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Abstract

The WaveScalar Architecture

Steven Swanson

Chair of the Supervisory Committee:
Assistant Professor Mark Oskin
Computer Science & Engineering

Silicon technology will continue to provide an exponential increase in the avail-

ability of raw transistors. Effectively translating this resource into application per-

formance, however, is an open challenge that conventional superscalar designs will

not be able to meet. We present WaveScalar as a scalable alternative to conven-

tional designs. WaveScalar is a dataflow instruction set and execution model de-

signed for scalable, low-complexity, high-performance processors. Unlike previous

dataflow machines, WaveScalar can efficiently provide the sequential memory seman-

tics imperative languages require. To allow programmers to easily express parallelism,

WaveScalar supports pthread-style, coarse-grain multithreading and dataflow-style,

fine-grain threading. In addition, it permits blending the two styles within an appli-

cation or even a single function.

To execute WaveScalar programs, we have designed a scalable, tile-based processor

architecture called the WaveCache. As a program executes, the WaveCache maps the

program’s instructions onto its array of processing elements (PEs). The instructions

remain at their processing elements for many invocations, and as the working set

of instructions changes, the WaveCache removes unused instructions and maps new

instructions in their place. The instructions communicate directly with one-another

over a scalable, hierarchical on-chip interconnect, obviating the need for long wires





and broadcast communication.

This thesis presents the WaveScalar instruction set and evaluates a simulated

implementation based on current technology. For single-threaded applications, the

WaveCache achieves performance on par with conventional processors, but in less

area. For coarse-grain threaded applications, WaveCache performance scales with

chip size over a wide range, and it outperforms a range of the multi-threaded designs.

The WaveCache sustains 7-14 multiply-accumulates per cycle on fine-grain threaded

versions of well-known kernels. Finally, we apply both styles of threading to an

example application, equake from spec2000, and speed it up by 9× compared to the

serial version.
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Chapter 1

INTRODUCTION

It is widely accepted that Moore’s Law will hold for the next decade. Although

more transistors will be available, simply scaling up current architectures will not

convert them into commensurate increases in performance [5]. The gap between

the increases in performance we have come to expect and those that larger versions

of existing architectures can deliver will force engineers to search for more scalable

processor architectures.

Three problems contribute to this gap: (1) the ever-increasing disparity between

computation and communication performance – fast transistors but slow wires; (2)

the increasing cost of circuit complexity, leading to longer design times, schedule

slips, and more processor bugs; and (3) the decreasing reliability of circuit technol-

ogy, caused by shrinking feature sizes and continued scaling of the underlying material

characteristics. In particular, modern superscalar processor designs will not scale, be-

cause they are built atop a vast infrastructure of slow broadcast networks, associative

searches, complex control logic, and centralized structures.

This thesis proposes a new instruction set architecture (ISA), called WaveScalar [59],

that adopts the dataflow execution model [21] to address these challenges in two ways.

First, the dataflow model dictates that instructions execute when their inputs are

available. Since detecting this condition can be done locally for each instruction, the

dataflow model is inherently decentralized. As a result, it is well-suited to implemen-

tation in a decentralized, scalable processor. Dataflow does not require the global

coordination (i.e, the program counter) that the von Neumann model relies on.
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Second, the dataflow model represents programs as dataflow graphs, allowing

programmers and compilers to express parallelism explicitly. Conventional high-

performance von Neumann processors go to great lengths to extract parallelism from

the sequence of instructions that the program counter generates. Making parallelism

explicit removes this complexity from the hardware, reducing the cost of designing a

dataflow machine.

WaveScalar also addresses a long standing deficiency of dataflow systems. Pre-

vious dataflow systems could not efficiently enforce the sequential memory seman-

tics that imperative languages, such as C, C++, and Java, require. They required

purely functional dataflow languages that limited dataflow’s applicability to appli-

cations programmers were willing to rewrite from scratch. A recent ISCA keynote

address [7] noted that for dataflow systems to be a viable alternative to von Neumann

processors, they must enforce sequentiality on memory operations without severely

reducing parallelism among other instructions. WaveScalar addresses this challenge

with wave-ordered memory, a memory ordering scheme that efficiently provides the

memory ordering that imperative languages need.

WaveScalar uses wave-ordered memory to replicate the memory-ordering capabil-

ities of a conventional multi-threaded von Neumann system, but it also supports two

interfaces not available in conventional systems. First, WaveScalar’s fine-grain thread-

ing interface efficiently supports threads that consist of only a handful of instructions.

Second, it provides an unordered memory interface that allows programmers to ex-

press memory parallelism. Programmers can combine both coarse- and fine-grain

threads and unordered and wave-ordered memory in the same program or even the

same function. Our data show that applying diverse styles of threading and mem-

ory to a single program can expose significant parallelism in code that is otherwise

difficult to parallelize.

Exposing parallelism is only the first task. The processor must then translate that

parallelism into performance. We exploit WaveScalar’s decentralized dataflow execu-
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tion model to design the WaveCache, a scalable, decentralized processor architecture

for executing WaveScalar programs. The WaveCache has no central processing unit.

Instead it consists of a substrate of simple processing elements (PEs). The Wave-

Cache loads instructions from memory and assigns them to PEs on demand. The

instructions remain at their PEs for many, potentially millions, of invocations. As

the working set of instructions changes, the WaveCache evicts unneeded instructions

and loads newly activated instructions in their place.

This thesis describes and evaluates the WaveScalar ISA and WaveCache archi-

tecture. First, it describes those aspects of WaveScalar’s ISA (Chapters 2-3) and

the WaveCache architecture (Chapter 4) that enable the execution of single-threaded

applications, including the wave-ordered memory interface.

We then extend WaveScalar and the WaveCache to support conventional pthread-

style threading (Chapter 5). The changes to WaveScalar include light-weight dataflow

synchronization primitives and support for multiple, independent sequences of wave-

ordered memory operations.

To evaluate the WaveCache, we use a wide range of workloads and tools (Chap-

ter 6). We begin our investigation by performing a pareto analysis of the design space

(Chapter 7). The analysis provides insight into WaveScalar’s scalability and shows

which WaveCache designs are worth building.

Once we have tuned the design, we then evaluate the performance of a small Wave-

Cache on several single-threaded applications. The WaveCache performs comparably

to a modern out-of-order superscalar design, but requires only ∼70% as much silicon

area. For the six Splash2 [6] parallel benchmarks we use, WaveScalar achieves nearly

linear speedup.

To complete the WaveScalar instruction set, we delve into WaveScalar’s dataflow

underpinnings (Chapter 8), the advantages they provide, and how programs can com-

bine them with conventional multi-threading. We describe WaveScalar’s “unordered”

memory interface and show how it combines with fine-grain threading to reveal sub-
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stantial parallelism. Finally, we hand-code three common kernels and rewrite part of

the equake benchmark to use a combination of fine- and coarse-grain threading styles.

These techniques speed up the kernels by between 16 and 240 times and equake by a

factor of 9 compared to the serial versions.

Chapter 9 places this work in context by discussing related work, and Chapter 10

concludes.
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Chapter 2

WAVESCALAR SANS MEMORY

The dataflow execution model differs fundamentally from the von Neumann model

that conventional processors use. The two models use different mechanisms for rep-

resenting programs, selecting instructions for execution, supporting conditional exe-

cution, communicating values between instructions, and accessing memory.

This chapter describes the features that WaveScalar inherits from past dataflow

designs. It provides context for the description of the memory interface in Chapter 3

and the multi-threading facilities in Chapter 5.

For comparison, we first describe the von Neumann model and two of its lim-

itations, namely that it is centralized and cannot express parallelism between in-

structions. Then we present WaveScalar’s decentralized and highly-parallel dataflow

model.

2.1 The von Neumann model

Von Neumann processors represent programs as a list of instructions that reside in

memory. A program counter (PC) selects instructions for execution by stepping from

one memory address to the next, causing each instruction to execute in turn. Special

instructions can modify the PC to implement conditional execution, function calls,

and other types of control transfer.

In modern von Neumann processors, instructions communicate with one another

by writing and reading values in the register file. After an instruction writes a value

into the register file, all subsequent instructions can read the value.

At its heart, the von Neumann model describes execution as a linear, centralized
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process. A single PC guides execution, and there is always exactly one instruction

that, according to the model, should execute next. The model makes control transfer

easy, tightly bounds the amount of state the processor must maintain, and provides a

simple set of semantics. It also makes the von Neumann model an excellent match for

imperative programming languages. Finally, its overwhelming commercial popularity

demonstrates that constructing processors based on the model is feasible.

However, the von Neumann model has two key weaknesses. First, it expresses

no parallelism. Second, although von Neumann processor performance has improved

exponentially for over three decades, the large associative structures, deep pipelines,

and broadcast-based bypassing networks they use to extract parallelism have stopped

scaling [5].

2.2 WaveScalar’s dataflow model

WaveScalar’s dataflow model differs from the von Neumann in nearly all aspects

of operation. WaveScalar represents programs as dataflow graphs instead of linear

sequences of instructions. The nodes in the graph represent instructions, and com-

munication channels or edges connect them. Dataflow edges carry values between

instructions, replacing the register file in a von Neumann system.

Instead of a program counter, the dataflow firing rule [22] determines when in-

structions execute. The firing rule allows instructions to execute when all their in-

puts are available, but places no other restrictions on execution. The dataflow firing

rule does not provide a total ordering on instruction execution, but does enforce the

dependence-based ordering defined by the dataflow graph. Dataflow’s relaxed in-

struction ordering allows it to exploit any parallelism in the dataflow graph, since

instructions with no direct or indirect data dependences between them can execute

in parallel.

Dataflow’s decentralized execution model and its ability to explicitly express par-

allelism are its primary advantages over the von Neumann model. However, these
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D = (A + B) / (C - 2)

+ - 2

÷

A B C

D

.label begin

Add temp_1 ←  A, B

Sub temp_2 ← C, #2

Div D ← temp_1, temp_2

(a) (b) (c)

Figure 2.1: A simple dataflow fragment: A simple program statement (a), its
dataflow graph (b), and the corresponding WaveScalar assembly (c).

advantages do not come for free. Control transfer is more expensive in the dataflow

model, and the lack of a total order on instruction execution makes it difficult to

enforce the memory ordering that imperative languages require. Chapter 3 addresses

this latter shortcoming.

Below we describe the aspects of WaveScalar’s ISA that do not relate to the

memory interface. Most of the information is not unique to WaveScalar and reflects

its dataflow heritage. We present it here for completeness and to provide a thorough

context for the discussion of memory ordering, which is WaveScalar’s key contribution

to dataflow instructions sets.

2.2.1 Program representation and execution

WaveScalar represents programs as dataflow graphs. Each node in the graph is an

instruction, and the arcs between nodes encode static data dependences (i.e., depen-

dences that are known to exist at compile time) between instructions. Figure 2.1

shows a simple piece of code, its corresponding dataflow graph, and the equivalent

WaveScalar assembly language.

The mapping between the drawn graph and the dataflow assembly language is
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simple: each line of assembly represents an instruction, and the arguments to the

instructions are dataflow edges. Outputs precede the ‘←’.

The assembly code resembles RISC-style assembly but differs in two key respects.

First, although the dataflow edges syntactically resemble register names, they do

not correspond to a specific architectural entity. Consequently, like pseudo-registers

in a compiler’s program representation, there can be an arbitrary number of them.

Second, the order of the instructions does not affect their execution, since they will be

executed in dataflow fashion. Each instruction does have a unique address, however,

used primarily for specifying function call targets (see Section 2.2.4). As in assembly

languages for von Neumann machines, we can use labels (e.g., begin in the figure) to

refer to specific instructions. We can also perform arithmetic on labels. For instance

begin +1 refers to the Sub instruction.

Unlike the PC-driven von Neumann model, execution of a dataflow program is

data-driven. Instructions execute according to the dataflow firing rule, which stipu-

lates that an instruction can fire at any time after values arrive on all of its inputs.

Instructions send the values they produce along arcs in the program’s dataflow graph

to their consumer instructions, causing them to fire in turn. In Figure 2.1, once in-

puts A and B are ready, the Add can fire and produce the left-hand input to the

Div. Likewise, once C is available, the Sub computes the other input to the Div

instruction. The Div then executes and produces D.

2.2.2 Control flow

Dataflow’s decentralized execution algorithm makes control transfers more difficult

to implement. WaveScalar provides two methods for implementing control. Instead

of steering a single PC through the executable, so that the processor executes one

path instead of the other, WaveScalar’s Steer instruction guides values into one part

of the dataflow graph and prevents them from flowing into another. Alternatively,

the compiler could structure the dataflow graph to perform both computations and
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if (A > 0)

D = C + B;

else

D = C - E;

F = D + 1; + -

S S

>0

S

+1

C B E

D D

A

F

+ ->0

C B EA

φ

+1

F

D

(A) (b) (c)

Figure 2.2: Implementing control in WaveScalar: An If-Then-Else construct
(a) and equivalent dataflow representations using Steer instructions (b) and φ in-
structions (c).

later discard the results on the wrong path using a φ instruction. In both cases, the

dataflow graph must contain a control instruction for each live value, which is the

source of some overhead in the form of extra static instructions.

The Steer instruction takes an input value and a boolean output selector. It

directs the input to one of two possible outputs depending on the selector value,

effectively steering data values to the instructions that should receive them. Fig-

ure 2.2(b) shows a simple conditional implemented with Steer instructions. Steer

instructions correspond closely to traditional branch instructions. In many cases a

Steer instruction can be combined with a normal arithmetic operation. For exam-

ple, Add-and-Steer takes three inputs: a predicate and two operands, and steers

the result depending on the predicate. WaveScalar provides a steering version for all

1- and 2-input instructions, eliminating 82% of the overhead Steer instructions.

The φ instruction [18] takes two input values and a boolean selector input and,
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sum = 0;

for(i = 0; i < 5; i++)

sum += i;

  const #0   const #0

+ +1

<5

S S

sum_first

sum_out

p

i_backedge

trigger

  const #0   const #0

+ +1

<5

S S

WAWA

WA

(a) (b) (c)

waves

Figure 2.3: Loops in WaveScalar: Code for a simple loop (a), a slightly broken
implementation (b), and the correct WaveScalar implementation (c).

depending on the selector, passes one of the inputs to its output. φ instructions are

analogous to conditional moves and provide a form of predication. They remove the

selector input from the critical path of some computations and therefore increase par-

allelism, but they waste the effort spent computing the unselected input. Figure 2.2(c)

shows φ instructions in action.

2.2.3 Loops and waves

The Steer instruction may appear to be sufficient for WaveScalar to express loops,

since it provides a basic branching facility. However, in addition to branching,

dataflow machines must also distinguish dynamic instances of values from different

iterations of a loop. Figure 2.3(a) shows a simple loop that illustrates the problem

and WaveScalar’s solution.

Execution begins when data values arrive at the Const instructions, which inject

zeros into the body of the loop, one for sum and one for i (Figure 2.3(b)). On each

iteration through the loop, the left side updates sum and the right side increments i
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and checks whether it is less than 5. For the first 5 iterations (i = 0 . . . 4), p is true

and the Steer instructions steer the new values for sum and i back into the loop.

On the last iteration, p is false, and the final value of sum leaves the loop via the

sum out edge. Since i is dead after the loop, the false output of the right-side Steer

instruction produces no output.

The problem arises because the dataflow execution model does not bound the

latency of communication over an arc and makes no guarantee that values arrive in

order. If sum first takes a long time to reach the Add instruction, the right side

portion of the dataflow graph could run ahead of the left side, generating multiple

values on i backedge and p. How would the Add and Steer instructions on the left

know which of these values to use? In this particular case, the compiler could solve

the problem by unrolling the loop completely, but this is not always possible.

Previous dataflow machines provided one of two solutions. In the first, static

dataflow [21, 20], only one value is allowed on each arc at any time. In a static

dataflow system, the dataflow graph as shown works fine. The processor would use

back-pressure to prevent the ’< 5’ and ’+1’ instructions from producing a new value

before the old values had been consumed. Static dataflow eliminates the ambiguity

between value instances, but it reduces parallelism because multiple iterations of a

loop cannot execute simultaneously. Similarly, multiple calls to a single function

cannot execute in parallel, making recursion impossible.

A second model, dynamic dataflow [56, 30, 35, 28, 50], tags each data value with

an identifier and allows multiple values to wait at the input to an instruction. The

combination of a data value and its tag is called a token. Dynamic dataflow machines

modify the dataflow firing rule so an instruction fires only when tokens with matching

tags are available on all its inputs. WaveScalar is a dynamic dataflow architecture.

Dynamic dataflow architectures differ in how they manage and assign tags to

values. In WaveScalar the tags are called wave-numbers [59]. We denote a WaveScalar

token with wave-number W and value v as <W>.v. WaveScalar assigns wave numbers
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to compiler-defined, acyclic portions of the dataflow graph called waves. Waves are

similar to hyperblocks [41], but they are more general, since they can contain control-

flow joins and can have more than one entrance. Figure 2.3(c) shows the example

loop divided into waves (as shown by the dotted lines). At the top of each wave a set

of Wave-Advance instructions (the small diamonds) increments the wave numbers

of the values that passes through it.

Assume the code before the loop is wave number 0. When the code executes,

the two Const instructions each produce the token <0>.0 (wave number 0, value

0). The Wave-Advance instructions take these as input and output <1>.0, so the

first iteration executes in wave 1. At the end of the loop, the right-hand Steer

instruction will produce <1>.1 and pass it back to the Wave-Advance at the top

of its side of the loop, which will then produce <2>.1. A similar process takes place

on the left side of the graph. After 5 iterations the left Steer instruction produces

the final value of sum: <5>.10, which flows directly into the Wave-Advance at the

beginning of the follow-on wave.

With the Wave-Advance instructions in place, the right side can run ahead

safely, since instructions will only fire when the wave numbers in the operand tags

match. More generally, waves numbers allow instructions from different wave in-

stances, in this case iterations, to execute simultaneously.

Wave-numbers also play a key role in enforcing memory ordering (Chapter 3).

2.2.4 Function calls

Function calls on a von Neumann processor are fairly simple – the caller saves caller-

saved registers, pushes function arguments and the return address onto the stack (or

stores them in specific registers), and then uses a jump instruction to set the PC to

the address of the beginning of the called function, triggering its execution.

Dataflow architectures adopt a different convention. WaveScalar does not need to

preserve register values (there are no registers), but it must explicitly pass arguments
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and a return address to the function and trigger its execution.

Passing arguments to a function creates a data dependence between the caller and

the callee. For indirect functions, these dependences are not statically known and

therefore the dataflow graph of the application does not contain them. To compen-

sate, WaveScalar provides an Indirect-Send instruction to send a data value to an

instruction at a computed address.

Indirect-Send takes as input the data value to send, a base address for the des-

tination instruction (usually a label), and the offset from that base (as an immediate).

For instance, if the base address is 0x1000, and the offset is 4, Indirect-Send sends

the data value to the instruction at 0x1004.

