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§ 1. Introduction and Summeary.

The theoretical investigation of the total resistance to the forward motion
of a ship is usually simplified by regarding it as the sum of certain
independent terms such as the frictional, wave-making, and eddy-making
resistances. The experimental study of frictional resistance leads to a
formula of the type

By="78y= (1)
where S is the wetted surface, V the speed, /' a frictional coefficient, and m
an index whose value is about 1-83.

After deducting from the total resistance the frictional part caleculated from
a suitable formula of this kind, the remainder is called the residuary resist-
ance. Of this the wave-making resistance is the most important part; the
present paper is limited to the study of wave-making resistance, and chiefly
its variation with the speed of the ship. The hydrodynamical theory as it
stands at present may be stated briefly.

Simplify the problem first by having no diverging waves; that is, suppose
the motion to be “in two dimensions in space,” the crests and troughs being
in infinite pa'rallel lines at right angles to the direction of motion. Further,
suppose that the motion was started at some remote period and has been
maintained uniform. We know that, except very near to the travelling
disturbance, the surface motion in the rear consists practically of simple
periodic waves of length suitable to the velocity » of the disturbance. Let
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« be the amplitude of the waves, and w the weight of unit volume of water;
then the mean energy of the wave motion per unit area of the water surface
is Jwa®. Imagine a fixed vertical plane in the rear of the disturbance ; the
gpace in front of this plane is gaining energy at the rate Jwa® per unit time.
But on account of the fluid motion, energy is supplied through the imaginary
fixed plane to the space in front, and it can be shown that the rate of supply
is Jwa?u, where u is the group-velocity corresponding to the wave-velocity ».
The nett rate of gain of energy is $wa? (v—u), and this represents the part of
ghe power of the ship which is needed, at uniform velocity, to feed the
%rocession of regular waves in its rear. An equivalent method of stating
fiis argument is to regard the whole procession of regular waves from the
Beginning of the motion as a simple group; then the rear moves forward
gyith velocity » while the head advances with velocity », and the whole
Frocession lengthens at the rate v—wu. If we write Rv for the rate at which
nergy must be supplied by the ship, we call R the wave-making resistance,
Tnd we have
= R = dwa? (v—u)[v. (2)

shi

o=

e notice that R is the wave-making resistance in wniform motion; it is
Efnly different from zero because u differs from », that is, because the velocity
gt propagation depends upon the wave-length.

o
2 In deep water,  is }v, so that R is jwae®. In the application of this to
Eship at sea, it is assumed that the transverse waves have a certain average

Jniform breadth and height, and, further, that the diverging waves may be
_:gonsidered separately and as having crests of uniform height inclined at
@ cerfain angle to the line of motion; if the amplitude is taken to vary as
Zhe square of the velocity, it follows that R varies as #%. Several formule
Ef the type R = A+, or R = Av*+ B+% have been proposed ; although these
Bnay be of use practically by embodying the results of sets of experiments,
§hey are not successful from a theoretical point of view. Recently many
Ruch cases have been analysed graphically by Prof. Hovgaard ;* the general
result is that a fair agreement may be made for lower velocities with an
average experimental curve neglecting the humps and hollows due to the
interference of bow and stern wave systems, but at higher velocities the
experimental curve falls away very considerably from the empirical curve.
The method used here consists in considering the ship, in regard to its
wave-making properties, as equivalent to a transverse linear pressure
distribution travelling uniformly over the surface of the water. Taking
& simple form of diffused pressure system and making some necessary

P

* W. Hovgaard, ‘ Inst. Nav. Arch. Trans.,” vol. 50, p. 205, 1908.
U2
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assumptions, we obtain an expression for the amplitude of the transverse
waves thus originated, and for the resistance R, in which the velocity enters
in the form ¢~***; this function is seen to have the general character of the
experimental curves. Adding on a similar term for the waves diverging
from bow and stern, and, finally, in the manner of W. Froude, an oscillating
factor for the interference of these bow and stern waves, we find a formula
for the wave-making resistance of the type

R = ae”'+ B {1 —rycos (m[v?)} e,
In this expression there are six adjustable constants; we proceed to reduce

the number of these after transforming into units which utilise Froude’s law
of comparison. We use the quantity ¢, defined as

(speed in knots)//(length of ship in feet),

and we express the resistance in 1bs. per ton displacement of the ship. An
inspection of experimental curves, and other considerations suggest that the
quantities /, m, n may be treated as universal constants ; with this assumption,
a three-constant formula is obtained, viz.,

R = ae=#%%" 4 B {1 —wycos (10:2/c?)} e~253, (3)
where the constants «, 3, v depend upon the form of the ship.

We then treat (3) as a semi-empirical formula of which the form has been
suggested by the pfeceding theoretical considerations; several experimental
model curves are examined, and numerical calculations are given which show
that these can be expressed very well by a formula of the above type.

