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We consider the following PDE–eigenvalue problem, which arises in the study of waves traveling
in a periodic medium [1]: determine a non–trivial function u(x, z) and a complex number γ such
that

∆u(x, z) + 2γuz(x, z) + (γ2 + κ(x, z)2)u(x, z) = 0, (x, z) ∈ R2, (1a)
u(x, z) = u(x, z + 1) for all (x, z) ∈ R2, (1b)
u(x, ·) → 0 when |x| → ∞. (1c)

The function κ(x, z) is piecewise constant and is assumed to satisfy: κ(x, z) = κ− when x ≤ x−,
κ(x, z) = κ+ when x ≥ x+ and κ(x, z) = κ(x, z + 1). This problem can be rephrased as an
equivalent problem on a finite domain by means of a Dirichlet–to–Neumann map. A particular
type of finite-element discretization of the finite-domain problem leads to the following nonlinear
eigenvalue problem, which consists of finding pairs (γ, v) ∈ C× (Cn \ {0}) such that(

Q(γ) C1(γ)
CT

2 RΛ(γ)R−1

)
v = 0. (2)

The matrices Q(γ) and C1(γ) are polynomials of second degree in γ. The matrix Λ(γ) is diagonal
and involves square roots of polynomials in γ. The problem (2) is a large–scale nonlinear eigen-
value problem of the type extensively studied in recent literature [2]. The algorithm we propose is
based on the infinite Arnoldi method [3], which can be interpreted as the standard Arnoldi method
applied to a linear and infinite dimensional eigenvalue problem. In the new algorithm, we suggest
to represent the basis of the Krylov subspace as a factorization involving a tensor. This factoriza-
tion allows us to reduce the memory requirements and the computation time. By construction, this
new algorithm, which we call the tensor infinite Arnoldi method, is mathematically equivalent to the
infinite Arnoldi method. The infinite Arnoldi method requires efficient procedures to compute the
derivatives of the functions that define the nonlinear eigenvalue problem. For this problem such
derivatives can be computed with a closed and efficient formula. Moreover we exploit sparsity and
low–rank structure of the nonlinear eigenvalue problem. The matrix-vector product corresponding
to R and R−1 can be computed with the Fast Fourier Transform (FFT).
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