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Water lilies belong to the angiosperm order Nymphaeales. Amborellales, 
Nymphaeales and Austrobaileyales together form the so-called ANA-grade of 
angiosperms, which are extant representatives of lineages that diverged the earliest 
from the lineage leading to the extant mesangiosperms1–3. Here we report the 
409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). 
Our phylogenomic analyses support Amborellales and Nymphaeales as successive 
sister lineages to all other extant angiosperms. The N. colorata genome and 19 other 
water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, 
which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes 
retained from this whole-genome duplication are homologues of genes that regulate 
flowering transition and flower development. The broad expression of homologues of 
floral ABCE genes in N. colorata might support a similarly broadly active ancestral 
ABCE model of floral organ determination in early angiosperms. Water lilies have 
evolved attractive floral scents and colours, which are features shared with 
mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. 
The chemical compounds and biosynthetic genes behind floral scents suggest that 
they have evolved in parallel to those in mesangiosperms. Because of its unique 
phylogenetic position, the N. colorata genome sheds light on the early evolution of 
angiosperms.

Many water lily species, particularly from Nymphaea (Nymphaeaceae), 
have large and showy flowers and belong to the angiosperms (also 
called flowering plants). Their aesthetic beauty has captivated nota-
ble artists such as the French impressionist Claude Monet. Water lily 
flowers have limited differentiation in perianths (outer floral organs),  
but they possess both male and female organs and have diverse scents 
and colours, similar to many mesangiosperms (core angiosperms, 
including eudicots, monocots, and magnoliids) (Supplementary 
Note 1). In addition, some water lilies have short life cycles and enormous  
numbers of seeds4, which increase their potential as a model plant to rep-
resent the ANA-grade of angiosperms and to study early evolutionary  
events within the angiosperms. In particular, N. colorata Peter has a 
relatively small genome size (2n = 28 and approximately 400 Mb) and 
blue petals that make it popular in breeding programs (Supplementary 
Note 1).

We report here the genome sequence of N. colorata, obtained using 
PacBio RSII single-molecule real-time (SMRT) sequencing technol-
ogy. The genome was assembled into 1,429 contigs (with a contig N50  
of 2.1 Mb) and total length of 409 Mb with 804 scaffolds, 770 of which 

were anchored onto 14 pseudo-chromosomes (Extended Data Fig. 1 
and Extended Data Table 1). Genome completeness was estimated to 
be 94.4% (Supplementary Note 2). We annotated 31,580 protein-coding 
genes and predicted repetitive elements with a collective length of 
160.4 Mb, accounting for 39.2% of the genome (Supplementary Note 3).

The N. colorata genome provides an opportunity to resolve the  
relationships between Amborellales, Nymphaeales and all other extant 
angiosperms (Fig. 1a). Using six eudicots, six monocots, N. colorata and 
Amborella5, and each of three gymnosperm species (Ginkgo biloba, 
Picea abies and Pinus taeda) as an outgroup in turn, we identified 2,169, 
1,535 and 1,515 orthologous low-copy nuclear (LCN) genes, respec-
tively (Fig. 1b). Among the LCN gene trees inferred from nucleotide 
sequences using G. biloba as an outgroup, 62% (294 out of 475 trees) 
place Amborella as the sister lineage to all other extant angiosperms 
with bootstrap support greater than 80% (type II, Fig. 1c). Using P. abies 
or P. taeda as the outgroup, Amborella is placed as the sister lineage 
to the remaining angiosperms in 57% and 54% of the LCN gene trees, 
respectively. LCN gene trees inferred using amino acid sequences show 
similar phylogenetic patterns (Supplementary Note 4.1).
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To minimize the potential shortcomings of sparse taxon sampling6, 
we also inferred an angiosperm species tree using sequences from 
44 genomes and 71 transcriptomes, including representatives of the 

ANA-grade, eudicots, magnoliids, monocots and a gymnosperm out-
group (Gnetum montanum, G. biloba, P. abies and P. taeda) (Methods). 
For further phylogenetic inference of these 115 species, we selected, 
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based on various criteria, five different LCN gene sets including 1,167, 
834, 683, 602 and 445 genes. Analyses of these five datasets all yielded 
similar tree topologies with Amborella and Nymphaeales as successive 
sister lineages to all other extant angiosperms (Fig. 1d, e, Supplemen-
tary Note 4.2).

Molecular dating of angiosperm lineages, using a stringent set of 101 
LCN genes and with age calibrations based on 21 fossils7, inferred the 
crown age of angiosperms at 234–263 million years ago (Ma) (Fig. 1d). 
The split between monocots and eudicots was estimated at 171–203 Ma 
and that between Nymphaeaceae and Cabombaceae at 147–185 Ma.

