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§ 1. Introduction.

On the theory of atomic structure proposed by Bohr, in which
the electrons are considered as point charges revolving in orbits
about the nucleus, the Orbits being specified by quantum con-
ditions, it is well known that both a qualitative and an approximate
quantitative explanation of many features of the simpler optical
spectra and of X-ray spectra of atoms with many electrons (e.g.
Rydberg sequences in optical spectra, term magnitudes in both
X-ray and optical spectra) can be given, if the assumption is made
that the effects of the electrons on one another can be represented
by supposing each to move in a central non-Coulomb field of force*;
further, the additional concept of a spinning electron provides a
similar explanation of other features of these specbraf (e.g.
doublet struoture of terms and magnitude of doublet separation,
anomalous Zeeman effect). This assumption of a central field was
admittedly a rough approximation made in the absence of any
detailed ideas about the interaction between the different electrons
in an atom, but in view of its success as a first approximation for the
orbital atom model, the question arises whether, the same simple
approximations may not give useful results when applied to the
new formulation of the quantum theory which has been developed
in the last two years.

The wave mechanics of Schrodinger} appears to be the most
suitable form of the new quantum theory to use for this purpose,
and will be adopted throughout. Further, if i|r is a solution of the
wave equation (suitably normalised), the suggestion has been made
by Schrodinger, and developed by Klein§, that |i/r|2 gives the
volume density of charge in the state described by this i/r;
whether this interpretation is always applicable may be doubtful,
but for the wave functions corresponding to closed orbits of elec-
trons in an atom, with which alone this paper will be concerned,
it has the advantage that it gives something of a model both of
the stationary states (if i/r only contains one of the characteristic
functions) and of the process of radiation (if i/r is the sum of

* See, for example, M. Bom, Vorlesungen Uber Atommechanik (or the English
translation, The Mechanics of tlie Atom), Ch. in.

t For a general review, see R. H. Fowler, Nature, Vol. cxix, p. 90 (1927) • for
a more detailed treatment, F. Hund, Liniewpektren, Ch. m. '

% E. Schrodinger, Ann. der Phys., Vol. LXXIX, pp. 361, 489; Vol. LXXX D 437-
Vol. LXXXI, p. 109 (1926); Phys. Rev., Vol. xxrai, p. 1049 (1926)

§ F. Klein, Zeit. f. Phys., Vol. su , p. 432 (1927).
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a number of characteristic functions), and gives a simple interpre-
tation of the formula of the perturbation theory, namely, thdt the
change in the energy is the perturbing potential averaged over the
distribution of charge. Also in considering the scattering of radia-
tion of wave length not large compared to atomic dimensions, the
coherent radiation scattered by a hydrogen atom is given by
treating the scattering as classical scattering by the distribution
of charge given by Schrodinger's suggestion (if the wave length
is not too short)*, and this is probably true for any atom. For
the purpose of this paper the suggestion will be adopted literally;
the charge distribution for an atom in a stationary state is then
static (it does not necessarily follow that the charge itself is static).

Further, the distribution of charge for a closed nk group of
electrons is centrally symmetricalf, which suggests that on the
wave mechanics the assumption of a central field may give results
more satisfactory in detail than could be expected on the older
form of quantum theory.

Schrodinger's suggestion concerning the interpretation of yfr
affords a hope that it may be possible to consider the internal field
of the atom as being due to the distribution of charge given by the
characteristic functions for the core electrons; we may, in fact,
attempt to find a field of force such that the total distribution of
charge, given by the characteristic functions in this field (taken in
suitable multiples corresponding to the numbers of electrons in
different nk groups), reproduces the field. The solution of this
problem, or rather a refinement of it, is, indeed, the main object of
the quantitative work to be considered here.

One point of contrast between the old ' orbital' mechanics and
the new wave mechanics may be emphasised here at once. On the
orbital mechanics the motion of an electron in an orbit lies wholly
between two radii (the potential energy and so the total energy
depends on the field at distances greater than the maximum
radius, but this does not affect the motion); on the wave
mechanics the solution of the wave equation is different from zero
at all but a finite number of values of the radius, and depends on
the field at all distances (though certainly the solution is very
small, and depends on the field to an extent negligible in practice,
at very large radii and usually at very small radii).

It will be seen later (§ 2) that, for a given characteristic function,
it is possible to specify two points which may to a certain extent
be considered to mark the apses of the corresponding orbit in the
orbital atom model, but the characteristic function is not zero

* I. Waller, Nature, Vol. oxx, p. 155 (1927); Phil. Mag. Nov. 1927 (Supplement).
•f See A. Unsold, Ann. der Phys., Vol. LXXZII, p. 355, §§ 5 and 6. Unsold proves

this by considering the energy of an indefinitely small charge in the field of a closed
group; it also follows directly for the charge distribution from Unsdld's formulae
'67), (69).
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outside them; as a consequence, it is not possible to make a strict
separation between 'penetrating' and 'non-penetrating' solutions
of the wave equation as it was possible to divide orbits into two
such classes. This suggests that it would be interesting to enquire
what occurs in the wave mechanics in cases when on the orbital
mechanics an atom may have a ' penetrating' and a ' non-pene-
trating' orbit with the same quantum numbers* «*, and also
whether the comparatively large doublet separations of some terms
corresponding to orbits classed as 'non-penetrating' can be ex-
plained by the non-zero fraction of the total charge which must, on
the wave mechanics, lie inside the core.