Figure 2.4 contains the assembly code and dataflow graph for a small function

and a call site. Dashed lines in the graph represent the dependences that exist only

at run time. The Landing-Pad instruction provides a target for a data value sent

via Indirect-Send1. The caller uses three Indirect-Send instructions to call the

function, two for the arguments A and B and one for the return address, which is the

address of the return Landing-Pad (label ret in the figure). The Indirect-Send

instructions compute the address of the destination instruction from the address of

foo and their immediate values.

When the values arrive at foo, the Landing-Pad instructions pass them to

Wave-Advance instructions that forward them into the function body. Once the

function is finished, perhaps having executed many waves, foo uses a single Indirect-

Send to return the result to the caller’s Landing-Pad instruction. After the function

call, the caller starts a new wave using a Wave-Advance.

1Landing-Pad instructions are not strictly necessary, since Indirect-Sends can target any
single-input instruction. We use them here for clarity.
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.label foo

Landing_Pad return_addr_in ←

Landing_Pad A_in ←

Landing_Pad B_in ←

Wave_Advance     return_addr ← return_addr_in

Wave_Advance     A_addr ← A_addr_in

Wave_Advance     B ← B_in

Add return_value ← A, B
Indirect_Send return_value, return_addr, #0

...

Const callee ← #foo

Const return_addr ← #ret
Indirect_Send return_addr, callee, #0
Indirect_Send A, callee, #1
Indirect_Send B, callee, #2
.label ret

Landing_Pad result_v ←

Wave_Advance     result ← result_v
...

int foo(int A, int B) {
return A + B;

}
...
result = foo(A,B);

(a) (b)

  const #foo const #ret

  ind_send #0   ind_send #1   ind_send #2

landing_pad

landing_pad

+

  ind_send #0

A B

landing_pad landing_pad

return_addr

A B

foo:

WA WAWA

result

WA

ret:

(c)

Figure 2.4: A function call: A simple function call (a), the assembly language
version (b), and the dataflow graph (c).
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2.3 Discussion

The parts of the WaveScalar’s instruction set and execution model described in this

chapter borrow extensively from previous dataflow systems, but they do not include

facilities for accessing memory. The interface to memory is among the most impor-

tant components of any architecture, because changing memory is, from the outside

world’s perspective, the only thing a processor does. The next chapter describes the

fundamental incompatibility between pure dataflow execution and the linear ordering

of memory operations that von Neumann processors provide and imperative languages

rely upon. It also describe the interface WaveScalar provides to bridge this gap and

to allow von Neumann-style programs to run efficiently on a dataflow machine.
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Chapter 3

WAVE-ORDERED MEMORY

One of the largest obstacles to the success of previous dataflow architectures was

their inability to efficiently execute programs written in conventional, imperative pro-

gramming languages. Imperative languages require memory operations to occur in a

strictly defined order to enforce data dependences through memory. Since these data

dependences are implicit (i.e., they do not appear in the program’s dataflow graph)

the dataflow execution model does not enforce them. WaveScalar surmounts this ob-

stacle by augmenting the dataflow model with a memory interface called wave-ordered

memory.

Wave-ordered memory capitalizes on wave and wave-number constructs defined

in Section 2.2.3. The compiler annotates memory operations within a wave with

ordering information so the memory system can “chain” the operations together in the

correct order. At runtime, the wave numbers provide ordering between the “chains”

of operations in each wave and, therefore, across all the operations in a program.

The next section defines the ordering problem. Section 3.2 describes the wave-

ordering scheme in detail. The section defines the wave-ordered memory annotations

and defines an abstract memory system that provides precise semantics for wave-

ordered memory. Section 3.3 describes an extension to the wave-ordered memory

scheme to express parallelism between operations.

We evaluate wave-ordered memory in Section 3.4 and compare it to another pro-

posed solution to the memory ordering problem, token-passing [12, 13]. We find that

wave-ordered memory reveals twice as much memory parallelism as token-passing and

investigate the reasons for the disparity.
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Finally, Section 3.5 builds on the basics of wave-ordered memory to propose ex-

tensions to the system that may make it more efficient in some scenarios. It also

presents sophisticated applications of wave-ordered memory aimed at maximizing

memory parallelism and exploiting alias information.

The focus of this chapter is on wave-ordered memory’s ability to express ordering

and memory parallelism independent of the architecture that incorporates it. We do

not address the hardware costs and trade-offs involved in implementing wave-ordered

memory, because those issues necessarily involve the entire architecture. Chapter 5

provides a thorough discussion of these issues in the WaveScalar processor architecture

and demonstrates that wave-ordered memory is practical in hardware.

3.1 Dataflow and memory ordering

This section describes the problem of enforcing imperative language memory ordering

in a dataflow environment. First, we define the ordering that imperative languages

require and discuss how von Neumann machines provide it. Then we demonstrate

why dataflow has trouble enforcing memory ordering.

3.1.1 Ordering in imperative languages

Imperative languages such as C and C++ provide a simple but powerful memory

model. Memory is a large array of bytes that programs access, reading and writing

bytes at will. To ensure correct execution, memory operations must (appear to) be

applied to memory in the order the programmer specifies (i.e., in program order).

In a traditional von Neumann processor, the program counter provides the req-

uisite sequencing information. It encounters memory operations as it steps through

the program and feeds them into the processor’s execution core. Modern processors

often allow instructions to execute out-of-order, but they must guarantee that the

instructions, especially memory instructions, execute in the order specified by the

PC.
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Load

A[i+k] = x;

y = A[i];

+

Store

+

+

A ikx

y

j

Figure 3.1: Program order: A simple code fragment and the corresponding dataflow
graph demonstrating the dataflow memory ordering problem.

3.1.2 Dataflow execution

Dataflow ISAs only enforce the static data dependences in a program’s dataflow graph,

because they have no mechanism to ensure that memory operations occur in program

order. Figure 3.1 shows a dataflow graph that demonstrates this problem. The Load

must execute after the Store to ensure correct execution (dashed line), but conven-

tional dataflow instruction sets have difficulty expressing this ordering relationship,

because the relationship depend on runtime information (i.e., whether k is equal to

zero).

WaveScalar is the first dataflow instruction set and execution model that can

enforce the ordering between memory operations without unduely restricting the par-

allelism available in the dataflow graph. The next section describes wave-ordered

memory and how it enforces the implicit dependences that imperative languages de-

pend upon. Then we compare the scheme to an alternative solution and discuss

potential enhancements.
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3.2 Wave-ordered memory

Wave-ordered memory provides the sequential memory semantics that imperative

programming languages require. Compiler-supplied annotations order the operations

within each wave (Section 2.2.3) of the program. The wave numbers associated with

each dynamic wave, which increase from one wave to the next, provide ordering

between waves. The combination of these two orderings provides a total order on all

the memory operations in the program.

Once we have described how wave-ordered memory fits into the WaveScalar model

from Chapter 2, we describe the annotations the compiler provides and how they

define the necessary ordering. Finally, we briefly discuss an alternative solution to

the dataflow memory ordering problem.

3.2.1 Adding memory to WaveScalar

Load and Store operations in WaveScalar programs fire according to the dataflow

firing rule, just as normal instructions do. When they execute they send a request

to the memory system that includes the current wave number and the annotations

described below. In response to Load operations, the memory system returns the

value read from memory. Store operations do not generate a response. WaveScalar

does not bound the delay between instruction execution and the request arriving

at the memory system or guarantee that operations will arrive in order. Previous

dataflow research refers to this type of memory interface as “split-phase” [16].

The split-phase interface provides two useful properties. First, it places few con-

straints on the memory system’s implementation. Second, it allows us to describe the

memory system without reference to the rest of the execution model. The description

of wave-ordered memory below exploits this fact extensively. For the purposes of

this chapter, all we need to know about WaveScalar execution is that it maintains

wave numbers properly and that memory requests eventually arrive at the memory
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Load <.,0,1>

Store <0,1,2>

Load <1,2,.>

Sequence #

Predecessor

Successor

Figure 3.2: Simple wave-ordered annotations: The three memory operations
must execute in the order shown.

interface.

3.2.2 Wave-ordering annotations

Wave-ordering annotations order the memory operations within a single wave. The

annotations must guarantee two properties. First, they must ensure that the memory

operations within a wave execute in the correct order. Wave-ordered memory achieves

this by giving each memory operation in a wave a sequence number. Sequence numbers

increase on all paths through a wave, ensuring that instructions with larger wave

numbers come later in program order. Figure 3.2 shows a very simple series of memory

operations and their annotations. The sequence number is the second of the three

numbers in angle brackets. It is often convenient to refer to memory instructions by

their sequence number (e.g., the first Load is instruction 0).

Second, wave-ordered memory must detect when all memory operations that come

before a particular instruction (in program order) have executed. In the absence of

branches, this is simple: since all the memory operations in a wave would eventually

execute, the memory system could simply wait for memory operations with all lower

sequence numbers to complete. Branches complicate this, however, because they

allow instructions on the taken path to execute while those on the untaken path do

not. To distinguish between operations that take a long time to fire and those that
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Load  <.,0,?>

Store <0,1,3> Store <0,2,3>

Load <?,3,.>

Load  <.,0,?>

Store <0,2,3>

Load <?,3,.>

Matches forming
a chain

Figure 3.3: Wave-ordering and control: Dashed boxes and lines denote basic
blocks and control paths.

never will, each memory operation also carries the sequence number of the next and

previous operations in program order.

Figure 3.2 includes these annotations as well. The predecessor number is the first

number between the brackets, and the successor number is the last. The Store has

annotations <0, 1, 2>, because the Load with sequence number 0 precedes it and

the Load with sequence number 2 follows it. The ’.’ symbols indicate that there is

no predecessor of operation 0 and no successor of operation 2 in this wave.

At branch (join) points the successor (predecessor) number is unknown at compile

time, because control may take either path. In these cases a wildcard symbol, ‘?,’

takes the place of the successor (predecessor) number.

The left-hand portion of Figure 3.3 shows a simple if-then-else control flow

graph with wildcard annotations on operations 0 and 3. The right-hand portion

depicts how memory operations on the taken path are sequenced, described below.

Intuitively, the annotations allow the memory system to “chain” memory opera-

tions together. When the compiler generates and annotates a wave, there are many

potential chains of operations through the wave, but only one chain (i.e., one control
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Load  <.,0,?>

Store <0,1,2>

Load <?,2,.>

Load  <.,0,?>

Store <0,1,3>

Load <?,3,.>

MemNop <0,2,3>

(a) (b)

Figure 3.4: Resolving ambiguity: An if-then without (a) and with (b) a
Memory-Nop to allow chaining.

path) executes each time the wave executes. For instance, the right side of Figure 3.3

shows the sequence of operations along one path through the code on the left. As

the ovals demonstrate, for each pair of consecutive memory instructions, either the

predecessor and sequence numbers or the successor and sequence numbers match.

For the chaining to be successful, the compiler must ensure that there is a complete

chain of memory operations along every path through a wave. The chain must begin

with an operation whose sequence number is 0 and end with an instruction with no

successor.

Ensuring that all possible chains through the wave are complete can require adding

extra instructions. Figure 3.4(a) shows an example. The branch and join mean that

instruction 0’s successor and instruction 2’s predecessor are both ‘?.’ If control takes

the right-hand path, the memory system cannot construct the required chain between

operations 0 and 2. To create a chain, the compiler inserts a special Memory-Nop

instruction between 0 and 2 on the right-hand path (Figure 3.4(b)). The Memory-

Nop has no effect on memory but does send a request to the memory interface to
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provide the missing link in the chain. Adding Memory-Nops introduces a small

amount of overhead, usually less than 3% of static instructions.

Once the compiler annotates the operations within each wave, the wave-ordered

memory system uses the information to enforce correct program behavior.

3.2.3 Formal ordering rules

To provide precise semantics for wave-ordered memory, we define an abstract memory

system that defines the range of correct behavior for a program that uses wave-ordered

memory. If a real memory system executes (or appears to execute) memory operations

in the same order as this abstract memory system, the real memory system is, by

definition, correct.

Describing an abstract memory system avoids the complications of an imple-

mentable design and does not tie the interface to a particular implementation. For

example, WaveScalar’s wave-ordering hardware restricts the number of sequence num-

bers in a wave, but other designs might not require such a constraint.

For each wave number, the abstract model maintains a list of memory requests,

called an operation buffer. The contents of operation buffers are sorted by sequence

number. During execution, requests arrive from memory instructions that have fired

according to the dataflow firing rule. Memory requests may arrive in any order. When

operations are ready to be applied to memory, they issue to the memory system and

leave the operation buffer.

The current operation buffer is the first buffer (i.e., the buffer with the lowest

wave number) that contains un-issued operations. The algorithm below guarantees

that there is only one current buffer.

The predecessor, sequence, and successor numbers of a memory operation, M , are

pred(M), seq(M), and succ(M), respectively. The wavefront, F , is the most recently

issued operation in the current buffer.

When a request arrives, the wave-ordering mechanism routes it to the operation
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buffer for the operation’s wave, inserts it into the buffer, and checks if it can issue

immediately.

An operation in the current buffer can issue if one of three conditions holds:

W1 If seq(M) == 0, M may execute.

W2 If pred(M) == seq(F ), M may execute.

W3 If succ(F ) == seq(M), M may execute.

The first rule allows the first operation in the current wave to issue. The next two

rules allow an operation to issue, if and only if, it forms a chain with the previous

memory operation, F .

If the operation can issue, it does so and F is updated. The model uses the same

three conditions to check if the next operation in the buffer can issue. If it can issue,

it does, and the process repeats until it either reaches an operation that is not ready

to issue or the end of the wave (i.e., an operation with ’.’ as it successor number).

If the operation cannot issue immediately, it remains in the operation buffer for

later execution.

If the process reaches the of end of the current buffer, the operation buffer cor-

responding to the next wave becomes the current buffer, F becomes undefined, and

the process continues with the first operation in the new current buffer.

In our example (Figure 3.3) each operation issues via a different condition. When

the wave shown becomes the current wave, condition W1 allows operation 0 to issue.

Once O has been applied to memory, condition W2 allows operation 2 to issue, since

pred(2) == seq(0). Finally, operation 3 issues via condition W3, since seq(3) ==

succ(2).
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3.2.4 Discussion

In addition to providing the semantics that imperative programming languages re-

quire, wave-ordered memory also provides the WaveScalar instruction set facility for

describing the control flow graph of an application. The predecessor, successor, and se-

quence numbers effectively summarize the control flow graph for the memory system.

To our knowledge, WaveScalar is the first instruction set to explicitly provide high-

level structural information about the program. Wave-ordered memory demonstrates

that hardware can exploit this type of high-level information. Providing additional

information and developing architectures that can exploit it is an alluring avenue for

future research.

Next, we extend wave-ordered memory so the compiler can express additional

information about parallelism among memory operations.

3.3 Expressing parallelism

The annotations and rules in Section 3.2 define the strict linear ordering necessary

for von Neumann-style memory semantics, but they ignore parallelism between load

operations. Wave-ordered memory can express this parallelism with a fourth anno-

tation, called a ripple number and denoted ripple(x), that allows consecutive Loads

to issue in parallel or out-of-order.

The ripple number of a Store is equal to its sequence number. A Load’s ripple

number is the sequence number of the Store that most immediately precedes it. To

compute the ripple number for a Load, the compiler collects the set of all Stores

that precede the Load on any path through the wave. The Load’s ripple number is

the maximum of the Stores’ sequence numbers.

Figure 3.5 shows a sequence of Load and Store operations with all four annota-

tions. To use ripples, we add a fourth condition to the ordering rules. A Load may

issue if it is next in the chain of operations (as before), or if the ripple number of the
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Store <.,0,1>.0

Load <0,1,2>.0

Load <1,2,3>.0

Store <2,3,4>.3

Store <4,5,.>.5

Load <3,4,5>.3
Normal links

Ripple-based
links

ripple number

Figure 3.5: Simple ripples: A single wave containing a single basic block with
parallelism expressed using ripple numbers.

Load is less than or equal to the sequence number of a previously issued operation

(a Load or a Store). Memory-Nops are treated like Loads.

Figure 3.5 shows the two different types of links that can allow an operation to fire.

The solid ovals between the bottom four operations are similar to those in Figure 3.3.

The top two dashed ovals depict ripple-based links that allow the two Loads to issue

in parallel.

Figure 3.6 contains a more sophisticated example. If control takes the right-side

branch, Loads 1 and 4-6 can issue in parallel once Store 0 has issued, because they

all have ripple numbers of 0. Load 7 must wait for one of Loads 4-6 to issue, because

ripple(7) == 2 and Loads 4-6 all have sequence numbers greater than 2. If control

takes the left branch, Loads 3 and 7 can issue as soon as Store 2 has issued.

Ripples also allow wave-ordered memory to exploit aliasing information that allows

some stores to issue out-of-order. If we allow a Store’s ripple number to differ from
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Load  <0,1,?>.0

Store <1,2,3>.2

Load <?,7,.>.2

Load <1,4,5>.0

Load <2,3,7>.2 Load <4,5,6>.0

Store  <.,0,1>.0

Load <5,6,7>.0

Figure 3.6: Ripples and control: A more sophisticated application of ripple num-
bers.

its sequence number, the wave-ordered interface can issue it according the same rules

that apply to Load operations. By applying ripples to easily-analyzed Stores (e.g.,

the stack or different fields in the same structure), the compiler can allow them to

issue in parallel.

3.4 Evaluation

Wave-ordered memory’s goal is to provide sequential memory semantics without in-

terfering with the parallelism that dataflow exposes. Therefore, the more parallelism

wave-ordered memory exposes, the better job it is doing. This section evaluates

wave-ordered memory and compares it to another ordering scheme called token pass-

ing [12, 13] by measuring the amount of memory parallelism each approach reveals.

It also describes an optimization that boosts wave-ordered memory’s effectiveness by

taking advantage of runtime information.
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3.4.1 Other approaches to dataflow memory ordering

Wave-ordered memory is not the only way to sequentialize memory operations in a

dataflow model. Researchers have proposed an alternative scheme that makes im-

plicit memory dependences explicit by adding a dataflow edge between each memory

operation and the next [12, 13]. While this token passing scheme is simple, our results

show that wave-ordered memory expresses twice as much memory parallelism.

Despite this, token-passing is very useful in some situations, because it gives the

programmer or compiler complete control over memory ordering. If very good memory

aliasing information is available, the programmer or compiler can express parallelism

directly by judiciously placing dependences only between those memory operations

that must actually execute sequentially. WaveScalar provides a simple token-passing

facility for just this purpose (Chapter 8).

3.4.2 Methodology

Our focus is on the expressive power of wave-ordered memory, not a particular proces-

sor architecture, so we use an idealized dataflow processor based on WaveScalar’s ISA

to evaluate wave-ordered memory. The processor has infinite execution resources and

memory bandwidth. Memory requests travel from the instructions to the memory

interface in a single cycle. Likewise data messages from one dataflow instruction to

another require a single cycle.

To generate dataflow executables, we compile applications with the DEC cc com-

piler using -O4 optimizations. A binary translator-based tool-chain converts these

binaries into dataflow executables. The binary translator does not perform any alias

analysis and uses a simple wave-creation algorithm. The wave-ordering mechanism

is a straightforward implementation of the algorithm outlined in Section 3.2. All

execution is non-speculative.

