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Abstract. The shape of the two dimensional wavefront induced by a line material

imperfection in a large body which is being subjected to a homogeneous, time dependent

antiplane shear deformation, is investigated. The body is composed of isotropic, incom-

pressible, hyperelastic material and the constitutive relation is assumed to be such that

depending on the value of one parameter, strong ellipticity fails at a strain level

corresponding to the local maximum of the shear stress-strain curve. The wavefront shapes

are compared when this occurs and when it does not.

1. Introduction. The conditions which allow a homogeneous deformation to undergo an

abrupt transition and give way to highly non-uniform deformations has been the subject

of many studies in the past. In particular, regions of inhomogeneity play an important role

in the initiation and subsequent development of such deformations. When a body is being

subjected to high strain rates, one approach in one-dimensional analyses is the phenome-

non of wave trapping which is encountered in one-dimensional plastic wave propagation

when the shear tangent modulus becomes zero and strain levels propagate at zero speed.

Erlich et al. [1] first used this idea to postulate an adiabatic shear band formation

criterion, and more recently Wu and Freund [2], studied the mechanics of shear banding

by considering a shear wave propagation in a half-space of a nonlinear material. A

two-dimensional model of the localization of deformation during high rates of loading has

been recently presented by Wu et al. [3]. They examined the evolution of a shear band

which has been " triggered" by some material defect in the body. One of the conclusions of

this work is that there are basic features in common with the concept of wave trapping.

In the present paper, a material imperfection is assumed to appear suddenly in a body

of isotropic, incompressible and hyperelastic material which is undergoing a homogeneous

and time dependent deformation in the antiplane shear mode. The chosen constitutive

relation for the material is the one proposed by Knowles [4] and shows a local maximum
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in the dependence of shear stress on shear strain. In addition, at this maximum point there

is a failure of both the ordinary and strong ellipticity of the corresponding equilibrium

equations governing antiplane shear ([4] and Zee and Sternberg [5]). Assuming that the

strength of the inhomogeneity is sufficiently small, the theory of small deformations

superposed on large has been used in order to linearize the equation of motion about the

state of the ongoing homogeneous strain. It is established that the influence of the defect

appears as a disturbance inducing a transient deformation with elastic waves radiating

outwards from the imperfect region. In particular here, a study is made of the wavefront

shapes associated with a line material imperfection. It is found that as the level of the

homogeneous deformation approaches the maximum in the shear stress-strain curve, the

speed of the propagating wavefront goes to zero in a certain direction, therefore "trap-

ping" the ensuing transient fields. The implications of the above are being discussed and

comparisons are made to the work of Wu et al. [3],

An equivalent linearization procedure was first used by Abeyaratne and Triantafyllidis

[6] in studying the emergence of shear bands from a material imperfection region in

equilibrium, plane strain deformations as the imposed far field load is increased. More-

over, Payton [7] has applied the same formulation in order to investigate the wavefront

shape induced in a homogeneously strained elastic body by a point perturbing body force.

2. Problem formulation. We consider a large body of isotropic, incompressible and

hyperelastic material being subjected to a finite, homogeneous and time dependent

antiplane shear deformation. A material particle initially at X3 moves to a:3 with respect to

a common rectangular Cartesian coordinate system. This is so positioned that the

cross-section of the body spans the (Xl, X2) plane and the body is bounded by two planes

at X3 = ±L. In particular here, the homogeneous deformation is defined by the equations

-*i = Xlt

x2 = X2, (2.1)

x3 = *3 4- t(aX2 4- bXx),

where t is time and a, b represent constant strain rates. This state of deformation of the

body will be called A and it can be easily seen that the field equations are identically

satisfied.

The strain energy function W per unit undeformed volume, is taken to be independent

of the second invariant I2 of the left Cauchy-Green tensor B and due to the assumption of

material incompressibility,

W= W(IX) (2.2)

where /j = Tr B and W(Ij) is twice continuously differentiable for 11 > 3. Moreover,

according to the results of Knowles [8], the above restriction on W satisfies the necessary

and sufficient conditions on the strain energy function so that non-trivial finite states of

antiplane shear exist.