Genomic collinearity unveiled evidence of a whole-genome dupli-
cation (WGD) event in N. colorata (Extended Data Figs. 1f, 2a and Sup-
plementary Note 5.1). The number of synonymous substitutions per 
synonymous site (KS) distributions for N. colorata paralogues further 
showed a signature peak at KS of approximately 0.9 (Fig. 2a) and peaks at 
similar KS values were identified in other Nymphaeaceae species (Sup-
plementary Note 5.2), which suggests an ancient single WGD event that 
is probably shared among Nymphaeaceae members. Comparison of 
the N. colorata paralogue KS distribution with KS distributions of ortho-
logues (representing speciation events) between N. colorata and other 
Nymphaeales lineages, Illicium henryi, and Amborella suggests that 
the WGD occurred just after the divergence between Nymphaeaceae 
and Cabombaceae (Fig. 2a). By contrast, phylogenomic analyses of 
gene families that contained at least one paralogue pair from collinear 
regions of N. colorata suggest that the WGD is shared between Nym-
phaeaceae and Cabombaceae (Fig. 2b, Supplementary Note 5.4). If true, 
Cabomba caroliniana seems to have retained few duplicates (Fig. 2b, 
c), which would explain the absence of a clear peak in the C. caroliniana 
paralogue KS distribution (Supplementary Note 5.2). Absolute dating 
of the paralogues of N. colorata does suggest that the WGD could have 

occurred before or close to the divergence between Nymphaeaceae 
and Cabombaceae (Extended Data Fig. 2d, Supplementary Note 5.3), 
considering the variable substitution rates among Nymphaealean line-
ages (Fig. 2a, b, Extended Data Fig. 2c). An alternative interpretation 
of the above results could be that the WGD signatures were from an 
allopolyploidy event that occurred between ancestral Nymphaeaceae 
and Cabombaceae lineages shortly after their divergence and that 
gave rise to the Nymphaeaceae (but not Cabombaceae) stem lineage 
(Fig. 2d, Supplementary Note 5.4).

The water lily lineage descended from one of the early divergences 
among angiosperms, before the radiation of mesangiosperms. Thus, 
this group offers a unique window into the early evolution of angio-
sperms, particularly that of the flower. We identified 70 MADS-box 
genes, including homologues of the genes for the ABCE model of floral 
organ identities: AP1 (and also FUL) and AGL6 (A function for sepals 
and petals), AP3 and PI (B function for petals and stamen), AG (C func-
tion for stamen and carpel), and SEP1 (E function for interacting with 
ABC function proteins). Phylogenetic and collinearity analyses of the 
MADS-box genes and their genomic neighbourhood indicate that an 
ancient tandem duplication before the divergence of seed plants gave 
birth to the ancestors of A function (FUL) and E function genes (SEP) 
(Extended Data Fig. 3, Supplementary Note 6.1). Also, owing to the Nym-
phaealean WGD, N. colorata has two paralogues, AGa and AGb of the 
C-function gene AG (Extended Data Fig. 4). Similarly, the Nymphaealean 
WGD-derived duplicates are homologous to other genes associated 
with development of carpel and stamen8, and to genes that regulate 
flowering time9 and auxin-controlled circadian opening and closure of 
the flower10 (Extended Data Figs. 4–6, Supplementary Note 6.2–6.4).

The expression profiles of N. colorata ABCE homologues largely agree 
with their putative ascribed roles in floral organ patterning (Fig. 3a). 
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Notably, the N. colorata AGL6 homologue is mainly expressed in sepals 
and petals, whereas the FUL homologue is mainly expressed in carpels, 
suggesting that AGL6 acts as an A-function gene in N. colorata. The two 
C-function homologues AGa and AGb are highly expressed in stamens 
and carpels, respectively, whereas AGb is also expressed in sepals and 
petals, suggesting that they might have undergone subfunctionaliza-
tion and possibly neofunctionalization for flower development after 
the Nymphaealean WGD. Furthermore, the ABCE homologues in N. 
colorata generally exhibit wider ranges of expression in floral organs 
than their counterparts in eudicot model systems (Fig. 3b). This wider 
expression pattern, in combination with broader expression of at least 
some ABCE genes in some eudicots representing an early-diverging 
lineage11, some monocots12 and magnoliids13, suggest an ancient ABCE 
model for flower development, with subsequent canalization of gene 
expression and function regulated by the more specialized ABCE genes 
during the evolution of mesangiosperms, especially core eudicots8. 
This could also account for the limited differentiation between sepals 
and petals in Nymphaeales species, and is consistent with a single type 
of perianth organ proposed in an ancestral angiosperm flower14.

Floral scent serves as olfactory cues for insect pollinators15. Whereas 
Amborella flowers are scentless16, N. colorata flowers release 11 different 
volatile compounds, including terpenoids (sesquiterpenes), fatty-
acid derivatives (methyl decanoate) and benzenoids (Fig. 4a). The N. 
colorata genome contains 92 putative terpene synthase (TPS) genes, 
which are ascribed to four previously recognized TPS subfamilies in 
angiosperms: TPS-b, TPS-c, TPS-e/f and TPS-g (Fig. 4b), but none was 
found for TPS-a, which is responsible for sesquiterpene biosynthesis 
in mesangiosperms17. Notably, TPS-b contains more than 80 genes in 
N. colorata; NC11G0123420 is highly expressed in flowers (Extended 
Data Fig. 7); this result suggests that it may be a candidate gene for 

sesquiterpene biosynthase in N. colorata. Also, methyl decanoate has 
not been detected as a volatile compound in monocots and eudicots18 
and is thought to be synthesized in N. colorata by the SABATH family 
of methyltransferases19. The N. colorata genome contains 13 SABATH 
homologues and 12 of them form a Nymphaeales-specific group (Sup-
plementary Fig. 41). Among these 12 members, NC11G0120830 showed 
the highest expression in petals (Fig. 4c) and its corresponding recom-
binant protein was demonstrated to be a fatty acid methyltransferase 
that had the highest activity with decanoic acid as the substrate (Fig. 4d, 
Supplementary Note 7.1). These results suggest that the floral scent 
biosynthesis in N. colorata has been accomplished through enzymatic 
functions that have evolved independently from those in mesangio-
sperms (Fig. 4e).

