
J. OPERATOR THEORY
51(2004), 49–70

c© Copyright by Theta, 2004

THE WAVELET GALERKIN OPERATOR

DORIN E. DUTKAY

Communicated by Şerban Strătilă

Abstract. We consider the eigenvalue problem

Rm0,m0h = λh, h ∈ C(T), |λ| = 1,

where Rm0,m0 is the wavelet Galerkin operator associated to a wavelet filter
m0. The solution involves the construction of representations of the algebra
AN — the C∗-algebra generated by two unitaries U, V satisfying UV U−1 =
V N introduced in [13].
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1. INTRODUCTION

The wavelet Galerkin operator appears in several different contexts such as
wavelets (see for example [15], [10], [6], [17], [7]), ergodic theory and g-measures
([14]) or quantum statistical mechanics ([19]). For some of the applications of the
Ruelle operator we refer the reader to the book by V. Baladi ([1]). It also bears
many different names in the literature: the Ruelle operator, the Perron-Frobenius-
Ruelle operator, the Ruelle-Araki operator, the Sinai-Bowen-Ruelle operator, the
transfer operator and several others. We used the name wavelet Galerkin opera-
tor as suggested in [15], because of its close connection to wavelets that we will
be using in the sequel. We will also use the name Ruelle operator and transfer
operator.

The Ruelle operator considered in this paper is defined by

Rm0,m′
0
f(z) =

1
N

∑

wN=z

m0(w)m′
0(w)f(w), z ∈ T,
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where m0,m
′
0 ∈ L∞(T) are nonsingular (i.e. they do not vanish on a set of positive

measure), T is the unit circle {z ∈ C : |z| = 1}, N > 2 is an integer. A large amount
of information about this operator is contained in [3]. One of the main objectives
of this paper is to do a peripheral spectral analysis for the Ruelle operator, that
is to solve the equation

Rm0,m0h = λh, |λ| = 1, h ∈ C(T).

The restrictions that we will impose on m0 are:

m0 ∈ Lip1(T), where Lip1(T) = {f : T→ C : f is Lipschitz};(1.1)
m0 has a finite number of zeros;(1.2)
Rm0,m01 = 1;(1.3)

m0(1) =
√
N.(1.4)

In ergodic theory the Ruelle operators are used in the derivation of correlation
inequalities (see [20] and [11]) and in understanding the Gibbs measures. The role
played by the Ruelle operator in wavelet theory is somewhat similar. It can be
used to make a direct connection to the cascade approximation and orthogonality
relations.

In the applications to wavelets, the function m0 is a wavelet filter, i.e., its
Fourier expansion

(1.5) m0(z) =
∑

k∈Z
akz

k

yield the masking coefficients of the scaling function ϕ on R, i.e. the function which
results from the the fixed-point problem

(1.6) ϕ(x) =
√
N

∑

k∈Z
akϕ(Nx− k).

Then the solution ϕ is used in building a multiresolution for the wavelet analysis.
If, for example, conditions can be placed on (1.5) which yield L2(R)-solutions to
(1.6), then the closed subspace V0 spanned by the translates {ϕ(x− k) : k ∈ Z} is
invariant under the scaling operator

(1.7) Uf(x) =
1√
N
f
( x
N

)
, x ∈ R,

i.e. U(V0) ⊂ V0. Setting Vj := U j(V0) for j ∈ Z we get the resolution

· · ·V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · ·
from which wavelets can be constructed as in [9].

The cascade operator is defined on L2(R) from the masking coefficients by:

Maψ =
√
N

∑

n∈Z
anψ(N · −n).

The scaling function ϕ is then a fixed point for the cascade operator, it satisfies
the scaling equation Maϕ = ϕ.
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Now set

p(ψ1, ψ2)(eit) =
∑

n∈Z
eint

∫

R

ψ1(x)ψ2(x− n) dx, ψ1, ψ2 ∈ L2(R).

The relation between the Ruelle operator Rm0,m0 and the cascade operator Ma is

Rm0,m0(p(ψ1, ψ2)) = p(Maψ1,Maψ2),

and this makes the transfer operator an adequate tool in the analysis of the or-
thogonality relations.

One of the fundamental problems in wavelet theory is to give necessary and
sufficient conditions on m0 such that the translates of the scaling function {ϕ( · −
n) : n ∈ Z} form an orthonormal set. There are two well known results that
answer this question: one due to Lawton ([16]), which says that one such condition
is that Rm0,m0 as an operator on continuous function has 1 as a simple eigenvalue,
the other, due to A. Cohen ([4]), which says that the orthogonality is equivalent
to the fact that m0 has no nontrivial cycles (a cycle is a set {z1, . . . , zp} with
zN
1 = z2, . . . , z

N
p−1 = zp, z

N
p = z1 and |m0(zi)| =

√
N for all i ∈ {1, . . . , p}; the

trivial cycle is {1}).
The peripheral spectral analysis in this paper will elucidate, among other

things, why these two conditions are equivalent.
The wavelet theory gives a representation of the algebra AN (i.e. the C∗-

algebra generated by two unitary operators U and V subject to the relation
UV U−1 = V N ) on L2(R). U is the scaling operator in (1.7) and V is the trans-
lation by 1 V : ψ → ψ(· − 1). In fact we also have a representation of L∞(T) on
L2(R) given by π(f)ψ =

∑
n∈Z

cnψ( · − n), for f =
∑
n∈Z

cnz
n ∈ L∞(T).

The scaling equation (1.6) can be rewritten as

Uϕ = π(m0)ϕ.

This representation of AN together with the scaling function ϕ is called the wavelet
representation.

In [13] it is proved that there is a one-to-one correspondence between positive
solutions to Rm0,m0h = h and representations of AN . These representations are
in fact given by the unitary U : H → H, a representation π : L∞(T) → B(H)
satisfying

Uπ(f) = π(f(zN ))U, f ∈ L∞(T)

and ϕ ∈ H with Uϕ = π(m0)ϕ.
We reproduce here the theorem:

Theorem 1.1. (i) Let m0 ∈ L∞(T), and suppose m0 does not vanish on a
subset of T of positive measure. Let

(1.8) (Rf)(z) =
1
N

∑

wN=z

|m0(w)|2f(w), f ∈ L1(T).

Then there is a one-to-one correspondence between the data (a) and (b) below,
where (b) is understood as equivalence classes under unitary equivalence:
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(a) h ∈ L1(T), h > 0, and

(1.9) R(h) = h.

(b) π̃ ∈ Rep(AN ,H), ϕ ∈ H, and the unitary U from π̃ satisfying

(1.10) Uϕ = π(m0)ϕ.

(ii) From (a) ⇒ (b), the correspondence is given by

(1.11) 〈ϕ : π(f)ϕ〉H =
∫

T

fhdµ,

where µ denotes the normalized Haar measure on T.
From (b) ⇒ (a), the correspondence is given by

(1.12) h(z) = hϕ(z) =
∑

n∈Z
zn〈π(en)ϕ : ϕ〉H.

(iii) When (a) is given to hold for some h, and π̃ ∈ Rep(AN ,H) is the
corresponding cyclic representation with Uϕ = π(m0)ϕ, then the representation is
unique from h and (1.11) up to unitary equivalence: that is, if π′ ∈ Rep(AN ,H′),
ϕ′ ∈ H′ also cyclic and satisfying

〈ϕ′ : π′(f)ϕ′〉 =
∫

T

fh dµ and U ′ϕ′ = π′(m0)ϕ′,

then there is a unitary isomorphism W of H onto H′ such that Wπ(A) = π′(A)W ,
A ∈ AN , and Wϕ = ϕ′.