Since the constant « is found to be small compared with B, it is not
allowable to press too closely the theoretical interpretation of the first term,
especially as the experimental curves include certain small elements in
addition to wave-making resistance. If we limit the comparison to values
of ¢ from about 09 upwards, it is possible to fit the curves with an
alternative formula of the type

R = B {1—ycos(10:2/c®)} e,

and some examples of this are given.

The effect of finite depth of water is considered, and a modification of the
formula is obtained to express this effect as far as possible. Starting from
an experimental* curve for deep water, curves are drawn, from the formula,
for the transverse'wave resistance of the same model with different depths ;
although certain simplifications have to be made, the curves show the
character of the effect, and allow an estimate of the stage at which it becomes

appreciable.
In the last section the question of other types of pressure distribution is
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 discussed, and one is given in illustration of the wave-making resistance of
an entirely submerged vessel.

§2. Pressure System travelling over Deep Water.
It is known that a line pressure-disturbance travelling over the surface
of water with uniform velocity v at right angles to its length gives rise to a
regular wave-train in its rear of equal wave-velocity.* Take the axis of z
in the direction of motion and let the pressure system be symmetrical with
Syespect to the origin and given by p = f(z); suppose that f (z) vanishes
sor all but small values of @, for which it becomes infinite so that

o
3| f(z)de=P. The regular part of the surface depression 7 due to this
Antegral pressure P practically concentrated on a line is given by

= 20 0
=~ 5sin%s. (4)

org/ on

o The part of the surface effect which is neglected in this expression consists
Eof a local disturbance symmetrical with respect to the origin and practically
Zeonfined to its neighbourhood.

If we suppose P constant, the amplitude in the regular wave-train and
%the consequent drain of energy due to its maintenance diminish with the

pub

1

8velocity.

< To obtain results in any way comparable with practical conditions it is
§‘necessary' to suppose the pressure system diffused over a strip which is not
Xinfinitely narrow.

An illustration is afforded by taking
X

mal4a?’
where « is small compared with the distances at which the regular surface
effects are estimated. This type of pressure distribution is shown in fig. 1.

P
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* For a discussion of the wave pattern, see Lamb, ¢ Hydrodynamics,’ § 241 et seg. ; or
Havelock, ‘Roy. Soc. Proe.,’ A, vol. 81, p. 398, 1908.
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The effect of thus diffusing the pressure system is expressed by the
introduection of a factor ¢ (k) into the amplitude of the regular waves, where
2m [k is the wave-length and

(k) = '[f(w) cos ko dw. (6)
Using (5) in (6), we find
¢ (k) = Pe=* = Po-v,
Hence the amplitude of the waves is given by

2¢P
a==1_¢
w2

—agfv? (7 )

Further, since « = v*/g, the group velocity » = d («v)/dx = {v. Hence
the wave-niaking resistance R is given by

2P2
Bl e (8)

We have to examine the variation of these quantities with the velocity »
under the supposition that the pressure system is due to the motion of a
body either floating on the surface or wholly immersed in the water. The
pressures concerned being the vertical components of the excess or defect
due to the motion, it seems possible to assume as a first approximation that
P varies as #*; this is the case in the ordinary hydrodynamical theory of
a solid in an infinite perfect fluid, and a similar assumption is also made
in the theory of Froude’s law of comparison. This being assumed, we find
a = A9, B = B~ 9)
We see that both the amplitude and the resistance increase steadily from
zero up to limiting values.
If we draw the curve representing this relation between R and v, there is
a point of inflection when
PR
=
Writing 2’ for this velocity, we see that dR/dv increases as the velocity
rises to »’ and then falls off in value as the velocity is further increased.
We can write the relation now in the form
3 == Batviex (11)

0, or 2= ga (10)

The character of this relation is shown by the curve in fig. 2, which

represents the case
R = 315 4@/77, (12)

R being in tons, and V in knots.
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The values of the constants in (12) have been chosen for comparison with

an experimental curve of residuary resistance given by R. E. Froude ;* it
was obtained from model experiments and by means of the law of

Fic 2

8 RTons 8

i A A ) 3

°I0 15 2‘0 V Knots 2l5 30 35 40 45
corresponding speeds and dimensions the results were given for a ship
(model A) of 4090 tons displacement and 400 feet length. The actual curve
is given in fig. 4 and is discussed more fully later; we neglect for the
present the undulations which are known to be due to the interference of
the bow and stern wave systems, and we consider a fairly drawn mean
experimental curve denoted by R’. Table I shows a comparison of the
values of R’ with those of R calculated from the formula (12).

Downloaded from https://royalsocietypﬁblishing.org/ on 09 August 2022

Table I.
\ Y. R. R,
1
. 10 002 18 }
14 2 4
18 14 16 I
} 92 38 395
26 70 ‘ 70
30 106 107
| 34 132 130
38 157 156
l 42 176 175
| 146 195 | 192

From this comparison we see that the point of inflection given by V'
corresponds to the point at which the slope of the mean experimental curve

* R. E. Froude, ‘ Inst. Nav. Arch. Trans.,’ vol. 22, p. 220, 1881.
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begins to fall off. This effect is general in residuary resistance curves; we
see that it is really an interference effect, the character of the curve being
due to the mutual interference of the wave-making elements of the pressure
gystem. Superposed on the mean curve we have a further interference effect
due to the combination of two systems, the bow and stern systems.