Nymphaea colorata is valued for the aesthetically attractive blue 
colour of petals, which is a rare trait in ornamentals. To understand the 
molecular basis of the blue colour, we identified delphinidin 3′-O-(2″-
O-galloyl-6″-O-acetyl-β-galactopyranoside) as the main blue anthocya-
nidin pigment (Extended Data Fig. 8a–c). By comparing the expression 
profiles between two N. colorata cultivars with white and blue petals 
for genes in a reconstructed anthocyanidin biosynthesis pathway, we 
found genes for an anthocyanidin synthase and a delphinidin-modi-
fication enzyme, the expression of which was significantly higher in 
blue petals than in white petals (Extended Data Fig. 8d, e). These two 
enzymes catalyse the last two steps of anthocyanidin biosynthesis and 
are therefore key enzymes specialized in blue pigment biosynthesis20,21 
(Supplementary Note 7.2).

Water lilies have a global distribution that includes cold regions 
(northern China and northern Canada), unlike the other ANA-grade 
angiosperms Amborella (Pacific Islands) and Austrobaileyales (tem-
perate and tropical regions). We detected marked expansions of genes 
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related to immunity and stress responses in N. colorata, including 
genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins, 
protein kinases and WRKY transcription factors, compared with those 
in Amborella and some mesangiosperms (Extended Data Fig. 9, Sup-
plementary Note 8). It is possible that increased numbers of these genes 
enabled water lilies to adapt to various ecological habitats globally.

In conclusion, the N. colorata genome offers a reference for compara-
tive genomics and for resolving the deep phylogenetic relationships 
among the ANA-grade and mesangiosperms. It has also revealed a WGD 
specific to Nymphaeales, and provides insights into the early evolution 
of angiosperms on key innovations such as flower development and 
floral scent and colour.
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Methods

Genome and transcriptome sequencing
Total DNA for genome sequencing was extracted from young leaves. 
Leaf RNA was extracted from 18 water lily species: N. colorata, Eury-
ale ferox, Brasenia schreberi, Victoria cruziana, Nymphaea mexicana,  
Nymphaea prolifera, Nymphaea tetragona, Nymphaea potamophila, 
Nymphaea caerulea, Nymphaea rubra, Nymphaea ‘midnight’, Nym-
phaea ‘Choolarp’, Nymphaea ‘Paramee’, Nymphaea ‘Woods blue god-
dess’, Nymphaea gigantea ‘Albert de Lestang’, N. gigantea ‘Hybrid I’, 
Nymphaea ‘Thong Garnjana’ and Nuphar lutea. In addition, for tran-
scriptome sequencing we sampled several organs and tissues from 
N. colorata including mature leaf, mature leafstalk, juvenile flower, 
juvenile leaf, juvenile leafstalk, carpel, stamen, sepal, petal and root.

For PacBio sequencing, we prepared approximately 20-kb SMRTbell 
libraries. A total of 34 SMRT cells and 49.8 Gb data composed of 5.5 
million reads were sequenced on PacBio RSII system with P6-C4 chem-
istry. All transcriptome libraries were sequenced using the Illumina 
platform, generating paired-end reads. For the Hi-C sequencing and 
scaffolding, a Hi-C library was created from tender leaves of N. colorata. 
In brief, the leaves were fixed with formaldehyde and lysed, and the 
cross-linked DNA was then digested with MboI overnight. Sticky ends 
were biotinylated and proximity-ligated to form chimeric junctions, 
which were physically sheared to and enriched for sizes of 500–700 
bp. Chimeric fragments representing the original cross-linked long-
distance physical interactions were then processed into paired-end 
sequencing libraries and 346 million 150-bp paired-end reads, which 
were sequenced on the Illumina platform.

Sequence assembly and gene annotation
To assemble the 49.8 Gb data composed of 5.5 million reads, we filtered 
the reads to remove organellar DNA, reads of poor quality or short 
length, and chimaeras. The contig-level assembly was performed on 
full PacBio long reads using the Canu package22. Canu v.1.3 was used 
for self-correction and assembly. We then polished the draft assem-
bly using Arrow (https://github.com/PacificBiosciences/Genomic-
Consensus). To increase the accuracy of the assembly, Illumina short  
reads were recruited for further polishing with the Pilon program 
(https://github.com/broadinstitute/pilon). The genome assembly 
quality was measured using BUSCO (Benchmarking Universal Sin-
gle-Copy Orthologues)23 v.3.0. The paired-end reads from Hi-C were 
uniquely mapped onto the draft assembly contigs, which were grouped  
into chromosomes and scaffolded using the software Lachesis (https://
github.com/shendurelab/LACHESIS).

