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Abstract—This work presents the analytical solution of vector wave
equation in fractional space. General plane wave solution to the wave
equation for fields in source-free and lossless media is obtained in
fractional space. The obtained solution is a generalization of wave
equation from integer dimensional space to a non-integer dimensional
space. The classical results are recovered when integer-dimensional
space is considered.

1. INTRODUCTION

Fractional-dimensional space concept is effectively used in many areas
of physics to describe the physical description of confinement in low
dimensional systems [1–6]. This approach is applied to replace the real
confining structure with an effective space, where the measurement
of its confinement is given by non-integer dimension [2, 3]. This
confinement can be described in low dimensional system which can
have different degree of confinement in different orthogonal directions,
e.g., if we have system that is confined as 1.8 dimensional, then it
could be described as 1 + 0.8 dimensional in two coordinates and
as 1 + 0.2 + 0.6 dimensional in three coordinates, if dimensions add
linearly [6]. Fractional calculus (a generalization of differentiation
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and integration to fractional order) is used by different authors to
describe fractional solutions to many electromagnetic problems as well
as fractional dimensional space [6–10, 16, 17].

Axiomatic basis for the concept of fractional space and formulation
of Schrödinger wave mechanics in D-dimensional fractional space is
provided in [1]. Also it has been pointed out that the experimental
measurement of the dimension D of our real world is given by
D = 3 ± 10−6, not exactly 3 [1, 11]. D-dimensional generalization of
Laplacian operator in different coordinate systems is provided in [1, 6].

Applications of the idea of fractional space in electromagnetic
research include the derivation of Gauss law in D-dimensional
fractional space [3], solution of electrostatic problem in D-dimensional
fractional space (2 < D ≤ 3) by solving Poisson’s equation in fractional
space [3], and solution of Laplacian equation in fractional space which
describes potential of charge distribution in fractional space using
Gegenbauer polynomials [4]. Multipoles and magnetic field of charges
in fractional space have also been obtained in [4]. The fractional
electrodynamics on fractals is reported in [5]. Also the scattering of
electromagnetic waves in fractal media is described in [15].

The vector wave equation in fractional space can describe complex
phenomenon of wave propagation in any non-integer-dimensional
space. For example, if we consider plane wave solution in integer
dimensional space with D = 2 as “Case 1” and for D = 3 as “Case 2”,
then by problem of fractional space solution shown in Figure 1, we
mean intermediate solution for D-dimensional space, where 2 < D ≤ 3.
It is worthwhile to mention that clouds, turbulence in fluids, rough
surfaces, snow, etc., can be described as fractional dimensional. The
study of wave propagation and scattering phenomenon in such media

Problem

Case 1 Case 2

Fractional intermediate cases
(Fractional space solutions)

Figure 1. Block diagram symbolizing the fractional space solutions.
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is important in practical applications, such as communications, remote
sensing, navigation and even bioengineering [15]. The phenomenon of
wave propagation in such fractal media can be studied by replacing
these fractal confining structures with an effective space of non-
integer dimension D. The plane wave solutions investigated in this
paper have potential applications in electromagnetic wave propagation
problems in fractional space. In Section 2, we investigate full analytical
solution of wave equation in D-dimensional fractional space, where
three parameters are used to describe the measure distribution of space.
In Section 3, solution of wave equation in integer-dimensional space is
obtained from the results of previous section. Finally, in Section 4,
conclusions are drawn.

2. GENERAL PLANE WAVE SOLUTIONS IN
FRACTIONAL SPACE

For source-free and lossless media, the vector wave equations for
the complex electric and magnetic field intensities are given by the
Helmholtz equation as follows [12].

∇2E + β2E = 0 (1a)
∇2H + β2H = 0 (1b)

where, β2 = ω2µε. Time dependency ejwt has been suppressed
throughout the discussion. Here ∇2 is the scalar Laplacian operator
in D dimensional fractional space and is defined as follows [6].

∇2 =
∂2
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+

α1 − 1
x

∂
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+
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+
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∂
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∂
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Equation (2) uses three parameters (0 < α1 ≤ 1, 0 < α2 ≤ 1 and
0 < α3 ≤ 1) to describe the measure distribution of space where
each one is acting independently on a single coordinate and the total
dimension of the system is D = α1 + α2 + α3. Once the solution to
any one of Equations (1a) and (1b) in fractional space is known, the
solution to the other can be written by an interchange of E with H or
H with E due to duality. We will examine the solution for E.