Definition 1.2. Given h as in Theorem 1.1 call (π,H, ϕ) the cyclic repre-
sentation of AN associated to h.

In the case of the orthogonality of the translates of the scaling function ϕ,
the wavelet representation is in fact the cyclic representation corresponding to the
unique fixed point of the Ruelle operator Rm0,m0 , which is the constant function 1.

We will also need the results from [12] which show the connection between
solutions to Rm0,m′

0
h = h and operators that intertwine these representations.

Here are those results:

Theorem 1.3. Let m0,m
′
0 ∈ L∞(T) be non-singular and h, h′ ∈ L1(T),

h, h′ > 0, Rm0,m0(h) = h, Rm′
0,m′

0
(h′) = h′. Let (π,H, ϕ), (π′,H′, ϕ′) be the cyclic

representations corresponding to h and h′ respectively.
If h0 ∈ L1(T), Rm0,m′

0
(h0) = h0 and |h0|2 6 chh′ for some c > 0 then there

exists a unique operator S : H′ → H such that

SU ′ = US, Sπ′(f) = π(f)S, 〈ϕ : π(f)Sϕ′〉 =
∫

T

fh0 dµ, f ∈ L∞(T).

Moreover ‖S‖ 6 √
c.

Theorem 1.4. Let m0,m
′
0, h, h

′, (π,H, ϕ), (π′,H′, ϕ′) be as in Theorem 1.3.
Suppose S : H′ → H is a bounded operator that satisfies

SU ′ = US, Sπ′(f) = π(f)S, f ∈ L∞(T).
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Then there exists a unique h0 ∈ L1(T) such that

Rm0,m′
0
h0 = h0 and 〈ϕ : Sπ′(f)ϕ′〉 =

∫

T

fh0 dµ, f ∈ L∞(T).

Moreover, |h0|2 6 ‖S‖2hh′ almost everywhere on T.

These theorems indicate the correspondence between intertwining opera-
tors and the fixed points of the Ruelle operator. This correspondence projects
a C∗-algebra structure on the eigenspace corresponding to the eigenvalue 1 (The-
orem 2.7, Corollary 2.8), and this algebra is in fact abelian (Theorem 2.3).

To find the solutions Rm0,m0h = h we construct the representation associated
to the function hmax = 1. Then, if we can compute the commutant, the solutions
will follow from Theorems 1.3 and 1.4.

We will see how each cycle of m0 gives rise to a representation of AN , hence
to a positive solution for Rm0,m0h = h (Proposition 2.13). The representation
we are looking for (the one associated to hmax = 1) will be a direct sum of the
representations constructed for the cycles of m0 (Theorem 2.16).

The solution of the eigenvalue problem mentioned in the abstract is given in
Theorem 2.5 and Corollary 2.18.

2. PERIPHERAL SPECTRAL ANALYSIS

We begin this section by analysing the intertwining operators a little bit further.
We will see that the commutator of the cyclic representation associated to a pos-
itive h with Rm0,m0h = h is abelian and we will find the eigenfunction h that
corresponds to the composition of two intertwining opertors that correspond to h1

and h2 respectively.
In Corrolary 3.9 of [13] it is proved that the cyclic representation (Hh, πh, ϕh)

corresponding to some h > 0 with Rm0,m0h = h is given by:

Hh :=
{

(ξ0, . . . , ξn, . . .) : sup
n

∫

T

Rn
m0,m0

(|ξn|2h) dµ <∞, Rm0,m0(ξn+1h) = ξnh

}
,

πh(f)(ξ0, . . . ξn, . . .) = (f(x)ξ0, . . . , f(zN )ξn, . . .), f ∈ L∞(T),

Uh(ξ0, . . . , ξn, . . .) = (m0(z)ξ1, . . . ,m0(zNn

)ξn+1, . . .),

〈(ξ0, . . . , ξn, . . .) : (η0, . . . ηn, . . .)〉 = lim
n→∞

∫

T

Rn
m0,m0

(ξnηnh) dµ

and
ϕh = (1, 1, . . . , 1, . . .).

Also, we have the subspaces Hh
0 ⊂ Hh

1 ⊂ · · · ⊂ Hh
n ⊂ · · · ⊂ Hh whose union is

dense in Hh where Hh
n := {(ξ0, . . . , ξn, . . .) ∈ Hh : ξn+k(z) = ξn(zNk

), for k > 0}.
The set Vh

n := {U−n
h πh(f)ϕh : f ∈ L∞(T)} is dense in Hh

n for all n > 0 and
Un

hH
h
n = Hh

0 .
Some notations. If m0 and h are as in Theorem 1.1, then, we denote by

(Hh, πh, ϕh) the cyclic representation associated to h.
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If m0,m
′
0, h, h

′ and h0 are as in Theorem 1.3 then denote by Sh,h′,h0 the
intertwining operator from Hh′ to Hh given by the aforementioned theorem.

Sometime we will omit the subscripts.

Lemma 2.1. Let PHh
0

be the projection onto the subspace Hh
0 . Then PHh

0
Sh,h′,h0PHh′

0

is multiplication by h0
h on Hh′

0 i.e.

PHh
0
Sh,h′,h0PHh′

0
(ξ(z), ξ(zN ), . . . , ξ(zNn

), . . .)

=
(
ξ(z)

h0(z)
h(z)

, ξ(zN )
h0(zN )
h(zN )

, . . . , ξ(zNn

)
h0(zNn

)
h(zNn)

, . . .
)
.

Proof. Denote Sϕh′ = (ϕS
0 , . . . , ϕ

S
n , . . .). Then for all f ∈ L∞(T)∫

T

fh0 dµ = 〈(1, 1, . . . , 1, . . .) : πh(f)(ϕS
0 , . . . , ϕ

S
n , . . .)〉

= lim
n→∞

∫

T

Rn
m0,m0

(f(zNn

)ϕS
nh) dµ = lim

n→∞

∫

T

f(z)ϕS
0 h dµ =

∫

T

fϕS
0 h dµ,

thus ϕS
0 = h0

h . Consider again an f ∈ L∞(T) arbitrary.
PHh

0
SPHh′

0
πh′(f)ϕh′ = PHh

0
Sπh′(f)ϕh′ = PHh

0
πh(f)Sϕh′

= PHh
0
(f(z)ϕS

0 , . . . , f(zNn

)ϕS
n , . . .)

= (f(z)ϕS
0 , . . . , f(zNn

)ϕS
0 (zNn

), . . .).

This calculation shows that PHh
0
SPHh′

0
is multiplication by h0

h on Vh′
0 , so, by

density, on Hh′
0 .

Lemma 2.2. PHh
n
Sh,h′,h0PHh′

n
converges to Sh,h′,h0 in the strong operator

topology.
Proof. Let ξ ∈ Hh′ . Then

‖PHh
n
SPHh′

n
ξ − Sξ‖ 6 ‖PHh

n
SPHh′

n
ξ − PHh

n
Sξ‖+ ‖PHh

n
Sξ − Sξ‖

6 ‖PHh
n
‖ ‖S‖ ‖PHh′

n
ξ − ξ‖+ ‖PHh

n
Sξ − Sξ‖ → 0 as n→∞

because the subspaces Hh
n form an increasing sequence whose union is dense in

Hh (and similarly for Hh′
n ).