Genscan (http://genes.mit.edu/GENSCAN.html) and Augustus24 were 
used to carry out de novo predictions with gene model parameters 
trained from Arabidopsis thaliana. Furthermore, gene models were 
de novo predicted using MAKER25. We then evaluated the genes by 
comparing MAKER results with the corresponding transcript evidence 
to select gene models that were the most consistent on the basis of an 
AED metric.

The evolutionary position of water lily and divergence-time 
estimation
LCN genes were identified based on OrthoFinder26 results. The 
orthologues were obtained from six monocots (Spirodela polyrhiza,  
Zostera marina, Musa acuminata, Ananas comosus, Sorghum bicolor 
and Oryza sativa) and six eudicots (Nelumbo nucifera, Vitis vinifera, 
Populus trichocarpa, A. thaliana, Solanum lycopersicum and Beta vul-
garis), N. colorata, Amborella, and the gymnosperms G. biloba, P. abies 
and P. taeda. LCN genes needed to meet the following requirements: 
strictly single-copy in N. colorata, Amborella, G. biloba, P. abies or  
P. taeda, and single-copy in at least five of the 12 eudicots or monocots. 
With G. biloba, P. abies or P. taeda as the outgroup, we identified 2,169, 
1,535 and 1,515 orthologous LCN genes, respectively. Furthermore, we 

trimmed the sites with less than 90% coverage. LCN gene trees were 
estimated from the remaining sites using RAxML v.7.7.8 using the 
GTR+G+I model for nucleotide sequences (Fig. 1c) and the JTT+G+I 
model for amino acid sequences (Supplementary Note 4.1). To account 
for incomplete lineage sorting and different substitution rates, we 
applied the multispecies coalescent model and a supermatrix method, 
respectively, to the LCN genes and found further support for the sister 
relationship between Amborella and all other extant flowering plants 
(Supplementary Note 4.2).

We further carefully selected five LCN gene sets (1,167, 834, 683,  
602 and 445) from 115 species and applied both a supermatrix 
method27–29 and the multi-species coalescent model to infer the phy-
logeny of angiosperms (Supplementary Note 4.2). The phylogeny 
inferred from 1,167 LCN genes is shown in Fig. 1d, with different sup-
port values from the multi-species coalescent analyses of the other 
four LCN gene sets.

To estimate the evolutionary timescale of angiosperms, we cali-
brated a relaxed molecular clock using 21 fossil-based age constraints7 
throughout the tree, including the earliest fossil tricoplate pollen 
(approximately 125 Ma) associated with eudicots30. We concatenated 
101 selected genes (205,185 sites) and fixed the tree topology to that 
inferred from our coalescent-based analysis of 1,167 genes from 115 
taxa. We performed a Bayesian phylogenomic dating analysis of the 
101 selected genes in MCMCtree, part of the PAML package31,32, and 
used approximate likelihood calculation for the branch lengths33. 
Molecular dating was performed using an auto-correlated model of 
among-lineage rate variation, the GTR substitution model, and a uni-
form prior on the relative node times. Posterior distributions of node 
ages were estimated using Markov chain Monte Carlo sampling, with 
samples drawn every 250 steps over 10 million steps following a burn-in 
of 500,000 steps. We checked for convergence by running the analysis 
in duplicate and checked for sufficient sampling.

We also implemented the penalized likelihood method under a vari-
able substitution rate using TreePL34 and r8s35, as a constant substitu-
tion rate across the phylogenetic tree was rejected (P < 0.01) for all 
cases by likelihood-ratio tests in PAUP36. Three fossil calibrations, corre-
sponding to the crown groups of Lamiales, Cornales and Laurales, were 
implemented as minimum age constraints in our penalized likelihood 
dating analysis, except that the earliest appearance of tricolpate pollen 
grains (about 125 Ma)30 was used to fix the age of crown eudicots. We 
determined the best smoothing parameter value of the concatenated 
101 LCN genes as 0.32 by performing cross-validations of a range of 
smooth parameters from 0.01 to 10,000 (algorithm = TN; crossv = yes; 
cvstart = −2; cvinc = 0.5; cvnum = 15). We used 100 bootstrap trees with 
branch lengths generated by RAxML37 to infer the 95% confidence inter-
vals of age estimates (Supplementary Note 4.2).

Identification of WGD
The N. colorata genome was compared with each of the other genomes 
by pairwise alignment using Large-Scale Genome Alignment Tool (LAST; 
http://last.cbrc.jp/). We defined syntenic blocks using LAST hits with a 
distance cut-off of 20 genes apart from the two retained homologous 
pairs, in which at least four consecutive retained homologous pairs 
were required. We then obtained the one-to-one blocks to exclude 
ancient duplication blocks with QUOTA-ALIGN38.