Associated with this question is that of the assignment of the
principal quantum number n to a solution of the wave equation in
a non-Coulomb field; in the orbital mechanics this was assigned in
a perfectly definite way, to which there is no direct analogy on the
wave mechanics. In this paper I will be written for the subsidiary
quantum number, taking integer values from zero upwards, which
is less by unity than Bohr's azimuthal quantum number k; this
follows the practice adopted by various writers f; to avoid altering
a notation which has become familiar, k will be retained as a suffix
in referring to the quantum numbers of an electron, so that l=k — 1.
It seems best to define n such that n — k = n — l + l is the number
of values of the radius r for which i|r = 0, excluding r = 0 (if it is
a root) and r = oo; n — I is then the number of values of r for
which | ^ | 2 is a maximum. This agrees with Bohr's principal
quantum number n for the hydrogen atom.

Both in order to eliminate various universal constants from
the equations and also to avoid high powers of 10 in numerical
work, it is convenient to express quantities in terms of units, which
may be called ' atomic units.' defined as follows:

Unit of length, aB = A2/4Tr2me2, on the orbital mechanics the
radius of the 1-quantum circular orbit of the H-atom with
fixed nucleus.

Unit of charge, e, the magnitude of the charge on the electron.

Unit of mass, m, the mass of the electron.

Consistent with these are:
Unit of action, hl2ir.
Unit of energy, e*/a = potential energy of charge e at distance a

from an equal charge = 2hcR = twice the ionisation energy
of the hydrogen atom with fixed nucleus.

Unit of time, 1/47TC.R.

* For example, on the orbital mechanics, Eb, Cn, Ag, Au, have 33 X-ray orbits,
and for the neutral atoms of these elements the first d term corresponds to a non-
penetrating 33 orbit.

t See, for example, P. Hand, op. dt., passim.
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These units being consistent, the ordinary equation? of classical
and wave mechanics hold in them; in particular Schrodinger's
wave equation for the motion of a point electron with total energy
E, in a static field in which its potential energy is V, becomes

V°-^+2(E-V)yJr=*0. (11)

For an attractive field, V is always negative; it is convenient
to write

V=-v, • (1-2)

so that the quantity v calculated in numerical work is usually
positive.

For terms of optical and X-ray spectra, E is always negative.
It is convenient to write

# = - H (1-3)

the factor \ being introduced in order that e shall be the energy
as a multiple of the ionisation energy of the hydrogen atom; if a
characteristic value of the solution of the wave equation gives
directly a spectral term, of wave number v, then

e = v/R. (1-4)

The wave equation in terms of v and e is

-e)y}r ^ 0.

The present paper is divided into two parts; this, the first,
deals with the methods used for solving this equation for a given
non-Coulomb central field, and with the relevant theory; the second
with the question of the determination of the potential v, and with
an account and discussion of the results for some actual atoms.

§ 2. Theory.

When the field is spherically symmetrical so that v is a function
of the radius r only, and spherical polar coordinates r, 6, <f> are
used, yfr separates into a product of a function ^ (r) of r only, and
a surface spherical harmonic S (#, <f>); if I is the order of the
spherical harmonic, the function % satisfies the equation

i%+\2v-ejj^x=o (2-D

r dr \_ r2 J A v

or, writing ' P=r% (2"2)

and using dashes to denote differentiation with respect to r,

P" + \2v-e-l(l+l)jr*)P=0 (2-3)
This is the form in which the wave equation is used in the greater
part of this paper.
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There are three advantages in working with P rather than
with •%; first,, the differential equation is simpler, secondly, P2

gives the radial density of charge if P is suitably normalised

(i.e. P*dr I1 P>dr is the charge lying between radii r and r+dr) *,

and this is the quantity often required in applications, thirdly, as
a consequence of this, -P2 is the weighting function for the per-
turbing potential at different radii, in the case of a perturbation
which is centrally symmetrical.

If we recall that the wave equation is derived from the classical
Hamiltonian equation of the problem by the substitution

px = i ^ , etc.

(in atomic units), and also that on the orbital mechanics the
radial momentum pr in an orbit of angular momentum k (in
atomic units hj^-w) is given by

pr* = 2v — e --

equation (23) suggests that as far as we can picture an orbit
corresponding to a given solution of the wave equation, its angular
momentum in atomic units is given by ]<?=l(J,+ 1) (I integral),
and that its apses are given by the roots of

2v-e-l(l+l)/r* = 0, (2"4)

i.e. by the points of inflexion of P other than those which occur at the
points where P = 0. Usually this expression has two roots, between
which it is positive; between them P has an oscillatory character,
outside them it has an exponential character; it may have one
root only (in the case I = 0) or four (for I > 0 only). On the orbit
model of the atom, when four roots occur they give the apses of
an internal and an external orbit with the same energy f; what
then happens on the wave mechanics will be discussed in the
second part of this paper.

The first requirement is a method for finding values of e for
which, given t iasa function of r, the solution P of (2"3) is zero at
7 = 0 and GO (Schrodinger's condition is that i/r should be finite

* According to Schrodinger's interpretation of tf/ (§ 1) the charge lying in an
element of volume denned by drd9d<f> is fr2sir\*6drd0d<t>l\\p2ria\tii8drd8d<l>, the
integral being over all space, so that the charge lying between radii r and r + dr is

1I ^r'dr = P2 dr / I "'P*dr,

the integration of the spherical harmonic factor cancelling out.
t In general the internal and external orbits with the same energy will not both

be quantum orbits, but when they occur it is usually possible (always if integral
quantum numbers are used) to obtain an internal and an external quantum orbit
with the same quantum numbers.
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everywhere; since P = r%, P must be 0, not only finite, at r = 0),
and the solution for each value of e. The value of e then gives a
spectral term for the motion of an electron in the field v, and, with

the arbitrary multiplying constant adjusted so that P-dr =• 1,
1 o

P2 gives the radial density of charge. In this part of the paper we
shall consider the solution of (2'3) for a given v subject to the
necessary boundary conditions, and in the second consider how v
may itself be related to the solutions of (2-3).