To compare wave-ordered memory to token-passing, we modify the binary trans-
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Figure 3.7: Memory parallelism: A comparison of Wave-ordered memory and
token-passing.

lator to use a simple token-passing scheme similar to [13] instead of wave-ordered

memory.

We use a selection of the Spec2000 [58] benchmark suite: ammp, art, equake, gzip,

mcf and twolf. We do not use all of the spec suite due to limitations of our binary

translator. We run each workload for 500 million instructions.

3.4.3 Results

Figure 3.7 shows the number of memory instructions executed per cycle (MIPC)

for four different ordering schemes. The first bar in each group is token-passing.

The second bar is wave-ordered memory without ripple annotations (i.e., no load

parallelism) and the third bar full-blown wave-ordered memory. The next section

describes the last bar.

Comparing the first two bars reveals that wave-ordered memory exposes twice as

much MIPC as token-passing on average, corresponding to a 46% increase in overall

IPC. The difference is primarily due to the steering dataflow machines use for con-

trol flow. The memory token is a normal data value, so the compiler must insert

Steer instructions to guide it along the path of execution. The Steer instructions
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introduce additional latency that can delay the execution of memory operations. In

our applications, there are an average of 2.5 Steer instructions between each pair of

consecutive memory operations.

Wave-ordered memory avoids this overhead by encoding the necessary control

flow information in the wave-ordering annotations. When the requests arrive at the

memory interface they carry that information with them. The wavefront, F , from the

algorithm in Section 3.2 serves the same conceptual purpose as the token: It moves

from operation to operation, allowing them to fire in the correct order, but it does

not traverse any non-memory instructions.

The graph also shows that between 0 and 5% of wave-ordered memory’s memory

parallelism comes from its ability to express load parallelism. If that is all the rip-

ple annotations can achieve, their value is dubious. However, our binary translator

performs no alias analysis and the waves it generates often contain few memory oper-

ations. We believe that a more sophisticated compiler will use ripples more effectively.

Section 3.5 describes two promising approaches for generating larger waves that we

will investigate in the future.

3.4.4 Decoupling store addresses and data

Wave-ordered memory can incorporate simple run-time memory disambiguation by

taking advantage of the fact that the address for a Store is sometimes ready before

the data value. If the memory system knew the address as soon as it was available,

it could safely proceed with future memory operations to different addresses.

To incorporate this approach into wave-ordered memory, we break Store opera-

tions into two instructions, one to send the address and the other to forward the data

to the memory interface.

If the store address arrives first, it is called a partial store. The wave-ordering

mechanism treats it as a normal store operation (i.e., it issues according the rules in

Section 3.2, as usual). When a partial Store issues, the memory system assigns it a
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partial store queue to hold future operations to the same address. Whenever an oper-

ation issues, the memory system checks its address against all the outstanding partial

stores. If it matches one of their addresses, it goes to the end of the corresponding

partial store queue. When the data for the store finally arrives, the memory system

can apply all the operations in the partial store queue in quick succession.

If the data for a store arrives first, the memory system does nothing, and waits

for the address to arrive. When the address arrives, the memory interface handles

the store as in the normal case.

The fourth bar in Figure 3.7 shows the performance of wave-ordered memory with

decoupled stores. To ensure a fair comparison, the instructions that send the store

data to memory are not counted. Decoupling address and data increases memory

parallelism by 30% on average and between 21% and 46% for individual applications.

3.5 Future directions

Wave-ordered memory solves the memory ordering problem for dataflow machines and

outperforms token passing, but there is still room for improvement. In particular, the

binary-translator constrains our current implementation of wave-ordered memory and

makes implementing aggressive optimizations difficult. We are currently building a

custom dataflow compiler that will be free of these constraints. This section describes

several of our ideas for compiler-based improvements to wave-ordered memory. In

addition, it outlines a second approach to incorporating alias analysis into wave-

ordered memory.

3.5.1 Sequence number reuse

Section 3.2.2 suggests assigning each operation in a wave a unique sequence number.

Since sequence numbers must be expressed in a fixed number of bits, they are a finite

resource and might be scarce. The compiler can reuse sequence numbers so long as

it guarantees that the sequence numbers always increase along any path and no two
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Load  <0,1,2>.0

Store <1,2,4>.2

Load <4,5,.>.2

Load <1,2,3>.0

Load <2,4,5>.2 Load <2,3,4>.0

Store  <.,0,1>.0

Load <3,4,5>.0

Figure 3.8: Reusing sequence numbers: The code in Figure 3.6 re-annotated to
reduce the number of sequence numbers it requires.

operations with the same sequence number execute during one dynamic instance of

the wave. Figure 3.8 shows the example in Figure 3.6 with reused sequence numbers.

The figure also demonstrates a second efficiency “trick” that can eliminate ’?’ in

some cases. Here, the sequence numbers are assigned so both sides of the branch

begin (end) with an operation with sequence number 2 (4), removing the need for a

wild card at both the branch and join points.

Waves with multiple entries are also possible so long as the first memory operations

at each entry has sequence number 0. The next section exploits this fact to create

large waves.

3.5.2 Reentrant waves

Having fewer, larger waves reduces wave-number management overhead and also en-

hances parallelism, because wave-ordered memory can only express load parallelism

within a single wave. Two constructs interfere with producing large waves: loops and
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Figure 3.9: Loops break up waves: A block of code in a single wave (a) and broken
up by a loop (b).

function calls.

Many functions contain a common case “fast-path” that executes frequently and

quickly in addition to slower paths that handle exceptional or unusual cases. If the

slow paths contain loops or function calls (e.g., to an error handling routine), the

function can end up broken into many, small waves.

Figure 3.9 shows why this occurs. Both sides of the figure show similar code.

The right-hand path is the fast-path and the left side contains infrequently executed,

slow-path code. In Figure 3.9(a) the slow-path code contains ordinary instructions,

so the entire code fragment is a single wave. In Figure 3.9(b) the slow-path code

includes a loop. Since waves cannot contain back edges, a naive compiler might break

the code into three waves, as shown. This incurs extra wave-management overhead

and eliminates load-parallelism between the two waves that now make up the fast

path.
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Loop Body

Load <?,2,.>.0

Load <0,1,2>.0

Store  <.,0,?>.0

Noop <.,0,2>.0

Wave

Wave

Figure 3.10: A reentrant wave: A wave with multiple entrances to preserve paral-
lelism on the fast path.

Figure 3.10 demonstrates a more sophisticated solution. In the common case,

control follows the right-hand path and executes in a single wave. Alternatively,

control leaves the large wave, and enters the wave for the loop. When the loop is

complete, control enters the large wave again but by a second entrance. Setting

Memory-Nop instruction’s successor number to 2 informs the memory system that

operation 1 will not execute. Now, only the slow path incurs extra wave-management

overhead, and the parallelism between Loads 1 and 2 remains.

3.5.3 Alias analysis

Our binary translator does not have enough information to perform aggressive alias

analysis, so it is difficult to evaluate how useful ripples are for expressing the infor-

mation alias analysis would provide. Other approaches to expressing parallelism may

prove more effective.

One alternative approach would allow the chains of operations to “fork” and “join”
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so that independent sequences of operations could run in parallel. Within each par-

allel chain, operations would be ordered as usual. For instance, in a strongly typed

language, the compiler could provide a separate chain for accessing objects of a par-

ticular type, because accesses to variables of different types are guaranteed not to

conflict.

3.6 Discussion

Adding wave-ordered memory to the WaveScalar ISA in Chapter 2 provides the last

piece necessary for WaveScalar to replace the von Neumann model in modern, single-

threaded computer systems. The resulting instruction set is more complex than a

conventional RISC ISA, but we have not found the complexity difficult to handle in

our WaveScalar toolchain.

In return for the complexity, WaveScalar provides three significant benefits. First,

wave-ordered memory allows WaveScalar to efficiently provide the semantics that im-

perative languages require and to express parallelism among Load operations. Sec-

ond, WaveScalar can express instruction-level parallelism explicitly, while still main-

taining these conventional memory semantics. Third, WaveScalar’s execution model

is distributed. Instructions only communicate if they must. There is no centralized

control point.

In the next section we describe a microarchitecture that implements the WaveScalar

ISA. We find that, in addition to increasing instruction-level parallelism, the WaveScalar

instruction set allows the microarchitecture to be substantially simpler than a modern,

out-of-order superscalar.



36

Chapter 4

A WAVESCALAR ARCHITECTURE FOR
SINGLE-THREADED PROGRAMS

WaveScalar’s overall goal is to enable an architecture that avoids the scaling

problems described in Chapter 1. This chapter describes a tile-based WaveScalar

architecture, called the WaveCache, that addresses those problems. The WaveCache

comprises everything, except main memory, required to run a WaveScalar program.

It contains a scalable grid of simple, identical dataflow processing elements, wave-

ordered memory hardware, and a hierarchical interconnect to support communication.

Each level of the hierarchy uses a separate communication structure: high-bandwidth,

low-latency systems for local communication, and slower, narrower communication

mechanisms for long distance communication.

As we will show, the WaveCache directly addresses two of the challenges we out-

lined in the introduction. First, the WaveCache contains no long wires. As the size

of the WaveCache increases, the lengths of the longest wires do not. Second, the

WaveCache architecture scales easily from small designs suitable for executing a sin-

gle thread to much larger designs suited to multi-threaded workloads (see Chapter 5).

The larger designs contain more tiles, but the tile structure, and therefore, the overall

design complexity do not change. The challenge of defect and fault tolerance is the

subject of ongoing research. The WaveCache’s decentralized, uniform structure sug-

gests that it would be easy to disable faulty components to tolerate manufacturing

defects.

We begin by summarizing the WaveCache’s design and operation at a high level

in Section 4.1. Next, Sections 4.2 to 4.7 provide a more detailed description of its
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Figure 4.1: The WaveCache: The hierarchical organization of the microarchitecture
of the WaveCache.

major components and how they interact. The next chapter evaluates the design.

4.1 WaveCache architecture overview

Several recently proposed architectures, including the WaveCache, take a tile-based

approach to addressing future scaling problems [46, 53, 39, 42, 26, 13]. Instead of

designing a monolithic core that comprises the entire die, tiled processors cover the die

with many identical tiles, each of which is a complete, though simple, processing unit.

Since they are less complex than the monolithic core and are replicated across the die,

tiled architectures quickly amortize design and verification costs. Tiled architectures

generally compute under decentralized control, contributing to shorter wire lengths.

Finally, they can be designed to tolerate manufacturing defects in some portion of

the tiles.

In the WaveCache, each tile is called a cluster (Figure 4.1). A cluster contains four

identical domains, each with eight identical processing elements (PEs). In addition,

each cluster has an L1 data cache, wave-ordered memory interface hardware, and a

network switch for communicating with adjacent clusters.
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Figure 4.2: Mapping instruction into the WaveCache: The loop in Figure 2.3(c)
mapped onto two WaveCache domains. Each large square is a processing element.

From the programmer’s perspective, every static instruction in a WaveScalar bi-

nary has a dedicated processing element. Since building an array of clusters large

enough to give each instruction in an entire application its own PE is impractical and

wasteful, the WaveCache dynamically binds multiple instructions to a fixed number

of PEs. As the working set of the application changes, the WaveCache replaces un-

needed instructions with newly activated ones. In essence, the PEs cache the working

set of the application, hence the WaveCache moniker.

Instructions are mapped to and placed in PEs dynamically as a program exe-

cutes. The mapping algorithm has two often-conflicting goals: to minimize producer-

consumer operand latency by placing dependent instructions near each other (e.g., in

the same PE), and to spread independent instructions out across several PEs to ex-

ploit parallelism. Figure 4.2 illustrates how the WaveScalar program in Figure 2.3(c)

can be mapped into two domains in the WaveCache. To minimize operand latency,

the entire loop body resides in a single domain.

A processing element’s chief responsibility is to implement the dataflow firing rule

and execute instructions. Each PE contains a functional unit, specialized memories

to hold operands, and logic to control instruction execution and communication. It

also contains buffering and storage for several different static instructions. A PE

has a five-stage pipeline, with bypass networks that allow back-to-back execution of

dependent instructions at the same PE. Two aspects of the design warrant special
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notice. First, it avoids a large, centralized tag matching store found on some previ-

ous dataflow machines. Second, although PEs dynamically schedule execution, the

scheduling hardware is dramatically simpler than a conventional dynamically sched-

uled processor. Section 4.2 describes the PE design in more detail.

To reduce communication costs between PEs in the processor, the architecture or-

ganizes PEs hierarchically along with their communication infrastructure (Figure 4.1).

They are first coupled into pods ; PEs within a pod snoop each others’ ALU bypass

networks and share instruction scheduling information, and therefore achieve the same

back-to-back execution of dependent instructions as a single PE. The pods are fur-

ther grouped into domains; within a domain, PEs communicate over a set of pipelined

broadcast buses. The four domains in a cluster communicate point-to-point over a

local switch. At the top level, clusters communicate over an on-chip interconnect

built from the network switches in the clusters.

PEs access memory by sending requests to the wave-ordered memory interface in

their cluster (see Section 4.4). The interface accepts the message if it is handling

requests for the wave the request belongs to. Otherwise, it forwards it to the wave-

ordered interface at the appropriate cluster. Section 4.4 describes the process for

mapping waves to wave-ordered interfaces.

Once a memory operation issues from the wave-ordered interface, the local L1

cache provides the data, if possible. Otherwise, it initiates a conventional cache

coherence request to retrieve the data from the L2 cache (located around the edge

of the array of clusters, along with the coherence directory) or the L1 cache that

currently owns the data.

A single cluster, combined with an L2 cache and traditional main memory, is

sufficient to run any WaveScalar program, albeit possibly with poor performance as

instructions are swapped in and out of the small number of available PEs. To build

larger and higher performing machines, multiple clusters are connected by an on-chip

network. A traditional directory-based MOESI protocol with multiple readers and a
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single writer maintains cache coherence.

4.2 The processing element

At a high level, the structure of a PE pipeline resembles a conventional five-stage,

dynamically scheduled execution pipeline. The biggest difference is that the PE’s

execution is entirely data-driven. Instead of executing instructions provided by a

program counter, as you find on von Neumann machines, values (i.e., tokens) arrive

at a PE destined for a particular instruction. The arrival of all of an instruction’s

input values triggers its execution – the essence of dataflow execution.

Our goal in designing the PE was to meet our cycle-time goal while still enabling

dependent instructions to execute on consecutive cycles. Pipelining was relatively

simple. Back-to-back execution, however, was the source of significant complexity.

In order, the PE’s pipeline stages are:

Input: Operand messages arrive at the PE either from another PE or from itself

(via the ALU bypass network). The PE may reject messages if too many arrive in

one cycle; the senders will then retry on a later cycle.

Match: After they leave Input, operands enter the matching table, where tag

matching occurs. Cost-effective matching is essential to an efficient dataflow design

and has historically been an impediment to more effective dataflow execution. The

key challenge in designing the WaveCache matching table was emulating a potentially

infinite table with a much smaller physical structure. This problem arises, because

WaveScalar is a dynamic dataflow architecture, and places no limit on the number

of dynamic instances of a static instruction that may reside in the matching table,

waiting for input operands to arrive. To address this challenge, the matching table is

implemented as a specialized cache for a larger in-memory matching table – a common

dataflow technique [30, 56].
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The matching table is associated with a tracker board, which determines when an

instruction has a complete set of inputs, and is therefore ready to execute. When this

occurs, the instruction moves into the scheduling queue.

Dispatch: The PE selects an instruction from the scheduling queue, reads its

operands from the matching table and forwards them to Execute. If the destination

of the dispatched instruction is local, it speculatively issues the consumer instruction

to the scheduling queue, enabling its execution on the next cycle.

Execute: In most cases Execute executes an instruction and sends its results to

Output, which broadcasts it over the bypass network. However, there are two cases

in which execution will not occur. First, if an instruction was dispatched speculatively

and one of its operands has not yet arrived, the instruction is squashed. Second, if

Output is full, Execute stalls until space becomes available.

Output: Instruction outputs are sent via the output bus to their consumer instruc-

tions, either at this PE or a remote PE. The output buffer broadcasts the value on the

PE’s broadcast bus. In the common case, a consumer PE within that domain accepts

the value immediately. It is possible, however, that the consumer cannot handle the

value that cycle and will reject it. The round-trip to send the value and receive an

Ack/Nack reply takes four cycles. Rather than have the data value occupy the

output register for that period, the PE assumes it will be accepted, moving it into its

4-entry reject buffer, and inserts a new value into the output buffer on the next cycle.

If an operand ends up being rejected, it is fed back into the output queue to be sent

again to the destinations that rejected it. When all the receivers have accepted the

value, the reject buffer discards it.

Figure 4.3 illustrates how instructions from a simple dataflow graph (on the left

side of the figure) flow through the WaveCache pipeline. It also illustrates how the
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Figure 4.3: The flow of operands through the PE pipeline and forwarding
networks: A PE executes a simple series of instructions.

bypass network allows instructions to execute on consecutive cycles. In the diagram,

X[n] is the nth input to instruction X. Five consecutive cycles are depicted; before

the first of these, one input for each of instructions A and B has arrived and reside

in the matching table. The “clouds” in the dataflow graph represent operands that

were computed by instructions at other processing elements and have arrived via the

input network.

Cycle 0: (at left in Figure 4.3) Operand A[0] arrives and Input accepts it.

Cycle 1: Match writes A[0] into the matching table and, because both its inputs

are present, places A into the scheduling queue.

Cycle 2: Dispatch chooses A for execution and reads its operands from the

matching table. At the same time, it recognizes that A’s output is destined for B.

In preparation for this producer-consumer handoff it inserts B into the scheduling

queue.

Cycle 3: Dispatch reads B[0] from the matching table. Execute computes the

result of A, which becomes B[1].

Cycle 4: Execute computes the result of instruction B, using B[0] from Dispatch
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and B[1] from the bypass network.

Cycle 5 (not shown): Output will send B’s result to instruction Z.

The logic in Match and Dispatch is the most complex part of the entire Wave-

Cache architecture, and most of it is devoted to allowing back-to-back execution of

dependent instructions while achieving our cycle time goal (22FO4).

4.3 The WaveCache interconnect

The previous section described the execution resource of the WaveCache, the PE. This

section will detail how PEs on the same chip communicate. PEs send and receive

data using a hierarchical, on-chip interconnect (Figure 4.4). The figure shows the

four levels in this hierarchy: intra-pod, intra-domain, intra-cluster and inter-cluster.

While the purpose of each network is the same – transmission of instruction operands

and memory values – their designs vary significantly. We will describe the salient
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features of these networks in the next four sections.

4.3.1 PEs in a pod

The first level of interconnect, the intra-pod interconnect, enables two PEs to share

scheduling hints and computed results. Merging a pair of PEs into a pod consequently

provides lower latency communication between them than using the intra-domain

interconnect (described below). Although PEs in a pod snoop each others bypass

networks, the rest of their hardware remains partitioned. In particular, they have

separate matching tables, scheduling and output queues, and ALUs.

