focus at the Warwick meeting was the
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development of practical mechanisms to permit authors and site administrators to provide Dublin Core
data elements.

5.3 The Dublin Core represents the dominance of descriptive cataloging, avoiding issues of
operational and administrative metadata.

The Dublin Core does not represent itself as any more than a method for abbreviated descriptive
cataloging. However, it is important to note, and we will return to this subject later, that descriptive
cataloging is just one set among the many and varied metadata sets that may be associated with networked
objects. Many of these other metadata sets, such as those associated with the management and
administration of the object, have equal importance and need to be specified. It is important to note that in
the discussion of implementation experience at the Warwick meeting, virtually all implementations found
it necessary to work with other types of metadata in addition to descriptive cataloging, and found it
expedient to develop packaging, transport and organizational strategies that allowed metadata of different
types to be handled consistently.

5.4 While the Dublin Core concentrates on general descriptive cataloging elements, it also includes
some domain-specific elements.

Again, in the interest of reaching consensus, the creators of the Dublin Core included a number of
elements that diverge notably from the practices of general purpose  descriptive cataloging. For example,
the coverage element is specific to spatial or temporal data and the source element is generally
meaningful for materials that did not originate in digital form. The relationship element has particularly
problematic and unclear semantics that are extremely domain dependent. One could argue that other
specialized elements should be included in the Core, threatening to explode the definition with all sorts of
new metadata.

5.5 But the Dublin Core is an important step toward developing consensus  on metadata.

Although many of these criticisms are valid, the Dublin Core is, at the least, a firm basis for further
discussion in an important area. Full library-style descriptive cataloging is simply too expensive for the
overwhelming majority of networked documents. The need for a cheaper alternative is apparent. The
Dublin Core at least addresses this issue and the effort to create it was valuable as a first step in a longer
process.

In addition, the use of the Dublin Core in a limited context might produce very positive results. For
example, assume a set of "high-integrity sites". Administrators at such sites might tag their documents at
these sites with Dublin Core metadata elements using a set of well-specified practices that included
relatively controlled vocabulary and regular syntax. Retrieval effectiveness across these high-integrity sites
would probably be significantly better (assuming harvesting and retrieval tools that make use of the
metadata) than the unstructured searches available now through Lycos and Alta Vista. We can even
imagine a market structure where these sites register with the search service providers, for a fee, and that
users could restrict their searches to these sites.

6. Metadata Issue in the Broader Context
The organizers of the 1995 Dublin Metadata Workshop intentionally limited its scope, avoiding, as the
workshop report states, "the size and complexity of the resource description problem". This limited focus
was viewed as necessary to produce concrete results from the Workshop.

By the end of the first day of the Warwick Workshop, it was obvious that this strategy was now an
impediment to progress beyond what had been previously accomplished. Three principal questions
surfaced, each of which made clear the need to broaden our perspective.

1. Should the number of elements in the Dublin Core be expanded or contracted? Some workshop
attendees felt that in order for the core to succeed as a tool for authors, its number of elements
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should be restricted to only the most basic descriptive elements. Others saw the need for new
fields such as terms and conditions or administrator.

2. Should the syntax of the Core be strictly defined or left unstructured? Many attendees wanted to
avoid the painful syntax wars that are familiar to those who have participated in standards
efforts. However, without a more concrete definition of syntax, the Dublin Core does not provide
the level of interoperability for which it was intended.

3. Should the Core be targeted solely at the existing WWW architecture, or extend that
architecture? There is a strong argument  to facilitate easy adoption by specifying a metadata
standard that is closely attuned to current practice in the Web environment and that can be easily   
implemented  within the existing World Wide Web framework (browsers, servers, HTML
specification, etc.). However, the Web is clearly not the ultimate networked information delivery
vehicle , and many of its flaws are the subject of active discussion in the IETF, W3C, and other
venues. Many of the Workshop attendees felt that it was important to describe a metadata
framework that extends existing WWW technology and is sufficiently flexible to accommodate
older but still important networked information models such as FTP archives on one hand, but
can also extend to new information delivery environments such as distributed object systems on
the other.

We can answer these questions by stepping back from our focus on core metadata elements and examining
some of the general principals about metadata.

6.1 Metadata takes a variety of forms, both specialized and general.

Descriptive cataloging is but one of many  classes of metadata. Yet, even if we restrict ourselves to this
category, we observe that there exists and is legitimate reason for a variety of cataloging methodologies
and interchange formats.

The well-established Anglo-American cataloging rules (AACR2) and  MARC5  interchange format (and
its numerous variations) is the basis for virtually all existing library systems and has proven effective in
creating and encoding descriptions of a great variety of content . However, the very complex rules require
extensively trained catalogers for successful application, and the arcane structure of the MARC record
requires complex and specialized systems for record creation and interchange.  Simpler descriptive rules,
such as that suggested by the Dublin Core, are usable by the majority of authors but do not offer the degree
or retrieval precision and classification and organization that characterizes library cataloging. Projects
such as the Computer Science Technical Reports6 effort have already proven that simple descriptive rules,
when coupled with simple interchange formats that can be created with commonplace text editors, can
permit untrained authors or editorial staff to build descriptive records that are of significant value. The
Dublin Core builds on this experience.  Finally, there are domain-specific formats such as the Content
Standard for Digital Geospatial Metadata7 (CSDGM) format that is the result of work by the Federal
Geographic Data Committee8 (FGDC); the schemes used to describe mathematical software packages; or
the schemes used in the health sciences for classification and description. These schemes include
considerable descriptive cataloging, and are if anything more complex than MARC/AACR2, offering very
precise descriptions of very complex datasets for specific user communities and specific software
environments (both for record creation and searching) that can support them.

Real world applications, however, need to make use of a much broader spectrum of metadata than
descriptive cataloging.   We list below some other metadata types to provide a sense of this range, without
suggesting that this list is in any way a comprehensive enumeration

• terms and conditions - This is metadata that describes the “rules” for use of an object. Terms and
conditions might include an access list of who can view the object, a "conditions of use"
statement that might be displayed before access to the object is allowed, a schedule (tariff) of
prices and fees for use of the object, or a definition of permitted uses of an object (viewing,
printing, copying, etc.).
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• administrative data - This is metadata that relates to the management of an object in a particular
server or repository. Some examples of information stored in administrative data is date of last
modification, date of creation, and the administrator's identity.

• content ratings - This is a description of attributes of an object within a multidimensional scaled
rating scheme as assigned by some rating authority; an example might be the suitability of the
content for various audiences, similar to the well-know movie rating systems used by the MPAA.
The technical subcommittee of PICS9 (Platform for Internet Content Selection) in the IETF is an
effort to create a framework for  defining such content ratings. Note that content ratings have
applications far beyond simple filtering on sex and violence levels, however; they are likely to
play important roles in future collaborative filtering systems, for example.