For any value of e, we can find a solution of (2-3) which is zero
at r = 0 and a solution which is zero at r = oo . Except for certain
values of e, these solutions are independent, and the one zero
at r = 0 is iufinite at r = oo and vice versa, but for certain
values of e the two solutions (apart from an arbitrary multiplying
constant in each) are the same. These are the values of e and the
solutions required, and this aspect of them suggests the following
method of determining them, viz. integrate the equation* out-
wards from P = 0 at r = 0, and inwards from P = 0 at r = oo ,
and by trial find a value of e for which these solutions meet
at some convenient intermediate radius r; since each solution
contains an arbitrary multiplying constant, P'/P rather than P
itself has to be the same in both solutions. This is in effect the
method adopted in the numerical work (for an example see § 10),
and it has proved very satisfactory in practice. In finding the
required value of e, it is not necessary to integrate from the
beginning for each value of e; it is possible to calculate directly
(and accurately, not only to the first order) the variation in the
solution for a variation in the value of e, and this can be used to
shorten the numerical work considerably. A general variation
equation of which this is a special case will be given in § 4.

Over most of the range of r for which P is appreciable, equa-
tion (2-3) as it stands is in a suitable form for numerical integration;
but for small values of r (out to or a little beyond the first maximum
of | P |) and for large values (from about the last maximum of | P |
outwards) other forms are more suitable, and will now be con-
sidered.

If we write r, = - P'jP, (25)
equation (2;3) reduces to a non-linear first order equation in i?,
viz.

and it might seem that this equation, being of the first order so
that one of the integrations for P is reduced to a simple quadrature,
would be more suitable for numerical work than the equation for P

* An outline of the method used for the practical numerical integration of the
equation for P is given in § 9.
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itself, but the zeros of P give rise to infinities in TJ and rj' which
make numerical work with this equation impracticable except in
certain regions. For large values of r (as specified above1* it is,
however, very suitable.

§ 3. Form of Solution for Small Values of r.

When r is small the substitution of

provides the indicial equation

c ( c - l )

of which the positive root is c = I + 1, so that for small r the
solution remaining finite at r = 0 behaves as rl+l.

In the neighbourhood of r = 0 it is therefore convenient to
work with

Q = pr-«+» .(3-2)

rather than with P, or with

-Q'/Q = Z=v + (l + l)/r (3-3)

rather than with 77. The equation for f is

F = p - 2 ( J + l)£/r + 2 » - e (34)

and is the most convenient one to use up to or a little beyond the
first maximum of \.P\; the only difficulty is at r = 0 itself, where
the second and third terms of this expression for f become
infinite. This difficulty is avoided by the use of the solution in
series to give values of £ and f at r = 0.

For an atom of atomic number N we certainly have, in the
neighbourhood of r = 0,

o = N/r + vB + o(l) (3-5)

(t;0 is the potential at the nucleus of the negative distribution of
charge due to the outer electrons, and is of course negative), and
the series solution of the equation for f (or of that for P) gives

f = N/(l + 1), r = WIG + I)2 + 2t;0 - e]/(2l + 3), at r = 0.
(3-6)

With these initial values, the numerical integration can be begun
without difficulty.

§ 4. Variation Equations.

It may happen that for a certain range of r a solution of the
equation for P has been found for a certain potential function v and
a certain value of e, and that the solution for a different function v
or a different value of e, or both, is required. [This is more general
than the ' perturbation theory' of wave mechanics, for which the
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original solution must be a characteristic solution of the differen-
tial equation, and the variation of e is connected in a definite way
with the variation of v.) The difference in the solution for a change
of value of e is required, for example, in the process of finding by
trial a value of e which is a characteristic value for any particular
field.

Let P be the solution of

P" + [2v-e-l (I + l)/r2] P = 0, (41)

which has already been found, and let the solution be required of

P'1 + [2», -ei-l(l + l)/r2] P, = 0 (4-2)

Writing A for the variation of a quantity at given r, i.e.

v1-v = Av, e1-s = Ae, P,-P^AP,

and subtracting, we have
(AP)" + [2B, -€,-1(1 + 1)/H] AP + [2Av - Ae] P = 0,

(4-3)

which is an exact (not only first order) equation for AP, and it is
usually easier to solve this equation numerically than to work
through a solution of (4*2) independent of the solution of (4-l).

In the particular case At> = 0, Ae -»- 0, we have

+ [2v - e - I (I + l)/r»] ( | ^ ) - P = 0 (4'4)

(the differentiation with respect to e being for r constant), for
which a formal solution in quadratures can be found, but on
account of the zeros of P this formal solution is more trouble for
numerical work than the integration of the equation as it stands.

