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It has recently been demonstrated that droplets walking on a vibrating fluid bath
exhibit several features previously thought to be peculiar to the microscopic realm.
The walker, consisting of a droplet plus its guiding wavefield, is a spatially extended
object. We here examine the dependence of the walker mass and momentum on its
velocity. Doing so indicates that, when the walker’s time scale of acceleration is
long relative to the wave decay time, its dynamics may be described in terms of the
mechanics of a particle with a speed-dependent mass and a nonlinear drag force that
drives it towards a fixed speed. Drawing an analogy with relativistic mechanics, we
define a hydrodynamic boost factor for the walkers. This perspective provides a new
rationale for the anomalous orbital radii reported in recent studies.
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1. Introduction

The first analogues of single-particle quantum systems emerged in the last
decade from the laboratory of Yves Couder. Protière, Boudaoud & Couder (2006)
demonstrated that millimetric drops on the surface of a vibrating bath may interact
with their own wavefield in such a way as to walk steadily across the bath (Couder
et al. 2005). These ‘walkers’ are spatially extended objects comprising both a
particle and a wave. By virtue of their spatial delocalization, the walkers exhibit
several features previously thought to be peculiar to the microscopic realm, including
single-particle diffraction and interference (Couder & Fort 2006), tunnelling (Eddi
et al. 2009), quantized orbits (Fort et al. 2010; Harris & Bush 2014; Oza et al.

2014; Perrard et al. 2014a,b) and orbital level splitting in a rotating frame (Eddi
et al. 2012; Oza et al. 2014), and wave-like statistics in confined geometries (Harris
et al. 2013). The relationship between this hydrodynamic system and various realist
models of quantum dynamics is discussed by Bush (2015).

† Email address for correspondence: bush@math.mit.edu

c© Cambridge University Press 2014 755 R7-1

mailto:bush@math.mit.edu


J. W. M. Bush, A. U. Oza and J. Moláček

Einstein (Bohm & Hiley 1982) and de Broglie (de Broglie 1926, 1987) both sought
to reconcile quantum mechanics and relativity through consideration of the wave
nature of matter (Chebotarev 2000). De Broglie’s conception in his double-solution
theory (de Broglie 1956) was of microscopic particles moving in resonance with
and being guided by their own wavefield. While neither the physical origin nor the
detailed geometric form of the pilot wavefield was specified, it was posited that the
resulting particle motion could give rise to a statistical behaviour consistent with
the predictions of standard quantum theory. Workers in stochastic electrodynamics
(de la Peña & Cetto 1996) have suggested that an electromagnetic pilot wave might
arise through the resonant interaction between a microscopic particle’s internal
vibration and the electromagnetic vacuum field (Boyer 2011). Some have further
proposed that the interaction of moving particles with this vacuum field could give
rise to a speed-dependent inertial mass, a feature of relativistic mechanics (Haisch &
Rueda 2000; Rueda & Haisch 2005). We here explore the relevance of this perspective
to the dynamics of walking droplets by inferring their wave-induced added mass.

By considering the detailed dynamics of droplet impact, Moláček & Bush (2013a,b)
developed a theoretical model of droplets bouncing on a vibrating fluid bath that
rationalizes all reported bouncing and walking behaviours (Wind-Willassen et al.

2013). By considering the destabilizing influence of the droplet’s wavefield on
its stationary bouncing, Moláček & Bush (2013b) rationalized the transition from
bouncing to walking, and the limited extent of the walking regime. By averaging the
forces acting on the droplet over the bouncing period, they developed a trajectory
equation to describe the horizontal motion of the walkers. This trajectory equation
was transformed into an integro-differential form by Oza, Rosales & Bush (2013),
who treated the drop as a continuous rather than a discrete source of waves. Their
model adequately rationalized the observed dependence of the walker speed on the
system parameters and the stability of the walking states. Moreover, it has been
successfully benchmarked through a combined experimental (Harris & Bush 2014)
and theoretical (Oza et al. 2014) investigation of walkers in a rotating frame, yielding
a new rationale for the emergence of quantized orbits (Fort et al. 2010) and wave-like
statistics (Harris & Bush 2014). Their trajectory equation represents the starting point
of the current study.