• provenance - This is data defining source or origin of some content object, for example
describing some physical artifact from which the content was scanned. It might also include a
summary of all algorithmic transformations that have been applied to the object (filtering,
decimation, etc.) since its creation. Arguably, provenance information might also include
evidence of authenticity and integrity through the use of digital signature schemes; or such
authenticity and integrity information might be considered a separate class of metadata.

• linkage or relationship data - Content objects frequently have multiple complex relationships to
other objects. Some examples are the relationship of a set of journal articles to the containing
journal, the relationship of a translation to the work in its original language,  the relationship of a
subsequent edition to the original work, or the relationships among the  components of a
multimedia work (including synchronization information between images and a soundtrack, for
example).  References to related content should be done using some unique persistent identifier
such as an ISBN, ISSN, or URN.  

• structural data - This is data defining the logical components of complex or compound objects
and how to access those components. A simple example is a table of contents for a textual
document. A more complex example is the definition of the different source files, subroutines,
data definitions in a software suite.

It should be clear from these examples that we are far from consensus on an overall taxonomy of metadata
classes, although considerable work has been done in this area. Consider the murky relationships between
structural metadata on one hand and linkage or relationship data on the other, or the questions raised
above about the scope of provenance metadata.

6.2 New metadata sets will develop as the networked information infrastructure matures.

The range of metadata needed to describe and manage objects is likely to continue to expand as we
become more sophisticated in the ways in which we characterize and retrieve objects and also more
demanding in our requirements to control the use of networked information objects. Until the present era
of the multimedia WWW and ubiquitous Internet access (i.e., children can access it from the home), who
would have imagined the need for content ratings?  As another example, as more proprietary content is
made available for purchase on the global Internet, there is a growing emphasis on areas such as terms
and conditions definitions as a prerequisite to establishing a networked marketplace in information. The
architecture must be sufficiently flexible to incorporate new classes of semantics without requiring a
rewrite of existing sets (imagine having to go through the net to do a metadata rewrite!!).

6.3 Different communities will propose, design, and be responsible for different types of metadata.

Each logically distinct metadata set may represent the interests of and domain of expertise of a specific
community. For example, elaborate  descriptive cataloging sets are best created and maintained by
librarians and especially catalogers. The contents of terms and conditions metadata sets are best
understood by parties with business and  legal expertise and background in intellectual property issues.
Each community should be able to independently create and maintain the metadata that falls within its
"sphere of influence". Some classes of metadata may exist to meet specific legal or regulatory
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requirements; assertions made within these metadata segments may have particular legal liabilities
associated with them, for example.

The separate origin and administration of different metadata sets will result in very divergent syntax and
notation. For some types of metadata, such as descriptive cataloging data, static textual representations
will be sufficient. Others may be expressible only through more powerful means, such as executable (or
interpretable) programs. This is especially true for the metadata that may encode terms and conditions,
which may specify negotiation between clients, agents, and outside services (e.g., authentication services
and payment services).

6.4 There are many "users" of metadata.

Just as there are disparate sources of metadata, different metadata sets are used by and may be restricted to
distinct communities of users and agents. Machine readability may be a high priority for some types of
metadata, whereas for others may be targeted for human readability. The terminology in some types of
metadata may be domain specific. Each "user" of metadata should be able to directly access that metadata
that is relevant to it. From the opposite perspective, there may be reason to selectively restrict access to
certain types of metadata associated with an object to certain communities of users or agents. There will
be requirements to be able to transport specific metadata sets across systems without permitting those
systems access to the content of the metadata set.

6.5 Metadata and data have similar behaviors and characteristics.

Strictly and statically partitioning the information universe into data and metadata is misleading. What
may appear to be metadata in one context, may look very much like data in another. For example, some
critic's review of a movie qualifies as metadata - it is a description of the content, the movie. However, the
review itself is intellectual content that can stand alone as data in many instances. Like other data it may
have associated metadata and, especially, terms and conditions that protect it as fungible intellectual
property. This recursive relationship of data and metadata may nest to an arbitrarily deep level.

6.6 The metadata sets associated with an object may be physically collocated or may be referenced
indirectly.

If we are really envisioning a distributed information infrastructure, then our notion of distribution should
not only be between objects, but within objects. That is, metadata for an object may be a aggregation of
multiple independently managed sets of metadata, each of which may be maintained separately on the
network. References to physically separate sets should be referenced using a reliable persistent name
scheme, such as that proposed for Universal Resource Names10 (URNs) and Handles11.

Indirect reference to metadata sets goes hand-in-hand with sharing of metadata sets. For example, assume
a repository with many content objects, a number of which have common terms and conditions for access
(e.g., a university digital library with a site license for a set of periodicals). We should be able to express
this by linking, using a name reference,  the set of objects to one encoding of the terms and conditions.
Consequently, we should be able to modify the terms and conditions for the set of objects by changing the
one shared encoding. The shared terms and conditions metadata may, in turn, reside separately in a
repository managed by an outside provider that specializes in intellectual property management

7. The Warwick Framework Architecture
The result of this analysis at the Warwick Workshop is an architecture, the Warwick Framework, for
aggregating multiple sets of metadata.  The Warwick Framework has two fundamental components.  A
container is the unit for aggregating the typed metadata sets, which are known as packages.

A container may be either transient or persistent.  In its transient form, it exists as a transport object
between and among repositories, clients, and agents.  In its persistent form, it exists  as a first-class object
in the information infrastructure.  That is, it is stored on one or more servers and is accessible from these
servers using a globally accessible identifier (URI).  We note (and will demonstrate later in the proposed
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distributed object implementation) that a container may also be wrapped within another object (i.e., one
that is a wrapper for both data and metadata).  In this case the “wrapper” object will have a URI rather
than, or in addition to, the metadata container itself.

 Independent of the implementation, the only operation defined for a container is one that returns a
sequence of packages in the container. There is no provision in this operation for ordering the members of
this sequence and thus no way for a client to assume that one package is more significant or "better" than
another.

At the container level each package is an opaque bit stream.  One implication of these properties is that
any encoding (transfer syntax) for a container must allow the recipient of the container to skip over
unknown packages within the container (in other words, the size of each package must be self describing
at the container level). This property also permits the contents of individual packages to be encrypted,
permitting the transport of metadata across systems that need not have access to specific sets, or that may
need to acquire (i.e., purchase) such access.  Certain implementations, such as the HTML one proposed
later in this paper, may lack the power to fully enforce these abstract properties of containers.  