At some time t0 during the above deformation, a material imperfection appears in the

body. Without any loss of generality, this will be taken as perturbing some material
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property by an amount eF(x), where e measures the strength of the imperfection. The

consequence of this material inhomogeneity is to induce a further deformation in which a

particle at x3 is displaced to x3 and

x3 = x3 + eu(x1, x2, t). (2-3)

It is assumed that e is small in the sense that second and higher degrees in e may be

neglected in comparison with those of first degree. The state of the deformation of the

body, will now be denoted by A.

We can now use the theory of the superposition of infinitesimal deformations on finite

deformations, originally developed by Green et al. [9], in order to obtain linearized forms

of the field equations. Initially, we quote some general results which can be cited in

Eringen and Suhubi [10]. Let s{J(x, t) be the components of the nominal stress tensor (i.e.

the transpose of the Piola-Kirchhoff stress tensor), referred to the configuration of state A,

when the body is in state A. These are related to the components of s^iX, t), referred to

the undeformed configuration, by the equation

sIJ(x,t) = (dx,/dXk)skJ(X?t). (2.4)

The equations of motion for the body in state A when referred to the known state of

homogeneous deformation are

ds,j(x, t)/dxt = p(d2Xj/dt2) (2.5)

since no body forces are being applied.

As a result of the restriction (2.2) on the strain energy function and the occurred

material imperfection, the components of the nominal stress tensor are now given by the

constitutive relation

s,j(X, t) = 24>(dxJ/dXi) -p(dX,/dxj), (2.6)

where <f> = W'(Il, X) = dW/dIx and p(X, t) is an arbitrary scalar arising because of the

incompressibility assumption. In accordance with (2.3), to first order in e, stj{X, t),

p(X, t) and (p at state A can be expanded as

J(7U,0-*y(') + «y(2f.0.

p(X,t)=p°(t) + ep(X,t), (2.7)

4>{Ix,X) = + #(/,, X),

where the superscript (o) is associated with variables measured in the stated (the uniform,

time dependent field), and (-) surmounts the corresponding increments. Equivalent

expressions were also introduced by Abeyaratne and Triantafyllidis [6]. Substituting (2.3),

(2.72) and (2.73) in (2.6) and comparing the result with (2.7j), gives an expression for the

increment of stress s(J(X, t):

3m, ?>xk - 3x, dX, duk _ dX,

*'>(-' ^ ~ 2(t>°dYkJx, + 2^Jx, + p°fa~k ~ p 3Xj' ( ^
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The equations of motion (2.5) can be similarly evaluated to leading order, to give

dSij(x, t)/dx, = p(d2Uj/dt2). (2.9)

Finally, equation (2.8) can now be substituted in (2.9) on making use of an equivalent

relation to (2.4) for the stress increments, and thus obtain the necessary equations for

determining the perturbed transient deformation. It can be shown that for the antiplane

shear mode these reduce to the single equation

2<#>"( u n + « 22) + 2bt(f> j + 2at(f> 2 = pu u (2.10)

where (2.1) has also been used, and a subscript preceded by a comma indicates partial

differentiation with respect to an ^-coordinate or time. It can be seen that the equation

(2.10) represents a linearized form of the field equations about the state of the ongoing

homogeneous deformation.

3. Application to a specific material. In order to study the shape of the propagating

wavefront associated with the material imperfection, we now proceed to consider a

specific subclass of incompressible materials originally proposed by Knowles [4] and for

which (2.2) holds. In addition, W(IX) satisfies the Baker-Ericksen inequality which here

becomes W'(I{) > 0 for Iy > 3. Let

1 + - 3)
n

-1, /, > 3, (3.1)

where ju. is the infinitesimal shear modulus, n is a "hardening" parameter, d a third

material constant and all three are assumed to be positive. A complete description of this

subclass of materials as n varies can be found in Knowles [4], but here we limit the

analysis to n < 0.5. The effect of this restriction is that curves of (t — y) have a well

defined maximum for n < 0.5 and r —> 0 as y -* oo, while for n = 0.5 the maximum r

occurs at an infinitely large y. The symbols r and y denote measures of shear stress and

shear strain respectively, and are defined by

T = Fn + J23 > Y = VW.«w.a< <3"2)

u now referring to a general displacement, and here as well as throughout the paper, the