From Table I we infer that the mean curve agrees well with the calculated
values R from about 18 knots upwards, but at the lower speeds the values of
R are much too small ; this suggests the addition of a term to represent the
effect of the diverging waves.

§ 3. Diverging Wave System.

In the example considered above, the calculated values of R are much too
small at the lower velocities. This might have been expected; for we
obtained (12) by the consideration of line-waves on the surface, that is waves
with crests of uniform height along parallel infinite lines. But the model
experiments correspond more to a point disturbance travelling over the
surface, with the formation of diverging waves as well as transverse waves,
In fact, W. Froude* infers from his experimental curves that the residuary
resistance at the lower velocities is chiefly due to the diverging wave system,
on account of the absence of undulations; for the latter signify interference
of the transverse systems initiated by the bow and stern, gnd these become
very important at the higher velocities.

We have to add to (12) a term representing the diverging waves; the
comparison in Table I suggests for this a term of the same type, e~¥V/V¥
with V" much smaller than the corresponding velocity V’ for the transverse
waves. With the data at our disposal we might then determine the variqus
constants so as to obtain the closest fit possible ; however, we can make the
process appear less artificial by the following considerations. We know that
the wave pattern produced by a travelling point source consists of a system
of transverse waves and a system of diverging waves, the whole pattern
being contained with two radial lines making angles of about 19° 28" with
the direction of motion; a fuller investigation of the effects produced by
a diffused source must be left over at present. In applying energy con-
siderations as in the previous sections, the usual method is to suppose that
the transverse waves form on the average a regular wave-train of uniform
amplitude and uniform breadth; using the same approximation for the
diverging waves we suppose that these form on the average a regular wave-
train on each side, with the crests inclined at some angle @ to the direction

* W. Froude, ‘Inst. Nav. Arch. Trans.,’ vol. 18, p. 86, 1877.
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of motion of the disturbance. Then the velocity of the diverging wave-
trains normally to their crests is V sin 8. Now the same features of the
ship are responsible for the character of both transverse and diverging
waves ; then if 'V’ is the velocity at which there is a point of inflection in
the resistance curve for the transverse waves, the suggestion is that V'sin @
is the corresponding velocity for the diverging waves. Taking as a first
approximation the angle given above, viz., 19° 28 or sin™'}, we test now
a formula of the type

R = Ae— VBV L. Be—¥(V/VP, (13)

N
N

& For the particular example already used (Froude, Ship A) we take V'
?gual to 26 knots, and determine A, B from two values of V. We obtain

us
3 R = 4:5¢-1@08V) | 9970-428/V), (14)

S
&Vith this formula we find as good an agreement as before at the higher
Belocities, and we have now at lower velocities the comparison in Table IT:—

Table II.
N R. R
10 16 18
14 441 4
18 16 56 16
22 40 395

In caleulating from (14) we find that the two terms both increase
ntmua.lly ; at low velocities the second term is practically negligible, then
about 15 knots the two terms are of equal value, and after that the
ansverse wave term becomes all important.
S It must be remembered that the experimental curve was obtained from
?..a.nk experiments, and it is possible that the width of the tank may have an
(ffect on the relative values of the transverse and diverging waves. It
would be of interest if experiments were possible with the same model
in tanks of different widths; if the methods used in obtaining (14) form
a legitimate approximation, the effect might be shown in the relative
proportions of the two terms—provided always that one can make a suitable
deduction first for the frictional resistance, and can then separate out the

relatively small effects of the diverging waves, the eddy-making and other
similar elements.

oacigd drom https://royalsocietypublishing.or
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§4. Interference of Bow and Stern Wave-trains.

The cause of the undulations in the resistance curves was shown by
W. Froude to be interference of the wave system produced by the bow (or
entrance) with that arising at the stern (or run). His experiments on the
effect of introducing a parallel middle body between entrance and run
confirmed his theory, which may be stated briefly. Let the wave-making
features of the bow produce transverse waves which would have at
a breadth b an amplitude «; owing to the spreading out of the transverse
waves they will be equivalent to simple waves at the stern of smaller
amplitude %a, at the same breadth b. Let «” be the amplitude there of the
waves produced by the stern. Then in the rear of the ship we suppose there
are simple waves of amplitude Za superposed upon others of equal wave-
length of amplitude a’. At certain velocities the crests of the two systems
coincide in position, giving rise to a hump on the resistance curve; and at
intermediate velocities there are hollows on the curve owing to the crests of
one system coinciding with the troughs of the other.