KS-based paralogue age distributions were constructed as previously 
described39. In brief, the paranome was constructed by performing an 
all-against-all protein sequence similarity search using BLASTP with 
an E-value cut-off of 10−10, after which gene families were built with the 
mclblastline pipeline (v.10-201) (micans.org/mcl). Each gene family 
was aligned using MUSCLE (v.3.8.31)40, and KS estimates for all pairwise 
comparisons within a gene family were obtained using maximum like-
lihood in the CODEML program41 of the PAML package (v.4.4c)31. We 
then subdivided gene families into subfamilies for which KS estimates 
between members did not exceed a value of 5.

https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/broadinstitute/pilon
https://github.com/shendurelab/LACHESIS
https://github.com/shendurelab/LACHESIS
http://genes.mit.edu/GENSCAN.html
http://last.cbrc.jp/
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To correct for the redundancy of KS values (a gene family of n mem-

bers produces n(n − 1)/2 pairwise KS estimates for n − 1 retained duplica-
tion events), we inferred a phylogenetic tree for each subfamily using 
PhyML42 with the default settings. For each duplication node in the 
resulting phylogenetic tree, all m KS estimates between the two child 
clades were added to the KS distribution with a weight of 1/m (in which 
m is the number of KS estimates for a duplication event), so that the 
weights of all KS estimates for a single duplication event summed to 
one. Paralogous gene pairs found in duplicated collinear segments 
(anchor pairs) from N. colorata were detected using i-ADHoRe (v.3.0) 
with ‘level_2_only = TRUE’43,44. The identified anchor pairs are assumed 
to correspond to the most recent WGD event.

The KS-based orthologue age distributions were constructed by iden-
tifying one-to-one orthologues between species using InParanoid45 
with default settings, followed by KS estimation using the CODEML 
program as above. KS distributions for one-to-one orthologues between 
N. colorata and each of V. cruziana, N. advena, C. caroliniana, I. henryi 
and Amborella were used to compare the relative timing of the WGD in 
N. colorata with speciation events within Nymphaeales. KS distributions 
for one-to-one orthologues between the outgroup species I. henryi 
and each of N. lutea, N. advena, N. mexicana, Nymphaea ‘Woods blue 
goddess’, N. colorata, and C. caroliniana were used to estimate and com-
pare relative substitution rates among these Nymphaealean species. 
Additional comparisons using V. vinifera and Amborella as outgroup 
species instead of I. henryi gave similar results (data not shown).

Absolute dating of the identified WGD event in N. colorata was per-
formed as previously described46. Briefly, paralogous gene pairs located 
in duplicated segments (anchor pairs) and duplicated pairs lying under 
the WGD peak (peak-based duplicates) were collected for phylogenetic 
dating. We selected anchor pairs and peak-based duplicates present 
under the N. colorata WGD peak and with KS values between 0.7 and 1.2 
(grey-shaded area in Extended Data Fig. 2b) for absolute dating. For 
each WGD paralogous pair, an orthogroup was created that included 
the two paralogues plus several orthologues from other plant spe-
cies as identified by InParanoid45 using a broad taxonomic sampling: 
one representative orthologue from the order Cucurbitales, two from 
Rosales, two from Fabales, two from Malpighiales, two from Brassicales, 
one from Malvales, one from Solanales, two from Poaceae (Poales), one 
from A. comosus47 (Bromeliaceae, Poales), one from either M. acumi-
nata48 (Zingiberales) or Phoenix dactylifera49 (Arecales), one from the 
Asparagales (from Asparagus officinalis50, Apostasia shenzhenica46, or 
Phalaenopsis equestris51), one from the Alismatales (either from S. pol-
yrhiza52 or Z. marina53), one from Amborella, and one from G. biloba54. 
In total, 217 orthogroups based on anchor pairs and 142 orthogroups 
based on peak-based duplicates were collected.

The node joining the two WGD paralogues of N. colorata was then 
dated using the BEAST v1.7 package55 under an uncorrelated relaxed-
clock model and an LG+G model with four site-rate categories. A starting 
tree with branch lengths satisfying all fossil prior constraints was cre-
ated according to the consensus APG IV phylogeny1. Fossil calibrations 
were implemented using log-normal calibration priors on the following 
nodes: the node uniting the Malvidae based on the fossil Dressiantha 
bicarpellata56 with prior offset = 82.8, mean = 3.8528, and s.d. = 0.557; 
the node uniting the Fabidae based on the fossil Paleoclusia chevalieri58 
with prior offset = 82.8, mean = 3.9314, and s.d. = 0.559; the node unit-
ing the non-Alismatalean monocots based on fossil Liliacidites60 with 
prior offset = 93.0, mean = 3.5458, and s.d. = 0.561; the node uniting the 
N. colorata WGD paralogues with the eudicots and monocots based on 
the sudden abundant appearance of eudicot tricolpate pollen in the 
fossil record with prior offset = 124, mean = 4.8143 and s.d. = 0.562; and 
the root uniting the above clades with Amborella and then G. biloba 
with prior offset = 307, mean = 3.8876, and s.d. = 0.563. The offsets of  
these calibrations represent hard minimum boundaries, and their 
means represent locations for their respective peak mass prob-
abilities in accordance with previous dating studies of these specific  

clades63 (see Supplementary Note 5.3 for an alternative setting of 
orthogroups).

A run without data was performed to ensure proper placements of 
the marginal calibration priors, which do not necessarily correspond 
to the calibration priors specified above, because they interact with 
each other and the tree prior64. Indeed, a run without data indicated 
that the distribution of the marginal calibration prior for the root did 
not correspond to the specified calibration density, so we reduced the 
mean in the calibration prior of the node combining the N. colorata 
WGD paralogues with the eudicots and monocots with offset = 124, 
mean = 4.4397, s.d. = 0.5 to locate the marginal calibration prior at 
220 Ma62.