It is interesting to note that a simple derivation of the
formula for the first order perturbation in e for a central perturb-

• ing field can be found from (4-3).
For this purpose, suppose the value of e in (4'1) to be a

characteristic value for the field v, and.P to be the corresponding
characteristic function. Consider first order variations only, i.e.
write v and e for vx and 6j in the coefficient of AP in (4-3), giving

(AP)" + [2D - e - I (I + I)/?-2] AP + [2Aw - Ae] P = 0.
(4-5)

Knowing the solution P of (4'1), adopt the standard method for
the solution of (4-5), i.e. write

A P = PJK; (46)

tho terms in 11 disappear on substituting, leaving

PR" + 2P'R + [2A» - Ae] P = 0
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whence, multiplying by P and integrating,

Also from (46) P*R' = P ( A P ) ' - P (AP).
Now if P and Pa are characteristic solutions of (41) and (4*2)
respectively, P, P', Pj and P\ (and so AP and AP7) must all be zero
at r = oo , and also at r- = 0 except for 1 = 0, while, for 1 = 0, P and
Pi (and so AP) are zero at r = 0 and P', AP' are finite. Thus in all
cases P*R' is zero at both limits, whence

/ ;

Ae= rj2A«P2rfrl/rpP^drl (4-7)

which is the form Schrodinger s perturbation equation * takes for
a central perturbation of a central field (it must be remembered
that e is defined as twice che negative energy in atomic units).

Equations for the variation of if or i/ due to difference of
potential function or of e can be obtained in the same way as
(4-3) for the variation of P. The equation for AT; is

(AT;)' = 2r)bv + (Av)
2 + 2Au - Ae, ...,. .(4"8)

and since A indicates a variation for a given value of r, it follows
from the definition of f (3"4) that A£ = A?/.

To find AP, we have by definition of rj

V = -d(\ogP)/dr,

so that Ai? = -d(AlogP)/dr =-d[log(PJPfl/dr.

For the solution P which is zero at the origin, it is most con-
venient to choose the arbitrary multiplying constants so that
Pj/P = 1 at r = 0; if this is done, then

(exactly, not only to the first order).

§ 5. Form of Solution in Region where Deviation from Coulomb
Field is Inappreciable.

As already explained, for large values of r the solution used in
the numerical work is that which is zero at r = oo; in the region
where the field can be taken to be that of a point charge equal to
the core charge C, certain relations between different solutions
can be used to shorten the numerical work by avoiding the
numerical integration in each particular case.

* Ann. dtr Phys., Vol. LXXX, p. 443, equation (7').

VOL. XXIV. PART I. 7
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It is most convenient for work with these solutions to use as
independent variable not r but

. (5-1)

the 'effective quantum number1 n* of a term being denned in the
usual way,

e = C2/(n*)2. (5-2)

For the field of a point charge C, for which v= G/r, the equation
(2'3) for P becomes, with p as independent variable,

for which the solution is a confluent hypergeometric functionf

as pointed out by Eddington| and Sugiura|. From the asymptotic
formula for the confluent hypergeometric function|| it follows that
for large p the solution of (5'3) which is zero at p = oo behaves like
pn'e~p as p->oo , so, in order to work with a function which remains
finite, we define M by

P = pnter"M (5'4)

(apart from an arbitrary multiplying constant); an asymptotic
series for M in inverse powers of p can be written down from that
for the confluent hypergeometric function, but for values of p
which are practically interesting the series diverges too early to
be of much value, and M is best found by numerical integration
of the appropriate equation (except of course for integral values of
n*, for which M is a polynomial of degree n* — I— 1 in 1/p).

In integration inwards from r = oo , r is clearly an unsuitable
independent variable; the most suitable one appears to be 1/p
(rather than 1 /r), and with this independent variable M satisfies.

(5-5)

we will write M(n*, I) for the solution of this equation with given
values of n* and I, and take the dependent variable u as under-
stood.

t E. T. Wbittaker and G. N. Watson, Modern Analysis, Ch. xvi.
j A. S. Eddington, Nature, Vol. cxx, p. 117 (1927).
§ Y. Sugiura, Phil. Mag., Set. 7, Vol. iv, p. 498 (1927).
II Wliittaker and Watson, op. cit., § 16-3.
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As with the equation for P, it is convenient to work with the
logarithmic derivative of M when u is much smaller than the first
zero of M. The equation for

£ ( g ) / (5-6)
is found to be

V?^ = (W* + * ) ( » • - * - ! ) TO ( ) ]

(5-7)

A solu t ion in ser ies p rov ides t h e in i t ia l va lues

£=lz(n* + l)(n*-l-l), ^ = (n*-l)Z, at u = 0.

(5-8)

The relations referred to between different solutions of the
wave equation take the form of recurrence relations between the
values for a given u (or p, not r) of the functions M for values of
n* and I differing by integers.

Epstein f has given such recurrence relations for the function
pn*M, using the fact that the series for this function, for the solu-
tion of the wave equation finite at r = 0, is a limiting form of the
hypergeometric series; recurrence formulae for M can be derived
from the formulae given by Epstein, but in the present case we are
interested in the solutions for which M is finite at r = oo , and it is
most convenient to choose the arbitrary constants in the solutions
for different n*, I so that

M (n* I) = 1 at u = 0 for all n*,l (5-9)

which is a different choice from that adopted in the relations
given by Epstein, so that the coefficients in the relations used here
and in those derived from Epstein's are not the same; the relations
will here be derived direct from the differential equation.

| 6. Recurrence Relations between functions M for values of
n* and I differing by integers.

Using D to denote differentiation with respect to u and
writing for shortness

F(n*, I, D) = w2Z>2- 2 [(n* - 1 ) u- 1}D + (n*-l- l)(n* +1),

(61)
equation (5*4) for M (n*, I) becomes

F{n*,l,D)M{n*,l) = 0. (6"2)

t P. Epstein. Proc. Nat. Acad. Sci., Vol. xn, p. 629 (1926).