In rectangular coordinates, a general solution for E can be written
as

E(x, y, z) = âxEx(x, y, z) + âyEy(x, y, z) + âzEz(x, y, z) (3)

Substituting (3) into (1a) we can write that

∇2(âxEx + âyEy + âzEz) + β2(âxEx + âyEy + âzEz) = 0 (4)
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which reduces to three scalar wave equations as follows:

∇2Ex(x, y, z) + β2Ex(x, y, z) = 0 (5a)
∇2Ey(x, y, z) + β2Ey(x, y, z) = 0 (5b)

∇2Ez(x, y, z) + β2Ez(x, y, z) = 0 (5c)

Equation (5a) through (5c) are all of the same form; solution for
any one of them in fractional space can be replicated for others by
inspection.We choose to work first with Ex as given by (5a).

In expanded form (5a) can be written as

∂2Ex
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∂Ex
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+ β2Ex = 0 (6)

Equation (6) is separable using separation of variables. We consider

Ex(x, y, z) = f(x)g(y)h(z) (7)

the resulting ordinary differential equations are obtained as follows:
[
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where, in addition,
β2

x + β2
y + β2

z = β2 (9)

Equation (9) is referred to as constraint equation. In addition βx, βy, βz

are known as wave constants in the x, y, z directions, respectively,
which will be determined using boundary conditions.

Equation (8a) through (8c) are all of the same form; solution for
any one of them can be replicated for others by inspection. We choose
to work first with f(x). We write (8a) as

[
x

d2

dx2
+ a

d

dx
+ β2

xx

]
f = 0 (10)

where, a = α1 − 1. Equation (10) is reducible to Bessel’s equation
under substitution f = xnξ as follows:

[
x2 d2

dx2
+ x

d
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+ (β2
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]

ξ = 0, n =
|1− a|

2
(11)
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The solution of Bessel’s equation in (11) is given as [13]

ξ = C1Jn(βxx) + C2Yn(βxx) (12)

where, Jn(βxx) is referred to as Bessel function of the first kind of
order n, Yn(βxx) as the Bessel function of the second kind of order n.
Finally the solution of (8a) becomes

f(x) = xn1 [C1Jn1(βxx) + C2Yn1(βxx)], n1 = 1− α1

2
(13)

Similarly, the solutions to (8b) and (8c) are obtained as

g(y) = yn2 [C3Jn2(βyy) + C4Yn2(βyy)], n2 = 1− α2

2
(14)

h(z) = zn3 [C5Jn3(βzz) + C6Yn3(βzz)], n3 = 1− α3

2
(15)

From (7) and (13) through (15), the solution of (5a) have the form

Ex(x, y, z) = xn1yn2zn3 [C1Jn1(βxx) + C2Yn1(βxx)]
×[C3Jn2(βyy) + C4Yn2(βyy)]
×[C5Jn3(βzz) + C6Yn3(βzz)] (16)

where, C1 through C6 are constant coefficients. Similarly, the solutions
to (5b) and (5c) are obtained as

Ey(x, y, z) = xn1yn2zn3 [D1Jn1(βxx) + D2Yn1(βxx)]
×[D3Jn2(βyy) + D4Yn2(βyy)]
×[D5Jn3(βzz) + D6Yn3(βzz)] (17)

and

Ez(x, y, z) = xn1yn2zn3 [F1Jn1(βxx) + F2Yn1(βxx)]
×[F3Jn2(βyy) + F4Yn2(βyy)]
×[F5Jn3(βzz) + F6Yn3(βzz)] (18)

where, D1 through D6 and F1 through F6 are constant coefficients.
For ejwt time variations, the instantaneous form E(x, y, z; t) of the

vector complex function E(x, y, z) in (3) takes the form

E(x, y, z; t) = <e[{âxEx(x, y, z) + âyEy(x, y, z)

+âzEz(x, y, z)}ejwt] (19)

where Ex(x, y, z), Ey(x, y, z) and Ez(x, y, z) are given by (16)
through (18).

Equation (19) provides a general plane wave solution in fractional
space. This solution can be used to study the phenomenon of
electromagnetic wave propagation in any non-integer dimensional
space.
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3. DISCUSSION ON FRACTIONAL SPACE SOLUTION

Equation (19) is the generalization of the concept of wave propagation
in integer dimensional space to the wave propagation in non-integer
dimensional space. As a special case, for three-dimensional space, this
problem reduces to classical wave propagation concept; i.e., if we set
α1 = 1 in Equation (13) then n1 = 1

2 and it gives

f(x) = x
1
2

[
C1J 1

2
(βxx) + C2Y 1

2
(βxx)

]
(20)

Using Bessel functions of fractional order [14]:

J 1
2
(x) =

√
2

πx
sin(x) (21a)

Y 1
2
(x) = −

√
2

πx
cos(x) (21b)

Equation (13) can be reduced to

f(x) = C ′
1 sin(βxx) + C ′

2 cos(βxx) (22)

where, C ′
i = Ci

√
2

πβx
, i = 1, 2.