Markov chain Monte Carlo sampling for each orthogroup was run 
for 10 million steps, with sampling every 1,000 steps to produce a 
sample size of 10,000. The resulting trace files were inspected using 
Tracer v.1.555, with a burn-in of 1,000 samples, to check for convergence 
and sufficient sampling (minimum effective sample size of 200 for all 
parameters). In total, 263 orthogroups were accepted, and absolute 
age estimates of the node uniting the WGD paralogous pairs based on 
both anchor pairs and peak-based duplicates were grouped into one 
absolute age distribution, for which kernel density estimation and a 
bootstrapping procedure were used to find the peak consensus WGD 
age estimate and its 90% confidence interval boundaries, respectively. 
More detailed methods have been previously described39.

To identify the duplication events that resulted in the 2,648 anchor 
pairs detected in the genome of N. colorata, we performed phylog-
enomic analyses to determine the timing of the duplication events 
relative to the lineage divergences in Nymphaeales as described pre-
viously46. Protein-coding genes from 12 species were used, including 
eight species from Nymphaeaceae and one species from Cabombaceae 
in Nymphaeales, one species (I. henryi) from Austrobaileyales, plus 
Amborella and G. biloba. The phylogeny of the 12 species was obtained 
from Fig. 1d, and the branch lengths in KS units were estimated from 23 
LCN genes (selected from the 101 LCN genes used in Fig. 1d, because only 
23 are shared across all of the species studied) using PAML31 under the 
free-ratio model. OrthoMCL (v.2.0.9)65 was used with default param-
eters to identify gene families. Then, we removed 907 of the 2,648 
anchor pairs with KS values greater than five. If the remaining anchor 
pairs fell into different gene families, thus indicating incorrect assign-
ment of gene families by OrthoMCL, we merged the corresponding gene 
families and finally obtained 53,243 multi-gene gene families. Next, 
phylogenetic trees were constructed for a subset of 881 gene families 
with no more than 200 genes that had at least one pair of anchors and 
one gene from G. biloba. Multiple sequence alignments were produced 
by MUSCLE (v3.8.31)40 and were trimmed by trimAl (v.1.4)66 to remove 
low-quality regions based on a heuristic approach (-automated1).

We then used RAxML (v.8.2.0)67 with the GTR+G model to estimate a 
maximum-likelihood tree, starting with 200 rapid bootstraps followed 
by maximum-likelihood optimizations on every fifth bootstrap tree. 
Gene trees were rooted based on genes from G. biloba if these formed 
a monophyletic group in the tree; otherwise, mid-point rooting was 
applied. The timing of the duplication event for each anchor pair rela-
tive to the lineage divergence events was then inferred. In brief, inter-
nodes from a gene tree were first mapped to the species phylogeny 
according to the common ancestor of the genes in the gene tree. Each 
internode was then classified as a duplication node, a speciation node, 
or a node that has no paralogues and is inconsistent with divergence 
in the species phylogeny. The parental node(s) of a duplication node 
supported by an anchor pair were traced towards the root until reaching 
a speciation node in the gene tree. The duplication event that resulted 
in the anchor pair was hence circumscribed between the duplication 
node as the lower bound and the speciation node as the upper bound 
on the species tree. If the two nodes were directly connected by a single 
branch on the species tree, the duplication was thus considered to 
have occurred on the branch. To reduce biased estimations, we used 



the bootstrap value on the branch leading to a duplication node as 
support for a duplication event. In total, 497 anchor pairs in 473 gene 
families coalesced as duplication events on the species phylogeny, and 
duplication events from 254 anchor pairs in 246 gene families (or from 
380 anchor pairs in 364 gene families) had bootstrap values greater 
than or equal to 80% (or 50%).

Floral scent measurement, gene identification, and functional 
characterization
We collected floral volatiles of N. colorata using a dynamic headspace 
sampling system and analysed them using gas chromatography–mass 
spectrometry (GC–MS) as previously described68. After 2 h of collec-
tion from the headspace of detached open flowers of N. colorata in a 
glass chamber (10 cm diameter, 30 cm height), volatiles were eluted 
from the SuperQ volatile collection trap using 100 µl of methylene 
chloride containing nonyl acetate as an internal standard. We then 
analysed samples using an Agilent Intuvo 9000 GC system coupled 
with an Agilent 7000D Triple Quadrupole mass detector. Separation 
was performed on an Agilent HP 5 MS capillary column (30 m × 0.25 
mm) with helium as carrier gas (flow rate of 1 ml min−1). We applied 
splitless injections of 1 µl samples, injection temperature of 250 °C, 
an initial oven temperature of 40 °C (3-min hold) and a temperature 
gradient of 5 °C per min increase from 40 °C to 250 °C. Products were 
identified using the National Institute of Standards and Technology 
mass spectral database (https://chemdata.nist.gov).