Theorem 2.3. The commutant πh(An)′ is abelian.
Proof. Consider S1, S2 ∈ πh(An)′. Then, according to Theorem 1.4, S1 =

Sh1 , S2 = Sh2 , for some h1, h2 with Rm0,m0hi = hi, |hi| 6 cih, i ∈ {1, 2}. Let
ξ ∈ Hh. It has a decomposition ξ = ξ0 + η with ξ0 ∈ Hh

0 and η ∈ Hh
0
⊥. Using

Lemma 2.1
(PHh

0
S1PHh

0
)(PHh

0
S2PHh

0
)(ξ) = PHh

0
S1PHh

0
S2ξ0 = PHh

0
S2PHh

0
S1ξ0

= (PHh
0
S2PHh

0
)(PHh

0
S1PHh

0
)ξ.

Since PHh
n

= U−nPHh
0
Un it follows that PHh

n
S1PHh

n
and PHh

n
S2PHh

n
also commute.

Lemma 2.2 can be used to get S1S2 as the strong limit of (PHh
n
S1PHh

n
)(PHh

n
S2PHh

n
).

Similarly for S2S1. And as the limit is unique we must have S1S2 = S2S1.
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Next, suppose we have two intertwining operators S1 : Hh → Hh′ , S2 :
Hh′ → Hh′′ which come from h1 and h2 respectively. Then S2S1 is also an
intertwining operator so it must come from some h3. We want to find the relation
between h1, h2 and h3.

Theorem 2.4. If Sh1 : Hh → Hh′ and Sh2 : Hh′ → Hh′′ are intertwining
operators then, if Sh3 = Sh2Sh1 . We have for all f ∈ L∞(T):

∫

T

|f(z)|2Rn
m0,m0

(∣∣∣h1

h′
h2

h′′
− h3

h′′

∣∣∣
2

h′′
)

dµ→ 0.

Proof. We begin with a calculation. For f ∈ L∞(T):

PHh′
n
S1PHh

n
(U−n

h πh(f)ϕh) = U−n
h′ PHh′

0
Un

h′S1U
−n
h PHh

0
Un

hU
−n
h πh(f)ϕh

= U−n
h′ PHh′

0
S1PHh

0
πh(f)ϕh = U−n

h′ πh′
(
f
h1

h′

)
ϕh′ .

For the second equality we used the fact that S1 is intertwining and for the last
one, Lemma 2.1.

(2.1)
(PHh′′

n
S2PHh′

n
)(PHh′

n
S1PHn

h
)(U−n

h πh(f)ϕh)

= (PHh′′
n
S2PHh′

n
)U−n

h′ πh′
(
f
h1

h′

)
ϕh′ = U−n

h′′ πh′′
(
f
h1

h′
h2

h′′

)
ϕh′′ .

Similarly

(2.2) (PHh′′
n
S2S1PHh

n
)(U−n

h πh(f)ϕh) = U−n
h′′ πh

′′
(
f
h3

h′′

)
ϕh

′′.

Using (2.1), (2.2) and the notation m
(n)
0 (z) := m0(z)m0(zN ) · · ·m0(zNn−1

), we
have

‖(PHh′′
n
S2PHh′

n
)(PHh′

n
S1PHh

n
)(πh(f)ϕh)− (PHh′′

n
S2S1PHh

n
)(πh(f)ϕh)‖Hh′′

= ‖(PHh′′
n
S2PHh′

n
)(PHh′

n
S1PHh

n
)U−n

h πh(f(zNn

)m(n)
0 )ϕh

− (PHh′′
n
S2S1PHh

n
)U−n

h πh(f(zNn

)m(n)
0 )ϕh‖Hh′′

=
∥∥∥U−n

h′′

(
πh′′

(
f(zNn

)m(n)
0 (z)

h1

h′
h2

h′′

))
ϕh′′

− U−n
h′′ πh′′

(
f(zNn

)m(n)
0 (z)

h3

h′′

)
ϕh′′

∥∥∥
Hh′′

=
∫

T

|f(zNn

)|2|m(n)
0 (z)|2

∣∣∣h1

h′
h2

h′′
− h3

h′′

∣∣∣
2

h′′ dµ

=
∫

T

|f(z)|2Rn
m0,m0

(∣∣∣h1

h′
h2

h′′
− h3

h′′

∣∣∣
2

h′′
)

dµ.

But, by Lemma 2.2, the first term in this chain of equalities converges to 0 for all
f ∈ L∞(T) so we obtain the desired conclusion.
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Corollary 2.5. If Sh1 , Sh2 ∈ πh(AN )′, Sh3 = Sh1Sh2 and h ∈ L∞(T)
then ∫

T

|g|
∣∣∣Rn

m0,m0

(h1h2

h

)
− h3

∣∣∣ dµ→ 0, g ∈ L∞(T).

Proof. We will need the following inequality

(2.3) |Rn
m0,m0

(ξh)|2 6 Rn
m0,m0

(|ξ|2h)h.
This can be proved using Schwartz’s inequality:

|Rn
m0,m0

(ξh)|2 =
∣∣∣ 1
Nn

∑

wNn=z

|m(n)
0 (w)|2ξ(w)h(w)

∣∣∣
2

6
( 1
Nn

∑

wNn=z

|m(n)
0 (w)|2|ξ(w)|2h(w)

)( 1
Nn

∑

wNn=z

|m(n)
0 (w)|2h(w)

)

= Rn
m0,m0

(|ξ|2h)Rn
m0,m0

h = Rn
m0,m0

(|ξ|2h)h.
Now, take g ∈ L∞(T) and f = gh1/2 in Theorem 2.4 (h = h′ = h′′). We

have:( ∫

T

|g|
∣∣∣Rn

m0,m0

(h1h2

h

)
− h3

∣∣∣ dµ
)2

6
∫

T

|g|2
∣∣∣Rn

m0,m0

(h1h2

h

)
− h3

∣∣∣
2

dµ

=
∫

T

|g|2
∣∣∣Rn

m0,m0

((h1

h

h2

h
− h3

h

)
h
)∣∣∣

2

dµ 6
∫

T

|g|2hRn
m0,m0

(∣∣∣h1

h

h2

h
− h3

h

∣∣∣
2

h
)

dµ

=
∫

T

|f |2Rn
m0,m0

(∣∣∣h1

h

h2

h
− h3

h

∣∣∣
2

h
)

dµ→ 0.

In the sequel, we consider intertwining operators that correspond to con-
tinuous eigenfunctions h. We will prove that if h1 and h2 are continuous and
Sh3 = Sh1Sh2 then h3 must be also continuous. The fundamental result needed
here is from [3]:

Theorem 2.6. Let m0 be a function on T satisfying m0 ∈ Lip1(T), Rm0,m01 6
1 and consider the restriction of Rm0,m0 to Lip1(T) going into Lip1(T). It follows
that Rm0,m0 has at most a finite number λ1, . . . , λp of eigenvalues of modulus 1,
|λi| = 1, and R has a decomposition

(2.4) Rm0,m0 =
p∑

i=1

λiTλi + S,

where Tλi and S are bounded operators from Lip1(T) to Lip1(T), Tλi have finite-
dimensional range, and

(2.5) T 2
λi

= Tλi , TλiTλj = 0 for i 6= j, TλiS = STλi = 0,

and there exist positive constants M,h such that

(2.6) ‖Sn‖Lip1(T)→Lip1(T) 6 M

(1 + h)n



The wavelet Galerkin operator 57

for n = 1, 2, . . .. Furthermore ‖Rm0,m0‖∞→∞ 6 1, and there is a constant M such
that

(2.7) ‖Sn‖∞→∞ 6 M

for n = 1, 2, . . ..
Finally, the operators Tλi and S extend to bounded operators C(T) → C(T),

and the properties (2.4) and (2.5) still hold for this extension. Moreover

lim
n→∞

Snf = 0, Tλi
(f) = lim

n→∞
1
n

n∑

k=1

λ−k
i Rk

m0,m0
(f), f ∈ C(T).