Each package is a typed object;  its type may be determined after access by a client or agent.  Packages are
of three types:

1. metadata set - These are packages that contain actual metadata.  Some examples of this are
packages that are MARC records, Dublin Core records, and encoded terms and conditions.  A
potential problem is the ability of clients and agents to recognize and process the semantics of the
many metadata sets.  In addition, clients and agents will need to adapt to new metadata types as
they are introduced, at least to the extent of ignoring them gracefully, or perhaps copying them
for downstream applications that may know how to process them.   Initial implementations of the
Warwick Framework will probably include a set of well known metadata sets, in the same
manner that most Web browsers have native handlers for a set of well-known MIME types.
Extending the Framework implementations to handle an extensible metadata sets will rely on a
type registry scheme.  We describe this in some greater detail in the implementation section of
this document.

2. indirect - This is a package that is an indirect reference to another object  in the information
infrastructure.   While the indirection could be done using  URLs we emphasize that the
existence of a reliable URN implementation is a necessary to avoid the problems of dangling
references that plague the Web. We note three possibly obvious, but important, points about this
indirection. First, the target of the indirect package is a first-class object, and thus may have its
own metadata and, significantly, its own terms and conditions for access. Second, the target of
the indirect package may also be indirectly referenced by other containers (i.e., sharing of
metadata objects). Finally, the target of the indirection may be in a different repository or server
than the container that references it.

3. container - This is a package that is itself a container.  There is no defined limit for this
recursion.
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We illustrate in Figure 2 a simple example of a Warwick Framework container.  The container in this
example contains three logical packages of metadata.  The first two, a Dublin Core record and a MARC
record, are contained within the container as a pair of packages .  The third metadata set, which defines
the terms and conditions for access to the content object, is referenced indirectly via a URI in the
container.  Note that the syntax for terms and conditions metadata and administrative metadata is not yet
defined.

The mechanisms for associating a Warwick Framework container with a content object (i.e., a document)
depend on the implementation of the Framework.  The proposed implementations later in this document
illustrate some of the options.  For example, a simple Warwick Framework container may be embedded in
a document, as demonstrated in the HTML implementation proposal; or an HTML document can link to a
container that is stored as a separate file.  On the other hand, as demonstrated in the distributed object
proposal, a container may be a logical component of a so-called digital object, which is a data structure for
representing networked objects.

The reverse linkage, that which ties a container to a piece of intellectual content, is also relevant.  Anyone
can, in fact, create descriptive data for a networked resource, without permission or knowledge of the
owner or manager of that resource.  This metadata is fundamentally different from that metadata that the
owner of a resource chooses to link or embed with the resource.  We, therefore, informally distinguish
between two categories of metadata containers, which both have the same implementation.

• An internally-referenced metadata container is the metadata that the author or maintainer of a
content object has selected as the describing the object.  This metadata is associated with the
content by either embedding it as part of the structure that holds the content or referencing it via
a URI.  An internally-referenced metadata container referenced via a URI is, by nature, a first-
class networked object, and may have its own metadata container associated with it.  In addition,
an internally-referenced metadata container may back-reference the content that it describes via a
linkage metadata element within the container.

• An externally-referenced metadata container is metadata that may well be created and
maintained by an authority separate from the creator or maintainer of the content object.  In fact,
the creator of the object may not even be aware of this metadata.  There may an unlimited
number of such externally-referenced metadata containers.  For example, libraries, indexing

container

package
Dublin Core

package
MARC Record

package
indirect

package
terms and conditions

URI

Figure 2 - Metadata container with three packages (one indirect)
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services, ratings services, and the like may compose sets of metadata for content objects that exist
on the net.  As we stated earlier, these externally-referenced metadata containers are themselves
first-class network objects, accessible through a URI and having some associated metadata.  The
linkage to the content that one of these externally-referenced  containers purports to describe will
be via a linkage metadata element within the container.   There is no requirement, nor is it
expected, that the content object will reference these externally-referenced containers in any way.

Figure 3 shows an example of this relationship.  Three metadata containers are shown. The one
internally-referenced metadata container is embedded in the content object (it does not have a URI, nor
does it have a linkage package that references the content).  The two externally-referenced metadata
containers are independent objects.  They each have a URI and reference the content object via its URI.

The internally-referenced metadata container in this illustration could also be indirectly referenced by the
content.  In this case it would have its own URI (say URI4) and would have a linkage package referencing
URI3 (the content).

8. Open Issues in the Warwick Framework
Time constraints  at the Warwick workshop did not permit a full exploration of all of the issues involved
in the proposed framework. There are several topics that urgently call for more detailed and extended
examination prior to finalizing the framework. Certainly the most fundamental question about the
Warwick Framework is the semantic interaction and overlap of the multiple metadata sets that may exist
in a container. While packages are to some extent logically distinct, they may have semantics that overlap
in complex ways.

This overlap may occur at numerous levels. There is the possibility of horizontal semantic overlap
between two metadata sets in a container. One example is a container with two descriptive cataloging
records; one MARC and one Dublin Core.  There is the possibility of vertical semantic overlap between
two metadata sets, one in a container and the other at some arbitrary level of recursion that descends from
that container.  (Recall that a container may hold other containers or refer indirectly to other containers.)
One example is a complex object with multiple terms and conditions metadata sets as one descends
through the structure of the object.  Here the problem is the scope of the object or objects to which the
metadata carried in packages within the composite object applies.

In the end, the semantics of the metadata associated with an object need to be understood by the
"consumers" of metadata - the clients and agents that access objects and the users that configure these

internally-
referenced
container

content

URI3

package
MARC

package
linkage

package
MARC

package
linkage

URI1 URI2

externally-referenced
metadata
container

externally-referenced
metadata
container

Figure 3 - Relationship between content and metadata



The Warwick Framework 13

clients and agents. We run the danger, with the full expressiveness of the Warwick Framework, of
creating such complexity that the metadata is effectively useless. Finding the appropriate balance is a
central design problem.

Consider, for example, a common consumer of metadata - the "spider" or "crawler" that tries to gather
descriptive metadata for networked objects and then compiles it into a searchable index. Designing this
agent is difficult if descriptive cataloging metadata is contained, without concern for consistency, in a
number of metadata sets for each object.  What are the rules for assembling a usable index from such
arbitrarily mixed metadata? What are the semantic transformations that can be made across the multiple
metadata sets?

We see similar, if not more complex, problems with overlapping metadata describing access rules or terms
and conditions for an object. Client access to a compound object, such as a multimedia document, may
require negotiating through numerous sets of terms and conditions at multiple levels of the document
(e.g., one set for a particular section of text, another for a particular slice of full-motion video, etc.). Yet,
at the top level, all the client is concerned with is whether the object can be accessed and at what cost.
This may be difficult or impossible to compute, especially if we consider the possibility of arbitrarily deep
recursion or circular references among containers.  We assume that market forces, the strong incentive to
make object’s accessible to clients and agents, may be sufficient to avoid the most complex problems of
this nature.