A full-length cDNA of NC11G0120830 was amplified from the open 
flowers of N. colorata using reverse transcription PCR (RT–PCR), and 
cloned into pET-32a (MilliporeSigma). After confirmation by sequenc-
ing, NC11G0120830 was expressed in E. coli strain BL21 (DE3) (Strata-
gene) and the recombinant protein produced was purified using a 
modified nickel-nitrilotriacetic acid agarose (Invitrogen) protocol as 
previously reported69. For methyltransferase enzyme assays, we used 
both radiochemical and non-radiochemical reaction systems. The 
radiochemical reaction system (50 µl) was composed of 50 mM Tris-
HCl, pH 7.8, 1 mM substrate, 1 µl 14C-S-adenosyl-l-methionine, and 1 µl 
of purified NC11G0120830. After 30 min of incubation at room tem-
perature, 150 µl of ethyl acetate was added to extract the 14C-labelled 
reaction products. The extracts were counted using a scintillation 
counter (Beckman Coulter) to measure the activity of NC11G0120830. 
To determine the chemical identity of the reaction product, we per-
formed non-radiochemical assays in which nonradioactive S-adenosyl-
l-methionine was used as the methyl donor. The reaction product was 
collected by headspace solid-phase microextraction and analysed by 
GC–MS as previously described70.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
PacBio whole-genome sequencing data, Illumina data and genome 
assembly sequences have been deposited to the NCBI Sequence Read 
Archive (SRA) as Bioproject PRJNA565347, and were also deposited 
in the BIG Data Center (http://bigd.big.ac.cn) under project number 
PRJCA001283. The genome assembly sequences and gene annotations 
have been deposited in the Genome Warehouse in BIG Data Center 
under accession number GWHAAYW00000000. The genome assembly 
sequences, gene annotations, and the LCN genes used in this study, 
have been also deposited in the Waterlily Pond (http://waterlily.eplant.
org). All other data are available from the corresponding author upon 
reasonable request. 
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Extended Data Fig. 1 | High-quality genome of N. colorata allows integration 
of genetic and expression data. a, The assembled 14 chromosomes. b, Gene 
density plotted in a 100-kb sliding window. c, Transposable element (TE) 
density plotted in a 100-kb sliding window. d, Gene expression atlas of the 

juvenile flower, expression values were transformed with log2(FPKM + 1). e, GC 
content plotted in a 100-kb sliding window. f, Intragenomic syntenic regions 
denoted by a single line represent a genomic syntenic region covering at least 
20 paralogues.
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Extended Data Fig. 2 | WGD in Nymphaeales. a, Intergenomic synteny 
between N. colorata (14 chromosomes), Amborella (53 longest scaffolds),  
and the eudicots N. nucifera (8 longest megascaffolds) and V. vinifera  
(19 chromosomes). Five adjacent anchor pairs were plotted as one syntenic 
line. Coloured lines represent one example of syntenic genes found in other 
species that correspond to one copy in Amborella, two in N. colorata, two in  
N. nucifera, and three in V. vinifera. b, KS distribution for the whole paranome  
of N. colorata. The light grey rectangle in the background indicates the KS 
boundaries used to extract duplicate pairs for absolute phylogenomic dating 
of the WGD event, and also highlights the range in which WGD peaks can be 
identified in other species of Nymphaeaceae (Supplementary Note 5.2).  
c, Kernel-density estimates of KS distributions for one-to-one orthologues 
between the outgroup species I. henryi and each of N. lutea and N. advena (red), 

N. colorata, N. mexicana and Nymphaea ‘Woods blue goddess’ (blue) and  
C. caroliniana (yellow). As each peak represents the same divergence event in 
the angiosperm phylogeny, the differences observed among the KS values of 
the peaks indicate substantial substitution rate variation among these 
Nymphaealean lineages (see also Fig. 2b). d, Absolute age distribution obtained 
from phylogenomic dating of N. colorata WGD paralogues based on 
orthogroups with orthologues from Amborella and G. biloba. The solid black 
line represents the kernel density estimate of paralogue date estimates, and 
the vertical dashed black line represents its peak at 107 Ma. The grey lines 
represent density estimates from 2,500 bootstrap replicates and the vertical 
black dotted lines represent the corresponding 90% confidence interval for the 
WGD age estimate, 117–98 Ma (see Methods). The blue histogram shows the raw 
distribution of divergence date estimates for paralogues.



Extended Data Fig. 3 | The phylogenetic tree of MADS-box genes of  
N. colorata. a, The MADS-box genes are divided into type I and type II, and the 
latter was subdivided into MIKCc and MIKC*. Branches of various species are 
shown in different colours, with the colour code below the tree. The nodes 

representing three tandem duplication events (TD1, TD2, and TD3 in b) are 
marked with red circles. b, Genomic regions with the duplicated genes derived 
from the three tandem duplication events (TD1, TD2 and TD3).
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Extended Data Fig. 4 | Expansion of key genes regulating the carpel 
development by the Nymphaealean WGD. a, The reported pathway and genes 
that regulate carpel development. The red-labelled gene has two copies in  
N. colorata. The asterisk indicates that there is collinear support and is retained 
by the nymphaealean-specific WGD. b, Phylogenetic tree of AG genes, which 

specify floral meristem to determine the carpel and stamen identity.  
The star indicates the WGD specific to the water lily, as detected in this study. 
The duplicated AG genes in N. colorata are highlighted in red. c, NcAG gene 
duplicates, NcAGa and NcAGb, are the result of the nymphaealean-specific 
WGD.