Proof. Everything is contained in [3], Theorem 3.4.4, Proposition 4.4.4 and
its proof.

Theorem 2.7. Assume m0 is Lipschitz, Rm0,m01 6 1, h > 0 is continuous,
Rm0,m0h = h. If Sh1 , Sh2 ∈ πh(AN )′, with h1, h2 continuous and Sh3 = Sh1Sh2

then h3 is also continuous and h3 = T1

(
h1h2

h

)
= lim

n→∞
Rn

m0,m0

(
h1h2

h

)
, uniformly.

Proof. By Corollary 2.5 we have:

(2.8)
∫

T

gRn
(h1h2

h

)
dµ→

∫

T

gh3 dµ, g ∈ L∞(T).

Also, observe that h1h2
h is continuous because |h1| 6 c1h, |h2| 6 c2h for some

positive constants c1, c2, and if x0 ∈ T with h(x0) = 0 then h1(x0) = 0, h2(x0) = 0
and |h1h2

h | 6 c2h1 Relation (2.8) implies that for all g ∈ L∞(T)
∫

T

1
m

m−1∑
n=0

Rn
(h1h2

h

)
dµ→

∫

T

gh3 dµ

However, by Theorem 2.6, we have

1
m

m−1∑
n=0

Rn
(h1h2

h

)
→ T1

(h1h2

h

)
, uniformly.

Therefore h3 = T1

(
h1h2

h

)
.

Next we want to prove that Rn
(

h1h2
h

)
→ h3 uniformly. By Proposition 4.4.4,

[3], this is equivalent to Tλi

(
h1h2

h

)
= 0 for λi 6= 1.

From (2.8) it follows, using Theorem 2.6, that

(2.9)
∑

λ1 6=1

λn
i

∫

T

gTλi

(h1h2

h

)
dµ→ 0

for all g ∈ L∞(T).
But Tλi

(
h1h2

h

)
are eigenvectors corresponding to different eigenvalues so,

some are 0 and the rest are linearly independent. For all i with Tλi

(
h1h2

h

)
6= 0 we
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can find a gi ∈ L∞(T) such that
∫
T
giTλi

(
h1h2

h

)
dµ = 1 and

∫
T
giTλj

(
h1h2

h

)
dµ = 0

for λj 6= λi (this can be obtain from the fact that L∞(T) is the dual of L1(T)

which contains the vectors Tλi

(
h1h2

h

)
). Then, if we use (2.9) for gi, we get that

λn
i → 0 whenever Tλi

(
h1h2

h

)
6= 0, λi 6= 1, which is clearly absurd unless all

Tλi

(
h1h2

h

)
are 0, for λi 6= 1. Thus, as we have mentioned before, this implies that

Rn
(

h1h2
h

)
→ h3.

Corollary 2.8. If h ∈ C(T), h > 0, Rm0,m0h = h then the space

{h0 ∈ C(T) : Rm0,m0h0 = h0, |h0| 6 ch}
is a finite dimensional abelian C∗-algebra under the pointwise addition and multi-
plication by scalars, complex conjugation and the product given by h1 ∗ h2 defined
by Sh1∗h2 = Sh1Sh2 .

Proof. Everything follows from Theorem 2.7 and Theorem 2.3. For the finite
dimensionality see [3] or [7].

Remark 2.9. When h = 1 the C∗-algebra structure given in Corollary 2.8
is the same as the one introduced in Theorem 5.5.1, [3].

Now we will show how each m0-cycle (see Definition 2.10 below) gives rise
to a continuous solution h > 0, Rm0,m0h = h. In the end we will see that any
eigenfunction Rm0,m0h = h is a linear combination of eigenfunctions coming from
such cycles.

Definition 2.10. Let m0 ∈ C(T). An m0-cycle is a set {z1, . . . , zp} con-
tained in T such that zN

i = zi+1 for i ∈ {1, . . . , p−1}, zN
p = z1 and |m0(zi)| =

√
N

for i ∈ {1, . . . , p}.
First, we consider the eigenfunction that corresponds to the cycle {1}. This

appears in many instances and it is the one that defines the scaling function in
the theory of multiresolution approximations (see [9], [3]).

Proposition 2.11. Let m0 ∈ Lip1(T) with m0(1) =
√
N , Rm0,m01 = 1.

Define

ϕm0,1(x) =
∞∏

k=1

m0

(
x

Nk

)
√
N

, x ∈ R.

(i) ϕm0,1 is a well defined, continuous function and it belongs to L2(R).
(ii) If hm0,1 = Per |ϕm0,1|2 is Lipschitz (trigonometric polynomial if m0 is

one), where

Per(f)(x) :=
∑

k∈Z
f(x+ 2kπ), x ∈ [0, 2π], f : R→ C.

Also Rm0,m0hm0,1 = hm0,1, hm0,1(1) = 1, hm0,1 is 0 on every m0-cycle
disjoint of {1}.
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(iii) If U1 : L2(R) → L2(R), (U1ξ)(x) =
√
Nξ(Nx) and π1(f) : L2(R) →

L2(R), π1(f)(ξ) = fξ for all f ∈ L∞(T), then (U1, π1, ϕm0,1) define the cyclic
representation corresponding to hm0,1.

(iv) The commutant of the representation from (iii) is {Mf : f ∈ L∞(R),
f(Nx) = f(x) a.e.}, where Mf is the operator of multiplication by f .

(v) hm0,1 is minimal, in the sense that if 0 6 h′ 6 chm0,1, c > 0, h′
continuous and Rm0,m0h

′ = h′ then there exists a λ > 0 such that h′ = λhm0,1.
(vi) If h > 0 is continuous, Rm0,m0h = h and h(1) = 1 then h > hm0,1.

Proof. (i) See [9] or [3].
(ii) See Theorem 5.1.1 and Lemma 5.5.6 in [3].
For (iv) see [12]. Also, in [12] it is proved that we are dealing with a represen-

tation of AN (it is the Fourier transform of the wavelet representation mentioned
in the introduction). We only need to check that ϕm0,1 is cyclic for this represen-
tation.

Consider P the projection onto the subspace generated by π1(AN )ϕm0,1.
We prove first that P commutes with the representation. Take A ∈ π1(AN ), A
selfadjoint. If B ∈ π1(AN ) then A(Bϕm0,1) ∈ π1(AN )ϕm0,1 so PA(Bϕm0,1) =
A(Bϕm0,1). So PAP = AP . Then

AP = PAP = (PAP )∗ = (AP )∗ = PA,

so P commutes with A, and since any member of π1(AN ) is a linear combination
of selfadjoint operators from this set, it follows that P lies in the commutant of the
representation. Then, by (iv), P = Mf for some f ∈ L∞(R) with f(Nx) = f(x)
a.e. As P is a projection f2 = f = f so f = χA for some subset A of the real
line. But Pϕm0,1 = ϕm0,1 so ϕm0,1χA = ϕm0,1 a.e. Since ϕm0,1(0) = 1 and ϕm0,1

is continuous, it follows that A contains a neighbourhood of 0. This, coupled with
the fact that χA(Nx) = χA(x) a.e., imply that χA = 1 a.e. so P is the identity
and thus π1(AN )ϕm0,1 is dense, which means exactly that ϕm0,1 cyclic.

(v) Consider h′ as mentioned in the hypothesis. Then h′ induces a member
of the commutant Sh′ . By (iv), Sh′ = Mfh′ for some fh′ ∈ L∞(R) with fh′(Nx) =
fh′(x) a.e. We have

〈ϕm0,1 : Sh′π1(f)ϕm0,1〉 =
∫

T

fh′ dµ, f ∈ L∞(T),

which implies that

h′ = Per(ϕm0,1Sh′ϕm0,1) = Per(fh′ |ϕm0,1|2).
We prove that fh′ is continuous at 0.