In developing a form for the resistance, subsequent writers have generally
taken R proportional to an expression of the form ¢*+a"?+ 2kaa’ cos (mgL[v?),
where L is the length of the ship. This means that the bow is supposed to
initiate a system of waves with a first erest at a short distance behind the
bow, and that similarly the stern waves have their first crest shortly after
the stern ; the length mL is the distance between these two crests, and is
called the wave-making length of the ship. The determination of a value
for m appears to be doubtful, but from iuterference effects it is said to vary
for different ships between the values 1 and 1-2.

It has seemed desirable here to follow more closely the point of view in
W. Froude’s original paper already quoted.* We regard the entrance of the
ship as forming transverse waves with their first crest shortly aft of the bow,
and the run of the ship as forming waves with their first trough in the
vicinity of the middle of the run. It is suggested that this distance between
first crest and first trough, in practice found to be about 0-9L, should be
taken as the “ wave-making distance”; the cosine term in the formula
is then prefixed by a minus sign instead of a positive sign. We return to
this point later; we first work out a definite simple illustration in “two-
dimensional waves,” and then build up a more complete formula for
comparison with experiment. With the same notation as in §1, let the

pressure system be given by
e ¢ Fyaf Paa? } 15
P i) 7 {a2+(m—§l)2 A+ (@+30)r) (b

* W. Froude, loc. cit. ante, p. 83.
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This indicates two pressure systems, one of excess and the other of defect
of pressure ; each distribution is of the type already used, and their centres
are separated by a distance /. Fig. 3 shows the character of the disturbance.

e mmm— - —— - P A e e

|

Fic.3.

In the rear of the whole disturbance there is interference between the
oregular wave-trains due to the two parts. With the same methods as before
we find that the resulting waves are given by

29Pl e~ ilP gin 18 —2°) (z—30)_ 991)2 o—a9l* gin 7 (z+%0)
TP wr? 2

org/ on 09 August 2022

h1n§

A=

2q e {(Pl—Pg)cos—sln ——(P +Ps)sin £ ! cos L } (16)

Hence the average energy per unit area is proportional to
v~ el (P2 4+ Py — 2P Py cos (g1 /2°) }.

Now, assuming as before that Py and P3 vary as +?, we find that as regards
variation with the velocity the effective resistance R, which is the expression
of the energy required to feed the wave-traius, is given in the form

R = {A?4B2—2AB cos (gi[v*)} e~ 24/, a7

A more general expression might have been obtained by taking two
quantities « and «s in (15), corresponding to some difference in wave-making
properties of entrance and run ; this would have led to different exponential
factors being attached to the bow and stern waves. However, we find (17),
with a common exponential factor, sufficiently adjustable for present
purposes.

In Froude’s experiments in 1877 the effect of inserting different lengths
of parallel middle body between the same entrance and run was examined ;
it was found that a hump in the residuary resistance curve corresponded to
a trough of the bow waves being in the vicinity of the middle of the runm,
and a hollow to a crest being in that position.

Downloaded from https://royalsocietypublis
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For the model, Ship A, we have: Length = L = 400 feet; entrance =
run = 80 feet.

Hence, in this case we may take, in formula (17), ! as approximately
360 feet. We mnotice that this gives { = 0'9L; and in subsequent com-
parisons, instead of leaving / to be adjusted to fit the experimental curve,
we find there is sufficient agreement if we fix it beforehand as 0'9 of the
length of the ship on the water-line.

Compare, now, the length ! with the ordinary “ wave-making length” of
the ship; the latter is written as mL and is defined as the distance between
the first regular bow crest and the first regular stern crest. From the present
point of view (17) gives

mL=1I+ix or m=094+ir/L, (18)

where A is the wave-length in feet of deep-sea waves of velocity » ft./sec.
Calculating from this formula for Ship A, and writing V for velocity in knots
(6080 feet per hour), we obtain Table III.
We see that the statement that m lies between 1 and about 12 would
hold for this ship if it were measured for ordinary speeds between about
14 and 22 knots.

Table III,
vV A. m
10 655 097
14 110 - 1408
18 180 1°12
22 270 124
26 362 135
30 500 16

We proceed now to modify (14) by introducing into the second term a
factor 1 — o cos (g2/v®). With ¢ = 360, we find gl//+* is approximately
4080/V?, with V in knots; further, from one value from the experimental
curve we obtain g = 0-12. Thus for Ship A we have R in tons given by

R = 4:5¢-3@8Y 4 297 {1—0-12 cos (4080/V?2)} ¢~1 G, (19)

Table IV shows some calculated values for R, and these are represented in
fig. 4 by dots; the continuous curve is the experimental residuary resistance
curve given by Froude, that is, the total resistance less the calculated
frictional part.

It is the custom to give the results of model experiments in the form
of a fair curve, so that the positions of actual readings and the possible
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£

=

£ ; > ;

£ § 5. Comparison with Experimental Results.