The hydrodynamic pilot-wave system is forced and dissipative. Nevertheless, it is
interesting to imagine how the system might be described if one were unaware that
it was either. Specifically, if one observes the system from above, and ignores the
fact that it is a forced dissipative pilot-wave system, how should one describe the
dynamics? What is the effective mass of a walker? We demonstrate here that, in the
weak-acceleration limit, the walker dynamics may be described in terms of the motion
of a particle with a speed-dependent mass and a nonlinear drag force that drives it
towards a fixed speed.

2. Pilot-wave hydrodynamics

We consider a fluid bath with kinematic viscosity ν, density ρ, surface tension
σ and depth H vibrating vertically with amplitude A0, frequency f = ω/2π and
acceleration γ cos ωt. When the acceleration amplitude γ = A0ω

2 exceeds a critical
value corresponding to the Faraday threshold γF, the interface becomes unstable
to a field of Faraday waves with frequency ωF = ω/2, period TF = 2π/ωF and
wavelength λF = 2π/kF prescribed by the standard water-wave dispersion relation,
ω2

F = (gkF + σk3
F/ρ) tanh kFH (Faraday 1831; Benjamin & Ursell 1954). The physical
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system of interest arises when a millimetric droplet is placed on the surface of the
vibrating bath when γ < γF. The interface would thus remain flat were it not for the
drop impact.

2.1. The trajectory equation

In a parameter regime described by Protière et al. (2005, 2006) and Eddi et al. (2008)
and rationalized by Moláček & Bush (2013a,b) and Wind-Willassen et al. (2013), a
droplet of undeformed radius R placed on a vibrating bath may bounce indefinitely
on the free surface in a variety of bouncing states (Wind-Willassen et al. 2013).
Once the amplitude of the drop has increased sufficiently that the bouncing period is
commensurate with that of the subharmonic Faraday waves generated locally by the
drop impact, the bouncing state may be destabilized into a walking state (Protière
et al. 2006). When γ exceeds the walking threshold γW , the droplet thus self-propels
through resonant interaction with its own wavefield. The propulsive force arises as a
result of the droplet landing on the sloping crest of its wavefield: with each impact,
the bath exerts a horizontal impulse to the droplet. Moláček & Bush (2013a,b)
developed a detailed description of the physics of impact, demonstrating that, in the
parameter regime of interest, the interface behaves like a logarithmic spring, applying
a force to the droplet that increases logarithmically with depth of penetration. They
thus derived a trajectory equation for the resulting walking motion, time-averaging of
which yields a description of the droplet’s horizontal motion:

mẍ + Dẋ = −mg∇h(x, t) + F, (2.1)

where F is an arbitrary applied body force, and the drag coefficient resulting from the
walker’s free flight and impact may be expressed as

D = Cmg

√

ρR

σ
+ 6πµaR

(

1 + πρagR

6µaω

)

, (2.2)

where µa and ρa are the dynamic viscosity and density of air, and C = 0.17 was
inferred from the coefficient of tangential restitution in the small-drop parameter
regime of interest. Moláček & Bush (2013b) demonstrated that the wavefield resulting
from the droplet’s previous impacts may be approximated by

h(x, t) =
⌊t/TF⌋
∑

n=−∞
AJ0(kF|x − xp(nTF)|)e−(t−nTF)/TM . (2.3)

For ν =20 cS and f =80 Hz, the wave amplitude A and memory time TM are given by

A = 1

2

√

ν

TF

k3
F

3k2
Fσ + ρg

mgTF sin Φ and TM(γ ) = Td

(1 − γ /γF)
, (2.4)

where Φ is the mean phase of the wave during the contact time and Td ≈ 0.0182 s
is the decay time of the waves in the absence of forcing (Moláček & Bush 2013b).
Provided that the time scale of horizontal motion, TH = λF/|ẋp|, is much greater than
that of vertical motion, TF, as is the case for walkers, we may replace the summation
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by the integral

h(x, t) = A

TF

∫ t

−∞
J0(kF|x − xp(s)|)e−(t−s)/TM ds. (2.5)