(2.10) h′(x) = fh′(x)|ϕm0,1|2(x) +
∑

k 6=0

fh′(x+ 2kπ)|ϕm0,1|2(x+ 2kπ).

As
hm0,1(x) = |ϕm0,1|2(x) +

∑

k 6=0

|ϕm0,1|2(x+ 2kπ)
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and hm0,1(0) = |ϕm0,1|2(0) = 1 and hm0,1, ϕm0,1 are continuous, it follows that
∑

k 6=0

|ϕm0,1|2(x+ 2kπ) → 0 as x→ 0.

Then, as x→ 0,∥∥∥
∑

k 6=0

fh′(x+ 2kπ)|ϕm0,1|2(x+ 2kπ)
∥∥∥ 6 ‖fh′‖∞

∑

k 6=0

|ϕm0,1|2(x+ 2kπ) → 0.

Using this in (2.10) we obtain that lim
x→0

fh′(x) = h′(0). But fh′(Nx) = fh′(x) a.e.

so fh′ = h′(0) a.e. which implies that h′ = h′(0)hm0,1.
(vi) This is contained also in [3] but here is a different proof. Consider

f ∈ L∞(T), arbitrary. Define

ϕn(x) = f(x)χ[−Nnπ,Nnπ]h
1/2

( x

Nn

) n∏

k=1

m0

(
x

Nk

)
√
N

.

Clearly ϕn(x) → f(x)ϕm0,1, x ∈ R and

∫

R

|ϕn(x)|2 dx =

Nnπ∫

−Nnπ

|f |2(x)h
( x

Nn

) n∏

k=1

|m0|2
(

x
Nk

)

N
dx

=

π∫

−π

|f |2(Nny)h(y)
n−1∏

k=0

|m0|2(Nkx) dy

=

π∫

−π

Rn
m0,m0

(h(y)|f |2(Nny)) dy =

π∫

−π

|f |2(y)h(y) dy.

Using Fatou’s lemma we obtain:∫

R

|f(x)|2|ϕm0,1|2 dy =
∫

R

lim inf
n

|ϕn|2 dx 6 lim inf
n

∫

R

|ϕn(x)|2 dx =
∫

T

|f |2h dµ

and after periodization ∫

T

|f |2hm0,1 dµ 6
∫

T

|f |2h dµ.

As f was arbitrary this shows that hm0,1 6 h.

Now we generalize a little bit, by considering a cycle {z0} where zN
0 = z0.

Proposition 2.12. Let m0 ∈ Lip1(T), z0 ∈ T with zN
0 = z0, m0(z0) =√

Neiθ0 , Rm0,m01 = 1. Define

ϕm0,z0(x) =
∞∏

k=1

e−iθ0αz0(m0)
(

x
Nk

)
√
N

, x ∈ R,

where αρ(f)(z) = f(ρz) for z, ρ ∈ T and f ∈ L∞(T).
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(i) ϕm0,z0 is a well defined continuous function that belongs to L2(R).
(ii) hm0,z0 := αz−1

0
(Per |ϕm0,z0 |2) is Lipschitz (trigonometric polynomial if

m0 is one), Rm0,m0hm0,z0 = hm0,z0 , hm0,z0(z0) = 1, hm0,z0 is 0 on every m0-cycle
disjoint of {z0}.

(iii) If Uz0 : L2(R) → L2(R), Uz0ξ = eiθ0U1ξ and πz0(f)(ξ) = π1(αz0(f))(ξ)
for f ∈ L∞(T), then (Uz0 , πz0 , ϕm0,z0) define the cyclic representation correspond-
ing to hm0,z0 .

(iv) The commutant of this representation is {Mf : f ∈ L∞(R), f(Nx) =
f(x) a.e.}.

(v) hm0,z0 is minimal (see Proposition 2.11 (v)).
(vi) If h > 0 is continuous, Rm0,m0h = h and h(z0) = 1 then h > hm0,z0 .

Proof. Consider m′
0 := e−iθ0αz0(m0). We check that m′

0 satisfies the hy-
potheses of Proposition 2.11. Clearly m′

0 is Lipschitz, m′
0(1) =

√
N ,

Rm′
0,m′

0
1(z) =

1
N

∑

wN=z

|αz0(m0)|2(w) =
1
N

∑

wN=z

|m0|2(z0w)

=
1
N

∑

yN=z0z

|m0|2(y) = Rm0,m0(z0z) = 1.

Thus we can apply Proposition 2.11 to m′
0.

(i) ϕm0,z0 = ϕm′
0,1 and everything follows.

(ii) hm0,z0 = αz−1
0

(hm′
0,1)

Rm0,m0hm0,z0(z) =
1
N

∑

wN=z

|m0|2(w)αz−1
0

(hm′
0,1)(w)

=
1
N

∑

wN=z

|m0|2(w)hm′
0,1(wz−1

0 )

=
1
N

∑

yN=zz−1
0

|m0|2(yz0)hm′
0,1(y)

= Rm′
0,m′

0
hm′

0,1(zz−1
0 ) = hm0,z0(z).

Also hm0,z0(z0) = hm′
0,1(z−1

0 z0) = 1 and, if C is an m0-cycle disjoint of {z0} then
z−1
0 C is an m′

0-cycle disjoint of {1} and again Proposition 2.11 applies.
(iii) and (iv) can also be deduced from Proposition 2.11. The relation

Uz0πz0(f) = πz0(f(zN ))Uz0

follows from the identity αz0(f(zN )) = αz0(f)(zN ).
(v) If h′ is as given, then αz0(h

′) satisfies: 0 6 αz0(h
′) 6 cαz0(hm0,z0) =

chm′
0,1 and Rm′

0,m′
0
αz0(h

′) = αz0(Rm0,m0h
′) = αz0(h

′). Then, by Proposition 2.11,
αz0(h

′) = λhm′
0,1 for some λ > 0 so h′ = λhm0,z0 .

(vi) The argument is similar to the one used in (v).

Using Proposition 2.12 we are now able to prove that each m0-cycle gives
rise to a continuous solution for Rm0,m0h = h.
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Proposition 2.13. Let m0 ∈ Lip1(T), Rm0,m01 = 1 and let C = {z1, z2 =
zN
1 , . . . , zp = zN

p−1}, zN
p = z1, be an m0-cycle, m0(zk) =

√
Neiθk for k ∈ {1, . . . , p}.

Denote by θC = θ1 + · · ·+ θp. Define

ϕk,m0,C(x) =
∞∏

k=1

e−iθCαzk
(m(p)

0 )
(

x
Nkp

)
√
Np

, k ∈ {1, . . . , p}.

(i) ϕk,m0,C is a well defined continuous function that belongs to L2(R).
(ii) Define gk,m0,C = αz−1

k
(Per |ϕk,m0,C |2) for all k ∈ {1, . . . , p}. Then

gk,m0,C is Lipschitz (trigonometric polynomial if m0 is one). Also

Rp
m0,m0

gk,m0,C = gk,m0,C and Rm0,m0gk,m0,C = gk+1,m0,C

(we will use the notation mod p that is zp+1 = z1, gp+2,m0,C = g2,m0,C etc.),
gk,m0,C(zj) = δkj, gk,m0,C is 0 on every m0-cycle disjoint of C.

(iii) Define hm0,C =
p∑

k=1

gk,m0,C . Then hm0,C is Lipschitz (trigonometric

polynomial if m0 is one). Also Rm0,m0hm0,C = hm0,C , hm0,C(zk) = 1 for all
k ∈ {1, . . . , p} and hm0,C is 0 on every m0-cycle disjoint of C.