S Before examining further model curves we must express the previous
ormula in a form more suitable for calculation; we use the system of units
which model results are now generally expressed. R is given in Ilbs.
~per ton displacement of the ship, while instead of the speed V we use the
ratio V/4/L, V being in knots and L in feet; this is called the speed-length
ratio, and we shall denote it by ¢. The advantage of these units is that they
utilise Froude’s law of comparison; from the experimental curve between
R and ¢ we can write down at once the residuary resistance for a ship of any
length and displacement at the corresponding velocity, provided the ship has
the same lines and form as the model. Thus the constants which are left in
the relation between R and ¢ depend only upon the lines of the model, not
upon its absolute size. At present we make no attempt to connect these
constants with the form of the model, as expressed by the usual coeflicients
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of fineness or the curve of sectional areas, or in other ways; we are concerned
with the form of R as a function of ¢, and the constants are chosen in each
case to make the best fit possible.

First, as regards the exponential factor, we had ¢~i(V/V" with V’ giving
a point of inflection on the resistance curve; in the case of Ship A we had
V' = 26, L =400, so that ¢ = 1-3. Now, it is just about this value of ¢
that there is a falling off in most experimental curves, so that we try first
¢’ = 1'3 for the point of inflection on the R, ¢ curve. Then the exponential
factor becomes e~ €/ op =283/

Secondly, as regards the cosine term which gives the undulations, we had
cos (g//v?); we have decided to put / = 0:9L, so that we have

‘Zl 0+9¢ L/(GOSO V>2 = 12 2 , approximately.

3600
Hence the previous relation for R reduces to the following general form :
R = 27?58 4+ B (1 —ry cos 10°2/¢?) e~ 5% (20)

where R is in lbs. per ton displacement, and «, 3, v depend npon the form of
the model.

There are humps on the curve when 102¢7? is an odd multiple of r,
hollows when it is an even multiple, and mean values when it is an odd
multiple of {7, For facilitating calculation, some of these positions are given
in Table V; and, for the same reason, values of the exponentials and the
cosine factor are given in Table VI,

Table V.
Humps , —m ’ = )’ 104 ‘ o ] — los I
| | |
Means...| — | 254 | — 147' — [118) — io-m% — |oss| — (0776
Hollows co‘ — | — —’1-27 —_ —’ — 0-9‘ — i— — [7o+r8
- Values of o.—
Table VI.
e e—253/0c", e—2'53/c%, cos (10°2/c?).
06 0 *460 0 0009 +0°75
08 0 644 0019 —097
10 0756 0 ‘080 —-0-71
129 0821 0°172 +0°70
14 0 866 0275 +0°47
16 0896 0372 —0°65
18 0916 0458 —-1°0
20 0932 0532 —083
2°2 0943 05692 —0°51
24 0951 0 644 —0°20
3 0970 0756 +043
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We examine, now, some examples of experimental curves, comparing them
with the formula (20) ; several of the curves and other data, in particular
for I, ITI, and V, have been taken from the collection in Prof. Hovgaard's
paper already referred to, in which he essays to fit formule involving V* or
V¢ with the experimental curves.

1. R. E. Froude, 1881, Ship A.

Displacement = 4090 tons ; length = 400 feet ; cylindrical
coefficient = 0°694.
QThis is the case we have examined in the previous sections, so that we

I8ve only to change the numerical factors in (19) to cause R to be given in
15s. per ton displacement. We find the result is formula (20) with

022

t

2 a=246; B8 =1626; y= 012
g
e II. W. Froude, 1877.
o}
oh Displacement = 3804 tons; length = 340 feet; cylindrical
< coefficient = 0-787.
'%The last two data include the ecylindrical middle body. The curve is
Gven in fig. 5; it was constructed by Hovgaard from the data of Froudes
3,
2 125
<
2
£ Fi16.5.
=
= 10
£
S
=
as
O
E 75
=
g
S
A

5

/

£

2

«

25

""‘//
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eliminated. The curve is given as tofal residuary resistance in tons on a
base of V in knots. If we work in Ibs. per ton, we find there is a very fair
agreement with formula (20) if we take

a=224; B=21%"; n=0
Probably a closer agreement could be obtained by further slight adjustment
of « and B. TFig. 5 shows a comparison of values of the total residuary

resistance for the ship (in tons); the calculated values are indicated by small
circles.

IIT. D. W. Taylor, 1000 lbs. Model.
Length on water line = 2051 feet ; cyl. coeff. = 0°680.