The trajectory equation (2.1) thus takes an integro-differential form:

mẍ + Dẋ = W

TF

∫ t

−∞
J1 (kF|x(t) − x(s)|) x(t) − x(s)

|x(t) − x(s)|e−(t−s)/TM ds + F, (2.6)

where W = mgAkF (Oza et al. 2013). Introducing the dimensionless variables x̂ = kFx

and t̂ = t/TM, we obtain

κ x̂
′′ + x̂

′ = β

∫ ∞

0
J1

(∣

∣x̂(t) − x̂(t̂ − z)
∣

∣

) x̂(t̂) − x̂(t̂ − z)
∣

∣x̂(t̂) − x̂(t̂ − z)
∣

∣

e−z dz + F̂, (2.7)

where κ = m/DTM and β = WkFT2
M/DTF are the non-dimensional mass and the

memory force coefficient, F̂ = FkFTM/D is the dimensionless applied force, and
primes denote differentiation with respect to t̂.

2.2. The weak-acceleration limit

We now consider the simplified dynamics that arises when the walker accelerates
in response to a force that varies slowly relative to the memory time TM, that is,
F̂ = F̂ (ǫt/TM), where 0 < ǫ ≪ 1. In this weak-acceleration limit, the walker velocity
varies slowly relative to the time scale TM, so we may write x̂

′ = v(ǫt/TM).
We proceed by expanding the integral (2.7) in powers of ǫ. Since

x̂(t̂) − x̂(t̂ − z) = v(ǫ t̂)z − ǫ

2
v

′(ǫ t̂)z2 + O(ǫ2), (2.8)

we obtain

J1

(∣

∣x̂(t̂) − x̂(t̂ − z)
∣

∣

) x̂(t̂) − x̂(t̂ − z)
∣

∣x̂(t̂) − x̂(t̂ − z)
∣

∣

= v

|v|J1 (|v| z) + ǫ

2 |v|

{[

v (v · v
′)

|v|2
− v

′
]

J1 (|v| z) z

− v (v · v
′)

|v| J′
1 (|v| z) z2

}

+ O(ǫ2), (2.9)

which yields

∫ ∞

0
J1

(∣

∣x̂(t̂) − x̂(t̂ − z)
∣

∣

) x̂(t̂) − x̂(t̂ − z)
∣

∣x̂(t̂) − x̂(t̂ − z)
∣

∣

e−z dz

= v

|v|2

(

1 − 1
√

1 + |v|2

)

+ ǫ

2 |v|

{

[

v (v · v
′)

|v|2
− v

′
]

v
(

1 + |v|2
)3/2

− v (v · v
′)

|v|
1 − 2 |v|2
(

1 + |v|2
)5/2

}

+ O(ǫ2). (2.10)
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The trajectory equation (2.7) thus takes the form

κ x̂
′′ + x̂

′ = βx̂
′

∣

∣x̂
′∣
∣

2



1 − 1
√

1 +
∣

∣x̂
′∣
∣

2



+ β

2







3
(

x̂
′
· x̂

′′)
x̂

′

(

1 +
∣

∣x̂
′∣
∣

2
)5/2 − x̂

′′

(

1 +
∣

∣x̂
′∣
∣

2
)3/2






+ F̂+O(ǫ2),

(2.11)
which may be expressed as

d

dt̂

(

κγBx̂
′)+ x̂

′



1 − β
∣

∣x̂
′∣
∣

2



1 − 1
√

1 +
∣

∣x̂
′∣
∣

2







= F̂ + O(ǫ2), (2.12)

where the hydrodynamic boost factor is defined as

γB = γB

(∣

∣x′∣
∣

)

= 1 + β

2κ

(

1 +
∣

∣x̂
′∣
∣

2
)3/2 . (2.13)

We note that, in the absence of an applied force (F̂ = 0), (2.12) has a solution

∣

∣x̂
′∣
∣= û0 ≡ 1√

2

(

−1 + 2β −
√

1 + 4β

)1/2
. (2.14)

This corresponds precisely to the formula for the free rectilinear walking speed of a
droplet, which was found to adequately rationalize the observed dependence of u0 on
the forcing acceleration γ (Oza et al. 2013).