One proposal that was discussed only superficially at the Warwick workshop was the possibility of
developing a relationship metadata package, which would externalize and generalize the relationship
element from the Dublin Core. Presumably if this approach were adopted the relationship element would
be removed from the revised Dublin Core, thus eliminating one source of ambiguity about compound
objects. However, since many metadata schemes, not just the Dublin Core, contain concepts of
relationship or hierarchy, this does not fully solve the problem.

In addition to this fundamental issue, we list below a number of other implementation issues that need to
be examined in the process of implementing the Framework.

8.1 Type Registry

The Framework design requires that packages are strongly typed. By this we mean that an agent or client
will be able to determine the type of the metadata in a package; definers of specific metadata sets should
ensure that the set of operations and semantics of those operations will be strictly defined for a package of
a given type. We expect that a limited set of metadata types will be widely used and that agents, browsers,
and clients will be configured to process these metadata types. This is similar to capability of existing
WWW browsers to internally process certain MIME types of documents.

The type system must be extensible for, as we state earlier, new sets of metadata or variations of existing
sets will appear. How will  existing clients and browsers handle these new types? The simplest, solution is
that existing software will need to be upgraded as new metadata types come into existence; prior to such
upgrading, the container structure would at least permit the software to skip over the new, unknown
package type and warn the user that it had done so. Such a solution does not scale well if new types appear
often. A better solution would be the development of a network-based, software queriable type registry
service. This service could provide the information that would perhaps allow a client to either reconfigure
itself to process the new type, or download a network accessible applet or helper application that would
assist in processing the new type.

The limitations of such an approach are still real, however, and not well-understood: somehow, the type
system would need to convey some sense of the meaning of new types to processing applications.  This
might allow an application to, at first, determine if it even needs to “care” whether it doesn’t know about a
new type.  Depending on the answer to this, the application could decide whether it needs to download an
extension or helper application. For example, current browsers don’t care about provenance information,
and many users may not understand or care about provenance.
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There are also questions about whether there needs to be hierarchy and perhaps some form of inheritance
in the type system: for example, do we want a general class of rights and permissions metadata that
recognizes that there may be various “dialects” and transfer syntaxes and representations used for this
class of metadata?

8.2 Data Encoding

The Warwick Framework presents two data encoding problems. At the container level, what is the syntax
for transferring sets of packages? This syntax must be independent from the syntax of the packages
themselves, which are opaque at this level (indeed the package itself may even be encrypted). It must
allow for type information to be carried.  Ideally, we believe it should be relatively simple.  We include
some proposals for this container syntax, where appropriate, in the following implementation sections.

The more difficult data encoding problems exist at the package level.  Here there is no single right
answer. Some metadata sets can be adequately expressed in ASCII as a set of attribute/value pairs.  Other
designers of metadata sets may prefer other structures such as SGML, HTML, or ASN.1. The fields
contained in these syntaxes may be much more complex than just strings and integers as well. Consider,
for example, rules that describe the terms and conditions for access to an object.  In the simplest case these
rules may be expressed using an access control list, such as that well established in the operating systems
world.  However, a complete representation of the current legal and business framework in the digital
domain will require rules that account for negotiation, challenge/response, and interaction with third-
party services (e.g., payment services, authentication services, and the like).   This type of adaptive,
interactive metadata is best expressed via some type of executable program or agent.

Our approach of segmenting metadata into discrete packages each with independent syntaxes at least
permits progress on this problem; simple classes of metadata can use simple syntaxes, while classes with
more complex requirements can explore more complex and powerful syntaxes. But, to return to one of the
central issues that motivated the Warwick Workshop, there is a need to agree on one or more syntaxes for
the Dublin Core data elements themselves.

8.3 Efficiency

The power of the Warwick Framework lies in its recursive and distributed characteristics. This lends great
power to the model, but in an actual implementation may be quite inefficient. Even in the context of the
relatively simple World Wide Web, the Internet is often unbearably slow and unreliable. Connections
often fail or time out due to high load, server failure, and the like. In a full implementation of the
Warwick Framework, access to a "document" might require complex negotiation across distributed
repositories. The performance of this distributed architecture is difficult to predict and is prone to multiple
points of failure.   Efficient operation of this distributed architecture will depend an improved network
infrastructure using caching, data or object replication, dynamic load balancing, and other methods being
examined in distributed systems research

8.4 Repository Access

It is clear that some protocol work will need to be done to support container and package interchange and
retrieval.  We foresee the need for various forms of retrieval.  The simple case is retrieval of a container
for an object.  A more complex case is retrieval of only those containers that include packages of a specific
set of types.  The requirements for this protocol have not been explored in any detail.  Some examination
of the relationship between the Warwick Framework and ongoing work in repository architectures would
likely be fruitful.

9. Implementing the Warwick Framework
Simplicity of design and rapid deployment were primary considerations in the design of the Dublin Core.
At first glance it may seem that, with the Warwick Framework, we have forsaken this motivation and
have proposed an architecture that does not fit with the current world of HTML, HTTP, and WWW
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browsers. In fact, the basic notion of the Framework, the ability to place a number of metadata sets in a
container, can be expressed in the context of the existing WWW infrastructure. We propose this
implementation later in this section.

We miss an important opportunity, however, if we constrain the design and possible implementations
according to the existing Web. This infrastructure will surely evolve and may even be replaced by a more
powerful information infrastructure. Research and development of such an infrastructure is being
undertaken in the DARPA/NSF/NASA Joint Digital Library Initiative12, other international digital library
research projects, and a number of other venues. With an eye towards these developments, we later
propose a number of other implementations, with greater power to fully express the Warwick Framework.

9.1 HTML Implementation

Rapid deployment of the Warwick Framework will only occur if the initial implementation requires no
change to existing WWW software. We describe in this section a limited implementation of the
Framework that conforms to HTML 2.0, and which is transparent to existing browsers, spiders, and
HTML authoring tools. Eric Miller13 of OCLC14 proposed the initial idea for this implementation. This
proposal  was presented at the May 1996 W3C-sponsored Distributed Indexing/Searching Workshop15.
The syntax described below extends the workshop proposal16 with a provision for indirect reference to
metadata sets.

This implementation takes advantage of two tags in HTML 2.0.

• The �������  tag is used to embed metadata with the � ���
	  portion of HTML documents.

• The �
�����  tag provides for both indirect linking to the reference definition for a metadata schema
and for indirect linking to a set of metadata.