The decision to integrate pairs of PEs together is a response to two competing

concerns: we want the clock cycle to be short and instruction-to-instruction commu-

nication to take as few cycles as possible. To reach our cycle-time goal, the PE and

the intra-domain interconnect (described next) need to be pipelined. This increases

average communication latency and reduces performance significantly. Allowing pairs

of PEs to communicate quickly brings the average latency back down without signifi-

cantly impacting cycle time. Tightly integrating more PEs would increase complexity

significantly, and our data showed that the gains in performance are small.

4.3.2 The intra-domain interconnect

PEs communicate with PEs in other pods over an intra-domain interconnect. In

addition to the eight PEs in the domain, the intra-domain interconnect also connects

two pseudo-PEs that serve as gateways to the memory system (the Mem pseudo-PE)

and the other PEs on the chip (the Net pseudo-PE). The pseudo-PEs’ interface to

the intra-domain network is identical to that of a normal PE.

The intra-domain interconnect is broadcast-based. Each of the eight PEs has a

dedicated result bus that carries a single data result to the other PEs in its domain.

Each pseudo-PE also has a dedicated output bus. PEs and pseudo-PEs communicate

over the intra-domain network using a garden variety Ack/Nack network.
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4.3.3 The intra-cluster interconnect

The intra-cluster interconnect provides communication between the four domains’

Net pseudo-PEs. It also uses a Ack/Nack network similar to that of the intra-

domain interconnect.

4.3.4 The inter-cluster interconnect

The inter-cluster interconnect is responsible for all long-distance communication in

the WaveCache. This includes operands traveling between PEs in distant clusters

and coherence traffic for the L1 caches.

Each cluster contains an inter-cluster network switch, that routes messages be-

tween six input/output ports: four of the ports lead to the network switches in the

four cardinal directions, one is shared among the four domains’ Net pseudo-PEs, and

one is dedicated to the store buffer and L1 data cache.

Each input/output port supports the transmission of up to two operands. Its

routing follows a simple protocol: the current buffer storage state (i.e., whether space

is available or not) for each cardinal direction at each switch is sent to the adjacent

switch in that direction. The adjacent switches receive this information a clock cycle

later, and will only send data if the receiver is guaranteed to have space.

The inter-cluster switch provides two virtual channels that the interconnect uses

to prevent deadlock [19]. Each output port contains two 8-entry output queues (one

for each virtual network). In some cases, a message may have two possible directions

(e.g., North and West if its ultimate destination is to the northwest). In these cases

the router randomly selects which way to route the message.

4.4 The store buffer

The hardware support for wave-ordered memory lies in the WaveCache’s store buffers.

The store buffers, one per cluster, are responsible for implementing the wave-ordered
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memory interface that guarantees correct memory ordering. To access memory, pro-

cessing elements send requests to their local store buffer via the Mem pseudo-PE in

their domain. The store buffer will either process the request or direct it to another

store buffer via the inter-cluster interconnect (see below). All memory requests for

a single dynamic instance of a wave (for example, an iteration of an inner loop), in-

cluding requests from both local and remote processing elements, are managed by the

same store buffer.

To simplify the description of the store buffer’s operation, we denote pred(W ),

seq(W ), and succ(W ) as the wave-ordering annotations for a request W . We also

define next(W ) to be the sequence number of the operation that actually follows

W in the current instance of the wave. next(W ) is determined either directly from

succ(W ) or is calculated by the wave-ordering hardware, if succ(W ) is ’?’.

The store buffer (Figure 4.5) contains four major microarchitectural components:

an ordering table, a next table, an issued register, and a collection of partial

store queues. Store buffer requests are processed in three pipeline stages: Memory-

Input writes newly-arrived requests into the ordering and next tables. Memory-

Schedule reads up to four requests from the ordering table and checks to see if

they are ready to issue. Memory-Output dispatches memory operations that can

issue to the cache or to a partial store queue (described below). We detail each

pipeline stage of this memory interface below.

Memory-Input accepts up to four new memory requests per cycle. It writes the

address, operation and data (if available in the case of Stores) into the ordering

table at the index seq(W ). If succ(W ) is defined (i.e., not ’?’), the entry in the next

table at location seq(W ) is updated to succ(W ). If pred(W ) is defined, the entry in

the next table at location pred(W ) is set to seq(W ).

Memory-Schedule maintains the issued register, which points to the next

memory operations to be dispatched to the data cache. It uses this register to read

four entries from the next and ordering tables. If any memory ordering links can be
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formed (i.e., next table entries are not empty), the memory operations are dispatched

to Memory-Output and the issued register is advanced. The store buffer supports

the decoupling of store-data from store addresses as described in Section 3.4.4. This

is done with a hardware structure called a partial store queue, described below. The

salient point for Memory-Schedule, however, is that Stores are sent to Memory-

Output even if their data has not yet arrived.

Partial store queues (see Section 3.4.4) take advantage of the fact that store ad-

dresses can arrive significantly before their data. In these cases, a partial store queue

stores all operations to the same address. These operations must wait for the data

to arrive, but other operations may proceed. When the data finally arrives all, the

operations in the partial store queue can be applied in quick succession. The store

buffer contains two partial store queues.

Memory-Output reads and processes dispatched memory operations. Four sit-

uations can occur. (1) The operation is a Load or a Store with its data is present:

The operation proceeds to the data cache. (2) The operation is a Load or a Store

and a partial store queue exists for its address: The memory operation is sent to

the partial store queue. (3) The memory operation is a Store, its data has not yet

arrived, and no partial store queue exists for its address: A free partial store queue is

allocated and the Store is sent to it. (4) The operation is a Load or a Store, but

no free partial store queue is available or the partial store queue is full: The operation

is discarded and the issued register is rolled back. The operation will reissue later.

4.4.1 Routing memory requests

A single store buffer must handle all the memory requests for a single wave, but the

memory instructions that produce the requests might execute anywhere in the array

of processing elements. To ensure that requests find their way to the correct store

buffer, the WaveScalar hardware maintains a map of wave numbers to store buffers.

When a memory instruction fires, it sends its request to the store buffer in the



49

local cluster. The store buffer checks the map, which is stored in main memory, and

takes one of three actions: (1) If the request is destined for the local store buffer, it

processes it. (2) If it is destined for the store buffer in another cluster, it forwards

it there. (3) If the map shows that no store buffer is currently handling the wave,

it takes on the responsibility for the wave and updates the map accordingly using a

read-modify-write operation. Since the map is stored in main memory, the coherence

protocol ensures that all store buffers see a consistent view.

When a wave completes, the store buffer checks the map again to find the store

buffer for the next wave in the program. It sends a message to that store buffer

indicating that all previous memory operations are complete. Because execution for a

single thread tends to be localized at a single cluster, reading and updating the map

requires minimal coherence traffic. Likewise, the messages between store buffers are

usually local (i.e., the local store buffer is handling the next wave as well).

4.5 Caches

The rest of the WaveCache’s memory hierarchy comprises a four-way set associative

L1 data cache at each cluster, and an L2 cache distributed along the edge of the

chip. A directory-based, multiple readers, single writer coherence protocol keeps the

L1 caches consistent. All coherence traffic travels over the inter-cluster interconnect.

The L1 data cache has a 3-cycle hit delay. The L2’s hit delay is 14-30 cycles

depending upon the address and the distance to the requesting cluster. Main memory

latency is modeled at 200 cycles.

4.6 Placement

Placing instructions carefully into the WaveCache is critical to good performance.

Instructions’ proximity determines the communication latency between them, argu-

ing for tightly packing instructions together. On the other hand, instructions that

can execute simultaneously should reside at different processing elements, because
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competition for the single functional unit will serialize them.

We continue to investigate the placement problem, and details of our endeavors

are available in [43]. Here, we describe the approach we used for the studies in this

thesis.

The placement scheme has a static and a dynamic component. At compile time,

the compiler performs a pre-order, depth-first traversal of the dataflow graph of each

function to generate a linear ordering of the instructions. We chose this traversal,

because it tends to make chains of dependent instructions in the dataflow graph appear

consecutively in the ordering. The compiler breaks the sequence of instructions into

short segments. We tune the segment length for each application.

At runtime, the WaveCache loads these short segments of instructions when an

instruction in a segment that is not mapped into the WaveCache needs to execute. The

entire segment is mapped to a single PE. Because of the ordering the compiler used

to generate the segments, they will usually be dependent on one another. As a result,

they will not compete for execution resources, but instead will execute on consecutive

cycles. The algorithm fills all the PEs in a domain, and then all the domains in a

cluster, before moving on to the next cluster. It fills clusters by “snaking” across the

grid, moving from left to right on the even rows and right to left on the odd rows.

4.7 Managing parallelism

Our placement scheme does a good job of scheduling execution and communication

resources, but a third factor, the so-called “parallelism explosion”, can have a strong

effect on performance in dataflow systems. Parallelism explosion occurs when part of

an application (e.g., the index computation of an inner loop) runs ahead of the rest

of program, generating a vast number of tokens that will not be consumed for a long

time. These tokens overflow the matching table and degrade performance as they

spill to memory. We use a well-known dataflow technique, k-loop bounding [15], to

restrict the number iterations that can be executing at one time to k. We tune k for
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each application.
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Chapter 5

RUNNING MULTIPLE THREADS IN WAVESCALAR

The WaveScalar architecture described so far can support a single executing

thread. Modern applications, such as databases and web servers, use multiple threads

both as a useful programming abstraction and to increase performance by exposing

parallelism.

Recently, manufacturers have begun placing several processors on a single die to

create chip multiprocessors (CMPs). There are two reasons for this move: First, scal-

ing challenges will make designing ever-larger superscalar processors infeasible. Sec-

ond, commercial workloads are often more concerned with the aggregate performance

of many threads rather than single-thread performance. Any architecture intended

as an alternative to CMPs must be able to execute multiple threads simultaneously.

This section extends the single-threaded WaveScalar design to execute multiple

threads. The key issues we must address to allow WaveScalar to execute multiple

threads are managing multiple, parallel sequences of wave-ordered memory operations,

differentiating between data values that belong to different threads, and allowing

threads to communicate. WaveScalar’s solution to these problems are all simple

and efficient. For instance, WaveScalar is the first architecture to allow programs

to manage memory ordering directly by creating and destroying memory orderings

and dynamically binding them to a particular thread. WaveScalar’s thread-spawning

facility is efficient enough to parallelize small loops. Its synchronization mechanism

is also light-weight and tightly integrated into the dataflow framework.

The required changes to the WaveCache to support the ISA extensions are surpris-

ingly small, and they do not impact the overall structure of the WaveCache, because
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executing threads dynamically share most WaveCache processing resources.

The next two sections describe the multihthreading ISA extensions, then we dis-

cuss the changes needed to the hardware.

5.1 Multiple memory orderings

As previously introduced, the wave-ordered memory interface provides support for a

single memory ordering. Forcing all threads to contend for the same memory inter-

face, even if it were possible, would be detrimental to performance. Consequently, to

support multiple threads, we extend the WaveScalar instruction set to allow multiple

independent sequences of ordered memory accesses, each of which belongs to a sep-

arate thread. First, we annotate every data value with a Thread-Id in addition to

its Wave-Number. Then, we introduce instructions to associate memory-ordering

resources with particular Thread-Ids.

Thread-Ids The WaveCache already has a mechanism for distinguishing values

and memory requests within a single thread from one another – they are tagged

with Wave-Numbers. To differentiate values from different threads, we extend this

tag with a Thread-Id and modify WaveScalar’s dataflow firing rule to require that

operand tags match on both Thread-Id and Wave-Number. As with Wave-

Numbers, additional instructions are provided to directly manipulate Thread-Ids.

In figures and examples throughout the rest of this thesis, the notation <t, w>.d

signifies a token tagged with Thread-Id t and Wave-Number w and having data

value d.

To manipulate Thread-Ids and Wave-Numbers, we introduce several instruc-

tions that convert Wave-Numbers and Thread-Ids to normal data values and

back again. The most powerful of these is Data-To-Thread-Wave, which sets

both the Thread-Id and Wave-Number at once; Data-To-Thread-Wave takes

three inputs, <t0, w0>.t1, <t0, w0>.w1, and <t0, w0>.d and produces as output
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Figure 5.1: Thread creation and destruction: Memory-Sequence-Start and
Memory-Sequence-Stop in action.

<t1, w1>.d. WaveScalar also provides two instructions (Data-To-Thread and

Data-To-Wave) to set Thread-Ids and Wave-Numbers separately, as well as

two instructions (Thread-To-Data and Wave-To-Data) to extract Thread-Ids

and Wave-Numbers. Together, all these instructions place WaveScalar’s tagging

mechanism completely under programmer control, and allow programmers to write

software such as threading libraries. For instance, when the library spawns a new

thread, it must relabel the inputs with the new thread’s Thread-Id and the Wave-

Number of the first wave in its execution. Data-To-Thread-Wave accomplishes

exactly this task.

Managing memory orderings: Having associated a Thread-Id with each value

and memory request, we now extend the wave-ordered memory interface to enable pro-

grams to associate memory orderings with Thread-Ids. Two new instructions con-

trol the creation and destruction of memory orderings, in essence creating and termi-

nating coarse-grain threads: Memory-Sequence-Start and Memory-Sequence-
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Stop.

Memory-Sequence-Start creates a new wave-ordered memory sequence for a

new thread. This sequence is assigned to a store buffer, which services all memory

requests tagged with the thread’s Thread-Id and Wave-Number; requests with

the same Thread-Id but a different Wave-Number cause a new store buffer to be

allocated.

Memory-Sequence-Stop terminates a memory ordering sequence. The wave-

ordered memory system uses this instruction to ensure that all memory operations in

the sequence have completed before its store buffer resources are released.

Figure 5.1 illustrates how to use these two instructions to create and destroy a

thread. Thread t spawns a new thread s by sending s’s Thread-Id (s) and Wave-

Number (u) to Memory-Sequence-Start, which allocates a store buffer to han-

dle the first wave in the new thread. The result of the Memory-Sequence-Start

instruction triggers the three Data-To-Thread-Wave instructions that set up s’s

three input parameters. The inputs to each Data-To-Thread-Wave instruction are

a parameter value (d, e, or f), the new Thread-Id (s) and the new Wave-Number

(u). A token with u is produced by Memory-Sequence-Start deliberately, to guar-

antee that no instructions in thread s execute until Memory-Sequence-Start has

finished allocating its store buffer. Thread s terminates with Memory-Sequence-

Stop, whose output token <s, u>.finished guarantees that its store buffer area has

been deallocated.

Implementation Adding support for multiple memory orderings requires only small

changes to the WaveCache’s microarchitecture. First, the widths of the communica-

tion busses and operand queues must be expanded to hold Thread-Ids. Second,

instead of storing each static instruction from the working set of a program in the

WaveCache, one copy of each static instruction is stored for each thread. This means

that if two threads are executing the same static instructions, each may map the static
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instructions to different PEs. Finally, the PEs must implement the Thread-Id and

Wave-Number manipulation instructions.

Efficiency The overhead associated with spawning a thread directly affects the

granularity of extractable parallelism. To assess this overhead in the WaveCache, we

designed a controlled experiment consisting of a simple parallel loop in which each

iteration executes in a separate thread. The threads have their own wave-ordered

memory sequences but do not have private stacks, so they cannot make function

calls.

We varied the size of the loop body, which affects the granularity of parallelism,

and the dependence distance between memory operands, which affects the number

of threads that can execute simultaneously. We then measured speedup compared

to a serial execution of a loop doing the same work. The experiment’s goal is to

answer the following question: Given a loop body with a critical path length of N

instructions and a dependence distance that allows T iterations to run in parallel,

can the WaveCache speed up execution by spawning a new thread for every loop

iteration?

Figure 5.2 is a contour plot of speedup of the loop as a function of its loop size

(critical path length in Add instructions, the horizontal axis) and dependence distance

(independent iterations, the vertical axis). Contour lines are shown for speedups of 1×

(no speedup), 2× and 4×. The area above each line is a region of program speedup at

or above the labeled value. The data show that the WaveScalar overhead of creating

and destroying threads is so low that for loop bodies of only 24 dependent instructions

and a dependence distance of 3, it becomes advantageous to spawn a thread to execute

each iteration (‘A’ in the figure). A dependence distance of 10 reduces the size of

profitably parallelizable loops to only 4 instructions (‘B’). Increasing the number of

instructions to 20 quadruples performance (‘C’).
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5.2 Synchronization

The ability to efficiently create and terminate pthread-style threads, as described in

the previous section, provides only part of the functionality required to make multi-

threading useful. Independent threads must also synchronize and communicate with

one another. To this end, WaveScalar provides a memory fence instruction that allows

WaveScalar to enforce a relaxed consistency model and a specialized instruction that

models a hardware queue lock.

5.2.1 Memory fence

Wave-ordered memory provides a single thread with a consistent view of memory,

since it guarantees that the results of earlier memory operations are visible to later

operations. In some situations, such as before taking or releasing a lock, a multi-

threaded processor must guarantee that the results of a thread’s memory operations

are visible to other threads. We add to the ISA an additional instruction, Memory-

Nop-Ack that provides this assurance by acting as a memory fence. Memory-

Nop-Ack prompts the wave-ordered interface to commit the thread’s prior loads

and stores to memory, thereby ensuring their visibility to other threads and providing

WaveScalar with a relaxed consistency model [4]. The interface then returns an

acknowledgment, which the thread can use to trigger execution of its subsequent

instructions.

5.2.2 Interthread synchronization

Most commercially deployed multiprocessors and multi-threaded processors provide

interthread synchronization through the memory system via primitives such as test-

and-set, compare-and-swap, or load-lock/store-conditional. Some re-

search efforts also propose building complete locking mechanisms in hardware [27, 62].

Such queue locks offer many performance advantages in the presence of high lock con-
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tention.

In WaveScalar, we add support for queue locks in a way that constrains neither the

number of locks nor the number of threads that may contend for the lock. This support

is embodied in a synchronization instruction called Thread-Coordinate, which

synchronizes two threads by passing a value between them. Thread-Coordinate

is similar in spirit to other lightweight synchronization primitives [34, 11], but is

tailored to WaveScalar’s execution model.

As Figure 5.3 illustrates, Thread-Coordinate requires slightly different match-

ing rules1. All WaveScalar instructions except Thread-Coordinate fire when the

tags of two input values match, and they produce outputs with the same tag (Fig-

ure 5.3, left). For example, in the figure, both the input tokens and the result have

Thread-Id t0 and Wave-Number w0.

In contrast, Thread-Coordinate fires when the data value of a token at its

first input matches the Thread-Id of a token at its second input. This is depicted

on the right side of Figure 5.3, where the data value of the left input token and the

Thread-Id of the right input token are both t1. Thread-Coordinate generates

an output token with the Thread-Id and Wave-Number from the first input and

the data value from the second input. In Figure 5.3, this produces an output of

<t0, w0>.d. In essence, Thread-Coordinate passes the second input’s value (d)

to the thread of the first input (t0). Since the two inputs come from different threads,

this forces the receiving thread (t0 in this case) to wait for the data from the sending

thread (t1) before continuing execution.