In terms of dimensional variables, we may write the trajectory equation (2.12) as

d

dt
(mγBẋ) + Dwẋ = F, (2.15)

where

Dw = Dw(|ẋ|) = D

[

1 − mgA

DTF |ẋ|2

(

1 − 1
√

1 + (kFTM |ẋ|)2

)]

(2.16)

and

γB = 1 + gAk2
FT3

M

2TF

(

1 + (kFTM |ẋ|)2
)3/2 . (2.17)

We may rewrite the trajectory equation (2.15) in the form

dpw

dt
+ Dwẋ = F, (2.18)

so both the mass mw and momentum pw of the walker may now be expressed in terms
of the hydrodynamic boost factor; specifically

pw = mwẋ, where mw = mγB. (2.19)

In the weak-acceleration limit under consideration, the effect of the wave force on
the walker dynamics is twofold. First, it augments the walker’s effective mass by a
factor γB that depends on its speed |ẋ|. The dependence of γB on the walker speed u0

and the forcing acceleration γ /γF is illustrated in figure 1. We note that γB decreases
monotonically with speed through the entire walking regime, for γw < γ < γF. Second,
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FIGURE 1. Dependence of the hydrodynamic boost factor γB on the walker speed
|ẋ| = u0(γ ) and forcing acceleration γ /γF, for a walker of radius R = 0.4 mm and impact
phase sin Φ = 0.25.

it generates a nonlinear drag coefficient Dw, where Dw > 0 if |ẋ| > u0 and Dw < 0
otherwise. The wave-induced drag thus acts as a restoring force that drives the walker
towards its free walking speed u0.

3. Response to a weak unidirectional force

We first consider the special case in which the slowly varying applied force is
also weak and unidirectional. Specifically, we assume that the applied force is small
relative to the drag, so that |F|kFTM/D = O(ǫ). We thus write F̂ = ǫ f̂ (ǫt/TM)s, where
s is a constant unit vector.

For the remainder of this section, we assume all variables to be dimensionless
and drop all hats. In the Cartesian coordinate system in which s = [1, 0], we write
ẋ = v(T) [cos θ(T), sin θ(T)], where T = ǫt. The equations of motion (2.12) take the
form

mw(v)vθ ′ = −f (T) sin θ + O(ǫ), (3.1)

ǫ
d

dT
(mw(v)v) + Dw(v)v = ǫf (T) cos θ + O(ǫ2), (3.2)

where

mw(v) = κγB(v) and Dw(v) = 1 − β

v2

(

1 − 1√
1 + v2

)

(3.3)

are the dimensionless wave-induced mass and drag, as introduced in § 2.2, and primes
denote differentiation with respect to the slow time scale T .

To leading order in ǫ, the walker will move at its free walking speed u0. To examine
the perturbation from the steady walking solution, we substitute v = u0 + ǫu1(T) into
(3.1)–(3.2) and deduce

mw(u0)u0θ
′ = −f sin θ + O(ǫ), D̃w(u0)u1 = f cos θ + O(ǫ), (3.4)

where

D̃w(u0) = d

dv
(Dw(v)v)

∣

∣

∣

∣

v=u0

. (3.5)
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Equations (3.4) may be readily solved to obtain
∣

∣

∣

∣

tan
θ(T)

2

∣

∣

∣

∣

=
∣

∣

∣

∣

tan
θ(0)

2

∣

∣

∣

∣

exp

(

− F(T)

mw(u0)u0

)

, v(T) = u0 + ǫf (T) cos θ(T)

D̃w(u0)
+ O(ǫ2),

(3.6)
where F′(T) = f (T) and F(0) = 0. These expressions uniquely determine the evolution
of the walking speed v(T) and direction θ(T). When the applied force f is constant,
the solution (3.6) implies that the walker’s direction θ approaches that of the force
over the time scale Tθ = mw(u0)u0/|f |. Thus, the turning time scale Tθ is prescribed
by the ratio of the walker’s modified momentum pw(u0) to the applied force, and is
independent of the drag.