9.1.1 META Tag

Each �������  tag in HTML 2.0 specifies a name/value pair. This pair is encoded using the � �����  attribute
and the ����� ��� � �  attribute. The � ���
	  portion of an HTML document may contain multiple �������
elements. For example, a simple example of a �������  tag is:� ������� � �������
������������� ����� ��� � ���
���
�����! �����"#��"��! �����$
��%
We propose an encoding for the value of the � �����  attribute that groups a number of �������  tags into a
single metadata set. The encoding is as follows:� ������� � �������
� ��&�' "���(�) * ��)�(���%,+ � ������(������ * ��)�(���%�� ����� ��� � ���
� & �
-�����./$�)���)���%
In this encoding, the template ��&�' "���(�) * ��)�(���% is replaced by a unique prefix for the respective
metadata set, and � ������(������ * ��)�(���%  is replaced by the attribute name in that metadata set.  The
registration of unique ��&�' "���(�) * ��)�(���% encodings is left unresolved at this time.  If we assume the��&�' "���(�) * ��)�(���%  	 �  for Dublin Core elements, a partial Dublin Core metadata set would be encoded as
follows:� ������� � �������
��	 � +0����������� ����� ��� � ���
� � �1� �32 +�465�7�� ' �981� ' )��������
��%� ������� � �������
��	 � +:��;���"��
-�� ����� ��� � ���
������(=<��
->���
- &�? � ������%� ������� � �������
��	 � +:��;���"��
-�� ����� ��� � ����	�)�� � ������������@���%

This same HTML document might contain another set of metadata with another ��&�' "���(�) * ��)�(���%
prefix. For example, assume some standard for administrative metadata, which we will call the �
	��  set.
The set might be coded as follows:� ������� � �������
�0�
	��A+:��$1(������ & �
-�)����
-�� ����� ��� � ���
��<������ � �����������
��%� ������� � �������
�0�
	��A+B����$��981����$ * 	�)������ ����� ��� � ���
��4�C
4�D�E�D���%

9.1.2 LINK Tag

The following syntax for the �
�����  is used to indicate that a document containing metadata of the type��&�' "���(�) * ��)�(���% is located at ��F�G � %,+
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H�I
J�K�L3M�N�I�O1P�N�Q�RTS0H�U�V>W�X�Y�Z�[9\�Z�Y�X�]/^�M�N
_>O
`�H�a�M�I�]�`�]
For example, an indirect link to a set of  geospatial metadata, with the H�U�V>W�X�Y�Z�[9\�Z�Y�X�]  b
c�d�e P,f  might
be: H�I
J�K�L3M�N�I�O
`gP�N�Q�RTS b
c�d�e P,`3`�^�M�N
_>O�W�h�h>ikjml�lnY�X�h�Z�[po�X>i�q,S0r�s�ikSgX�t�r�l�u�X�q�Y�X�h�Z�`�]
Another use for the I
J�K�L tag is to provide a pointer to a human-readable reference definition of a
metadata schema.  This encoding is motivated by the lack of a central registry of metadata schema.  The
following syntax for the I
J�K�L  tag indicates that the reference definition of the metadata schemeH�U�V>W�X�Y�Z�[9\�Z�Y�X�] is located at H�a�M�I�],SH�I
J�K�L3M�N�I�O c�b ^�N�P�RTS0H�U�V>W�X�Y�Z�[9\�Z�Y�X�]/^�M�N
_>O
`�H�a�M�I�]�`�]
Thus, the reference definition for the Dublin Core metadata schema might be indicated by the following
encoding:H�I
J�K�L3M�N�I�O c�b ^�N�P�RTS0t�Vv^�M�N
_>O
`�W�h�h>ikjml�l�i
r�o�w,Sgq
o�u
lnY�X�h�Z�t�Z�h�Z
l>t�r�x�w�y�\1[pV�q
o�X�`�]
The combination of  these elements in an HTML document is shown in Figure 4.

The HTML implementation of the framework offers backward compatibility with existing browsers, but
requires a fair amount of work to determine the container/package structure. Fully implementing the
framework in HTML is problematic because of the difficulty of handling nested containers in the simple
name/value pairs provided by the META element.

There are at least two potential migration paths for browsers to implement the full capabilities of the
framework - MIME and SGML.  MIME (Multipurpose Internet Mail Extensions) is the set of Internet
standards that were developed to allow email messages to contain rich data formats and structures.
Browsers already have limited support for MIME, and their level of support is likely to increase over time.
SGML (Standard Generalized Markup Language) is the  meta-language that was used to define HTML.
Browser add-on products already exist for browsing arbitrary SGML documents, and it is possible that
browsers will grow to offer native SGML capabilities. The next two sections discuss how the Warwick
Framework can be implemented in MIME and SGML. Following that is a section on implementing the
framework using distributed objects, which assumes an information infrastructure far different from the
existing WWW.

9.2 MIME Implementation

As mentioned above, MIME is the set of standards (RFC-1522 and others) that were originally created to
allow varying content in e-mail messages. Earlier standards, such as RFC-822, dealt with the
standardization of mail headers, but not with the structure of the mail message itself.  MIME addresses
the structure of the message, allowing messages to contain binary data and multiple components or
attachments.  These capabilities can be used for a straightforward implementation of theH�^�Q1P�I�]H�^�N�R d ]H�Q�J>Q�I�N�]�R c Z�Y
i�w�X d q
V>r1Y�X�\�hvz�y�h�W{P�y�|�X�t{P�X�h�Z�t�Z�h�Z�H�l>Q�J>Q�I�N�]H1P�N�Q�R}K>R�P�N�O
` d�b S0Q�y�h�w�X�` b�~ K
Q�N>K
Q�O
` c Z�Y
i�w�X d q
V>r1Y�X�\�h�`�]H1P�N�Q�R}K>R�P�N�O
` d�b S:R�r�h�W�q
o�` b�~ K
Q�N>K
Q�O
`���q>x d q�w�X�`�]H1P�N�Q�R}K>R�P�N�O
` d�b S:R�r�h�W�q
o�` b q�\�h�X�\�h�O���y�w�w b w�y�\�h�q�\
`�]H1P�N�Q�R}K>R�P�N�O
`0R d PAS:R�t1Y�y�\�y
U�h
o�Z�h�q
o�` b�~ K
Q�N>K
Q�O
`���y�w�w b w�y�\�h�q�\
`�]H1P�N�Q�R}K>R�P�N�O
`0R d PASBP�q�t�y9�1y�X�t1[ d Z�h�X�` b�~ K
Q�N>K
Q�O
`����
��������`�]H�I
J�K�L3M�N�I�O
` c�b ^�N�P�RTS d�b `�^�M�N
_>O
`�W�h�h>ikjml�lnY�X�h�Z,Sgq
o�u
lnY�X�h�Z��
o�X�u
l d r�x�w�y�\��b q
o�X,S0W�h�Y�w�`�]H�I
J�K�L3M�N�I�O
`gP�N�Q�RTS b
c�d�e P,`�^�M�N
_>O
`�W�h�h>ikjml�lnY�X�h�Z�[po�X>i�q,S0r�s�ikSgX�t�r�l�u�X�q�Y�X�h�Z�`�]H�l>^�N�R d ]
H�� ~�d�� ]Q�W�y
U6y
U6h�W�Xvx�q�t��3q9�{h�W�X�U�Z�Y
i�w�X/t�q
V>r1Y�X�\�hH�l�� ~�d�� ]
H�l>^�Q1P�I�]

Figure 4 - HTML document with embedded metadata
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container/package architecture of the Warwick Framework. This section provides a brief overview of
MIME, then shows how the three types of packages in the Warwick Framework - container, indirect, and
metadata set - may be represented using MIME constructs.  A more detailed paper on implementing the
Warwick Framework in MIME is being prepared by Jon Knight and Martin Tomlinson

9.2.1 MIME Overview

MIME defines a simple two-level typing scheme. Each MIME message specifies this type in the�������������������>���
 field.  There are seven major types - 
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formats.