To support Thread-Coordinate in hardware, we augment the tag match-

ing logic at each PE. We add two counters at each PE, one for each input to a

Thread-Coordinate instruction. When an input arrives, the PE replaces its

1Some previous dataflow machines altered the dataflow firing rule for other purposes. For ex-
ample, Sigma-1 used “sticky” tags to prevent the consumption of loop-invariant data and “error”
tokens to swallow values of instructions that incurred exceptions [55]. Monsoon’s M-structure
store units had a special matching rule to enforce load-store order [51].



60

tc

matchmatch

add

<t
0
:w

0
>. d

0 
+ d

1

<t
0
:w

0
>.d

1
<t

0
:w

0
>.d

0

<t
0
:w

0
>.d

<t
1
:w

1
>.d<t

0
:w

0
>.t

1

Figure 5.3: Tag matching: Matching rules for a normal instruction (left) and a
Thread-Coordinate (right).

<t
m
:u>.t

m

Thread-

Coordinate

Data-to-

Thread

releases t
m

acquires t
m

<t
1
:u>.t

m

<t
0
:w>.t

m

Memory-

Nop-Ack

<t
1
:u>.t

m
(from critical section)

<t
0
:w>.t

m

(to critical section)

Thread t
0

Thread t
1

t1 releases mutex

t0 requests mutex

Figure 5.4: A mutex: Thread-Coordinate-based mutex.

Wave-Number with the value of the corresponding counter and then increments

the counter, ensuring that the tokens are processed in FIFO order. Using this rela-

beling, the matching queues naturally form a serializing queue with efficient constant

time access and no starvation.

Although one can construct many kinds of synchronization objects using Thread-

Coordinate, we only illustrate a simple mutex (Figure 5.4) here. In this case,

Thread-Coordinate is the vehicle by which a thread releasing a mutex passes

control to another thread wishing to acquire it.
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The mutex in Figure 5.4 is represented by a Thread-Id, tm, although it is not a

thread in the usual sense; instead, tm’s sole function is to uniquely name the mutex.

A thread t1 that has locked mutex tm releases it in two steps (right side of figure).

First, t1 ensures that the memory operations it executed inside the critical section

have completed by executing Memory-Nop-Ack. Then, t1 uses Data-To-Thread

to create the token <tm, u>.tm, which it sends to the second input port of Thread-

Coordinate, thereby releasing the mutex.

Another thread, t0 in the figure, can attempt to acquire the mutex by sending

<t0, w>.tm (the data is the mutex) to Thread-Coordinate. This token will either

find the token from t1 waiting for it (i.e., the lock is free) or await its arrival (i.e., t1

still holds the lock). When the release token from t1 and the request token from t0

are both present, Thread-Coordinate will find that they match according to the

rules discussed above, and it will then produce a token <t0, w>.tm. If all instructions

in the critical section guarded by mutex tm depend on this output token (directly or

via a chain of data dependences), thread t0 cannot execute the critical section until

Thread-Coordinate produces it.

5.3 Discussion

With the addition of coarse-grain multi-threading support, WaveScalar can run any

program that a conventional chip multiprocessor can. Unlike a CMP, however, Wave-

Scalar’s multithreading support caused very little change to the underlying hardware.

Multithreading is simpler on WaveScalar, because the WaveCache architecture is more

flexible. Because CMPs use the von Neumann execution model, some resources (e.g.,

the program counter and register file) must be replicated for each thread, and, as

a result, the difference between a single- and multi-threaded processor is great. In

WaveScalar’s dataflow model, a thread requires no centralized control or resource, so

two threads can run almost as easily as one. In fact, the addition of Thread-Ids

and the need for Memory-Sequence-Start and Memory-Sequence-Stop are



62

both results of WaveScalar’s need to support von Neumann-style memory semantics.

They would not be needed in a pure dataflow system.

The next two chapters describe our experimental infrastructure, evaluate the mul-

tithreaded WaveCache, and demonstrate that it achieves both superior efficiency and

performance compared to von Neumann processors. Chapter 8 takes WaveScalar be-

yond the constraints of von Neumann execution and demonstrates the power of its

dataflow execution model.
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Chapter 6

EXPERIMENTAL INFRASTRUCTURE

This chapter describes the experimental infrastructure we use to evaluate the

WaveScalar architecture described in Chapters 7 and 8. There are three key tools: A

synthesizable RTL model and the accompanying synthesis tools, a WaveScalar tool

chain that includes a cycle-level architectural simulator, and a set of workloads that

span a wide range of different applications.

In then next two chapters we will use these tools to search the space of WaveScalar

processor designs and compare the best designs to contemporary single-threaded and

multi-threaded processors. We describe each of the tools in turn.

6.1 The RTL model

Since WaveScalar is a tiled dataflow processor, it is different enough from conventional

von Neumann processors that we cannot draw on past research, existing tools, or

industrial experience to understand area and cycle-time requirements. Since these

parameters are crucial for determining how well WaveScalar performs and how to

partition the silicon resources, we constructed a synthesizable RTL model of the

components described in Chapters 4 and 5.

The synthesizable RTL model is written in Verilog, and targets a 90nm ASIC

implementation. Considerable effort was put into designing, and redesigning this

Verilog to be both area-efficient and fast. The final clock speed (22 FO4) comes from

our fourth major redesign.

The 90nm process is the most current process technology available, so the results

presented here should scale well to future technologies. In addition to using a modern
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process, we performed both front-end and back-end synthesis to get as realistic a

model as possible. The model makes extensive use of Synopsys DesignWare IP [2]

for critical components such as SRAM controllers, queue controllers, arbiters, and

arithmetic units. The design currently uses a single frequency domain and a single

voltage domain, but the tiled and hierarchical architecture would lend itself easily to

multiple voltage and frequency domains in the future.

6.1.1 ASIC design flow

We used the most up-to-date tools available for Verilog synthesis. Synopsys VCS

provided RTL simulation and functional verification of the post-synthesis netlists.

Front-end synthesis was done using Synopsys DesignCompiler. Cadence FirstEn-

counter handled back-end synthesis tasks such as floorplanning, clock-tree synthesis,

and place and route [1]. By using back-end synthesis, the area and timing results

presented here include realistic physical effects, such as incomplete core utilization

and wire delay, that are critical for characterizing design performance at 90nm and

below.

6.1.2 Standard cell libraries

Our design uses the 90nm high-performance GT standard cell libraries from Taiwan

Semiconductor Manufacturing Company (TSMC) [3]. The library contains three im-

plementations of cells, each with a different threshold voltage, for balancing power

and speed. We allow DesignCompiler and FirstEncounter to pick the appropriate cell

implementation for each path.

The memory in our design is a mixture of SRAM memories generated from a

commercial memory compiler (used for the large memory structures, such as data

caches) and Synopsys DesignWare IP memory building blocks (used for smaller mem-

ory structures).
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6.1.3 Timing data

Architects commonly measure clock cycle time in a process-independent metric, fanout-

of-four (FO4). A design’s cycle time in FO4 does not change (much) as the fabrica-

tion process changes, thus enabling a more direct comparison of designs across process

technologies.

Synthesis tools, however, report delay in absolute terms (nanoseconds). To convert

nanoseconds to FO4, we followed academic precedent [61] and used the technique

suggested in [14] to measure the absolute delay of one FO4. We synthesized a ring

oscillator using the same design flow and top-speed standard cells (LVT) used in our

design and measured FO1 (13.8ps). We then multiplied this delay by three to yield

an approximation of one FO4 (41.4ps). All timing data presented here is reported in

FO4 based upon this measurement.

6.2 The WaveScalar tool chain

We use a binary translator-based tool chain to create WaveScalar executables. Fig-

ure 6.1 shows the components of the system and how they interact. Three components,

the binary translator, the performance simulator, and the placement system, are most

important. We address the translator and simulator here. Section 4.6 describe the

placement algorithm we use.

6.2.1 The binary translator

The binary translator converts Alpha AXP binaries into WaveScalar assembly lan-

guage. There are two key tasks the translator must accomplish: First, it converts the

von Neumann style control structures (branches, PC-based function calls, etc.) into

dataflow constructs. Second, it breaks the program into waves and adds annotations

that allow the wave-ordered memory system to enforce the correct memory ordering.
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Figure 6.1: The WaveScalar tool chain: The tool chain we use to compile and
execute WaveScalar programs.
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Control

In von Neumann systems, the program counter controls execution. Branches and

function calls manipulate the program counter to steer execution along the correct

path in the program. WaveScalar uses the Steer instruction (see Chapter 2) to guide

execution instead.

Replacing PC-based conditional branch instructions with Steer instructions re-

quires inserting one Steer instruction for each of the 64 registers the Alpha ISA

defines at each branch point. This results in a very large number of Steer instruc-

tions, and the binary translator uses several techniques, including control dependence

analysis and dead value analysis, to optimize away as many of them as possible.

The binary translator uses the Indirect-Send instruction to implement register-

indirect jumps and function calls as described in Chapter 2.

Wave creation

To support wave-ordered memory (Chapter 3), the translator must break each func-

tions into a series of waves. Chapter 3 defines precisely the properties that a wave

must have, but the binary translator generates waves that satisfy a simpler set of

properties: It produces waves that have a single entrance, only contain function calls

at wave exits, and contain no back edges.

To break up a function, the translator uses control analysis to label back edges in

the control flow graph. Then it uses the entrance block of the function as the entrance

of the first wave. The translator expands that wave using a breadth-first traversal of

the control flow graph. It stops the wave’s growth along a path when it encounters a

function call or a basic block with a back edge entering or leaving it. Once the first

wave has stopped growing, the translator selects one of the points at which it stopped

and starts a new wave with that basic block.

To assign predecessor, successor, sequence, and ripple numbers, the translator
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traverses each wave in depth-first order and assigns or updates those annotations as

necessary.

Limitations

The binary translator was written for two reasons: First it provided an expedient path

to generating a WaveScalar executable from C code. Second, it demonstrates that

building a von Neumann-to-dataflow translator is possible, laying the groundwork for

a smoother transition between the two execution models.

The approach suffers from several limitations, however. First, using Alpha binaries

as the input to the translator severely restricts the optimizations that the binary

translator can perform. For instance, alias analysis is effectively impossible, because

no high-level information about memory use is available. The DEC compiler partially

compensates for this limitation, since it provides good control over many optimizations

that are useful in WaveScalar compilation (e.g., function inlining and loop unrolling).

Second, the binary translator cannot handle irreducible loops (usually the result

of gotos), jump-table-based switch statements, or compiler intrinsics that do not

follow the Alpha calling convention. These limitations are strictly a deficiency of our

translator, not a limitation of WaveScalar’s ISA or execution model. In practice, we

restructure the source code to eliminate these constructs, if possible.

Our group is currently working on a full-fledged WaveScalar compiler that will ad-

dress all of these shortcomings and provide the foundation a more detailed exploration

of WaveScalar compilation.

6.2.2 The performance simulator

To measure WaveScalar performance we use a cycle-level processor simulator. The

simulator is very detailed and models all the components of the architecture including

the pipelined PE, the wave-ordered store buffer, the network switch, the memory hier-

archy, and all the interconnects that connect these components. It also answers basic
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questions, such as how the sizing of microarchitectural features affect performance.

We use a set of microbenchmarks to check that the simulator’s timing and behavior

are correct along with a set of larger regression tests that ensure application-level

correctness.

The simulator also provides emulation for the operating system by providing im-

plementations of the necessary system calls. It also emulates some features that a

WaveScalar operating system would provide. For instance, the simulator handles the

dynamic portion of the instruction placement process and accounts for an approxi-

mation of the delay it would incur.

To make measurements comparable with conventional architectures, we measure

performance in alpha instructions per cycle (AIPC) and base our superscalar com-

parison on a machine with similar clock speed [32]. AIPC measures the number of

non-overhead instructions (i.e., instructions other than Steer, φ, etc.) executed per

cycle. The AIPC measurements for the superscalar architectures we compare to are

in good agreement with other measurements [45].

6.3 Applications

We used three groups of workloads to evaluate the WaveScalar processor. Each fo-

cuses on a different aspect of WaveScalar performance. To measure single-threaded

performance, we chose a selection of the Spec2000 [58] benchmark suite (ammp, art,

equake, gzip, twolf and mcf ). To evaluate the processor’s media processing perfor-

mance we use rawdaudio, mgeg2encode, and djpeg from Mediabench [38]. Finally,

we use six of the Splash2 [6] benchmarks, fft, lu-continuous, ocean-noncontinuous,

raytrace, water-spatial, and radix, to explore multi-threaded performance.

We compiled each application with the DEC cc compiler using -O4 -fast -inline

speed optimizations. A binary translator-based tool chain was used to convert these

binaries into WaveScalar assembly and then into WaveScalar binaries. The choice

of benchmarks represents a range of applications as well as the limitations of our
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Table 6.1: Workload configurations: Workloads and parameters used in this
thesis.

Benchmark Parameters

Splash2 fft -m12
lu -n128
radix -n16384 -r32
ocean-noncont -n18
water-spatial 64 molecules
raytrace -m64 car.env

MediaBench mpeg options.par data/ out.mpg
djpeg -dct int -ppm

-outfile testout.ppm
testorig.jpg

adpcm < clinton.adpcm

SpecInt gzip /ref/input/input.source 60
twolf ref/input/ref
mcf ref/input/inp.in

SpecFP ammp < ref/input/ammp.in
art -scanfile ref/input/c756hel.in

-trainfile1 ref/input/a10.img
-trainfile2 ref/input/hc.img
-stride 2 -startx 470
-starty 140 -endx 520
-endy 180 -objects 10

equake < ref/input/inp.in

binary translator (see above). Table 6.1 shows the configuration parameters for the

workloads. We skip past the initialization phases of all our workloads.
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Chapter 7

WAVECACHE PERFORMANCE

Chapters 2-5 described WaveScalar’s single- and multi-threaded instruction set

and presented the WaveCache processor design. The WaveCache design defines a

spectrum of processor configurations. At one end of the spectrum is a small Wave-

Cache processor, comprising just a single cluster, which would be suitable for small,

single-threaded or embedded applications. At the other end, a supercomputer proces-

sor might contain tens of clusters and hundreds or thousands of processing elements.

The ability to move easily along this design continuum is a key objective of tiled

architectures. A second objective is that they be able to tolerate such drastic changes

in area by localizing data communication, thereby reducing latency. This section

explores how well the WaveScalar architecture performs while achieving these goals.

We begin in Section 7.1 with a detailed look at the area budget of a particular

WaveScalar processor configuration. Then, to understand a larger design space, Sec-

tion 7.2 uses data from our RTL synthesis to develop an area model that describes the

area requirements for a range of designs. We use the resulting model to enumerate

a large class of WaveScalar processor designs that could be built in modern process

technology. We evaluate these designs using our suite of single- and multi-threaded

workloads and use the results to perform an area/performance pareto analysis of

the WaveScalar design space covered by our RTL design and area model. Lastly, in

Section 7.3, we examine changes in the network traffic patterns as the size of the

WaveScalar processor increases.
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7.1 Area model and timing results

Our RTL toolchain provides both area and delay values for each component of the

WaveScalar processor. For this study, we restrict ourselves to processors that achieve

a clock rate of 22 FO4, which occurs for a wide range of designs in our Verilog

model. This is the shortest cycle time allowed by the critical path within the PE.

For most configurations, the critical path is through the execution unit when using

operands from the other PE in the pod. However, enlarging the matching cache or

instruction cache memory structures beyond 256 entries makes paths in the Match

and Dispatch stages critical paths. Floating point units are pipelined to avoid

putting floating-point execution on the critical path. Input and Output devote 9

and 5 FO4, respectively, to traversing the intra-domain network, so there is no need

for an additional stage for intra-domain wire delay.

Since the critical path is the ALU for designs with smaller than 256-entry matching

caches and 256-entry instruction caches, we can resize these structures downward for

optimum area-performance without dramatically altering the cycle time. This allows

us to evaluate a large number of potential processing element designs based on area

without worrying about an accompanying change in cycle time. We confirmed this by

synthesizing designs with 16- to 256-entry matching caches and with 8- to 256-entry

instruction caches. The clock cycle for these configurations changed by less than 5%

until the structures reached 256 entries, at which point the cycle time increased by

about 21% for the matching cache and 7% for the instruction cache. These latencies

and structure size limits for our study are summarized in Table 7.2 and Table 7.3,

respectively.

Table 7.1 shows how the die area is spent for the baseline design described in

Table 7.2. Note that the 71% of the cluster area is devoted to PEs. Also, almost

all the area, ∼83%, is spent on SRAM cells which make up the instruction stores,

matching caches, store buffer ordering tables, and L1 data caches.
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7.2 Performance analysis

To understand the performance characteristics of our WaveScalar processor design,

we perform a systematic search of the entire design space. Measurements from our

RTL model provide an area model for WaveScalar processors. For both single- and

multi-threaded workloads, we combine the output of the area model with results

from our WaveCache simulator to perform an area-vs-performance pareto analysis of

the WaveScalar design space. Then, we compare the performance of several pareto-

optimal designs to more conventional von Neumann processors in terms of raw per-

formance and area-efficiency.

7.2.1 The area model

Our area model considers the seven parameters with the strongest effect on the area

requirements. Table 7.3 summarizes these parameters (top half of the table) and how

they combine with data from the RTL model to form the total area, WCarea (bottom

of the table). For both the matching table and instruction store, we synthesized

versions from 8 to 128 entries to confirm that area varies linearly with capacity. For

the L1 and L2 caches, we used the area of 1KB and 1MB arrays provided by a memory

compiler to perform a similar verification. The “Utilization factor” is the measure

of how densely the tools managed to pack cells together, while still having space for

routing. Multiplying by its inverse accounts for the wiring costs in the entire design.

The area model ignores some minor effects. For instance, it assumes that wiring

costs do not decrease with fewer than four domains in a cluster, thereby overestimating

this cost for small clusters. Nevertheless, the structures accounting for most of the

silicon area (∼80% as discussed in Section 7.1) are almost exactly represented.

There are three other WaveScalar parameters that affect performance that are not

included in the model because they do not have a large effect on area. These are the

widths of the three levels of WaveScalar interconnect. For this study, we allow one
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message per cycle, per PE on the intra-domain network, two messages per domain on

the inter-domain network, and two messages per cycle on the network links between

clusters. Adding more bandwidth does not significantly increase performance (less

than 5%), and using a narrower inter-cluster and inter-domain interconnects reduces

the size of a cluster by less than 1%, because the additional wires lay on top of logic

that is already present.

The area model contains parameters that enumerate the range of possible WaveScalar

processor designs. For parameters D (domains per cluster), P (processors per do-

main), V (instructions per PE) and M (matching-table entries), we set the range

to match constraints imposed by the RTL model. As discussed in Section 7.1, in-

creasing any of these parameters past the maximum value impacts cycle time. The

minimum values for M and V reflect restrictions on minimum memory array sizes in

our synthesis toolchain.

The ranges in the table allow for over twenty-one thousand WaveScalar processor

configurations, but many of them are clearly poor, unbalanced designs, while oth-

ers are extremely large (up to 12,000mm2). We can reduce the number of designs

dramatically if we apply some simple rules.