7—»
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Since the function F contains u as well as the operator D, it is
not commutative with D, but it is easily verified that

D.F{n*,l,D) = F{n*-l,l,D).D,

so that, differentiating (<3'2),

D. F (n*, I, D) M (n*, I) = F (n* - 1, I, D). DM (n*, I) = 0,

i.e. DM(n*, I) satisfies the differential equation for M(n*— 1, I).
Since, apart from an arbitrary-multiplying constant, this equation
has only one solution finite at u = 0, it follows that

*-l, I), (6-3)

a being a constant for a given n*, I which must be determined to
fit the initial condition (5'9).

Now at u = 0

l)=-DM(n*, l)/M(n*, l) = $(n* + l)(n*-l- 1)

by (58), so, to satisfy (5-9), (6-3) must become

DM(n*, l)=-\(n* + I) (n*-l- 1) M(n* - 1 , I).
(6-4)

Given M (n* — 1, I), M(ri*, I) can thus be found by quadrature
from the initial condition M{n*, V) = 1 at u = 0; by further quad-
ratures M(n* + 1,1), M(n* + 2,1) and so on, can be found in succes-
sion, but the integration is not necessary as a purely algebraical
expression can be found between the functions M for three values
of n* increasing by unity.

Substituting n* +1 for n* in (6'4), we have

DM(n*+l, l) = -%{n* + l+ 1) (n* -1) M (n*, I);

(6-5)

differentiation and substitution of (6-4) gives an expression for
IfiM (n* + 1, I) and substitution of this and (6'5) in the differen-
tiation equation for M (n* + 1, I) gives

M(n* + 1, l) = [l-n*u]M(n*,l)

-\v?{n* + l)(n* -I - 1 ) M(n* - 1, I) ..(6-6)

This, it must be emphasised, is a relation between the different
functions M for the same value of u = n*/0r, not for the same
value as r.

For the relations between solutions for different values of I, it
can be verified by substitution in the differential equation

y=[-(n*-l) + uD] M(n* + l,l)

satisfies F (n* + \, I + \, D) y = 0,
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and since, apart from an arbitrary multiplying constant, this equa-
tion has only one solution M(n* + £, I + ^) which is finite at u = 0,
we can put

M (n* + 1,1 + 4) = b [- (n* -l) + uD] M (n* + 1, I),

or substituting (6"5), and taking 6 = — l/(n* — I) in order to make
M(n* 4- £,/• + £) = 1 at u = 0 in accordance with (5-9),

M(n* + %,1 + %) = M (ft* + 1 , I) + J (n* + * +1) ttflf (»*, 0-
......(6-7)

For the purposes of the present paper we are only interested in
the solutions for integer values of I; by successive use of (6'7)
and substitution of (66) we obtain

+ \(n* + I)(I + l)v?M(n* - 1, I) (6-8)

With these relations between the values of the function M in
a Coulomb field, for values n* and I differing by integers, it is only
necessary to find M by numerical integration of the differential
equation for one value of I and a set of values for n* covering a
range of unity closely enough to allow of interpolation to the
accuracy required; the functions M for other values of n* and I can
then be built up, using first (6"4), then (6-6) and (6'8); the results
apply to any atom with a positive core charge.

The numerical integration of equation (5'7) for

has actually been carried out for I = 0 and n* at intervals of O'l
from 0-6 to T5 (for 1 = 0, the solution for n* = l is £=0, and, for

7 y

neighbouring values of n*, f and •— are small over a large range

of u). The results as immediately obtained are in terms of u=n*/Cr
as independent variable, for practical application they must be
expressed in terms of r. The method adopted is to find f for a
given value of Cr for each value of I and n*, and from these values
of % to calculate

C~ CPdr'n* GrV+Cr

which follows by differentiating (5'4) and using (5-l). For each
value of I, the values of rjjC so obtained, which refer to the solu-
tion zero at r = oo , are plotted against n*; the intersection of the
curve so obtained with the curve of TJ/C against n* for the solution
which is zero at r = 0 then gives the values of n* for the character-
istic values of the wave equation.
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§ 7. General- Formula for the Normalisation Integral for the
Series Electron.

f°°
The normalisation integral P'dr is required in calculation of

J o
perturbations; for the series electron the main contribution to
this integral is from values of r where the field is effectively that
of a point charge C; using some of the results of the previous
section an approximate recurrence formula for this integral can be
found, and from it an approximate formula for the integral itself.

We consider the arbitrary constant chosen so that

P = e-"pn'M; M-*l, p-*-<xs (7-1)

(cf. formula 5"4). Using a dash to indicate differentiation with
respect to. p (not r), as will be done throughout this section, the
recurrence formulae (6-4), (6'6) then give respectively

pP' (»• I) = - (p - n*) P (»• /) + £ (n* + l)(n*-l-l)P(n*-l,l),

(7-2)
P (n* + 1, 0 = (p - n*) P (n*, I)

-\(n* + l)(n* - l-l) P (n* - \ , I), (7'3)

from which elimination of P (n* — 1, I) gives

P {n* + 1,0 = * [(p - n*) P (7i*, I) - PP' (7i*, I)] (7-4)

By subtracting the square of (7'3) from twice the square of (7-4),
and then using (7-2) to substitute for P (n* — 1, I) in the product
term P («.*, 1) P (n* — 1, /), we obtain

P2 (n* + l ,0==| [(p - n*)2 P2 (n* 1) + p°P' (n*, If]

-H(n*-l-l)(n* + l)f P2 (n* - 1, I).