4. Orbital motion

We now consider the case of circular motion of the form x(t) = (r0 cos ωt, r0 sin ωt).
Defining t = (− sin ωt, cos ωt) and n = (cos ωt, sin ωt) as the unit tangent and outward
normal vectors, respectively, allows us to write the normal and tangential components
of (2.15) in the form

− mγBr0ω
2 = F · n, (4.1)

r0ω

[

D − mgA

TF(r0ω)2

(

1 − 1√
1 + (kFTMr0ω)2

)]

= F · t, (4.2)

where γB is defined in (2.17) with |ẋ| = r0ω. The weak-acceleration approximation
of § 2.2 holds provided that the velocity ẋ varies slowly relative to the memory
time, or, equivalently, the orbital period is much larger than the decay time of the
wavefield, TM ≪ Torb ≡ 2πr0/u0. In this case, the walker does not interact with its
own wake, specifically, the wavefield generated by its previous orbit. This limit thus
corresponds to the weak-orbital-memory limit defined in Oza et al. (2014), in which
orbital quantization does not arise. We consider in turn inertial orbits arising in a
rotating frame, and circular orbits arising in the presence of a central force arising
from a harmonic potential.

4.1. Walking in a rotating frame

When an object of mass m translates in a horizontal plane at a constant speed u
in a frame rotating about a vertical axis with constant angular speed Ω , it will in
general move along a circular orbit. The radius Rc and frequency ωc = −u/Rc of such
an inertial orbit are prescribed by the balance between the outwards inertial force,
mu2/Rc, and the inwards Coriolis force, 2muΩ; thus, Rc = u/2Ω and ωc = −2Ω .
In their examination of droplets walking in a rotating frame, Fort et al. (2010)
demonstrated that at high memory, the influence of the wave force leads to orbital
quantization on the Faraday wavelength, and that such quantized orbits are analogous
to the Landau levels that arise for electric charges moving in the presence of a
uniform magnetic field. In the low-memory limit, they report that the inertial orbits
vary continuously with rotation rate, but that the orbits are typically 20–50 % larger
than would be expected from the classical balance. This orbital offset, as further
detailed in Harris & Bush (2014) and Oza et al. (2014), may be readily understood
on the basis of the foregoing developments.

For circular motion in the presence of a Coriolis force F = −2mΩ × ẋ, the
tangential component of the force vanishes, F · t = 0, so the tangential force balance
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FIGURE 2. The observed dependence of the orbital radius r0 and frequency ω on the
rotation rate Ω for a droplet walking at speed u0 in a rotating frame in the low-memory
regime (ν = 20.9 cS, Td = 0.0174 s, R = 0.40 mm, u0 = 9.0 mm s−1, γ /γF = 0.82, sin Φ =
0.26). The experimental data are those reported by Harris & Bush (2014), and the value of
sin Φ is chosen to match the experimentally observed free walking speed u0. The dashed
lines indicate the standard solutions for inertial orbits, r0 = Rc ≡ u0/2Ω and ω =ωc ≡−2Ω .
The solid lines correspond to the predictions of (4.3), which incorporate the walker’s
hydrodynamic boost factor, γB = 1.41.

(4.2) requires that the orbital speed correspond to the free walking speed u0 ≡ r0|ω|.
The radial force balance (4.1) then indicates the dependence of the orbital frequency
and radius on the boost factor,

ω = −2Ω

γB

, r0 = γB

u0

2Ω
. (4.3)

The net effect of the wavefield is thus to decrease the orbital frequency and increase
the orbital radius relative to the standard results, ωc and Rc. Figure 2 indicates the
observed dependence of the orbital radius and orbital frequency on the rotation rate at
low memory reported by Harris & Bush (2014). The dashed lines indicate the standard
results, Rc = u0/2Ω and ωc =−2Ω , while the solid lines correspond to our predictions
(4.3), which incorporate the boost factor.

4.2. Walking in a central force

Perrard et al. (2014b) report the results of a study of walker motion in the presence
of a central force. By encapsulating ferrofluid within a walker, and applying a vertical
magnetic field with a radial gradient, they produced a force field that increased linearly
with radius, F = −kx. In certain regimes, orbital motions were observed; in others,
more complex periodic and aperiodic motions arose. We focus here on the circular
orbits reported. From the classical balance of the applied force kR and inertial
force mu2

0/R, one expects circular orbits with radius Rh = u0
√

m/k and frequency
ωh =

√
k/m. Like their counterparts arising in the rotating frame, the observed orbits

exhibited a radial offset, being typically 10 % larger than Rc, an observation we can
now rationalize.