First, we bound the die size at 400mm2 in 90nm to allow for aggressively large yet

feasible designs. Next, we remove designs that are clearly inefficient. For instance,

it makes no sense to have more than one domain if the design contains fewer than

eight PEs per domain. In this case, it is always better to combine the PEs into a

single domain, since reducing the domain size does not reduce the cycle time (which

is set by the PE’s Execute pipeline stage) but does increase communication latency.

Similarly, if there are fewer than four domains in the design, there should be only one

cluster. Applying these rules and a few more like them reduces the number of designs

to 201.

We evaluated all 201 design points on our benchmark set. For the Splash2 applica-

tions, we ran each application with a range of thread counts on each design and report
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Figure 7.1: Pareto-optimal WaveScalar designs: The dotted lines separate de-
signs according the number of clusters they contain. Note the difference in AIPC
scale for the Splash2 data.

results for the best-performing thread count. Figure 7.1 shows the results for each

group of applications. Each point in the graph represents a configuration, and the

circled points are pareto-optimal configurations (i.e., there are no configurations that

are smaller and achieve better performance). We discuss single- and multi-threaded

applications separately and then compare WaveScalar to two other architectures in

terms of area efficiency.
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7.2.2 Single-threaded workloads

On single-threaded programs WaveScalar suffers from the same problem that single-

threaded von Neumann processors face – there is generally very little parallelism

available in single-threaded programs written in imperative programming languages.

As a result, WaveScalar achieves performance comparable to a single-threaded von

Neumann machine. The WaveScalar is, however, much more area efficient than com-

parable von Neumann designs.

Pareto analysis

The data for all three groups of single-threaded workloads follow the same trend (see

Figure 7.1). The configurations fall into three clumps (dotted lines) depending on

how many clusters they utilize. Both SpecINT and SpecFP see the most benefit from

four cluster designs. On a single cluster they achieve only 58% and 46% (respectively)

of the peak performance they attain on four clusters. Mediabench sees smaller gains

(9%) from four clusters.

None of the workloads productively utilize a 16 cluster design. In fact, perfor-

mance decreases for these configurations because instructions become more spread

out, increasing communication costs (see below).

Comparison to other single-threaded architectures

To evaluate WaveScalar’s single-threaded performance, we compare three different

architectures: two WaveCaches and an out-of-order processor. For the out-of-order

(OOO) measurements, we use sim-alpha configured to model the Alpha EV7 [23, 33],

but with the same L1, L2, and main memory latencies we model for WaveScalar.

Figure 7.2 compares all three architectures on the single-threaded benchmarks

using AIPC. Of the two WaveCache designs, WS1x1 has better performance on two

floating point applications (ammp and equake). A single cluster is sufficient to hold
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Figure 7.2: Single-threaded WaveCache vs. superscalar: On average, both
WaveCaches perform comparably to the superscalar.

the working set of instructions for these applications, so moving to a 4-cluster array

spreads the instructions out and increases communication costs. The costs take two

forms. First, the WC2x2 contains four L1 data caches that must be kept coherent,

while WC1x1 contains a single cache, so it can avoid this overhead. Second, the

average latency of messages between instructions increases by 20% on average, because

some messages must traverse the inter-cluster network. The other applications, except

twolf and art, have very similar performance on both configurations. Twolf and art

have large enough working sets to utilize the additional instruction capacity (twolf )

or the additional memory bandwidth provided by the four L1 data caches (art).

The performance of the WS1x1 compared to OOO does not show a clear winner

in terms of raw performance. WS1x1 does better for four applications, outperforming

OOO by 4.5× on art, 66% on equake, 34% on ammp, and 2.5× on mcf. All these

applications are memory-bound (OOO with a perfect memory system performs be-

tween 3.6-32× better). Two factors contribute to WaveScalar’s superior performance.
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Figure 7.3: Performance per unit area: The 1x1 WaveCache is the clear winner
in terms of performance per area.

First, WaveScalar’s dataflow execution model allows several loop iterations to exe-

cute simultaneously. Second, since wave-ordered memory allows many waves to be

executing simultaneously, load and store requests can arrive at the store buffer long

before they are actually applied to memory. The store buffer can then prefetch the

cache lines that the requests will access, so when the requests emerge from the store

buffer in the correct order, the data they need is waiting for them.

WaveScalar does less well on integer computations due to frequent function calls.

A function can only occur at the end of a wave, because called functions immediately

create a new wave. As a result, frequent function calls in the integer applications

reduce the size of the waves the compiler can create by 50% on average compared

to floating point applications, consequently reducing memory parallelism. Twolf and

gzip are hit hardest by this effect, and OOO outperform WS1x1 by 54% and 32%,

respectively. For the rest of the applications, WS1x1 is no more than 10% slower than

OOO.
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The performance differences between the two architectures are clearer if we take

into account the die area required for each processor. To estimate the size of OOO,

we examined a die photo of the EV7 in 180nm technology [33, 36]. The entire die is

396mm2. From this, we subtracted the area devoted to several components that our

RTL model does not include (e.g., the IO pads, and inter-chip network controller),

but would be present in a real WaveCache. We estimate the remaining area to be

∼291mm2, with ∼207mm2 devoted to 2MB of L2 cache. Scaling all these measure-

ments to 90nm technology yields ∼72mm2 total and 51mm2 of L2. Measurements

from our RTL model show that WC1x1 occupies 48mm2 (12mm2 of L2 cache) and

WC2x2 occupies 247mm2 (48mm2 of L2 cache) in 90nm.

Figure 7.3 shows the area-efficiency of the WaveCaches measured in AIPC/mm2

compared to OOO. For our single threaded workloads, OOO achieves an area efficiency

of 0.008 AIPC/mm2 and a bottom-line performance of 0.6 AIPC. Depending on the

configuration, WaveScalar’s efficiency for the single-threaded applications is between

0.004 AIPC/mm2 (0.71 AIPC; configuration 31) and 0.033 AIPC/mm2 (0.45 AIPC;

configuration 1). WaveScalar configuration 4 closely matches the OOO’s performance,

but is 50% more area-efficient.

In summary, for most of our workloads, the WaveCache’s bottom-line single-

threaded AIPC is as good as or better than conventional superscalar designs, and

it achieves this level of performance with a less complicated design and in a smaller

area.

7.2.3 Multi-threaded workloads

The multi-threaded Splash2 benchmarks provide ample parallelism and can take ad-

vantage of much larger WaveScalar designs. They also afford an opportunity to com-

pare WaveScalar’s multithreading abilities to those of CMPs.
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Pareto analysis

Figure 7.1 (upper left) shows WaveScalar’s performance for multithreaded workloads.

Because the workloads are multithreaded, they can take advantage of additional area

very effectively, as both performance and area increase at nearly the same rate. The

dotted lines divide the designs into groups of 1-, 4-, and 16-cluster configurations. The

wide, horizontal gap at ∼6 IPC is a result of running different numbers of threads.

For each configuration, we run a range of different thread counts for each application

and report the best overall performance. Designs above the gap generally have larger

virtualization degrees (i.e., the number of instructions that can reside at a PE) and L1

data caches, allowing them to support more threads simultaneously providing more

parallelism.

Table 7.4 lists the pareto-optimal configurations for Splash2 divided into five

groups of designs with similar performance (column “Avg. AIPC”).

Group A is the single-cluster configurations. Designs 1, 2, 5, and 6 contain only

two domains per cluster. Designs 5 and 6 outperform smaller, four-domain designs

(3 and 4) because pressure in the L1 data cache outweighs the benefits of additional

processing elements.

Moving to four clusters without an L2 cache (Group B) increases the chip’s size by

52% and its performance by 38%. Doubling the size of the L1 provides an additional

11% performance boost.

Group C (configurations 13 and 14) “trades-in” large L1 caches for an on-chip

L2. For configuration 13, this results in a 43.5% improvement in performance for a

negligible increase in area.

The first four 4-cluster designs (Groups B and C) all have much smaller virtu-

alization degrees than the best-performing single-cluster designs (64 vs. 128-256).

Configuration 15, the first in Group D, has 128 instructions per PE. The change leads

to 43% more performance and requires only 12% additional area.
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The remaining designs in Group D increase slowly in area and performance. Vir-

tualization degree is most important to performance followed by matching table size

and cache capacity. With few exceptions, the gains in performance are smaller than

the increase in area that they require. As a result, the area efficiency of the designs

falls from 0.07 AIPC/mm2 to 0.04 AIPC/mm2.

The designs in Group D are the best example of a phenomenon that also occurs in

Group A and among the largest pareto-optimal designs for SpecINT and mediabench.

In each case, increases in area lead to small changes in performance. This suggests

that within those size ranges (19-44mm2 for Group A and 101-247mm2 for Group

D) the designs are as balanced as possible without moving to significantly larger

configurations. However, Groups A and D end when the number of PEs increases,

demonstrating that the availability of PEs is the key constraint on performance of

the smaller designs. For the largest SpecINT and mediabench designs, the data tell

a different story. In those cases, the limiting factor is parallelism in the application,

and no amount of additional hardware can improve performance.

The configurations in Group E (33-39) have 16 clusters. The transition from 4 to

16 clusters mimics the transition from 1 to 4: The smallest 16 cluster designs have less

virtualization and increase their performance by increasing matching table capacity

and cache sizes. The larger designs “trade-in” matching table capacity for increased

virtualization.

The results demonstrate that WaveScalar is scalable both in terms of area effi-

ciency and peak performance. Design 3 is the most area efficient design, and de-

sign 15 uses the same cluster configuration to achieve the same level of efficiency

(0.07 AIPC/mm2). As a result, the designs are approximately a factor of 5 apart in

both area and performance. Scaling the same cluster configuration to a 16-cluster

machine (configuration 38) reduces the area efficiency to 0.04 AIPC/mm2, however.

A more area-efficient alternative (0.05 AIPC/mm2) is configuration 33, which corre-

sponds to scaling up configuration 13 and using a slightly smaller L2 data cache.
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Design 10 outperforms all the other 1 cluster designs (2.2 AIPC), and configuration

28 uses the same cluster design to achieve 4.2× the performance (9 AIPC) in 4.6× the

area. This level of performance is within 5% of the best performing 4-cluster design

(configuration 32), demonstrating scalability of raw performance.

This slightly imperfect scalability (the last 5%), however, raises complex questions

for chip designers. For instance, if an implementation of configuration 38’s cluster

is available (e.g., from an implementation of configuration 3), is it more economic

to quickly build that larger, slightly less efficient design or to expend the design

and verification effort to implement configuration 33 instead? At the very least, it

suggests tiled architectures are not perfectly scalable, but rather scalability claims

must be carefully analyzed.

Larger designs

To evaluate the WaveCache’s multithreaded performance more thoroughly, we simu-

late a 64-cluster design, representing an aggressive “big iron” processor built in next-

generation process technology and evaluated its performance using Splash2. Then, to

place the multithreaded results in context with contemporary designs, we compare a

smaller, 16-cluster array that could be built today with a range of multithreaded von

Neumann processors from the literature. For the workloads the studies have in com-

mon, the 16-cluster WaveCache outperforms the von Neumann designs by a factor of

between 2 and 16.

We simulate an 8x8 array of clusters (based on configuration 14 in Table 7.4) to

model an aggressive, future-generation design. Using the results from our area model

scaled to 45nm, we estimate that the processor occupies ∼360mm2, with an on-chip

16MB L2.

Our performance metric is execution-time speedup relative to a single thread exe-

cuting on the same WaveCache. We also compare the WaveScalar speedups to those

calculated by other researchers for other threaded architectures. Component metrics
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Figure 7.4: Splash-2 on the WaveCache: We evaluate each of our Splash-2
benchmarks on the baseline WaveCache with between 1 and 128 threads.

help explain these bottom-line results, where appropriate.

Figure 7.4 contains speedups of multithreaded WaveCaches for all six benchmarks,

as compared to their single-threaded running time. The bars represent speedup in

total execution time. The numbers above the single-threaded bars are IPC for that

configuration. Two benchmarks, water and radix, cannot utilize 128 threads with the

input data set we use, so that value is absent. On average, the WaveCache achieves

near-linear speedup (25×) for up to 32 threads. Average performance increases sub-

linearly with 128 threads, up to 47× speedup with an average IPC of 88.

Interestingly, increasing beyond 64 threads for ocean and raytrace reduces perfor-

mance. The drop-off occurs because of WaveCache congestion from the larger instruc-

tion working sets and L1 data evictions due to capacity misses. For example, going

from 64 to 128 threads, ocean suffers 18% more WaveCache instruction misses than

would be expected from the additional compulsory misses. In addition, the operand

matching cache miss rate increases by 23%. Finally, the data cache miss rate, which



88

0

5

10

15

20

25

30

35

w
s

sc
m
p

sm
t8

cm
p4

cm
p2 w

s

sc
m
p

sm
t8

cm
p4

cm
p2

ec
km

an w
s

sc
m
p

ec
km

an

S
p

e
e
d

u
p

 v
s
 1

-
th

r
e
a
d

 s
c
a
la

r
 C

M
P

128 threads

64 threads

32 threads

16 threads

8 threads

4 threads

2 threads

1 thread

46

lu fft radix

Figure 7.5: Performance comparison of various architectures: WaveScalar’s
multi-threaded performance compared to several other multi-threaded architectures.

is essentially constant for up to 32 threads, doubles as the number of threads scales

to 128. This additional pressure on the memory system increases ocean’s memory

access latency by a factor of eleven.

The same factors that cause the performance of ocean and raytrace to suffer when

the number of threads exceeds 64 also reduce the rate of speedup improvement for

other applications as the number of threads increases. For example, the WaveCache

instruction miss rate quadruples for lu when the number of threads increases from

64 to 128, curbing speedup. In contrast, FFT, with its relatively small per-thread

working set of instructions and data, does not tax these resources, and so achieves

better speedup with up to 128 threads.
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Comparison to other multi-threaded architectures

To understand how WaveCache performance compares with other architectures we

perform two sets of experiments. In the first, we compare WaveCache performance to

other multi-threaded architectures on three Splash-2 kernels: lu, fft and radix. Then

we compare its area efficiency to the Niagara processor from Sun.

To compare our Splash2 performance to other threaded processors, we present

results from several sources in addition to our own WaveCache simulator. For CMP

configurations we performed our own experiments using a simple in-order core (scmp),

as well as measurements from [40] and [24]. Comparing data from such diverse sources

is difficult, and drawing precise conclusions about the results is not possible. However,

we believe that the measurements are valuable for the broad trends they reveal.

To make the comparison as equitable as possible, we use a smaller, 4x4 WaveCache

for these studies. Our RTL model gives an area of 253mm2 for this design (we assume

an off-chip, 16 MB L2 cache and increase its access time from 10 to 20 cycles).

While we do not have precise area measurements for the other architectures, the

most aggressive configurations (i.e., most cores or functional units) are in the same

ball park with respect to size.

To facilitate the comparison of performance numbers of these different sources,

we normalized all performance numbers to the performance of a simulated scalar

processor with a 5-stage pipeline. The processor has 16KB data and instruction

caches, and a 1MB L2 cache, all 4-way set associative. The L2 hit latency is 12

cycles, and the memory access latency of 200 cycles matches that of the WaveCache.

Figure 7.5 shows the results. The stacked bars represent the increase in perfor-

mance contributed by executing with more threads. The bars labeled ws depict the

performance of the WaveCache. The bars labeled scmp represent the performance of

a CMP whose cores are the scalar processors described above with 1MB of L2 cache

per processor core. These processors are connected via a shared bus between pri-
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vate L1 caches and a shared L2 cache. Memory is sequentially consistent and uses a

snooping version of the protocol WaveScalar’s L1 data caches use. Up to 4 accesses to

the shared memory may overlap. For the CMPs the stacked bars represent increased

performance from simulating more processor cores. The 4- and 8-core bars loosely

model Hydra [31] and a single Piranha chip [10], respectively.

The bars labeled smt8, cmp4 and cmp2 are the 8-threaded SMT and 4- and 2-core

out-of-order CMPs from [40]. We extracted their running times from data provided

by the authors. Memory latency is low on these systems (dozens of cycles) compared

to expected future latencies, and all configurations share the L1 data- and instruction

caches.

To compare the results from [24] (labeled ekman in the figure), which are nor-

malized to the performance of their 2-core CMP, we simulated a superscalar with a

configuration similar to one of these cores and halved the reported execution time;

we then used this figure as an estimate of absolute baseline performance. In [24],

the authors fixed the execution resources for all configurations, and partitioned them

among an increasing number of decreasingly wide CMP cores. For example, the 2-

thread component of the ekman bars is the performance of a 2-core CMP in which

each core has a fetch width of 8, while the 16-thread component represents the per-

formance of 16 cores with a fetch-width of 1. Latency to main memory is 384 cycles,

and latency to the L2 cache is 12 cycles.

The data show that the WaveCache can handily outperform the other architec-

tures at high thread counts. It executes 1.8× to 10.9× faster than scmp, 5.2× to

10.8× faster than smt8, and 6.4× to 16.6× faster than the various out-of-order CMP

configurations. Component metrics show that the WaveCache’s performance benefits

arise from its use of point-to-point communication, rather than a system-wide broad-

cast mechanism, and from the latency-tolerance of its dataflow execution model. The

former enables scaling to large numbers of clusters and threads, while the latter helps

mask the increased memory latency incurred by the directory protocol and the high
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load-use penalty on the L1 data cache.

The performance of all systems eventually plateaus when some bottleneck resource

saturates. For scmp this resource is shared L2 bus bandwidth. Bus saturation occurs

at 16 processors for LU, 8 for FFT and 2 for RADIX1. For the other von Neumann

CMP systems, the fixed allocation of execution resources is the limit [40], resulting

in a decrease in per-processor IPC. For example, in ekman, per-processor IPC drops

50% as the number of processors increases from 4 to 16 for RADIX and FFT. On

the WaveCache, speedup plateaus when the working set of all the threads equals its

instruction capacity. This offers the WaveCache the opportunity to tune the number of

threads to the amount of on-chip resources. With their static partitioning of execution

resources across processors, this option is absent for CMPs; and the monolithic nature

of SMT architectures prevents scaling to large numbers of thread contexts.

Finally, we compare the WaveCache to Sun’s Niagara processor [37] in terms of

area efficiency. Niagara is an 8-way CMP targeted at large multi-threaded workloads.

We are unaware of any published evaluation of Splash2 on Niagara, but [37] shows

Niagara running at 4.4 IPC (0.55 IPC/core) at 1.2 GHz (an approximately 10%

faster clock than WaveScalar’s). Niagara’s die measures 379mm2, giving an efficiency

of 0.01 IPC/mm2. Since each Niagara core is single-issue and in-order, and all eight

cores share a floating point unit, the theoretical maximum efficiency is 0.02 IPC/mm2.

The least efficient pareto optimal WaveScalar design (configuration 39) is twice as

efficient (0.04 AIPC/mm2).