The experimental curve in this case is given as residuary resistance for
the model in 1bs. on a base of V in knots. With the same notation as before
we find

a=2; B8=130G; w=1014.
Putting these values in (20), we can caleulate R in lbs. per ton, and hence
R; inlbs. for the model; fig. 6 shows the comparison between R; and the
corresponding values on the curve; the calculated values R, are indicated by
dots.

s /
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i
experiments, and these were such that it was possible to make a mean
residuary resistance curve, the effects of bow and stern mterference being

|
|
1
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IV. D. W. Taylor, Model No. 892.*
Displacement = 500 1bs.; length on water line = 20°512 feet; longitudinal
coeff. = 0°68 ; midship section coeff. = 0-70.
" In this case the experimental curve is given as lbs. per ton displacement
(R’) on a base of speed-length ratio (¢). In the same manner as before, fig. 7
shows the comparison with the formula (20) when we take
a=2; B=825; y=014.
o Since the constant « is small compared with 8, one is not able to lay
&uch stress on the meaning of the first term. For as the velocity functions

50 _I

Fic.7

40

30

20 /

oo’

R| Ibs perton

.5 7 c 9 L1 L3 LS .7 1.8

dove of a suitable type, the constants possess considerable elasticity as regards
@ting an experimental curve. For instance, if we omit values of ¢ below
&bout 09, it is possible to represent the previous curves fairly well by a
Ermula
s R = B {1—rycos (10:2/c2)} e~ 1CrP,

In the previous examples we took the value 1'3 for ¢’. In Case IV above
we find now the values

B=8/; yw=014;: ¢ =18,

For a similar curve taken from the same paper, viz, Model No. 891, dis-
placement 1000 lbs., we find a good correspondence, except for slightly higher
values near ¢ = 1'1, with the values

B=174; =014, ¢:=14.
* D. W. Taylor, Society of Naval Architects, New Yoik, November 19, 1908.
VOL. LXXXII.—A. X
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V. I I. Yates, Destroyer Model C*
Displacement = 575 1bs. ; length = 20 feet; cyl. coeff. = 0-529.

The experimental curve is given in lbs. for the model on a hase of V in
knots, and is a total resistance curve, that is, it includes the frictional
resistance. The curve is reproduced in fig. 8.

S0+

20

R Ibs por ton

This curve is not analysed here so as to compare the residuary resistance
with the formula (20), but it is included in order to draw attention to certain
possible complications. It may be noticed that the curve is carried to a high
value of the speed-length ratio ¢, and that it continues to rise more rapidly
after about ¢ = 2'3 than might be expected on the present theory. Now in
the first place it is possible that the frictional resistance may account partly
for this rise. The ordinary estimation of the frictional resistance assumes
that it can be caleulated separately from some expression like SV now
the legitimacy of this is beyond doubt in all ordinary cases, but at high speeds
it is possible that the form of the expression may change, or even that it
may not be a fair simplification to divide the total resistance into simple
additive components.

In the second place a more important consideration must be taken into
account, and that is the depth of the tank. For the experiments now under

# 1. 1. Yates, Thesis, 1907, Mass. Inst. Tech. U.S.A. See Hovgaard, loc. ¢it. ante.
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consideration the depth of water in the tank is not known. The deepest
experimental tank appears to be the U.S. Government tank at Washington,
which has a maximum depth of about 147 feet. Now in that tank, with
a 20-foot model, there would be a “ecritical ” condition near the value
¢ = 29 ; before and up to that point the residuary resistance curve would
rise sharply and abnormally. This effect is discussed more fully in the next
section, and curves are given in fig. 11, with which fig. 8 may be compared.
It appears, then, as far as one is able to judge, that it is possible the
~xesistance curve in fig. 8 is complicated by the effect of finite depth of the
%ank.
z § 6. The Effect of Shallow Water,

We saw in the first section that the wave-making resistance R can be

Qvritten in the form
g R = Ywa® (v—u)/[v,

where « is the group-velocity corresponding to wave-velocity ».  For deep

Fyater « = }v, and the formule are comparatively simple. But for water of
-}:ﬁnite depth % the relation between % and » depends upon the wave-length

v = ,\/ <2 tanh xh),
K

= .(;i (kv) = 3v (14 2ch [sinh 2ch).
K

Augus

bl
o
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)
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g
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Consequently we find
2xh
R — }’waz < 1 — > .

sinh 2« =

m https://royalsocietypublis

As v increases from zero to /(gh), R diminishes from }we? to 0, provided
S&he amplitude remains constant. But as Prof. Lamb remarks* the
®mplitude due to a disturbance of given character will also vary with the
Felocity. It is the variation of this factor that we have to examine in
E’.he manner used in the previous sections for deep water.

S If a symmetrical line-pressure system F(z), suitable for Fourier analysis,
is moving uniformly with velocity » over the surface of water, the surface
disturbance # is given by

Twn = j:dt j:xv¢ (¢)sink {x+(v—V)t} de

=3 r(u j NG E P LT s, (22)

where ¢ (x) = rF (w) cos kw dw.

-0

* H. Lamb, ¢ Hydrodynamies,’ p. 391, 1906.
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The method of evaluating these integrals approximately so as to give the
regular wave-trains has been discussed in a previous paper and it is followed
now in the case of finite depth.* We take, under certain limitations, the
value of an integral such as

= j ¢ (w)sin {g (u)} du
to be the value of its principal group, viz,

C Y= {g" (nq )} ¢ (o) cos {g (ve)—1m}, - (224)

where u, is such that ¢’ (%) = 0.