Greek subscripts have the range 1, 2. For the material defined by (3.1), r and y are related

by the following expression:

T = 2y^'(/1) = M(1 +^y2/«)^1y. (3-3)

The material imperfection will now be introduced as a perturbation to the infinitesimal

shear modulus /x. In particular, we consider a line imperfection at xx = x2 = 0 and

— L < x3 < L; thus, at every cross-section of the body

IX = ju"[l + e8(x1)5(x2)] (3.4)

where ju" denotes now the constant infinitesimal shear modulus of the material outside the

defect. Using (3.1) and (3.4) the increment <p can be determined by expanding <j> at the

state A using Taylor's series up to the first order in e; hence,

(f> = /i°(n — 1)(d/n)(atu 2 + btu ,)[l + (a2 + b2)(dt2/n)\

+ (1/2)S(jc,)5(jc2)[1 +(a2 + b2)(dt2/n)]" \ (3.5)
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Finally, substituting (3.5) into (2.10) gives the equation of motion for this particular

material

Au n + 4(d/n)(n — 1 )abt2u l2 + Bu 22 ~ c~2D2~"u „

= ~(D/n")tf{xi,x2), / > r0.

where

y4 = 1 - J(1 - ln)b2t2/n 4- da2t2/n,

B — 1 — J(1 - ln)a2t2/n + db2t2/n, (3.7)

Z) = 1 + J(a2 + b2)t2/n = 1 + da2t2/n,

/(xj, x2) = a5(x!)8'(-x2) + bS'(xl)S(x2),

and the dash in the Delta function denotes differentiation with respect to the argument

inside the parenthesis. Moreover, c = (n°/p)1/2 is the speed of the infinitesimal elastic

waves.

The second order partial differential equation (3.6) is linear with time dependent

coefficients and as anticipated, it contains the influence of the defect as a source term.

According to the theory of characteristics (for example see Courant and Hilbert [11]), a

surface 5(xlt x2, t) = 0 is characteristic if the following condition is satisfied:

AS2 + A(d/n)(n - 1 )abt2SlS2 + BS22 - c~2D2^"S2 = 0. (3.8)

If the directions na and the speed V are now introduced as

na = (35/3xJ/(S,^)1/2,
(3-9)

v= (~ds/dt)/(s,fisj) A

then n is the unit normal to the spatial characteristic curve 5 = 0 and V the corresponding

speed of propagation. With this interpretation, equation (3.8) defines how the curve 5 = 0

moves in xa-space. The substitution of (3.9) into (3.8) gives the following important form

of the characteristic condition

An\ + 4{d/n)(n - \)abt2nxnz + Bn\ = c~2D2-"V2. (3.10)

4. Conditions for strict hyperbolicity. In the previous section it was proved that the

speed of propagation of each spatial characteristic curve S1 = 0 in the direction of its

normal n is given by (3.10). Following Jeffrey [12], the partial differential equation (3.6)

will be said to be strictly hyperbolic if the second degree equation (3.10) in V has two real

and distinct roots for all choices of the unit vector n.

We now proceed to determine the restrictions on the homogeneous deformation defined

by at and bt, so that strict hyperbolicity is maintained. These can be easily determined if it

is noticed that the effect of the term btXl in (2.13) is to rotate anticlockwise the principal

axis of strain corresponding to the zero principal strain by an angle £ = tan _1(-^/a).