Discussion

The WaveCache has clear promise as a multiprocessing platform. In the 90nm technol-

ogy available today, we could easily build a WaveCache that would outperform a range

1While a 128-core scmp with a more sophisticated coherence system might perform more com-
petitively with the WaveCache on RADIX and FFT, studies of these systems are not present in
the literature, and it is not clear what their optimal memory system design would be.
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Figure 7.6: The distribution of traffic in the WaveScalar processor: The vast
majority of traffic in the WaveScalar processor is confined within a single cluster and,
for many applications, over half travels only over the intra-domain interconnect.

of CMP designs both in terms of bottom-line performance and area efficiency. Scaling

multi-threaded WaveScalar systems beyond a single die is also feasible. WaveScalar’s

execution model makes and requires no guarantees about communication latency, so

using several WaveCache processors to construct a larger computing substrate is a

possibility.

7.3 Network traffic

One goal of WaveScalar’s hierarchical interconnect is to isolate as much traffic as

possible in the lower levels of the hierarchy, namely, within a PE, a pod or a domain.

Figure 7.6 breaks down all network traffic according to these levels. It reveals the

extent to which the hierarchy succeeds on all three workloads, and for the parallel

applications, on a variety of WaveScalar processor sizes. On average 40% of network

traffic travels from a PE to itself or to the other PE in its pod, and 52% of traffic

remains within a domain. For multi-cluster configurations, on average just 1.5% of

traffic traverses the inter-cluster interconnect. The graph also distinguishes between

operand data and memory/coherence traffic. Operand data accounts for the vast
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majority of messages, 80% on average, with memory traffic less than 20%.

These results demonstrate the scalability of communication performance on the

WaveScalar processor. Applications that require only a small patch of the processor,

such as Spec2000, can execute without ever paying the price for long distance commu-

nication. In addition, the distribution of traffic types barely changes with the number

of clusters, indicating that the interconnect partitioning scheme is scalable. Message

latency does increase with the number of clusters (by 12% from 1 to 16 clusters), but

as we mentioned above, overall performance still scales linearly. One reason for the

scalability is that the WaveScalar instruction placement algorithms isolate individual

Splash threads into different portions of the die. Consequently, although the average

distance between two clusters in the processor increases from 0 (since there is only

one cluster) to 2.8, the average distance that a message travels increases by only 6%.

For the same reason, network congestion increases by only 4%.

7.4 Discussion

We have presented a design space analysis for WaveScalar processors implemented in

an ASIC tool flow. However, our conclusions also apply to full-custom WaveScalar

designs and, in some ways, to other tiled architectures such as CMPs.

The two main conclusions would not change in a full-custom design. For the first

conclusion, that WaveScalar is inherently scalable both in terms of area efficiency

and raw performance, our data provide a lower bound on WaveScalar’s ability to

scale. Custom implementations should lead to smaller designs, faster designs, or

both. Our second conclusion, that WaveScalar’s area efficiency compares favorably

to more conventional designs, would hold in a full custom design for the same reason.

WaveScalar’s hierarchical interconnect would serve well as the interconnect for an

aggressive CMP design, and our results concerning the scalability and performance of

the network would apply to that domain as well. In a conventional CMP design, the

network carries coherence traffic, but as researchers strive to make CMPs easier to
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program it might make sense to support other types of data, such as MPI messages,

as well. In that case, our data demonstrate the value of localizing communication

as much as possible and the feasibility of using a single network for both coherence

traffic and data messaging.
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Chapter 8

WAVESCALAR’S DATAFLOW FEATURES

The WaveScalar instruction set and hardware design we have described so far

replicates the functionality of a von Neumann processor or a CMP composed of von

Neumann processors. Providing these capabilities is essential for WaveScalar to be

a viable alternative to von Neumann architectures, but it is not the limit of what

WaveScalar can do.

This chapter exploits WaveScalar’s dataflow underpinning to achieve two things

that conventional von Neumann machines cannot. First, it provides a second, un-

ordered memory interface that is similar to the token-passing interface in Section 3.4.1.

The unordered interface is built to express memory parallelism. It bypasses the wave-

ordered store buffer and accesses the L1 cache directly, avoiding the overhead of the

wave-ordering hardware. Because the unordered operations do not go through the

store buffer, they can arrive at the L1 cache in any order or in parallel.

Second, the WaveCache can support very fine-grain threads. On von Neumann

machines the amount of hardware devoted to a thread is fixed (e.g., one core on a

CMP or one thread context on an SMT machine), and the number of threads that can

execute at once is relatively small. On the WaveCache, the number of physical store

buffers limits the number of threads that use wave-ordered memory simultaneously,

but any number of threads can use the unordered interface at one time. In addition,

spawning these threads is even less expensive than spawning threads that use the

wave-ordered interface (Section 5.1), so it is feasible to break a program up into 100s

of parallel, fine-grain threads.

We begin by describing the unordered memory interface. Then we use it and
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fine-grain threads to express large amounts of parallelism in three application ker-

nels. Finally, we combine the two styles of programming to parallelize equake from

the Spec2000 floating point suite, and demonstrate that by combining WaveScalar’s

ability to run both kinds (i.e., coarse-grain, von Neumann-style threads and fine-

grain, dataflow-style threads), we can achieve performance greater than utilizing ei-

ther alone, in this case, a 9× speedup.

8.1 Unordered memory

As described, WaveScalar’s only mechanism for accessing memory is the wave-ordered

memory interface. The interface is necessary for executing conventional programs, but

it can only express limited parallelism (i.e., by using ripple numbers). WaveScalar’s

unordered interface makes a different trade-off: it cannot efficiently provide the se-

quential ordering that conventional programs require, but it excels at expressing par-

allelism, because it eliminates unneeded ordering constraints and avoids contention

for the store buffer. Because of this, it allows programmers or compilers to express

and exploit memory parallelism when they know it exists.

Like all other dataflow instructions, unordered operations are only constrained by

their static data dependences. This means that if two unordered memory operations

are not directly or indirectly data-dependent, they can execute in any order. Pro-

grammers and compilers can exploit this fact to express parallelism between memory

operations that can safely execute out of order; however, they need a mechanism to

enforce ordering among those that cannot.

To illustrate, consider a Store and a Load that could potentially access the

same address. If, for correct execution, the Load must see the value written by the

Store (i.e., a read-after-write dependence), then the thread must ensure that the

Load does not execute until the Store has finished. If the thread uses wave-ordered

memory, the store buffer enforces this constraint; however, since unordered memory

operations bypass the wave-ordered interface, unordered accesses must use a different
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mechanism.

To ensure that the Load executes after the Store, there must be a data depen-

dence between them. This means memory operations must produce an output token

that can be passed to the operations that follow. Loads already do this, because

they return a value from memory. We modify Stores to produce a value when they

complete. The value that the token carries is unimportant, since its only purpose is to

signal that the Store is complete. In our implementation it is always zero. We call

unordered Loads and Stores, Load-Unordered and Store-Unordered-Ack,

respectively.

8.1.1 Performance evaluation

To demonstrate the potential of unordered memory, we implemented three tradi-

tionally parallel but memory-intensive kernels – matrix multiply (MMUL), longest

common subsequence (LCS), and a finite input response filter (FIR) – in three differ-

ent styles and compared their performance. Serial coarse-grain uses a single thread

written in C. Parallel coarse-grain is a coarse-grain parallelized version, also written

in C, that uses the coarse-grain threading mechanisms described in Chapter 5. Un-

ordered uses a single coarse-grain thread written in C to control a pool of fine-grain

threads that use unordered memory, written in WaveScalar assembly. We call these

unordered threads.

For each application, we tuned the number of threads and the array tile size

to achieve the best performance possible for a particular implementation. MMUL

multiplies 128 × 128 entry matrices, LCS compares strings of 1024 characters, and

FIR filters 8192 inputs with 256 taps. They use between 32 (FIR) and 1000 (LCS )

threads. Each version is run to completion.

Figure 8.1 depicts the performance of each algorithm executing on the 8x8 Wave-

Cache described in Section 7.2.3. On the left, it shows speedup over the serial imple-

mentation, and, on the right, average units of work completed per cycle. For MMUL
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Figure 8.1: Fine-grain performance: Performance of three different implementa-
tion styles

and FIR, the unit of work selected is a multiply-accumulate, while for LCS, it is a

character comparison. We use application-specific performance metrics, because they

are more informative than IPC when comparing the three implementations. For all

three kernels, the unordered implementations achieve superior performance because

they exploit more parallelism.

The benefits stem from two sources. First, the unordered implementations can use

more threads. It would be easy to write a pthread-based version that spawned 100s

or 1000s of threads, but the WaveCache cannot execute that many ordered threads

at once, since there are not enough store buffers. Secondly, the unordered threads’

memory operations can execute in parallel. As a result, the fine-grain, unordered

implementation exploit more inter- and intra-thread parallelism. MMUL is the best

example; it executes 27 memory operations per cycle on average (about one per every

two clusters), compared to just 6 for the coarse-grain version.

FIR and LCS are less memory-bound than MMUL because they load values (input

samples for FIR and characters for LCS ) from memory once and then pass them from

thread to thread directly. For these two applications the limiting factor is inter-cluster
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network bandwidth. Both algorithms involve a great deal of inter-thread communi-

cation, and since the computation uses the entire 8x8 array of clusters, inter-cluster

communication is unavoidable. For LCS 27% of messages travel across the inter-

cluster network compared to 0.4-1% for the single-threaded and coarse-grain versions,

and the messages move 3.6 times more slowly due to congestion. FIR displays similar

behavior. A different placement algorithm might alleviate much of this problem and

improve performance further by placing the instructions for communicating threads

near one another.

8.2 Mixing threading models

In Chapter 5, we explained the extensions to WaveScalar that support coarse-grain,

pthread-style threads. In the previous section, we introduced two lightweight memory

instructions that enable fine-grain threads and unordered memory. In this section,

we combine these two models; the result is a hybrid programming model that enables

coarse- and fine-grain threads to coexist in the same application. We begin with two

examples that illustrate how ordered and unordered memory operations can be used

together. Then, we exploit all of our threading techniques to improve the performance

of Spec2000’s equake by a factor of nine.

8.2.1 Mixing ordered and unordered memory

A key strength of our ordered and unordered memory mechanisms is their ability

to coexist in the same application. Sections of an application that have independent

and easily analyzable memory access patterns (e.g., matrix manipulations and stream

processing) can use the unordered interface, while difficult to analyze portions (e.g.,

pointer-chasing codes) can use wave-ordered memory.

We describe two ways to combine ordered and unordered memory accesses. The

first turns off wave-ordered memory, uses the unordered interface, and then reinstates

wave-ordering. The second, more flexible approach allows the ordered and unordered
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ThreadToData

MemorySequenceStop

<t:w>.finished

<t:w>.v

<t:w>.t

MemorySequenceStart

<t:w>.w

WaveToData
<t:w>.t

Arbitrary unordered 
code

Ordered Code

Ordered Code

Figure 8.2: Transitioning between memory interfaces: The transition from or-
dered to unordered memory and back again.

interfaces to exist simultaneously.

Example 1 Figure 8.2 shows a code sequence that transitions from wave-ordered

memory to unordered memory and back again. The process is quite similar to ter-

minating and restarting a pthread-style thread. At the end of the ordered code, a

Thread-To-Data instruction extracts the current Thread-Id, and a Memory-

Sequence-Stop instruction terminates the current memory ordering. Memory-

Sequence-Stop outputs a value, labeled finished in the figure, after all preceding

wave-ordered memory operations have completed. The finished token triggers the

dependent, unordered memory operations, ensuring that they do not execute until

the earlier, ordered-memory accesses have completed.

After the unordered portion has executed, a Memory-Sequence-Start creates

a new, ordered memory sequence using the Thread-Id extracted previously. In

principle, the new thread need not have the same Thread-Id as the original ordered

thread. In practice, however, this is convenient, as it allows values to flow directly

from the first ordered section to the second (the curved arcs on the left side of the
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struct {

int x,y;

} point;

foo(point *v, int *p, int *q)

{

point t;

*p = 0;

t.x = v->x;

t.y = v->y;

    return *q;

} 

 St *p, 0  <0,1,2>

MemoryNopAck <1,2,3>

Ld v->x Ld v->y

St t.x St t.y

MemoryNopAck <2,3,4>

+

pv

Wave-ordered

Unordered

 Ld *q <3,4,5> 

q

Figure 8.3: Using ordered and unordered memory together: A simple exam-
ple where Memory-Nop-Ack is used to combine ordered and unordered memory
operations to express memory parallelism.

figure) without Thread-Id manipulation instructions.

Example 2: In many cases, a compiler may be unable to determine the targets of

some memory operations. The wave-ordered memory interface must remain intact to

handle these hard-to-analyze accesses. Meanwhile, unordered memory accesses from

analyzable operations can simply bypass the wave-ordering interface. This approach

allows the two memory interfaces to coexist in the same thread.

Figure 8.3 shows how the Memory-Nop-Ack instruction from Section 5.2.1 al-

lows programs to take advantage of this technique. Recall that Memory-Nop-Ack

is a wave-ordered memory operation that operates like a memory fence instruction,

returning a value when it completes. We use it here to synchronize ordered and un-

ordered memory accesses. In function foo, the loads and stores that copy *v into

t can execute in parallel but must wait for the store to *p, which could point to

any address. Likewise, the load from address *q cannot proceed until the copy is
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complete. The wave-ordered memory system guarantees that the store to *p, the two

Memory-Nop-Acks, and the load from *q fire in the order shown (top to bottom).

The data dependences between the first Memory-Nop-Ack and the unordered loads

at left ensure that the copy occurs after the first store. The Add instruction sim-

ply coalesces the outputs from the two Store-Unordered-Ack instructions into a

trigger for the second Memory-Nop-Ack that ensures the copy is complete before

the final load.

8.2.2 A detailed example: equake

To demonstrate that mixing the two threading styles is not only possible but also

profitable, we optimized equake from the SPEC2000 benchmark suite. equake spends

most of its time in the function smvp, with the bulk of the remainder confined to a

single loop in the program’s main function. In the discussion below, we refer to this

loop in main as sim.

We exploit both ordered, coarse-grain and unordered, fine-grain threads in equake.

The key loops in sim are data independent, so we parallelized them using coarse-grain

threads that process a work queue of blocks of iterations. This optimization improves

sim’s performance by 2.2×, but speeds up equake by only a factor of 1.6 overall.

Next, we used the unordered memory interface to exploit fine-grain parallelism in

smvp. Two opportunities present themselves. First, each iteration of smvp’s nested

loops loads data from several arrays. Since these arrays are read-only, we used un-

ordered loads to bypass wave-ordered memory, allowing loads from several iterations

to execute in parallel. Second, we targeted a set of irregular cross-iteration depen-

dences in smvp’s inner loop that are caused by updating an array of sums. These

cross-iteration dependences make it difficult to profitably coarse-grain-parallelize the

loop. However, the Thread-Coordinate instruction lets us extract fine-grain par-

allelism despite these dependences, since it efficiently passes array elements from PE

to PE and guarantees that only one thread can hold a particular value at a time. This
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idiom is inspired by M-structures [11], a dataflow-style memory element. Rewriting

smvp with unordered memory and Thread-Coordinate improves that functions

performance by 11×, but overall gains are only 2.2×.

When both coarse-grain and fine-grain threading are used together, equake speeds

up by a factor of 9.0. This result demonstrates that coarse-grain, pthread-style threads

and fine-grain, unordered threads can be combined to accelerate a single application

beyond what either technique can achieve in isolation.
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Chapter 9

RELATED WORK

WaveScalar is the most recent in a long line of dataflow processor architectures,

but its goal differs in some ways from its predecessors. Previous dataflow machines

focused (mostly) on performance for scientific computing, and the key advantage of

dataflow was the parallelism it could express and exploit. WaveScalar’s approach

differs in two respects. First, it targets general purpose programs and imperative

programming languages. Second, although it takes advantage of dataflow parallelism,

it exploits dataflow’s decentralized execution model to address the challenges that

face modern chip designers.

In this regard, WaveScalar resembles other tiled architectures that researchers

have proposed. These designs strive to reduce design effort by replicating hardware

structures across the silicon die. The dataflow execution model is a natural match for

such a design.

This chapter places WaveScalar in context relative to both previous dataflow de-

signs and modern tiled architectures. It also addresses several arguments against the

dataflow model as the basis for scalable processor designs.

9.1 Previous dataflow designs

Dataflow execution models, by definition, share two characteristics. First, they rep-

resent programs as dataflow graphs. The nodes in the graph are operations and the

dataflow arcs between them carry data values from one operation to another. Sec-

ond, execution occurs according to the dataflow firing rule. That is, an operation may

execute when its inputs are available.
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A wide range of execution models fall within this definition, and researchers have

designed and built an equally wide range of hardware designs to implement them. We

categorize dataflow research efforts along four axes. First, dataflow models vary in how

they deal with dynamic instances of individual values and when operations become

eligible to execute. Second, different models provide different granularities of dataflow

operations. Some models restrict the nodes in the dataflow graph to single instructions

while others allow for long-running threads. Third, models provide varying types of

mutable memories, usually in the form of implicitly synchronized memories. The

fourth axis is the organization of the hardware implementation and, in particular,

how the hardware implements the dataflow firing rule. We discuss each of these axes

in turn. Table 9.1 summarizes the discussion.

9.1.1 Execution model

Dennis [21] described the first dataflow execution model with a corresponding pro-

cessor architecture. His initial design was the static dataflow model. Static dataflow

systems allow a single data value to be present on an arc in the dataflow graph at

one time and use the simplest version of the dataflow firing rule. In static dataflow

systems an operation can fire when a value is present on each input arc. A dataflow

graph that produces multiple simultaneous values on a dataflow arc is malformed.

Static dataflow’s simplicity limits its generality and the amount of parallelism it

can express. For example, they cannot support general recursion, because recursive

dataflow graphs can easily result in multiple, unconsumed values waiting on dataflow

arcs. Also, multiple iterations of a loop cannot execute simultaneously.

These disadvantages limited static dataflow’s success as a processor execution

model, but the idea has found applications in other domains. For instance, electrical

circuits are essentially static dataflow graphs with charge and current acting as values

that electrical components compute on.

The alternative to static dataflow is dynamic dataflow. Dynamic dataflow ma-
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chines allow multiple values on an arc at once, allowing for both recursion and parallel

execution of loop iterations. The cost, however, comes in a more complicated dataflow

firing rule. Instead of waiting for any inputs to be available, operations must wait

until a set of matching inputs are available.

Dynamic dataflow machines differentiate between instances of values by adding a

tag to each value. The combination of a data value and a tag is called a token. In

dynamic dataflow machines an operation can only execute if a set of tokens with the

same tag is present on its inputs. Normal operations copy the tag from the input

values to the outputs, but the instruction sets often provide special tag management

instructions to modify tags (i.e., WaveScalar’s Data-To-Wave and Wave-To-Data

instructions).

The MIT Tagged Token Dataflow Architecture (TTDA) [8] was one of the earliest

dynamic dataflow machines, and nearly all subsequent dataflow machines, including

WaveScalar, use the dynamic dataflow model. WaveScalar differs from previous dy-

namic systems in providing a two-part tag (wave number and thread id) and giving

the programmer complete control over the tags. Previous machines provided special

hardware or firmware for automatic tag management.

Tag management increases the burden on the programmer slightly but allows

more flexible use of the available space of tags. For instance, the fine-grain threading

mechanism described in Section 8.1.1 relies upon creative use of wave number and

thread ids.