(iv) hm0,C is minimal.
(v) If h > 0 is continuous, Rm0,m0h = h and h is 1 on C then h > hm0,C .
(vi) If UC : L2(R)p → L2(R)p,

UC(ξ1, . . . , ξp) = (eiθ1U1ξ2, . . . , eiθp−1U1ξp, eiθpU1ξ1)

and for f ∈ L∞(T), πC(f) : L2(R)p → L2(R)p,

πC(f)(ξ1, . . . , ξp) = (π1(αz1(f))(ξ1), . . . , π1(αzp(f))(ξp));

then (UC , πC , (ϕ1,m0,C , . . . , ϕp,m0,C)) is the cyclic representation corresponding to
hm0,C .

(vii) The commutant of this representation is

{Mf1 ⊕ · · · ⊕Mfp : fk ∈ L∞(R), fk+1(Nx) = fk(x) a.e., for k ∈ {1, . . . , p}}.

Proof. Let m′
0 := m

(p)
0 . Observe that

m′
0(zi)=m(p)

0 (zi) = m0(zi)m0(zN
i ) · · ·m0(zNp−1

i )

= m0(z1)m0(z2) · · ·m0(zp) =
√
NpeiθC .

(i) Note that R
m

(p)
0 ,m

(p)
0

= Rp
m0,m0

so R
m

(p)
0 ,m

(p)
0

1 = 1. Thus (i) follows from

Proposition 2.12 (i) (replace N by Np when working with m(p)
0 ).

(ii) If y1, y2 = yN
1 , . . . , yq = yN

q−1, y1 = yN
q is an m0-cycle, then {yi} is an

m
(p)
0 -cycle. Therefore, all assertions in (ii), except the one that relates gk,m0,C and

gk+1,m0,C , follow from Proposition 2.12 (ii).
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We check now (vi). UC is unitary as a composition of unitary operators. For
f ∈ L∞(T) we have:

UCπC(f)(ξ1, . . . , ξp) = (eiθ1π1(αz2(f)(zN ))U1ξ2, . . . ,

eiθp−1π1(αzp
(f)(zN ))U1ξp, eiθpπ1(αz1(f)(zN ))U1ξ1)

= (eiθ1π1(αz1(f(zN )))U1ξ2, . . . ,

eiθp−1π1(αzp−1(f(zN )))U1ξp, eiθpπ1(αz1(f(zN )))U1ξ1)

= πC(f(zN ))UC(ξ1, . . . , ξp).

Here we used that αzi+1(f)(zN ) = αzi
(f(zN )).

We must check also that

UC(ϕ1,m0,C , . . . , ϕp,m0,C) = πC(m0)(ϕ1,m0,C , . . . , ϕp,m0,C).

To do this observe that

αz1(m
(p)
0 )(z) = αz1(m0(z))αz1(m0(zN )) · · ·αz1(m0(zNp−1

))

= αz1(m0)(z)αz2(m0)(zN ) · · ·αzp(m0)(zNp−1
).

Thus

ϕ1,m0,C(x) =
e−iθpαzp(m0)

(
x
N

)
√
N

e−iθp−1αzp−1(m0)
(

x
N2

)
√
N

· · · e
−iθ1αz1(m0)

(
x

Np

)
√
N

· · ·

e−iθpαzp(m0)
(

x
Np+1

)
√
N

e−iθp−1αzp−1(m0)
(

x
Np+2

)
√
N

· · · e
−iθ1αz1(m0)( x

N2p )√
N

· · ·
so

ϕ1,m0,C(x) =
∞∏

k=1

e−iθ1−kαz1−k
(m0)

(
x

Nk

)
√
N

.

Similarly

ϕi,m0,C(x) =
∞∏

k=1

e−iθi−kαzi−k
(m0)

(
x

Nk

)
√
N

for i ∈ {1, . . . , p}.

Using this formula we obtain:

U1ϕi+1,m0,C =
√
Nϕi+1,m0,C(Nx)=e−iθiαzi(m0)

∞∏

k=2

e−iθi+1−kαzi+1−k
(m0)

(
x

Nk−1

)
√
N

= e−iθiαzi(m0)ϕi,m0,C

which shows that UC(ϕ1,m0,C , . . . , ϕp,m0,C) = πC(m0)(ϕ1,m0,C , . . . , ϕp,m0,C). Next
we compute the commutant. Consider A : L2(R)p → L2(R)p commuting with
the representation. Let Pi be the projection onto the i-th component, and let
Aij = PiAPj . Note that Up

C(ξ1, . . . , ξp) = (e−iθCUp
1 ξ1, . . . , e

−iθCUp
1 ξp).

Also, since zNp

i = zi, zi = 2πki

Np−1 for some integer ki. Take any 2π
Np−1 -

periodic essentially bounded function, g. Then αzi(g) = g so πC(g)(ξ1, . . . , ξp) =
(π1(g)ξ1, . . . , πp(g)ξp). Then Pi commute with Up

C and πC(g) so Aij commute with
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Up
1 and π1(g) and, using the argument in [12] (proof of Theorem 4.1), (see also the

proof of Lemma 2.14 below), it follows that Aij = Mfij for some fij ∈ L∞(R).
Since A and πC(f) commute for all f ∈ L∞(T), we have for i ∈ {1, . . . , p}

p∑

j=1

fijπ1(αzj (f))ξj = π1(αzi(f))
p∑

j=1

fijξj .

Fix k and take ξj = 0 for all j 6= k, then fikπ1(αzk
(f))ξk = π1(αzi

(f))fikξk so
fik = 0 for i 6= k. Then, since A commutes with U we have

(eiθ1
√
Nf22(Nx)ξ2(Nx), . . . , eiθp−1

√
Nfpp(Nx)ξp(Nx), eiθp

√
Nf11(Nx))ξ11

= (eiθ1f11(x)
√
Nξ2(Nx), . . . , eiθp−1

√
Nfp−1p−1(x)ξp(Nx), eiθp

√
Nfpp(Nx)).

Therefore,
f22(Nx) = f11(x) a.e., f33(Nx) = f22(x) a.e., . . . , f11(Nx) = fpp(x) a.e.

and (vii) follows.
The cyclicity of (ϕ1,m0,C , . . . , ϕp,m0,C) follows as in the proof of Proposi-

tion 2.11 (iii).
We check that Rm0,m0gi,m0,C = gi+1,m0,C . Take f ∈ L∞(T). We have:∫

T

fgi+1,m0,C dµ = 〈ϕi+1,m0,C : π1(αzi+1(f))ϕi+1,m0,C〉

= 〈U1ϕi+1,m0,C : U1π1(αzi+1(f))ϕi+1,m0,C〉
= 〈e−iθiπ1(αzi(m0))ϕi,m0,C : e−iθiπ1(αzi+1(f)(zN ))π1(αzi(m0))ϕi,m0,C〉
= 〈ϕi,m0,C : π1(αzi(f(zN ))αzi(|m0|2))ϕi,m0,C〉
=

∫

T

f(zN )|m0|2gi,m0,C dµ =
∫

T

f(z)Rm0,m0gi,m0,C dµ.