The �9�
���
�
�
�
�
�

 type is used for messages that include multiple components, each with a possibly
different type. The common example of a  �9�

���
�
�
�
�
�

 message is an ASCII e-mail message with
attachments such as spreadsheets, graphics, etc. Multipart messages are composed of body parts, whose
boundaries are flagged by boundary strings.  Each body part has an associated 

�������������������>��� ¡
Multipart messages may contain nested multipart body parts.

There are a number of subtypes for the type �9�
���
�
�
�
�
�

.

• �
�����

�
�
�
�
���
�

 is intended for situations where only one of the alternative body parts should be
presented to the user, such as when plain text and formatted versions of a document are sent.
Applications that can deal with the formatting should show that alternative. Applications that
can’t handle the formatting have the 

���
���
���������

 as a fallback.

• 
�
�
���

�������
 is intended for applications where the different body parts should all be shown.

• ���
���
�  is for situations that are not as simple as �

�����
�
�
�
�
���
�

 or 
�
�
���

�������
.

• �
���
�
���
�  is a more recent content type for situations where one body part needs to make

references to another body part.

9.2.2 Encoding the Warwick Framework in MIME

The body parts of a MIME multipart message directly correspond to the packages in a Warwick
Framework container.  This allows a straightforward encoding of metadata packages as a MIME message,
as shown in the example in Figure 5  The example shows a container with two packages, each of which is
a metadata set as defined earlier.  The container is typed as �9�

���
�
�
�
�
�
�
�
�����

�
�
�
�
���
�

, indicating
that the two included packages have similar meaning.  The text ¢

�
�
�
���
�

��£
¤>¥�¥�¥�¥�¥�¥�¤
at the

beginning of the container defines a unique boundary string to delimit each package of the multipart
message.  The first package is a Dublin Core description encoded in SGML, and the second is a MARC
record with the type �

�����
�
�
�
�
�
�����

�
�
���
�

�
.   Systems that could handle USMARC would use it in

preference to the Dublin Core description, but the Dublin Core description is there as a usable alternative
for simpler systems. Note that the USMARC alternative has a header for the Content-Transfer-
Encoding. This allows special characters to be safely transmitted through mail systems that only handle
7-bit characters.
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The MIME content-type ¦�§
¨�¨�©�ª�§
«�§�¬�­�§
®>¯�©�°�±>²�³�´�µ can be used to implement the Warwick
Framework indirect package, which defines a package that is external to the container.  The example in
Figure 6 shows an indirect reference to a MARC package using a URI.  Note that the Internet Engineering
Steering Group (IESG) has recently approved a draft standard that allows the use URLS as an ©
¶�¶�§
¨�¨�±
­�µ>·�§  for external body parts.

9.3 SGML Implementation

As mentioned above, SGML17 18 is the meta-language that is used to define HTML. By this, we mean that
SGML is a language that is used to define other languages, typically ones for marking up textual
documents. Those languages, such as HTML, are defined by preparing a Document Type Definition
(DTD). DTDs are roughly analogous to the schema definitions in relational databases. They define the
allowed structure and combinations of structures in a document.   A detailed paper on implementing the
Warwick Framework in SGML is being prepared by Lou Burnard, C.M. Sperberg-McQueen, Liam Quin,
and Eric Miller. This section discusses one way of implementing the framework in SGML that was
derived from an early draft of their paper.

Implementing the Warwick Framework in SGML requires a DTD that can handle the container/package
architecture, and can deal with indirect packages and metadata sets. This DTD should be capable of
including packages that have their own DTDs; for example, the Dublin Core DTD being prepared as one
of the results of the Warwick workshop.  The framework DTD must also be able to incorporate metadata
packages that do not conform to any DTD. This arises when incorporating packages that use a non-SGML
notation, such as the USMARC format. Finally, there should be a quick and easy way of representing
metadata elements in SGML, but without the potential for collisions between element names that arises
when aggregating many DTDs into one document.

The DTD in  Figure 7 meets those requirements. The container/package hierarchy is implemented by the¸ ¶�³�¯�­�©�¹�¯�§
®�º  element and the »�¼�©
¶�½�©�ª�§�¾�µ>·�§
¨  parameter entity.  Parameter entities are essentially
text substitution macros for portions of a DTD.  Packages which have their own DTDs are easily included
using the SGML idiom of overriding the definition of the »n¦9´�±
¨�§�­  parameter entity, and by providing
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Figure 5 - Warwick Framework container encoded as MIME multipart message
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Figure 6 - Indirect reference to a MARC package using a URI
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the required DTD fragment in the document’s declaration subset. Packages in a non-SGML format can be
incorporated by use of the ë
ì�í�î�í�ï>ì�ë  attribute on the ð�ñ�ò
ó�ô�ò�õ�ö�÷  element. An example of the use of
the ë
ì�í�î�í�ï>ì�ë  attribute is shown in Figure 8.  Although we have not done so in that example, we
recommend that non-SGML data be included by means of an entity reference, since occurrences of the
character “<” inside a package interfere with parsing.  The technique in Figure 8 is appropriate when you
can guarantee that “<” will not appear in the data.  Note that references to external entities are essentially
indirect packages, so it may be the case that most non-SGML data should be handled as indirect packages.
Finally, the ð1ø�ö�ù�ò�õ
ú�û�ü�ñ�÷  and ð1ø�ö�ù�ò�ý�ò�ù�ò�÷  elements allow for novel elements to be incorporated
without more DTD definitions.

Because of DTDs, SGML meets the requirement for strongly-typed packages. However, there is no
provision for a registry of elements. Because of this, element names in different DTDs could potentially
conflict. There are no truly satisfactory methods for dealing with this problem. The þ�ÿ�����ì��  feature of
SGML can prevent the name space collisions, but it is not widely implemented. The ð1ø�ö�ù�ò�ý�ò�ù�ò�÷
element discussed in the previous paragraph can be an acceptable method of preventing name space
collisions that would result from combining DTDs that define the same element. However, the application
is still responsible for knowing how to handle the cases when multiple ð1ø�ö�ù�ò�ý�ò�ù�ò�÷  elements have the
same value for the ë>î����  attribute.