For circular motion in the presence of a central force F = − kx, once again F · t = 0,
so the tangential force balance (4.2) requires that the orbital speed correspond to
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FIGURE 3. The observed dependence of the orbital radius r0 and frequency ω on the
spring constant k for a droplet walking at speed u0 under a spring force F = −kx in
the low-memory regime. The experimental parameters were reported to be ν = 20 cS,
Td = 0.0182 s, R = 0.40 mm, u0 = 12.2 mm s−1, γ /γF = 0.9 and sin Φ = 0.25 (Perrard
& Couder, private communication). The value of the phase sin Φ is chosen to match the
experimentally observed free walking speed u0. The dashed lines indicate the standard
solutions, r0 = Rh ≡ u0/

√
k/m and ω = ωh ≡

√
k/m. The solid lines correspond to the

predictions of (4.4), which incorporate the walker’s hydrodynamic boost factor, γB = 1.30.

the free walking speed u0 ≡ r0|ω|. The radial force balance (4.1) then indicates the
dependence of the orbital frequency and radius on the boost factor,

ω =
√

k

mγB

, r0 = √
γB

u0√
k/m

. (4.4)

Once again, the net effect of the wavefield is thus to decrease the orbital frequency,
and to increase the orbital radius relative to the standard results, ωh and Rh. Figure 3
indicates the observed dependence of the orbital radius and orbital frequency on the
spring constant at low memory reported by Perrard et al. (2014b). The dashed lines
indicate the standard results, Rh = u0

√
m/k and ωh =

√
k/m, while the solid lines

correspond to our predictions (4.4), which incorporate the boost factor.
For the case of orbital dynamics, one can rationalize the increase of the orbital

radius relative to that expected in the absence of the wave force through consideration
of the geometry of the pilot wavefield (Oza et al. 2014). In the low-memory limit, the
drop is influenced primarily by the wave generated by its most recent impact. As the
drop is turning in a circular orbit, the wave force generated during impact necessarily
has a radial component, the result being an increase in the orbital radius.

We note that Labousse & Perrard (2014) proposed the following equation to
describe the dynamics of a walker acted upon by a central force in the low-memory
regime:

mẍ + Dwẋ = −kx, Dw = D

( |ẋ|2
u2

0

− 1

)

. (4.5)

This trajectory equation captures certain features of (2.15); in particular, the nonlinear
drag coefficient Dw acts as a restoring force that drives the walker towards its
free walking speed u0. However, in neglecting the contribution of the walker’s
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wave-induced added mass, it cannot account for the anomalously large orbital radii
reported in laboratory experiments and rationalized above.

5. Discussion

A droplet walking in resonance with its own monochromatic wavefield represents
a rich dynamical system, the first realization of a double-wave pilot-wave system of
the form envisaged by de Broglie (1926, 1956, 1987). While Couder and coworkers
have highlighted the quantum mechanical aspects of walkers as they emerge in the
high-path-memory limit (Couder & Fort 2006; Fort et al. 2010; Harris et al. 2013),
we have here explored their first tentative connections to relativistic mechanics. The
leading-order force balance on the walker is between a propulsive wave force and a
viscous drag term. The steady walking state is sustained by vibrational forcing: the
mechanical work done by the vibration balances the viscous dissipation. In the weak-
acceleration limit, the walker’s motion may be described in terms of the mechanics
of a particle with a speed-dependent mass subject to a nonlinear restoring force that
drives it towards a fixed speed. The relative magnitude of the effective mass of the
walker and the droplet mass is prescribed by the hydrodynamic boost factor, whose
dependence on the system parameters has been deduced. This boost factor is always
greater than 1, and decreases with increasing speed in the weak-acceleration limit
examined.

For the case of orbital dynamics, if the system were observed from above with no
knowledge of either the vibrational forcing or the wavefield, the walker’s motion might
be described in terms of the inviscid dynamics of a particle whose mass depends on
its speed. Doing so has allowed us to rationalize the offset in the radius of the walkers’
inertial orbits in terms of their wave-induced added mass. Moreover, it has provided
a more general framework for understanding and describing the walker dynamics.
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