Extended Data Fig. 5 | Expansion of key genes regulating the development of 
the stamen by Nymphaealean WGD. a, The reported pathway and genes that 
regulate the stamen development. The red-labelled gene has two copies in  
N. colorata. The asterisk indicates that there is collinear support and is retained 
by the nymphaealean-specific WGD. b, Phylogenetic tree of CORONATINE 

INSENSITIVE 1 (COI1), which recruits regulators of pollen development for 
modification by ubiquitination, needed in the JA response and regulating 
pollen fertility. c, NcCOI1 gene duplicates have evolved through the WGD in 
Nymphaeales. The star indicates the nymphaealean-specific WGD.
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Extended Data Fig. 6 | Nymphaealean-specific duplication of the genes that 
control the initiation of flowering. a, Phylogenetic tree of the PEBP-domain 
containing gene family, including FT, TFL1 and MFT subfamilies across various 
water lily species and other representative seed plants. b–d, Phylogenetic tree 

of the GI (b), CO (c) and FLC (d) gene family across various water lily species and 
other representative seed plants. e, The regulatory pathway for the flowering 
time control. The red-labelled gene has two copies in N. colorata and is retained 
by nymphaealean-specific WGD.



Extended Data Fig. 7 | Explosive expansion of the TPS-b subfamily and its 
implications. a, The phylogenetic classification of TPS-b subfamily into three 
groups. b, The group II member NC11G0123420 is the sole gene with high 

expression in the petal. c, Whereas most TPS-b members lack the two typical 
catalytic motifs, the NC11G0123420 retained both motifs, suggesting its 
potential role in producing sesquiterpene in N. colorata.
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Extended Data Fig. 8 | The blue anthocyanidin and its potential biosynthesis 
pathway in N. colorata. a, The peak of the blue anthocyanidin appears at 3 min 
of the high-performance liquid chromatography (HPLC) detection.  
b, The three fragments of the blue anthocyanidin and their molecule mass.  
c, The molecule of the anthocyanidin was identified as delphinidin 3′-O-(2″-O-
galloyl-6″-O-acetyl-β-galactopyranoside), abbreviated as Dp3′galloyl-
acetylGal. d, The postulated pathway for the biosynthesis of Dp3′galloyl-
acetylGal. Gene copy numbers are listed next to the enzymes. 3GGT, 

anthocyanidin 3-O-glucoside-2″-O-glucosyltransferase; 3′GT, 3′-O-beta-
glucosyltranferase; 5AT, anthocyanin-5-aromatic acyltransferase; ANS, 
anthocyanidin synthase; CHI, chalcone isomerase; CHS, chalcone synthase; 
DFR, dihydroflavonol-4-reductase; F3H, flavanone-3-hydroxylase; F3′5′H, 
flavonoid-3′,5′-hydroxylase. e, Comparative transcriptomic analyses between 
the blue- and white-petal cultivars of N. colorata identified two genes, ANS and 
UDPGT, that are highly differentially expressed and might be potential 
regulators for blue coloration of the petals.



Extended Data Fig. 9 | Expanded stress-related and transcription factor 
gene families in the genome of N. colorata. a, Markedly expanded gene 
families for stress response and transcriptional regulation. NLR genes contain 
NB-ARC domains. Notably, N. colorata encodes the highest proportion of 
kinase genes compared with gymnosperms or other land plants. b, NLR genes 

expanded in all of its three subfamilies (RNL, TNL and CNL). c, Distribution of 
NLR genes across the representative algae and land plants. The background 
colours indicate the number variation in each species. d, An example showing 
how tandem duplication and WGD contributed to the expansion of R genes in  
N. colorata.



Article
Extended Data Table 1 | Statistics of the sequenced and assembled genome of N. colorata

*The reads only include sequencing by PacBio RS II SMRT sequencing technology.
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PacBio whole-genome sequencing data and Illumina data were deposited to the SRA at the NCBI under the BioProject ID PRJNA565347. 
PacBio whole-genome sequencing data and Illumina data also were deposited in the BIG Data Center (http://bigd.big.ac.cn) under project number PRJCA001283. 
The genome assembly sequences and gene annotations have been deposited in the Genome Warehouse in BIG Data Center under accession number 
GWHAAYW00000000 and in ENA BioProject (PRJEB34452). The genome assembly sequences and gene annotations have been also deposited in the Waterlily Pond 
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Methodology

Sample preparation Nuclei were isolated from young leaves in spring ,using PI staining for 15 minutes.

Instrument Beckman Coulter COULTER EPICS XL™

Software FACS data analyses were performed using CXP v2.2 Software

Cell population abundance abundance >8000 cells were collected for each sample. Total nuclei populations were gated using relative fluorescence intensity: 
the 
proportions of nuclei with different ploidy levels were determined based on their relative fluorescence intensity: Pear is a diploid 
(2N) as a reference, according to the peak position (Supplementary Figure 5).
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Gating strategy Total nuclei populations were gated using PI intensity. In PI+ singles cells, the proportions of nuclei with different ploidy levels 
were determined based on their PI intensity (Supplementary Figure 5).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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