A document conforming to the DTD in Figure 7 will have an outer ð�ó�û
	�ù�ò��
	�ö
ú�÷  element, which must
contain one or more elements of the known types of packages. Packages can be another container, an
�
	�ý��
ú�ö
ó�ù  package, or a ø9ý���
�ö�ù . The ø9ý���
�ö�ù  is a parameter entity, which will allow its definition to
be easily changed when packages with their own DTDs must be accommodated. The list of package types
is also defined as a parameter entity for similar reasons.
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The �����
�������
�������  and �����������������  elements have identical lists of attributes, which let us specify the
name of the package, as well as its version and a URI to fetch more information on the package type. The
���
���������������  package element is slightly different, in that its URI attribute specifies the package data to
fetch.   One question to be answered is just how much information should be supplied about indirect
packages. Should we indicate its datatype?

Note in the DTD in Figure 7, the ���
�� �!��
��"��������  element is just defined to hold text. This makes the
example simpler, but in reality we would use the DTD for the Dublin Core that is currently being
developed.
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Figure 7 - Warwick Framework DTD
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An example of the use of the Warwick DTD is given in Figure 8.

9.4 Distributed Object Implementation

 An object-oriented implementation of the Warwick Framework is appropriate for a number of reasons.

• Strong Typing - The object abstraction allows us to clearly define containers and packages as
entities with fixed attributes and operations.  This type structure would allow us, for example, to
operationally define the full spectrum of metadata sets – from those which are simply
attribute/value pairs (e.g., the Dublin Core) to those with more complex operational
characteristics (e.g., terms and conditions metadata sets).

• Information Hiding - This feature of the object model is closely tied to strong typing.  The object
model restricts access to entities according to their publicly defined interfaces.  For example, in a
object-oriented implementation a client would not have access to the stream representation of a
metadata container (as in simpler implementations such as the HTML example above).  Instead,
clients would only have access to the defined method of the container; i.e., the operation which
returns the references to the set of packages in the container.  Similarly,  since this operation
only returns references to the contained packages, access to the actual “data” in the respective
package is subject to the operations defined for the package.

• Inheritance Hierarchy - The various types of metadata sets defined earlier in this document fit
quite well into an inheritance hierarchy.  For example, the various types of descriptive cataloging
data have common characteristics that could be expressed through a common super-type.  This is
also true for other types of metadata.  The inheritance hierarchy could be useful for semantic
transformations among metadata sets with similar semantics; for example, Dublin Core records
and the RFC-180719 bibliographic records used in the NCSTRL20 project.   A type hierarchy
would also be useful when clients encounter unknown metadata types, allowing them to partially
access the metadata through a known sub-type.

Distributed object technology extends the object abstraction by providing non-local access to objects – a
client of an object may be located in a different address space or different machine than the server that
contains the actual implementation of the object.  Some examples of distributed object implementations
are the many implementations based on the  Object Management Group’s 21 CORBA22 specification, ILU23

(a CORBA-like implementation from Xerox), and the proposed DCOM extension to OLE24 from
Microsoft.
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Figure 8 - Warwick Framework container encoded in SGML
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Each of these implementations either propose or have some preliminary implementation of extensible
security frameworks, which allow implementers and server administrator to control access to objects or
methods within objects.  This is especially relevant to an implementation of the Warwick Framework, and
in fact the entire information infrastructure, where access to intellectual content must be limited to
authorized parties and under terms defined by terms and conditions associated with the object (as
metadata).

The CORBA specification also includes a number of proposed higher level services, two of which are
relevant to the metadata and content issues addressed by this document.  The interface repository25 service
allows providers to register new object types.  Clients may then use the information in the registry to
access those types.  The dynamic invocation interface26 service makes it possible for clients to assemble
method calls to the operations defined for these new types.

We note that a distributed object implementation of the Warwick Framework pre-supposes an information
infrastructure quite different from that which currently exists.  There are a number of efforts underway to
create such an infrastructure, as exemplified by the Stanford University Digital Libraries Project27 and the
June 1996 joint W3C/OMG Workshop on Distributed Objects and Mobile Code28.

Figure 9 shows the type hierarchy for an object-based implementation of the Warwick Framework:

The classes in this type hierarchy are as follows.

• è�é�ê�ë�ì�ë�ê�ë�í�ë�î�ï�ë�ð�é - This is the super-class from which all other metadata classes are sub-
typed, as shown above.  There are no methods defined for this type.  Its only serves as the abstract
type returned by the ñ�é�ê�í�ë�î�ï�ë�ð�é�ò method of the è�é�ê�ë�ì�ë�ê�ë�ó�ô
õ�ê�ë�ö
õ�é�÷ type.  This then
allows, at run-time, any of its subtypes to be returned by this method.

• è�é�ê�ë�ì�ë�ê�ë�ó�ô
õ�ê�ë�ö
õ�é�÷  - This class implements the container abstraction in the Warwick
Framework.  There is one access method defined for this class, ñ�é�ê�í�ë�î�ï�ë�ð�é�ò�ø This method
returns a sequence of references to objects of class è�é�ê�ë�ì�ë�ê�ë�í�ë�î�ï�ë�ð�éËø As stated earlier,
the ordering of this sequence has no relevance.  The sub-typing of è�é�ê�ë�ì�ë�ê�ë�í�ë�î�ï�ë�ð�é  allows
each element of this sequence to be a reference to either a è�é�ê�ë�ì�ë�ê�ë�ù�é�ê ,
è�é�ê�ë�ì�ë�ê�ë�ú(õ�û�ö�÷�é�î�ê , or è�é�ê�ë�ì�ë�ê�ë�ó�ô
õ�ê�ë�ö
õ�é�÷ .  It is important to note that references to
packages to MetaDataPackage objects are returned and not the objects themselves.  This means
that the package objects are, at this level, opaque to the client.  The client can only access the
package objects according to their operational definitions, and access to these operations may
depend on secure access defined for that object.  In addition, “skipping” over a package merely
entails getting the object reference to the next package in the container.  This preserves the
modularity of access to containers and packages in the Warwick Framework definition.

• è�é�ê�ë�ì�ë�ê�ë�ú(õ�û�ö�÷�é�î�ê - This class implements indirectly-referenced metadata.  The required
access method for this class is ñ�é�ê�ú(õ�û�ö�÷�é�î�ê�ö�ô
õ�ú�ì , which returns a URI of the object
indirectly referenced.   It would be possible to implement another method, ñ�é�ê�ú(õ�û�ö�÷�é�î�ê�ö�ô
õ ,
which returns an object of type è�é�ê�ë�ì�ë�ê�ë�í�ë�î�ï�ë�ð�é , effectively resolving the indirect reference
recursively until a “leaf” object is located.