Hence Rm0,m0gi,m0,C = gi+1,m0,C .
(iii) follows from (ii).
Next we prove that hm0,C is minimal. Take a continuous h′ with 0 6

h′ 6 hm0,C , Rm0,m0h
′ = h′. Then R

m
(p)
0 ,m

(p)
0
h′ = Rp

m0,m0
h′ = h′ and 0 6

h′ 6 c(g1,m0,C + · · · + gp,m0,C). Now we use the fact that the space {g ∈ C(T) :
R

m
(p)
0 ,m

(p)
0
g = g} is a C∗-algebra isomorphic to C({1, . . . , d}) for some d (see Corol-

lary 2.8), and by Proposition 2.12 (iv), gi,m0,C are minimal. It follows that h′ can
be written uniquely as h′ = α1g1,m0,C + · · ·+ αpgp,m0,C with α1, . . . , αp ∈ C (the
uniqueness comes from the fact that gi,m0,C are linearly independent, which, in
turn, is implied by (ii)). Then Rm0,m0h

′ = α1g2,m0,c+· · ·+αp−1gp,m0,C+αpg1,m0,C

so, by uniqueness α1 = α2 = · · · = αp = α1 and h′ = α1(g1,m0,C + · · ·+ gp,m0,C) =
α1hm0,C .

For (v) we use a similar argument: take h′ as given in the hypothesis. Then
R

m
(p)
0 ,m

(p)
0
h′ = Rp

m0,m0
h′ = h′, h′(zi) = 1 for all i. Using Proposition 2.12 (v), we

get h′ > gi,m0,C for all i.
Now we use again the fact that {g ∈ C(T) : R

m
(p)
0 ,m

(p)
0
g = g} is a C∗-algebra

isomorphic to C({1, . . . , d}) and gi,m0,C are minimal, so h′ > (g1,m0,C + · · · +
gp,m0,C) = hm0,C .
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Lemma 2.14. Consider m0,m
′
0 satisfying (1.1)–(1.4)y. Let C : zN

1 =
z2, . . . , z

N
p = z1 be an m0-cycle and C ′ : z′N1 = z′2, . . . , z

′N
p′ = z′1 be an m′

0-cycle,
m0(zk) =

√
Neiθk , m′

0(z
′
k) =

√
Neiθ′k for all k. Consider the cyclic representations

associated to this cycles as in Proposition 2.13, (UC , πC , ϕC), (UC′ , πC′ , ϕC′) and
let S : L2(R)p′ → L2(R)p be an intertwining operator. Then S = 0 if C 6= C ′.
If C = C ′ and, after relabeling, zk = z′k for all k, p = p′ then, there exist
f1, . . . , fp ∈ L∞(R) such that

S(ξ1, . . . , ξp) = (f1ξ1, . . . , fpξp)
with

f1(x) = ei(θ1−θ′1)f2(Nx), a.e.,

. . . ,

fp−1(x) = ei(θp−1−θ′p−1)fp(Nx), a.e.,

fp(x) = ei(θp−θ′p)f1(Nx), a.e.

Proof. Note that

Up
C = eiθCUp

1 ⊕ · · · ⊕ eiθCUp
1 ,

where θC = θ1 + · · ·+ θp. Similarly for Up′

C′ . This shows that Up
C commutes with

the projections Pi onto the i-th component.
We have SUpp′

C′ = Upp′

C S so (PiSPj)U
pp′

C′ = Upp′

C (PiSPj), therefore
Sijeipθ′CUpp′

1 = eip′θCUpp′
1 Sij , where Sij = PiSPj .

Also, since zNp

k = zk, zk has the form ei 2lπ
m for all k and similarly for

z′k. If we take f ∈ L∞(T) to be 2π
mm′ -periodic, then αzk

(f) = f , αz′
k
(f) =

f for all k, so πC(ξ1, . . . , ξp) = (π1(f)ξ1, . . . , π1(f)ξp) and πC′(ξ1, . . . , ξp′) =
(π1(f)ξ1, . . . , π1(f)ξp′), and again

Sijπ1(f) = π1(f)Sij .

Hence Sij commutes with π1(f) = Mf whenever f ∈ L∞(R) is 2π
mm′ -periodic.

But then also

(U−pp′
1 π1(f)Upp′

1 )Sij = Sij(U
−pp′
1 π1(f)Upp′

1 )

and U−pp′
1 π1(f)Upp′

1 = Mg where g(Npp′x) = f(x) for x ∈ R and g is 2π
mm′N

pp′-
periodic. By induction, it follows that Sij commutes withMf whenever f ∈ L∞(R)
is 2π

mm′N
lpp′-periodic, l ∈ N.

Now take f ∈ L∞(R). Define fl(x) = f(x) on [− π
mm′N

lpp′ , π
mm′N

lpp′ ] and
extend it to R such that fl is 2π

mm′N
lpp′-periodic.

We prove that Mfl
converges to Mf in the strong operator topology. Take

ψ ∈ L2(R).

‖Mfl
ψ −Mfψ‖L2(R) =

∫

R

|fl − f |2|ψ|2 dx =
∫

|x|> π
mm′N

lpp′

|fl − f |2|ψ|2 dx

6 (2‖f‖2∞)
∫

R

χ{|x|> π
mm′N

lpp′}|ψ|2 dx→ 0 as l→∞.
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Consequently, the limit holds and Mf will commute also with Sij . As f was
arbitrary in L∞(R), using Theorem IX.6.6 in [8], we obtain that Sij = Mfij for
some fij ∈ L∞(R).

Having this, we rewrite the intertwining properties. First, we have for all
f ∈ L∞(T):

(2.11)
p′∑

j=1

fijαz′
j
(f)ξj = αzi(f)

p′∑

j=1

fijξj , i ∈ {1, . . . , p}.

Fix k ∈ {1, . . . , p′} and take ξj = 0 for j 6= k. Then
(2.12) fikαz′

k
(f)ξk = αzi

(f)fikξk.

Since f ∈ L∞(T) is arbitrary, it follows that fik = 0 unless z′k = zi.
If z′k = zi then we get C = C ′. If C 6= C ′ then C ∩ C ′ = ∅ so fij = 0 for all

i, j and S = 0.
It remains to consider the case C = C ′ and, relabeling zk = z′k for all k, p =

p′. Equation (2.12) implies that fij = 0 for i 6= j so S(ξ1, . . . , ξp) = (f1ξ1, . . . , fpξp)
(we used the notation fi = fii).

The fact that SUC′ = UCS can be rewritten:

f1(x)eiθ′1
√
Nξ2(Nx) = eiθ1

√
Nf2(Nx)ξ2(Nx)

...

fp−1(x)eiθ′p−1
√
Nξp(Nx) = eiθp−1

√
Nfp(Nx)ξp(Nx)

fp(x)eiθ′p
√
Nξ1(Nx) = eiθp

√
Nf1(Nx)ξ1(Nx),

so
f1(x) = ei(θ1−θ′1)f2(Nx), a.e.,

...

fp−1(x) = ei(θp−1−θ′p−1)fp(Nx), a.e.,

fp(x) = ei(θp−θ′p)f1(Nx), a.e.

Theorem 2.15. Let m0 satisfy (1.1)–(1.4). Let C1, . . . , Cn be the m0-
cycles. Then, each h ∈ C(T) with Rm0,m0h = h can be written uniquely as

h =
n∑

i=1

αihm0,Ci

with αi ∈ C. Moreover αi = h|Ci. In particular, 1 =
n∑

i=1

hm0,Ci .

Proof. Proposition 2.13 (iii) shows that hm0,Ci are linearly independent.
Since the dimension of {h ∈ C(T : Rm0,m0h = h} is n (see [3]), it follows that
hm0,Ci form a basis for this space. So

h =
n∑

i=1

αihm0,Ci

for some αi ∈ C. An application of Proposition 2.13 (iii) shows that αi = h|Ci.
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Theorem 2.16. Suppose m0 satisfies the conditions (1.1)–(1.4). Let
C1, . . . , Cn be the m0-cycles. For each i consider (UCi

, πCi
, ϕCi

) which give the
cyclic representation corresponding to hm0,Ci

(see Proposition 2.13). Define

U = UC1 ⊕ · · · ⊕ UCn , π = πC1 ⊕ · · · ⊕ πCn , ϕ = ϕC1 ⊕ · · · ⊕ ϕCn .