The required recurrence relation for jP'dp is obtained by inte-
grating this. For the second term on the right we have, on
integrating by parts,.

\p- (FT dp = [P>PPf] - Jp ± (P>P>) dp •

expansion of the differential coefficient under the integral, fol-
lowed by substitution for P" from the differential equation for P
(5"3) and integration of the remaining term by parts gives finally

/p» (PJ dp = [P>PP'] - [PP2] -ftp* - 2n*p +1 (I +1) - 1] P*dP,

so that altogether

(»• + 1, I) dp = k [P* PP'] - J [pi*]

+ \ [(n*Y -l(l+l) + l]/i* (»•, I) dp

- [ i (n» - l - l ) (n* + l)fJP*(n* -1, I)dp,
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the function P in the integrated terms being P(n*, I). These
terms vanish at the upper limit p = <x>; if the field were a Coulomb
field for all r, they would become infinite at the lower limit except
for integral values of n*. But for the actual wave functions
corresponding to optical terms the part which would give the
infinite contribution in a Coulomb field is replaced by a part in a
non-Coulomb field which gives a contribution small compared to the
total value of the integral, so that for an approximate result for
these wave functions we may omit the integrated terms and write

!"".?•(»•+1, I) dp = $ [(n*)?-I (I+ 1)+1] ( P*(n*t I)dp
Jo Jo

P*(n*-l,l)dp (7-5)

For integer values of ».*, and the choice of the arbitrary constants
in the solutions P for different values of n* here made (see 7"1),
we have from a formula given by Wallerf

f
} o

P 2 (n, I) dp = 2 - 2 » n (n + I) i ( n - l - l ) l

This satisfies the recurrence relation (7"5), and suggests for a
general value of n*

f
J o

P2(«*, l)dP = 2-™'n*T(n* + l + l)T(n*-l), (7'6)

which also satisfies it. In applying this result it must be remem-
bered that the integral is taken with respect to p = Cr/n*, not
with respect to r, and that the arbitrary constant in P has been
chosen according to (7'1), i.e. so that

t I. Waller, Zeit. f. Phys., Vol. XXXVIII, p. 635. Using atomic units and the
notation of this paper, let P be defined as 2C/n times Waller's rXKil, i.e.

^ J ^= Cr/n = half Waller's f);

then it lollows from Waller's formulae (32'), (33), (34) that

l(n -1-1)1

Now the highest power of x in L{2^f{x) is ^-r^fi]- a"-'"1, so that, for large r, P

as defined behaves like — ( (2p)nc"<r. Hence if, instead, the arbitrary constant

in P is to be chosen so that Pjpne~f-»-l as p-»oo (see 7-l), jP'dp must have the
value given here.
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As explained at the end of the last section, solutions of the
equations for M with different values of n* and I satisfying this
condition have been calculated, so that from the values of P at a
comparatively small radius (only large enough for the deviation
from a Coulomb field to be inappreciable) the value of the nor-
malisation integral can be found from (7-6), thus avoiding the
numerical evaluation of the integral in each particular case.

This formula has been tested on the first s and the first p term
of Rb, and the errors are about 2\°/0 and 2°/ respectively; they
would presumably be less for higher terms of the series, since the
larger n* is, the larger is the proportional contribution to the integral
from the range of r where the field is effectively a Coulomb field.

§ 8. Perturbations.

The general first order formula for central perturbations has
already been found (see § 4, formula 47). If Ae is the change in
characteristic value of the wave equation due to a change Av in
the potential function v, then

Ae=[ 2AvP2dr ITP2dr;
Jo I Jo

this mean value of 2Av weighted by P2 corresponds to the time
average of the perturbing potential in the classical perturbation
theory.

Apart from the use of this formula to estimate the alteration
in e due to a trial change in the field of force, there are two par-
ticular perturbations to which it can be applied, viz. the' relativity'
correction and the ' spinning electron' correction.

The relativity perturbation term in the classical Hamiltonian
is (in ordinary units) — (l/2mc2)(E — V)2f, or in atomic units

Av = £ a2 (e/2 - v)2 [a2 = (2ire-/cKf = 1/18800],

so that Ae = (a2/4>)f (e - 2vfPidrl\ P>dr.
Jo /Jo

If Z is the effective nuclear charge at any radius (the charge
which, placed at the nucleus, would give the same field as the actual
field at that radius), and 1 and s are the orbital and spin angular
momentum vectors, the spinning electron perturbation term in the
classical Hamiltonian is (in ordinary units) £ (eh/27rmcy (Z/r3) ls j ,
or in atomic units Ja2 (Z/r3) Is, so that

(Z/r3) P*dr/f P*dr.

f See, for example, M. Born, op. cit., p. 234 (English translation, p. 204).
j See, for example, F. Hand, op. cit., p. 74, formula (1).
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According to Heisenberg and Jordan*, on the new quantum
mechanics the scalar product Is must, in the case of a Coulomb
field, be given the values

j = I ± h > except that j = J only when 1 = 0,
« = *.

There is no reference to a Coulomb field in these results, so
that, at any rate provisionally, they may be taken to apply also to
an atom with a non-Coulomb field.