Now in the integrals in (22) we have to find successively two principal
groups, first with regard to x and then in the variable ¢ ; and thus we may
evaluate the amplitude factor in the resulting regular wave-trains.

For water of depth 4 we may write

fk) =v=V = v— \/ (gtanh xk).

The group with respect to « gives a term proportional to

cos {te*f’ (k) +{m},
where « has the value given by
F)+af" () = =% (23)

From (224), this introduces into the amplitude a factor
L/ [E{2F () + &/ (1)} ] (24)

Further, the group with respect to ¢ oceurs for
—;][ {tf ()} =0 or f(x)=0.
L
Algo we have in these circumstances

S ) = 9 Ly 0+ 2] = & (—efe)
& f+uf 1(f+/cf s £, i (25)

BY +xf” "L AT L@ AT
Hence from (224),~(24), and (25) the selection of the two groups adds to
the amplitude a factor 1/« (k), where

J(k)=0=v— :\/('g t&ll}.l xk).

# Havelock, ‘Roy. Soc, Proc.,” A, vol. 81, p. 411, 1908.
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Also if  is the group-velocity for wave-length 27/« and wave-velocity V,
we have, in this case,

w= (V)= 1 {eo—wf (0} = v= {7 () + 1" ()}

Hence, since in the final value /(x) = 0, we have /() equal to »—u». Thus
if x is the wave-length of the regular wave-trains in the rear of the
disturbance, we find that they are given by

7 = const. X —4’ (u)sm Kz, (26)

= A U= i)
here v = ,\/ <’c tanh xh), u = }v (1 iy

ence for the amplitude « we have

gust 2022

&Au

S

S ' 2xh

S = PSR- L,

) i Cx¢(x)/<1 sinh 2/ch>

]

e Substituting now in (21) we obtain for the wave-making resistance, R
Ai)ropmnonal to

=) 2kh )

=) 2 2 s Q

et =) / (- sn e

5] .

'8 If we take the same distribution of pressure in the travelling disturbance,
élamely, ¥ (z) = Pafm («*+2%), we have ¢(x) = Pe~; further, we may

Shgain assume that the pressure P varies as +% so that we have the resistance
s
an the form

b= . 2xh
R = A «2pte—Bx =
g i /(1 sinh 2xlz)’
H
.-Swith tanh le 'Ua (27)
= kh gh'
o
E Considering R given as a function of » by these two equations, we see
Sthat R increases slowly at first and then rapidly up to a limiting value at

the critical velocity 4/ (gk); after this point R is zero, for there is no value of
« satisfying the second equation with +2/gh > 1.

Further, the limiting value of R at the eritical velocity is ﬁmte for we
have

: I3 )
o
o BT Y P ek

We see that the R, » eurve given by (27) is of the type sketched in fig. 9.
We may compare this with some of the curves given by Scott Russell for
canal boats. The continuous curve in fig. 10 is an ‘experimental curve of
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total resistance,* and the dotted curve is a parabolic curve inserted here to
represent approximately the frictional resistance ; the difference between the
two curves represents the residuary resistance, and is clearly of the same
type as the theoretical curve in fig. 9.

Fic.9.

L

We can obtain a better estimate of equation (27) by taking an experi-
mental curve for a model in deep water, and then building up eurves for
different depths. We must first put (27) into a form suitable for com-
parison with deep water results.

Limiting the problem to one of transverse waves only, the formula (27)
must reduce to R = Ae~2%¢ for % infinite and ¢ = (speed in knots)/,/(length
in feet).

Whriting «” for v/, /(gh) we find ¢* = 11'3¢"%1 /L ; thus although the actual
critical velocity does not depend upon the length of the ship but only on the
depth of water, the speed-length ratio (¢) has a critical value which is
proportional to the square root of the ratio (depth of water)/(length of ship).

In (27) we cannot fix any value of » or ¢ and then calculate R directly ;
we must work through the intermediate variable k2. The equations may
now be written as

R = A (kh)*v'%e~F*"[(1—2«h [sinh 2«h), (28)

v"? = (tanh xk)[xh; B’ = 0218L[k; ¢ = 11'3v%/L.
With % infinite this reduces to the previous form for deep water with the
same constant A, so that a direct comparison is possible. As the velocity v
increases from 0 to ,/(gh), x diminishes from = to 0; we select certain

values of xh, calculate the values from tables of hyperbolic functions, and
thus obtain the set of values in Table VII, writing m for

(k)4 [ (1 — 2ich [sinh 2«h).