è�é�ê�ë�ì�ë�ê�ë�í�ë�î�ï�ë�ð�é

è�é�ê�ë�ì�ë�ê�ë�ú(õ�û�ö�÷�é�î�êè�é�ê�ë�ì�ë�ê�ë�ó�ô
õ�ê�ë�ö
õ�é�÷ è�é�ê�ë�ì�ë�ê�ë�ù�é�ê

Figure 9 - Class hierarchy for metadata
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• ü�ý�þ�ÿ���ÿ�þ�ÿ���ý�þ - This class is the abstract super-class for all of the actual metadata sets; i.e.,
those objects that actually contain descriptive data such as Dublin Core metadata or terms and
conditions metadata.  As stated earlier, the different classes of metadata sets naturally fall into an
inheritance hierarchy.  The creation of such a type hierarchy is fertile ground for future research
work in the area of metadata.  The metadata taxonomy presented earlier in this document might
be a good starting point for this class hierarchy.  Figure 10 shows a partial example of such a
type hierarchy.

The Kahn/Wilensky Framework29, a result of the DARPA-funded Computer Science Technical Reports
Project30, proposes a distributed information infrastructure into which object implementation of the
Warwick Framework fits.  A quick overview of this framework is as follows.  The proposed information
infrastructure is an open architecture supporting the deposit, storage, dissemination, and management of
information in digital form. Information in the system is stored in the form of a digital object, which is a
content-independent package encapsulating intellectual content, or the data of the object, and other
associated material (i.e., the metadata that is the subject of this document). An important aspect of the
infrastructure is its strict segregation of content-independent concerns, at the digital object level, and
content-dependent concerns, at the data level.

The Kahn/Wilensky document does not strictly define the metadata associated with a digital object.  It
does, however, describe two important types of metadata that are essential for the infrastructure.

1. Unique-Persistent Name - The Kahn/Wilensky document describes a URN implementation
known as the  handle system31.

2. Terms and Conditions - The Kahn/Wilensky Framework places strong emphasis on the legal and
social context into which the information infrastructure must fit. Protection of intellectual
property is a key requirement for the success of any technology in this context. The framework
addresses this issue by prescribing that terms and conditions for access should be embedded or
attached to content objects, and that access to these objects be governed by these terms and
conditions.

Digital objects are logically stored in repositories. Kahn/Wilensky describes the functionality of a basic
Repository Access Protocol (RAP), with the following low-level operations:

• ��ý������
	�þ���	���	�þ�ÿ���

����ý���þ  - Deposit a new digital object in a repository.

• � ����ý����
��	���	�þ�ÿ���

����ý���þ  - Return a reference to a digital object in a repository.

A repository has the important role of restricting access to these operations subject to the terms and
conditions defined for the repository and for the digital object that is the target of the operations.

In follow-on work to the original Kahn/Wilensky paper, researchers at the Cornell Digital Library
Research Group32, CNRI, and NCSA examined implementations issues33 for the framework and
developed a design for a distributed object implementation34 of the Kahn/Wilensky framework. The latter
paper also examines the issues related to enforcing terms and conditions in a distributed object
implementation.

ü�ý�þ�ÿ���ÿ�þ�ÿ���ý�þ

ü�����ü �����ü��������
����	�� � ����ý

ü���� � ÿ�þ�	������ü�������ý�� �!� � � ����"ü���� � "#��	��ü�����$�	���	�������ÿ���%�	��

Figure 10 - Class hierarchy for MetaDataSet
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Work on a distributed object implementation, using ILU, is currently underway at Cornell. This work
incorporates the Warwick Framework notion into the Kahn/Wilensky framework.  In this implementation
a digital object includes three classes of objects:

1. &�'�(  - The unique identifier for the digital object.

2. )�*�+�,�-�,�+�,�.�/�0�+�,�1�0�*�2  - The container of metadata (internally-referenced, in the sense
described earlier) for the content of the digital object.   A )�*�+�,�-�,�+�,�.�/�0�+�,�1�0�*�2  is a sequence
of objects of type )�*�+�,�-�,�+�,�3
,�4�5
,�6�* .  The full semantics of the Warwick Framework
container are supported.

3. .�/�0�+�*�0�+�.�/�0�+�,�1�0�*�2  - The set of content in this digital object.  This is a sequence of objects of
type .�/�0�+�*�0�+�7�8�*�9�*�0�+ .  Each .�/�0�+�*�0�+�7�8�*�9�*�0�+  contains a )�*�+�,�-�,�+�,�.�/�0�+�,�1�0�*�2  and
an object of .�/�0�+�*�0�+�3
,�4�5
,�6�* .  A .�/�0�+�*�0�+�3
,�4�5
,�6�* is the primitive super-type for a class
hierarchy that matches that of a )�*�+�,�-�,�+�,�3
,�4�5
,�6�* .  That is, a .�/�0�+�*�0�+�3
,�4�5
,�6�* may
sub-class to “true” content ( e.g., PostScript, GIF image, Java applet), an indirect reference to
another digital object, or recursively to another .�/�0�+�*�0�+�.�/�0�+�,�1�0�*�2 .

Note that a digital object contains two sets of metadata containers.  One is at the object level, holding
metadata relating to the digital object as a whole.  Another set is attached to each content element,
holding metadata relating to that specific piece of content.  The digital object data structure is illustrated
in Figure 11.

 One additional feature of the class hierarchy, not illustrated here, is that the distinction between metadata

and data is purely an artifact of how some “content” is packaged in a given digital object.  Both the
)�*�+�,�-�,�+�,�.�/�0�+�,�1�0�*�2  and .�/�0�+�*�0�+�.�/�0�+�,�1�0�*�2  are hierarchical aggregates with “content” at the
leaves.  A given type of content, for example, a MARC record, may exist as a leaf descending from  the
)�*�+�,�-�,�+�,�.�/�0�+�,�1�0�*�2  one of one digital object and as a leaf descending from the
.�/�0�+�*�0�+�.�/�0�+�,�1�0�*�2  of another.  This is consistent with our earlier observation that there really is no
absolute partition between what is metadata and what is data, and that the partitioning between the two
depends wholly on the context in which they are used.

.

Handle

MetaDataContainer

ContentContainer

MetaDataPackage MetaDataPackage MetaDataPackage

ContentElement ContentElement ContentElement

MetaDataContainer

ContentPackage

digital object MetadataContainer

ContentContainer

ContentElement

Figure 11 - A digital object containing a Warwick Framework container
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In summary, this digital object design permits arbitrary aggregations of metadata and content within a
first-class (named) object.  Each element of the aggregation may, itself, be a first-class object with
independent administration, descriptive data, and rules for access.
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