Hence if (za) is a new set of rectangular Cartesian coordinates so that the zraxis is

aligned with this principal axis, equation (3.8) becomes

D(dS/azj)2 + K(dS/dz2)2 - C-2D2 "(0S/3/)2 = 0, (4.1)
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where D is defined in (3.7) and

K = 1 - d(l - 2n)a2t2/n. (4.2)

If we now define w = (w,, w2) as the unit normal to S = 0 with reference to the za

coordinates and then set Uj = cos 6, w2 = sin#, where only 0 < 6 ^ 77/2 need to be

considered since (4.1) is a polynomial expression in cos2 6 and sin2 0, we obtain

(V/c)2 = D"~2( D cos2 8 + K sin2 0) (4.3)

Since D remains positive for all f, the speeds V are always real and distinct if K > 0, or

y1 = {a2 b2)t2 < n[d{\ - In)] 1. (4.4)

Comparison with equation (3.3) shows that (4.4) is equivalent to the requirement that the

curve t versus y has positive slope.

The reality of the roots V is assured by the condition of strong ellipticity [10]. In

general, strong ellipticity does not rule out repeated (nonzero) propagation speeds, but for

this particular problem this situation does not arise. Therefore, the conditions of strict

hyperbolicity and strong ellipticity are here equivalent. This can also be deduced from the

results of [4] and [5], where it is proved that the restriction (4.4) is necessary and sufficient

for the ordinary and strong ellipticity of the corresponding equilibrium equation. The

implications of the failure of the above conditions on the wavefront propagation problem,

are discussed in Sec. 6.

5. Wavefront construction. A cylindrical surface in the three-dimensional x-space

separating the homogeneous deformation from the perturbed motion represents the

wavefront propagating away from the line source at the origin. It is well known that

wavefronts are characteristic surfaces (Courant and Hilbert [11]). Therefore, in two

dimensions it is convenient to specify the wavefront in the form

S(jcl5 x2, t) = o(xl, x2) — t = 0. (5-1)

The family of curves o(x1, x2) = t, which are intersections of the cylindrical surfaces with

the (xl5 x2) plane, give for increasing times the successive positions of the wavefront.

It is clear from the results of the previous section, that for any ratio b/a the wavefront

is symmetric with respect to the principal axis defined by the angle £. Thus, proceeding

with the za coordinates, we can substitute (5.1) into (4.1) to obtain

H(pa,za,o) = 0 (5.2)

where

H = \Dp\ + {Kp2-\c-2D2-'\

Pa = 3a/3zQ.

Equation (5.2) is a nonlinear first order partial differential equation for o. The solution

can be obtained from the following system of five ordinary differential equations (for

example, see Whitham [13])

dzl/dX = Dp1, dz2/d\ = Kp2, (5-4)

dpl/dX = —{d/n)a2tp\ +(d/n)( 1 - 2n)a2tpxp\, ^ ^

dp2/d\ = —(d/n)a2tpjp2 +(d/n)( 1 - 2n)a2tp\,
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do/dX = c2D2^". (5.6)

These determine a "characteristic" curve za(A), also called a ray, and the values of a and

pa along it (where A is a suitable curve parameter). As it is clear from the equations (5.4),

the rays are not normal to the wavefront. By multiplying (5.5j) by p2 and (5.52) by pl and

subtracting, we obtain that along each ray the pa's are related by

Pi = fiPi' P = Pi/Pi> (5-7)

where p°, p2 are the values of pl, p2 respectively, at the time t = t0 when the material

imperfection appears. The term /? can be found by considering the slope m of the rays at

the origin since the point source is situated there. Thus,

m — dzy/dz2 = /3D(t0)/K(t0), (5.8)

and each value of m determines a specific ray. Moreover, since dH/dA = 0, (5.7) can be

used in conjunction with (5.2) in order to calculate the value of p2 (or p{) along each ray.