If, as is convenient in the numerical work, the arbitrary
constant in P is taken so that, for small r, P is the same for all
solutions with the same I (strictly, so that the limit of P/rl+1

as r-*-0 is the same for all solutions), and the main part of
the perturbation arises from small values of r (as is the case for

the two special perturbations considered), then I 2vP2dr will be
J o

approximately the same for all solutions with the same I, so that
approximately

§ 9. Method of Integrating the Differential Equations.
An outline of the method used for the numerical integration

of the differential equations will now be given.
Suppose that a function f is tabulated at equal intervals Bx of

the independent variable x, and the integral y — jfdx is required;
using central differences+

the contribution 8y to y from an interval Bx is
8y=fSx,

the mean value/ being J

/

+ • • •

(9-2)

* W. Heisenberg and Jordan, Ze.it. f. Phys., Vol. xxxvn, p. 263 (1926).
+ See, for example, E. T. Whittaker and Q. Bobinson, Calculus of Observations,

p. 35.
J For the first formula see Whittaker and Robinson, op. cit., p. 147 (put r = l

and express the result in central differences); the second follows directly from
the Euler-Maclaurin formula (Whittaker and Robinson, op. cit., p. 135) on putting
r = l and expressing the differential coefficients in central differences. I am in-
debted to Mr C. H. Bosanquet for pointing out the advantage of (9'2), involving
differences of the derivative of the integrand, with its small fourth order term.
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The integration is carried out by one or other of these formulae
applied to a series of equal intervals hx, an equation of the
second order being reduced to a pair of the first order by the use
of the first differential coefficient as a subsidiary dependent
variable. Usually the first three orders of difference are taken into
account, the fourth order term being an error term.

In the simple evaluation of integrals, the integrand / i s known
throughout the whole range of x before the integration is begun,
but in the integration of a differential equation f for one at least of
the first order equations.is an explicit function of the integral of
one or more of them, so that the integration has to be. carried
out by a step-by-step process.

Further, if the integration has been carried out up to the
values x = x0', only the backward differences (S/)_j, (8/)_x, ... are
directly available, and in terms of these the formula for / converges
much more slowly than formula (9'1) in the central differences (the
coefficient of the fourth order difference is — f|̂  instead of )
if, however, a value of/ and hence the differences

are available, the use of (S3/)_j in (9*1) only alters the coefficient
of the fourth order term, which is the error term of the method
employed, from ^ to — 7 ^ . An essential point of the method
of integration actually used is the estimation of / when the inte-
gration has been carried to the point x0; this estimation depends
on the extrapolation, not of/ itself, but of the quantities of which
it is given as an explicit function, and this estimation is par-
ticularly easy to do satisfactorily in the case of the second order
equation with the first derivative absent, which is just the type of
the equation for P in the particular problem w.ith which this
paper is concerned.

Consider as an example this equation

already integrated through a series of equal intervals Br up to
r = r0; we have the values P up to Po and the backward differ-
ences from them. dP/dr, which is the subsidiary dependent
variable used to reduce the second order equation to two first order
ones, does not occur, so that the estimation of d'Pldr* (which is

the integrand f for the evaluation of -7- = Jfdr) at r = r^ depends

on the estimate of P only, and this is made as follows.
In terms of P" and its differences, the second difference of P is

[Po" + TV(8=P")0 + . . . ] . . (9-3)
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and by definition of the second difference

Now at the stage which the calculation is supposed to have
reached, Po and so (SP) _j and Po" are known; (&P")0 can be extra-
polated from previous values (great accuracy is not needed since its
coefficient is small), so that, using (9-3), (82P)0 can be estimated, and
from it (BP)i and finally P, . With this value of P,, P," is calculated
from the differential equation; and then (SP')j from the integra-
tion formula (9'1) with f= P": for the integration of P ' to give P,
the differences of P", the derivative of the integrand, are available,
so that the formula (9*2), which is the most satisfactory on account
of the small coefficient of the fourth order term, can be used.

The differences, tabulated as the work proceeds for use in the
integration formulae, also provide a close check on the numerical
work, a very important consideration indeed when such work on a
large scale is being carried out, especially when a serious mistake
at one stage may vitiate all subsequent work.

The intervals Sr are kept of such a size that the fourth order
difference terms in the integration formulae in any one interval do
not affect the last significant figure retained. With intervals of
the size so determined, it is only rarely that the method of esti-
mating Px described gives a value so different from the value
finally obtained by integration that the calculation for the interval
has to be repeated with a fresh estimate. The integration formulae
depend on the use of a series of intervals of the same size, but it
is not necessary to use the same size throughout; the most con-
venient change is to double the size of interval (in the case of the
particular equation considered, the permissible length increases as
r increases), the procedure is then quite straightforward; of the
values of P" and P already calculated, alternate values are taken
to provide a set of differences to give a start to the calculation
with intervals of the double length. For numerical reasons, how-
ever, it is preferable to take intervals of 1, 2, or 5 times a power
of 10; the change of interval length by a factor of 2 | involves some
simple interpolation to provide the initial set of differences, but is
otherwise straightforward.

Doubtless it would be possible to derive formulae for integra-
tion over longer intervals with adequate accuracy, but the writer's
experience in other similar work is that simple formulae and a
large number of intervals are much preferable to complicated
formulae and a small number of intervals. Apart from the ease of
working with simple formulae, the important question of keeping
an adequate check on the numerical work is a difficult one unless
the intervals are small, so that the successive differences con-
verge rapidly enough to provide one. From the point of view of
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simplicity it may be mentioned that, in the case of the differential
equation for P here considered, only one calculation in each in-
terval requires a slide rule (or logs), namely, that of P" from the
differential equation; the rest involve only additions and subtrac-
tions, largely of numbers with one or two significant figures, and
multiplications by 2, £, £, -fa, ^ (the last three always of numbers
of few significant figures), which can be done mentally.