9.1.2 Operation granularity

In the abstract, the dataflow graph of an application defines a partial order over a set

of operations. Different dataflow models and their corresponding hardware implemen-

tations support different granularities of operation. Designs such as TTDA [8], the

Manchester machine [30], SIGMA-1 [56], Epsilon [28], Monsoon [50], and WaveScalar

used individual instructions as operations. Other designs, such as the EM4 [54, 52],
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P-Risc [47], *T [48], and the Threaded Abstract Machine (TAM) [16] allowed for

coarse-grain operations (often called threads) and provided hardware acceleration for

synchronization operations.

The shift from fine-grained dataflow to coarse-grain dataflow was a response to

the high cost of frequent synchronization in fine-grain dataflow machines. Coarse-

grain operations make synchronization less frequent. They reduce communication

overhead, because each operation runs to completion on one processing element, con-

fining communication within an operation to a single processor.

Despite the strong trend in previous dataflow research toward coarse-grain op-

erations, WaveScalar uses fine-grain operations. The dataflow languages that older

dataflow machines targeted provide parallelism at a wide range of granularities. De-

signers could adjust the granularity of their operations to balance synchronization

and communication costs in the technology available at the time.

WaveScalar does not have this luxury, because one of its goals is to efficiently

execute programs written in C. These programs tend to have a small amount of

instruction-level parallel (ILP) and, if they are multi-threaded, some very coarse-grain,

pthread-style parallelism. There is little or no parallelism in between. As a result,

WaveScalar must use fine-grain operations to exploit fine-grain ILP, so it uses differ-

ent techniques to address the costs of synchronization and communication, namely

careful instruction placement, a hierarchical interconnect, and a highly-optimized tag

matching scheme. WaveScalar’s hierarchical interconnect provides fast, local commu-

nication and our instruction placement scheme keeps most communication localized,

reducing communication costs. In addition, we apply a technique called k-loop bound-

ing [15] to reduce overflow and keep matching cheap.

9.1.3 Memory

Designers of the earliest dataflow machines intended them to run purely functional

languages that had no notion of mutable state. However, support for mutable state
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can make programming some applications much easier. Many dataflow languages

incorporate some notion of mutable state along with special-purpose hardware to

make it fast.

Researchers have studied three different dataflow memory systems. We discuss I-

structures and M-structures below. Section 3.4.1 discusses the third approach, token-

passing.

I-structures Functional languages initialize variables when they are declared and

disallow modifying their values. This eliminates the possibility of read-after-write data

hazards: The variable always contains the correct value so any read is guaranteed to

see it. Dataflow language designers recognized that this approach restricts parallelism,

because an array must be completely initialized before its elements can be accessed.

Ideally, one thread could fill in the array while another thread accessed the initialized

elements.

Dataflow languages such Id [49] and SISAL [25] provide this ability with I-structures

[9]. I-structures are write-once memory structures. When a program allocates an I-

structure it is empty and contains no value. A program can write, or fill in, an

I-structure at most once. Reading from an empty I-structure blocks until the I-

structure is full. Reading from a full I-structure returns the value it holds. In the

array example above, one thread allocates an array of I-structures and starts filling

them in. The second thread can attempt to read entries of the array but will block if

it tries to access an empty I-structure.

M-structures M-structures [11] provide check-in/check-out semantics for variables.

Reading from a full M-structure removes the value, and a write fills the value back

in. Attempting to read from an empty M-structure blocks until the value is returned.

A typical example of M-structures in action is a histogram. Each bucket is an

M-structure, and a group of threads add elements to the buckets concurrently. Since
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addition is commutative, the order of the updates is irrelevant, but they must be

sequentialized. M-structures provide precisely the necessary semantics.

Although I- and M-structures provide mutable state, they do not provide the

ordering semantics of imperative languages. Since WaveScalar must support these

languages, it provides wave-ordered memory. However, WaveScalar can emulate M-

structures using Thread-Coordinate.

9.1.4 Dataflow hardware

All dataflow machines follow a similar high-level design: A set of processing elements

(PEs) connected by some sort of interconnect. The individual PEs implement the

dataflow firing rule and execute instructions. Some designs also provides special I- or

M-structure processors to implement those constructs.

The individual PEs are typically pipelined. Tokens arrive at the top of the pipeline

and flow into a matching unit that checks whether the token completes a set of inputs

to a instruction. If it does, the instruction issues to the functional unit. Eventually,

the result of the operation leaves the pipeline and travels over the interconnect network

to its destination PE.

The most significant difference among dataflow machines is how the matching units

implements the dataflow firing rule. Both static and dynamic machines must address

this issue because a processing element usually handles more than one instruction.

Static machines must check each value to see if it completes the set of inputs for an

instruction (i.e., if the destination instruction identifier matches the identifier of a

previously generated value). For dynamic machines the matching unit must check

both the destination instruction identifier and the tag. For fine-grained dataflow

architectures efficient tag matching is crucial, but for coarse-grain designs it is less

frequent and, therefore, less important.

There are two main challenges. First, since the number of unconsumed input

tokens is potentially unbounded, the matching unit at each PE should be fast and
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accommodate as many unconsumed input tokens as possible to minimize overflow.

Second, when overflow does occur, the architecture must provide a mechanism to

handle additional tokens. Research reports do not provide detailed descriptions of

overflow mechanisms, but the hope is that overflow is an infrequent occurrence.

Fine-grain dataflow architectures have used three techniques for tag matching:

associative search, hashing, frame-based lookup. We discuss each in turn.

Associative search The earliest dynamic dataflow machines [8] used associative

search. Special-purpose content-addressable memories (CAMs) check the tag of an

incoming token against all waiting tokens. CAMs are complex and require a great

deal of hardware to implement. This technique quickly fell from favor.

Hashing Architectures such as the Manchester machine [30] used hashing to re-

place expensive CAMs with conventional memories. As tokens arrive, the hardware

computes a hash of its tag and destination instruction identifier and uses the hash

to index into a memory. If the word of memory contains a matching token, a match

occurs and the instruction issues. If the word of memory contains a token with a

different tag, the hardware invokes an overflow mechanism. Finally, if the word of

memory is empty, the hardware places the new token there to await its matching

token. WaveScalar uses a hashing scheme. Section 4.2 describes it in detail.

Frame-based lookup Frame-based lookup, used in Monsoon [50] and EM-4 [54],

among others, relies on the compiler to eliminate the possibility of token overflow. The

compiler breaks the program into blocks (e.g., basic blocks, hyperblocks, or functions).

When the hardware needs to execute a block, it first allocates a frame of memory.

The frame contains one entry for each two-input instruction in the block (one-input

instructions do not need an entry because they do not require tag matching), and

each word of the frame carries a presence bit that denotes whether the entry is full or
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empty. When an instruction generates a value, the hardware reads the frame entry

for the destination instruction. If the entry is full, a match occurs. Otherwise, the

hardware writes the new value into the frame entry to await its mate.

Static dataflow machines can be seen as frame-based machines in which a single

frame covers the entire program and only one frame is ever allocated. Dennis’s first

dataflow proposal [21] follows this approach.

9.2 Tiled architectures

The WaveCache hardware design in Chapters 4 and 5 is a tiled architecture. Broadly

speaking, a tiled architecture is a processor design that uses an array of basic building

blocks of silicon to construct a larger processor.

Tiled architectures provide three advantages over traditional monolithic designs.

First, they reduce design complexity by emphasizing design reuse. WaveScalar ex-

ploits this principle at several levels (PE, domain, and cluster). Second, tiled designs

seek to avoid long wires. In modern technology, wire delay dominates the cost of com-

putation. Wires in most tiled architectures span no more than a single tile, ensuring

that wire length does not increase with the number of tiles. Finally, tiled architec-

tures seek to be scalable. An ideal tiled architecture would scale to any number of

tiles both in terms of functional correctness and in terms of performance.

Several research groups have proposed tiled architectures with widely varying tile

designs. Smart Memories [42] provides multiple types of tiles (e.g., processing ele-

ments and reconfigurable memory elements). This approach allows greater freedom

in configuring an entire processor, since the mix of tiles can vary from one instanti-

ation to the next, perhaps avoiding the difficulties in naive scaling that we found in

our study.

The TRIPS [46, 53] processor uses dataflow ideas to build a hybrid von Neu-

mann/dataflow machine. The TRIPS processor uses a program counter to guide

execution, but instead of moving from one instruction to the next, the TRIPS PC
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selects frames (similar to hyperblocks [41]) of instructions for execution in an array

of 16 processing elements that make up a TRIPS processor.

Despite high-level similarities between waves and frames and the WaveScalar and

TRIPS PE designs, the two architectures are quite different. In TRIPS, a register

file at the top of the array holds values that pass from one frame to another. Each

TRIPS PE can hold multiple instructions, so each PE requires multiple input buffers.

However, execution follows the static dataflow model, making tag matching logic

unnecessary.

Using dataflow execution within a von Neumann processor is the same approach

taken by out-of-order superscalars, but the TRIPS design avoids the long wires and

broadcast structures that make conventional out-of-order processors non-scalable.

However, because it uses a program counter to select blocks of instructions for ex-

ecution, TRIPS must speculate aggressively. Mapping a frame of instructions onto

the PE array takes several cycles, so the TRIPS processor speculatively maps frames

onto the PEs ahead of time. WaveScalar does not suffer from this problem because its

dynamic dataflow execution model allows instructions to remain in the grid for many

executions, obviating the need for speculation. The disadvantage of WaveScalar’s ap-

proach is the need for complex tag-matching hardware to support dynamic dataflow

execution

The two projects also have much in common. Both take a hybrid static/dynamic

approach to scheduling instruction execution by carefully placing instructions in an

array of processing elements and then allowing execution to proceed dynamically.

This places both architectures between extremely dynamic out-of-order superscalar

designs and fully statically scheduled VLIW machines. Those designs have run into

problems, because fully dynamic scheduling does not scale and static scheduling can

be very difficult in practice. A hybrid approach will be necessary, but it is unclear

whether either WaveScalar or TRIPS strikes the optimal balance.

WaveScalar and TRIPS also take similar approaches to ordering memory opera-



114

tions. TRIPS uses load/store IDs (LSIDs) [57] to order memory operations within

a single frame. Like the sequence numbers in wave-ordered memory, LSIDs provide

ordering among the memory operations. However, the TRIPS scheme provides no

mechanism for detecting whether a memory operation will actually execute during

a specific dynamic execution of a frame. Instead, TRIPS guarantees that memory

operations that access the same address will execute in the correct order and modify

the consistency model to treat frames of instructions as atomic operations. LSID-

based memory ordering requires memory disambiguation hardware that increases the

complexity of the design relative to WaveScalar’s wave-ordering store buffer.

The RAW project [61] uses a simple processor core as a tile and builds a tightly-

coupled multiprocessor. The RAW processor provides for several different execution

models. The compiler can statically schedule a single program to run across all

the tiles, effectively turning RAW into a VLIW-style processor. Alternatively, the

cores can run threads from a larger computation that communicate using RAW’s

tightly-integrate, inter-processor, message-passing mechanism. The former approach

is reminiscent of the coarse-grain dataflow processing described in Section 9.1.2.

The RAW project presents one vision for what an advanced CMP might look like,

and a careful study of its area-efficiency would be worthwhile. One such study of

the RAW architecture [44] shares similar goals with ours (Section 7.2), but it takes a

purely analytical approach and creates models for both processor configurations and

applications. That study was primarily concerned with finding the optimal configu-

ration for a particular application and problem size, rather than a more universally

scalable, general purpose design.

9.3 Objections to dataflow

As Table 9.1 demonstrates, dataflow processors fell out of favor between the early

1990’s and the early twenty-first century. Several factors contributed to this, including

cheaper, higher-performance commodity processors and the integration of dataflow
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ideas into out-of-order processors. But there was also a feeling that dataflow was

flawed as an execution model, at least given the technology available at the time.

Culler [17] articulated the difficulties with dataflow as two key problems. First,

the memory hierarchy limits the amount of latency a dataflow machine can hide.

A processor can only hide latency (and keep busy) by executing instructions whose

inputs are at the top level of the memory hierarchy. If the top of the memory hierarchy

is too small, the processor will sit idle, waiting for the inputs to arrive.

Second, the dataflow firing rule is naive, since it ignores locality in execution.

Ideally, a dataflow machine would execute program fragments that are related to

one another to exploit locality and prevent “thrashing” at the top of the memory

hierarchy.

Culler’s first argument does not apply to WaveScalar because of changes in tech-

nology. The relatively small number of transistors available on a single die in the

early 1990’s meant that execution resources were expensive. As a result hiding la-

tency and keeping the processors busy were the keys to performance. Things have

changed significantly. WaveScalar sidesteps the need to keep many data values “near”

a handful of processing elements by building many processing elements, each with a

small amount of nearby memory for storing unmatched tokens.

WaveScalar’s carefully-tuned placement system addresses the problems with lo-

cality and scheduling. As described in Section 4.6 the placement algorithm attempts

to schedule dependent instructions on a single PE, ensuring that a large fraction

(30-40%) of message traffic occurs within a single pod. This reduces the need for

buffering a large number of tokens because, tokens tend to be consumed shortly af-

ter they are produced. In addition, k-loop bounding reduces the frequency of token

overflow, further improving locality.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

The WaveScalar instruction set, execution model, and hardware architecture demon-

strate that dataflow computing is a viable alternative to the von Neumann model.

WaveScalar overcomes the limitations of previous dataflow architectures, addresses

many of the challenges that modern processors face, exploits many types of paral-

lelism, and provides high performance on a wide range of applications.

WaveScalar makes two key contributions to dataflow instruction sets. The first is

wave-ordered memory. By adding a simple set of annotations, WaveScalar provides

the sequential memory semantics that imperative programming languages require

without destroying the parallelism that the dataflow model expresses. Without wave-

ordered memory, or a scheme like it, dataflow processing has little chance of being a

viable competitor to von Neumann processors.

Work on wave-ordered memory is not complete, and two key areas remain to be

explored. The evaluation in Chapter 3 uses our binary translator-based toolchain, and

the binary translator cannot make full use of wave-ordered memory. In particular, it

does not have access to good aliasing information or high-level structural information

about the program. Better aliasing knowledge would allow for more aggressive use of

the ripple annotation (and the unordered memory interface, see below), and structural

information would allow the compiler to generate larger, more efficient waves. Work

in these directions is underway.

More broadly, wave-ordered memory demonstrates the value of encoding pro-

gram structure explicitly in the instruction set. This idea has applications beyond

WaveScalar or even dataflow processing. Extending conventional instruction sets to
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encode more information about program behavior, control structure, or memory usage

is one approach to improving performance in the face of stringent technological con-

straints. The challenge is finding concise, flexible ways to express useful information

to the processor.

WaveScalar’s second contribution to dataflow instruction sets is its ability to com-

bine the imperative memory semantics that wave-ordered memory provides with

the massive amounts of parallelism that a dataflow execution model can express.

WaveScalar’s unordered memory interface provides the means to exploit this type

of parallelism among memory operations, while providing well-defined semantics for

combining ordered and unordered accesses in the same program.

In addition to intermingling accesses via the ordered and unordered memory in-

terfaces, WaveScalar also allows the programmer to combine coarse- and fine-grain

threading styles to express a range of different types of parallelism. The combination

of two threading models and two memory interfaces provides WaveScalar program-

mers with enormous flexibility in expressing parallelism. This leads to better perfor-

mance, but it also has the potential to ease the burden on programmers, because they

can express the types of parallelism that are most natural in the program at hand.

Fully realizing this goal will require additional work, however. Currently the only

way to exploit the fine-grain threading and unordered memory is via hand-written

dataflow assembly (a difficult undertaking). Ongoing compiler work aims to apply

both interfaces to single-threaded codes automatically. Other approaches include

porting a compiler for a dataflow programming language to WaveScalar or extending

an imperative language to support these interfaces explicitly.

The WaveScalar hardware architecture in Chapters 4 and 5 is designed to be scal-

able and of low complexity, and to effectively exploit the different types of parallelism

the WaveScalar ISA can express. Our WaveScalar design reduces design complexity

by combining identical components hierarchically. This approach reduces the amount

of hardware that must be designed and verified. It also eases the impact of manufac-
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turing defects. If a portion of the chip, for instance a PE, is manufactured incorrectly,

that PE can be disabled without significantly impacting the rest of the chip. Investi-

gating what kinds of manufacturing errors the WaveScalar architecture can tolerate

and how it would adapt to them is the subject of future work.

To evaluate WaveScalar we used a combination of RTL synthesis (for area and

delay measurements) and cycle-level simulation (for performance measurements). Our

results are encouraging. An exhaustive search of WaveScalar’s design space reveals

that the WaveScalar processor is scalable. For chip sizes from 39mm2 to 294mm2, it

scales almost perfectly, realizing a 6.4-fold increase in performance for a 7.5× increase

in chip area. We also found that the most area-efficient single-cluster design scales to

the most efficient 4- and 16-cluster designs.

Eventually, we plan to extend this to include power in addition to area and per-

formance. Synthesis tools can extract power consumption estimates from our RTL

model, and by combining these with event counts from our simulator, we can compute

WaveScalar’s power requirements. Using this infrastructure, we can evaluate differ-

ent approaches to power management in a WaveScalar processor, including clock- and

power-gating at the PE, domain, and cluster levels as well as power-aware instruc-

tion placement. Including power will also force us to carefully consider aspects of

the design like the interconnect that have little impact on area, but might contribute

significantly to the power budget.

We will also extend the study to include a wider range of applications. Currently,

the limitations of our toolchain and runtime environment prevent us from running

large-scale “commercial” workloads that would put significantly more pressure on the

memory system and the WaveScalar’s instruction capacity than our current suite of

applications. Running these workloads on WaveScalar will lead to further refinements

in the architecture. For instance, our current cache coherence protocol contains only

simple optimizations for migratory sharing, because preliminary limit studies showed

that for our applications the benefits of more complicated schemes were small. For
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applications with threads that span several clusters and have more inter-thread com-

munication, a more sophisticated scheme might perform better.

Using the scalable design points from our pareto analysis, we compared WaveScalar

to more conventional architectures. Our results show that a well-tuned WaveScalar

design outperforms more conventional CMP designs on multi-threaded workloads by

between 2× and 11× depending on the workload, and it achieves single-threaded

performance similar to that of an aggressive out-of-order superscalar but in 30% less

area.

The results for WaveScalar’s fine-grain threading and unordered memory interfaces

are even more encouraging. For kernels, these interfaces can provide speedups of

between 16× and 240×. When both memory interfaces and both threading styles are

brought to bear (something that is impossible in a conventional CMP), they increased

overall performance by 9× for one application.

WaveScalar demonstrates that dataflow computing is a viable alternative to con-

ventional von Neumann processing. More important, however, are questions of order,

parallelism, distributed control, and scalability that this work has explored. These

problems are at the heart of one of the central challenges facing computer system

designers today: How can we design and build computer systems that are both easy

to implement and will deliver performance that scales with technology? This thesis

used WaveScalar to begin addressing this question.
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