Hence,

p\ = c~2D2-"/(D/32 + K). (5.9)

Equations (5.4) can be normalized so that A represents distance measured along each

ray. Further with this normalization, (5.6) is the directional derivative of the time of travel

of the wavefront along the ray. Therefore, using (5.6), the coordinates of each ray specified

by the initial slope m are given by

Z\(t) = c2pf'D"~1(t)p2(t,p)dt,

, x , (5-10)
z2(0 = c I K(t)D" (t)p2{t,fi)dt,

<o

and p2(t, ft) is defined by (5.9). The integrands in (5.10) are well behaved functions and

the coordinates of points along each ray at successive times t, can be easily found using a

composite trapezoid numerical integration scheme. The propagating wavefront is then

determined as contours of points at constant time t.

6. Results and discussion. The results of the previous section have been used to obtain

detailed plots of the propagating wavefront and the corresponding rays. The chosen values

for the material parameters are: d = 20,000, c = 3,000w/sec and n = 0.4, 0.5. Without

loss of generality, the strain rate b is set equal to zero while a — 2,000 sec~L, and therefore

the wavefront is symmetric with respect to the x0-axes. Furthermore, the critical time at

which the maximum of the shear stress-strain curve is reached in accordance with (4.4), is

given by tcr = 0.5 X 10 ~5 sec.

Figure 1 shows the wavefront propagating in the homogeneously deformed material

with the "hardening" exponent 0.4, and associated with the line imperfection appearing at

tB = 0.3tcr. The rays are chosen with a 10" angle interval for the slope at the initial time tg.

The chosen times are expressed as fractions of the critical time, that is, rj = t/tcr The

effect of the failure of strong ellipticity is clearly shown in the x2-direction where the

wavefront appears to stop propagating as 17 approaches one. This is also evident from (4.3)
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Fig. 1. Propagating wavefront at times rj = 0.35 (0.1) 0.95, 0.99 and rays for the material with n = 0.4.
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FiG. 2. Propagating wavefront at times tj = 0.35 (0.1) 0.95, 0.99 and rays for the material with n = 0.5.
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Fig. 3. Speed of propagation Vv versus time tj for various hardening parameters.
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Fig. 4. Speed of propagation Vx versus time 17 for various hardening parameters.
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with 6 = it/2, which shows that the speed of propagation first becomes zero and

subsequently imaginary in this direction. If we make the unlikely assumption that the

strength of the defect is sufficiently small as not to cause a local deformation effect, then

as t approaches the critical time, the wavefront appears to be "trapping" in the .^-direc-

tion the ensuing transient fields. Subsequently, as a result of attaining strain levels

corresponding to the part of the (t — y) curve with negative slope, the infinitesimal

disturbances will grow large enough to destroy the background deformation. These

remarks, which indicate the instability of the deformation, are made in analogy to the

corresponding homogeneous equation of (3.6), which for a constant background strain can

admit plane waves as generating the perturbed transient fields. The propagation of such

plane waves has been studied by Hayes and Rivlin [14],

In reality, the inhomogeneity will concentrate the deformation in its vicinity and initiate

a localized zone, which subsequently grows as a result of a strain concentrator at its edge.

Such conclusions are supported by the numerical solution of the full nonlinear problem by

Wu et. al. [3], where it was also found that the shear band grows at strain levels which are

substantially below the critical level for the material outside the imperfect region (the

specific instant of initiation depending on the strength of the defect).

When the "hardening" exponent is 0.5, the (t — y) curve has no well defined maxi-

mum. The wavefronts are shown in Fig. 2, where the critical time is taken to be that of

n = 0.4 (for n = 0.5, tcr = oo). Clearly, the superposed infinitesimal deformation will

continue spreading in all directions (cf. (4.4) where now y < oo).

The speeds of propagation of the wavefront in the ;t2 and xl directions, Vr and Vx

respectively, can be obtained from (4.3) for 8 = 0 and 6 = 77/2. Figs. 3 and 4 show the

variation of these speeds at different times rj for a range of exponents n. As above, the tcr

for n = 0.5 is that of 0.4 and therefore, as tcr increases the curves corresponding to 0.5

translate towards the rj-axis. Again, the concept of "wave trapping" for n < 0.5 is

apparent from Fig. 3 where V = 0 at t] = 1.
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