* J. Scott Russell, * Edin, Phil. Trans.,” vol. 14, p. 48, 1840.
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Table VIIL.
wh. v/ (gh). ¢*L/A. m. — Bxc®
® 0 0 10 | 253
10 0316 113 1°0 | 258
6 041 187 10 253
4 05 2-82 1005 253
2 069 542 1077 243
1 087 857 1287 1-92
0 10 113 15 0

2022

We consider now the experimental curve analysed in Case IV in the
Zprevious section, a model of 205 feet taken up to a value ¢ = 1'8. Assuming
Sthat the influence of finite depth was inappreciable in this range, we have for
;Edeep water

R = 20729994 8256 {1—014 cos (10°2/¢?)} =25, (29)
We leave out of consideration at present the first term, which is supposed
Oto represent the diverging waves, and we extend the calculations for R
g(transverse) from the rest of the formula up to C = 3'3 taken at intervals
% of 01 for C; we obtain thus the lowest curve given in fig. 11. With the
2 help of Table VII, we calculate values of R for depths of about 5, 10, 12, 15,
2and 20 feet, taking in the formula (28) A equal to

825 {1 — 014 cos (10:2/¢?)}
2so that the results apply to the same model at different depths. An example

,Q:Sof the calculations for one case may be sufficient; Table VIII shows the
ESintermediate steps for A = 123 ft., L = 20-5.

g.org/ on 0

1

alsoc

N

2=

g Table VIIL.

= : RS

§ ¢ | e, — Bk. R/A. e—2'53/c%.

<

° l

§ 068 | 0825 373 0°024 0024

2 1-12 1-06 226 0106 0106

a 169 1:3 15 0224 0-223
325 18 075 0508 0472
514 227 0374 0385 0 *687
68 261 0 15 1

The results for the five values of % are given in Table IX, and from these
the curves in fig. 11 have been drawn.

The general character of the effect of finite depth is clear on inspection of
the set of curves in fig. 11. If it is required to go to high values of the
speed-length ratio in a given tank, the ratio of the depth of water to the
length of the model must be adjusted so that there is no appreciable effect in
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Since the curves given here are theoretical

.curves for transverse waves only, each of them ends abruptly at the critical

the range of the experiments.
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‘velocity—the resistance being zero after that point. In practice, we know
that there are no such discontinuities in the resistance curves, and there are
< certain considerations which go to account for this difference. First, as
regards the transverse waves alone, the preceding formulas show that the
a.mphtude tends to become infinite at the eritical velocity, although the
comespondmg resistance at umiform velocity remains finite ; but, even apart
“from the effects of viscosity, there is a highest possible wave with a velocity
~depending 'partly upon the amplitude. Secondly, we have left out of
Neonsideration the diverging waves; but these must become more important
Sin the neighbourhood of the eritical velocity, for we may regard the two
%Bystems as coalescing into ome solitary wave in the limit as the critical
é‘velocity is reached. After this point the diverging waves persist, so that
gthe effect of these would be of fhe order of halving the drop in the resistance
gas the critical velocity is passed.
E" Finally, we must consider the frictional resistance, which increases steadily
cwith the velocity ; so that the fall is finally a smaller percentage of the total
gresistancé than might appear at first. The curves given in fig. 11 give
%an estimate of a maximum effect of this kind, considering only the transverse
2wave system,

- §7. Further Types of Pressure Distribution.
The preceding formule have been built up on the effect of a travelling
ressure disturbance of simple type; we consider now another type which

e may use as an illustration.
Let the pressure system be given by

p =f(@) = A(BR—a?)[(a*+17).
The type of dlstubutlou is graphed in fig. 12,

alsociety
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Proceeding as in §2, we have
2
$ (k) = 2Aj ("a iy ©08 K oo = Ak~ (30)
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Hence the amplitude of the regular wave-trains formed on deep water in
the rear of this disturbance is proportional to x*Ae~*', and the effective
wave-making resistance is proportional to x*A%~2% We make the same
assumption as before, viz., A proportional to +% and write ¥ = g/»*; then the
resistance is given by

Ri= Gy~ ta™ 3", (31)

We use this expression to show how R varies with the constant % of the
pressure system. Let » = 10 ft./sec.,and let R = 1 for 2 = 0; then we find
the following relative values:

h R. }
0 10

1 052

5 004
10 00016 ‘

R decreases very rapidly as % is increased. We have chosen this example
for the following reason. Consider the motion of a thin infinite cylinder in
an infinite perfect fluid; if we consider a plane parallel to the direction of
motion and to the cylinder and at a distance % from it, we find that the
distribution of excess or defect of pressure due to the motion is of the above
type. Now, this is not the same as a cylinder moving in deep water at
a depth % below the free surface, but it is suggested that as a first approxi-
mation the wave-forming effect is that of an equivalent diffused pressure
system. The illustration shows how rapidly the wave-making resistance
diminishes with the amount of diffusion, that is, with the depth % ; this, of
course, agrees with the experiments on the resistance to motion of submerged
bodies, and, in fact, with the resistance of submarine vessels.

In the preceding work no attempt has been made to connect theoretically
the constants in the pressure formula with those of the model ; since the
theory rests chiefly on the consideration of transverse waves only, this would
presumably bring into question the length of entrance, run, and so forth. The
consideration of any “transverse” constants, such as the beam, would need
a fuller treatment of a diffused pressure system in two dimensions on the
surface so as to give a more detailed investigation of both transverse and
diverging wave systems.

R ————