Then (U, π, ϕ) give the cyclic representation corresponding to the constant function
1. Each element S in the commutant of this representation has the form S =
SC1 ⊕ · · · ⊕ SCn , where SCi is in the commutant of (UCi , πCi , ϕCi).

Proof. Since

1 =
n∑

i=1

hm0,Ci

for the first statement, it is enough to check that ϕ is cyclic. For this we will
need the commutant and then the reasoning is the same as the one in the proofs of
Proposition 2.11 (iii) or Proposition 2.13 (vi). But Lemma 2.14 makes it clear that
the elements of the commutant have the form mentioned in the hypotesis (see also
the proof of Theorem 2.17). We also need to prove that if S is in the commutant,
S = S2 = S∗ and Sϕ = ϕ then S is the identity. But,

S = SC1 ⊕ · · · ⊕ SCn ,

so SCi = S2
Ci

= S∗Ci
and SCiϕCi = ϕCi , and, as ϕCi is cyclic in the corresponding

representation, it follows that SCi is the identity so S = I.

Theorem 2.17. Suppose m0 satisfies (1.1)–(1.4). Let C1, . . . , Cn be the
m0-cycles, Ci : z1i, z2i = zN

1i , . . . , zpi i = zN
pi−1 i, z1i = zN

pi i, for i ∈ {1, . . . , n}. Let
gk,m0,Ci be as in Proposition 2.13, k ∈ {1, . . . , pi}, i ∈ {1, . . . , n}.

If h ∈ C(T), h 6= 0 and Rm0,m0h = λh for some λ ∈ T, then there exists an
i ∈ {1, . . . , n} such that λpi = 1, and there exist αi ∈ C, i ∈ {1, . . . , n} such that

h =
n∑

i=1

αi

( pi∑

k=1

λ−k+1gk,m0,Ci

)

and αi = 0 if λpi 6= 1.

Proof. First note that instead of m0 we can take |m0| and the problem re-
mains the same. We have

1
N

∑

wN=z

λm0(w)m0(w)h(w) = h(z), z ∈ T,

so Rλm0,m0h = h. Using Theorem 1.3, it follows that h induces an intertwining
operator S : Hm0 → Hλm0 , where (Hm0 , πm0 , ϕm0) is the cyclic representation
corresponding to the constant function 1 and m0, and (Hλm0 , πλm0 , ϕλm0) is the
cyclic representation corresponding to 1 and λm0.

Using Theorem 2.16 and proposition 2.13, we see thatHm0 = Hλm0 , πm0(f) =
πλm0(f), for f ∈ L∞(T), ϕm0 = ϕλm0 and Uλm0 = λUm0 .

The intertwining property of S implies that

SUm0 = λUm0S and Sπm0(f) = πm0(f)S, f ∈ L∞(T).
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If PCi
is the projection onto the components corresponding to the cycle Ci then

we see that PCi commutes with both Um0 and πm0(f) for f ∈ L∞(T). Therefore

(PCi
SPCj

)UCj
= λUCi

(PCi
SPCj

),

(PCi
SPCj

)πCj
(f) = πCi

(f)(PCi
SPCj

), f ∈ L∞(T).

Using Lemma 2.14, we obtain, (PCiSPCj ) = 0 if i 6= j and for each i ∈ {1, . . . , n}
there exist f1i, . . . , fpi i ∈ L∞(R) such that

(PCi
SPCj

)(ξ1, . . . , ξpi
) = (f1iξ1, . . . , fpi iξpi

),

f1i(x) = λf2i(Nx) a.e.,

. . . ,

fpi−1 i(x) = λfpi i(Nx) a.e.,

fpi i(x) = λf1i(Nx) a.e.

Also, as
∫
T
fh dµ = 〈ϕm0 : πm0(f)Sϕm0〉, f ∈ L∞(T), after periodization we get

h =
n∑

i=1

pi∑

k=1

αz−1
ki

(Per(fki|ϕk,m0,Ci |2)).

We want to prove that each fki is continuous at 0. Take i ∈ {1, . . . , n}, k ∈
{1, . . . , pi}. We know from Proposition 2.13 that gk,m0,Ci is 1 at zki and 0 at every
other zlj . Then

|αz−1
lj

(Per(flj |ϕl,m0,Cj |2))| 6 ‖flj‖∞gl,m0,Cj ,

so, this function has limit 0 at zki for (l, j) 6= (i, k). The argument used in the proof
of Proposition 2.11 (v) can be repeated here to obtain that lim

x→0
fki(x) = h(zki).

On the other hand we have

(2.13) fki(Npix) = λ−pifki(x)

so if we let x→ 0, we obtain h(zki) = λ−pih(zki). Consequently, h(zki) = fki = 0
or λpi = 1. Since h 6= 0, there exists an i ∈ {1, . . . , n} with λpi = 1.

For an i with λpi 6= 1 we have fki = 0 for all k ∈ {1, . . . , pi}. Now take an i
with λpi = 1. From (2.13) and the fact that fki is continuous at 0, it follows that
fki is constant. Let αi = f1i. Then f2i = λ−1αi, . . . , fpi i = λ−pi+1αi and the last
assertion of the theorem is proved.

Corollary 2.18. Let m0 as in Theorem 2.17. For an eigenvalue λ ∈ T
and i with λpi = 1, define hλ

m0,Ci
=

pi∑
k=1

λ−k+1gk,m0,Ci . Then for each eigenvalue

λ ∈ T, the eigenfunctions hλ
m0,Ci

with λpi = 1 are linearly independent. Moreover,
if we define the measures

νλ
i =

1
pi

pi∑

k=1

λk−1δzki
, i ∈ {1, . . . , n}, λ ∈ T, λpi = 1,
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where δz is the Dirac measure at z, then

Tλ(f) =
n∑

i=1
λpi=1

νλ
i (f)hλ

m0,Ci
.

Proof. First, we see that Theorem 2.17 implies that hλ
m0,Ci

with λpi = 1
span the eigenspace corresponding to the eigenvalue λ. Then we also note that,
using Proposition 2.13 (ii) we have:

(2.14) νλ
i (hλ

m0,Cj
) = δij .

This shows that hλ
m0,Ci

are linearly independent.
On the other hand we have for all f ∈ C(T), using the fact that Ci is an

m0-cycle:

νλ
i (Rm0,m0(f)) =

1
pi

pi∑

k=1

λk−1δzki
(Rm0,m0(f))

=
1
pi

pi∑

k=1

λk−1 1
N

∑

wN=zki

|m0(w)|2f(w)

=
1
pi

pi∑

k=1

λk−1 1
N

(
|m0(zk−1 i)|2f(zk−1 i) +

∑

wN=zki
w 6=zk−1 i

|m0(w)|2f(w)
)

=
1
pi

pi∑

k=1

λk−1f(zk−1 i) = λνλ
i (f).

Then, according to Theorem 2.6,

νλ
i (Tλ(f)) = lim

n→∞
1
n

n∑

k=1

λ−kνλ
i (Rk

m0,m0
(f)) = lim

n→∞
1
n

n∑

k=1

λ−kλkνλ
i (f) = νλ

i (f).

This, together with (2.14) and the fact that hλ
m0,Ci

form a basis for the eigenspace,
imply the last equality of the corollary.
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