For the first order equations for £, tf and f the process is much
the same, except that a cruder method has to be used for esti-
mating the value of the integral at the end of the interval in
order to obtain a value of the integrand, as the derivative of the
integrand is not calculated.

§ 10. Practical Determination of Characteristic Values and
Functions.

As already explained (see § 2) the characteristic values of e are
determined by integrating the wave equation (or some equation
derived from it) outwards from r = 0 and inwards from r = oo , and
choosing the value of e to make the solutions fit at some inter-
mediate radius.

For the electrons with n = I 4- 1 (giving the 'circular orbits' of
the Bohr theory) P has no intermediate zeros, and it is convenient
to use the £ equation (3"4) for the integration outwards to rather
beyond the first maximum of P, and the 77 equation (26) for the.
integration inwards. A. trial value of e is taken and the values of
7] at the common value of r for the two solutions are found by
numerical integration of the respective equations by the method
outlined in the previous section. The solution of the variation
equations (see § 4) then gives the changes in these values of 77 for
a given change in e, and the value of e required to make them the
same is found by interpolation (inspection of the square terms in
the solution of the variation equations shows whether linear inter-
polation is valid). An example will make the process clearer.

Example.

Kb atom with a certain trial field. 33 electron (re = 3, l = k—\ = 2).

I
Integration outwards e = 7'0, IJ = 1-87 ; Ae= + l'0, Aq= —0.54
Integration inwards e = 7-0, i? = l"35; Ae = +1:0, Ai/= +0'27

052 -0-81

Linear interpolation for the same value of 17 at r = 0'6 in both integrations
gives t = 7"64 (in this case inspection of square terms in the variation equation
showed that error of linear interpolation was probably less than 0'03).

It will be noted that AT; is of opposite sign for the two inte-
grations ; this is always the case, and gives a good intersection for
the determination of the characteristic value e. This being found,
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it is a simple matter to calculate the values of f or 77 for the other
values of r, and from them to calculate P2 from either

log,, P2 = 2 (I + 1) logM r - 2MJ0£dr (M = log,, e),

or log10 P
2 = log10 [P (ro)]« - 2MJnVdr,

according as if or 77 is given (as P2 is required to give the charge
density and for perturbation calculations, it is usually best to
calculate it directly).

For X-ray electrons with n > I +1 (corresponding to the ' ellip-
tical orbits') it has been found best to integrate equation (3*4) for
£ from r = 0 out to about the first maximum of P, and equation
(2-3) for P from there to a point rather beyond the last maximum
of P ; . the 77 equation is integrated inwards to the same point and
the estimation of e made as already explained.

It is not in practice necessary to integrate the 77 equation all
the way in from r = <x>. Beyond the ' outer apse' (i.e. the greater
root of 2v — e — 1 (I + l)/r2 = 0, see § 2) the integration outwards is
highly unstable *, so that if we begin an outwards integration of the
17 equation from a radius outside the range where P is appreciable
(and so well outside the outer apse), the behaviour of the solution
is very sensitive to the value of 77 at this radius chosen to start the
integration, and from a very few intervals of integration (2 and 3
in practice) a good estimate can be obtained for the value of 77 at
this radius for the solution required, for which 77 remains finite at
r = 00. The integration inwards being correspondingly highly
stable, a small error in the value of 77 at this radius will cancel
itself almost entirely in the process of integration inwards to the
point where the join is made with the integration outwards from
r = 0. This integration outwards is highly stable as far as the inner
apse, and stable as far as the outer apse.

The method of determining the characteristic values for the
optical terms has been given at the end of § 6.

In the following paper the results of some calculations on these
lines will be given and discussed.

§ 11. Summary.

The paper is concerned with the practical determination of the
characteristic values and functions of the wave equation of
Schrodinger for a non-Coulomb central field, for which the poten-
tial is given as a function of the distance r from the nucleus.

The method used is to integrate a modification of the equation
outwards from initial conditions corresponding to a solution finite

* It is convenient to speak of the process of the numerical integration of a
differential equation as 'stable' if a small change in the solution at one point (for
example, a numerical slip) does not produce greater changes in later values as the
integration proceeds, and as ' unstable' when the opposite is the case.
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at r = 0, and inwards from initial conditions corresponding to a
solution zero at r = oo, with a trial value of the parameter (the
energy) whose characteristic values are to be determined; the
values of this parameter for which the two solutions fit at some
convenient intermediate radius are the characteristic values re-
quired, and the solutions which so fit are the characteristic
functions (§§ 2, 10).

Modifications of the wave equation suitable for numerical work
in different parts of the range of r are given (§§ 2, 3, o), also exact
equations for the variation of a solution with a variation in the
potential or of the trial value of the energy (§ 4); the use of these
variation equations in preference to a complete new integration of
the equation for every trial change of field or of the energy para-
meter avoids a great deal of numerical work.

For the range of r where the deviation from a Coulomb field is
inappreciable, recurrence relations between different solutions of
the wave equations which are zero at r = oo, and correspond to
terms with different values of the effective and subsidiary quantum
numbers, are given and can be used to avoid carrying out the
integration in each particular case (§§ 6, 7).

Formulae for the calculation of first order perturbations due to
the relativity variation of mass and to the spinning electron are
given (§ 8).

The method used for integrating the equations numerically is
outlined (§ 9).