Similarly, we set α2 = 1 and α3 = 1 in (14) and (15) respectively
and using Bessel functions of fractional order in (21a) through (21b),
we get

g(y) = C ′
3 sin(βyy) + C ′

4 cos(βyy) (23)
h(z) = C ′

5 sin(βzz) + C ′
6 cos(βzz) (24)

From (22) through (24), we get Ex(x, y, z) in three-dimensional space
(D = 3) as follows

Ex(x, y, z) = [C ′
1 sin(βxx) + C ′

2 cos(βxx)]
×[C ′

3 sin(βyy) + C ′
4 cos(βyy)]

×[C ′
5 sin(βzz) + C ′

6 cos(βzz)] (25)

which is comparable to the solution of wave equation in integer
dimensional space obtained by Balanis [12]. Similarly, field components
Ey(x, y, z) and Ez(x, y, z) can also be reduced for three-dimensional
case.

As another special case, if we choose a single parameter for non-
integer dimension D where 2 < D ≤ 3, i.e., we take α1 = α2 = 1 so
D = α3 + 2. In this case from Equation (6) we obtain
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+

∂2Ex

∂y2
+

∂2Ex

∂z2
+

D − 3
z

∂Ex

∂z
+ β2Ex = 0 (26)
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Solving this equation by separation of variables leads to the following
result

Ex(x, y, z) = zn[G1 cos(βxx) + G2 sin(βxx)]
×[G3 cos(βyy) + G4 sin(βyy)]
×[G5Jn(βzz) + G6Yn(βzz)] (27)

where, n = 2 − D
2 . Here if we set D = 3, and using (21a) and (21b),

we get

Ex(x, y, z) =
√

2
πβz

[G1 cos(βxx) + G2 sin(βxx)]

×[G3 cos(βyy) + G4 sin(βyy)]
×[G5 sin(βzz) + G6 cos(βzz)] (28)

where, G1 through G6 are constant coefficients. The result obtained
in (28) is comparable to that obtained by Balanis [12] for 3-dimensional
space.

As an example, an infinite sheet of surface current can be
considered as a source of plane waves in D-dimensional fractional
space. We assume that an infinite sheet of electric surface current
density Js = Js0 x̂ exists on the z = 0 plane in free space. Since
the sources do not vary with x or y, the fields will not vary with x
or y but will propagate away from the source in ±z direction. The
boundary conditions to be satisfied at z = 0 are ẑ× (E2−E1) = 0 and
ẑ × (H2 −H1) = Js0 x̂, where E1, H1 are the fields for z < 0, and E2,
H2 are the fields for z > 0. To satisfy the later boundary condition,
H must have a ŷ component. Then for E to be normal to H and ẑ,
E must have an x̂ component. Thus, the corresponding wave equation
for E and H fields in D-dimensional fractional space where 2 < D ≤ 3
can be written by modifying (26) as

d2Ex

dz2
+

D − 3
z

dEx

dz
+ β2Ex = 0 (29a)

d2Hy

dz2
+

D − 3
z

dHy

dz
+ β2Hy = 0 (29b)

Solution of (29a) and (29b) takes the similar form as (27) and
under above mentioned boundary conditions the fields will have the
following form:

E1 = −x̂
Js0

2
Jn(βzz), H1 = ŷ

Js0

2η0
Jn(βzz); z < 0 (30a)

E2 = −x̂
Js0

2
Yn(βzz), H2 = −ŷ

Js0

2η0
Yn(βzz); z > 0 (30b)
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where, η0 is wave impedance in free space. Assuming a time
dependency ejwt and Js0 = −2A/m, the solution for the usual wave
for z > 0 with D = 3 is shown in Figure 2, which is comparable to well
known plane wave solutions in 3-dimensional space [12]. Similarly, for
D = 2.5 we have fractal medium wave for z > 0 as shown in Figure 3,
where amplitude variations are described in terms of Bessel functions.

Figure 2. Usual wave propagation (D = 3).

Figure 3. Wave propagation in fractional space (D = 2.5).
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4. CONCLUSION

General plane wave solution in source-free and lossless media in
fractional space is presented by solving vector wave equation in D-
dimensional fractional space. When the wave propagates in fractional
space, the amplitude variations are described by Bessel functions. The
obtained general plane wave solution is a generalization of integer-
dimensional solution to a non-integer dimensional space. For all
investigated cases when D is an integer-dimension, the classical results
are recovered.
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