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Abstract We study ultraviolet cutoffs associated with the

Weak Gravity Conjecture (WGC) and Sublattice Weak Grav-

ity Conjecture (sLWGC). There is a magnetic WGC cutoff at

the energy scale eG
−1/2
N with an associated sLWGC tower of

charged particles. A more fundamental cutoff is the scale at

which gravity becomes strong and field theory breaks down

entirely. By clarifying the nature of the sLWGC for non-

abelian gauge groups we derive a parametric upper bound on

this strong gravity scale for arbitrary gauge theories. Intrigu-

ingly, we show that in theories approximately saturating the

sLWGC, the scales at which loop corrections from the tower

of charged particles to the gauge boson and graviton prop-

agators become important are parametrically identical. This

suggests a picture in which gauge fields emerge from the

quantum gravity scale by integrating out a tower of charged

matter fields. We derive a converse statement: if a gauge the-

ory becomes strongly coupled at or below the quantum grav-

ity scale, the WGC follows. We sketch some phenomenolog-

ical consequences of the UV cutoffs we derive.

1 Introduction

1.1 The Weak Gravity Conjecture

The Weak Gravity Conjecture [1] is an interesting proposal

for a universal feature of all quantum gravities, and is one of

the most concrete and falsifiable observations of the swamp-

land program [2,3]. In its most minimal form, the conjecture

states that in any theory of quantum gravity with a massless

gauge boson there is a charged particle with charge-to-mass
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ratio greater than or equal to that of a large semiclassical

extremal black hole.

If quantum gravities exist which violate the Weak Grav-

ity Conjecture (WGC), they will have unusual properties.

In particular, large near-extremal black holes in these theo-

ries cannot completely evaporate, but instead evolve slowly

towards extremality, resulting in a tower of stable extremal

black holes. However, unlike stable black hole remnants in

theories with global symmetries, the mass of these stable

extremal black holes increases in proportion to their charge,

hence the sharpest contradictions (e.g., an infinite density

of states in violation of the covariant entropy bound [4]) do

not occur, and these observations fall short of a compelling

argument for the conjecture.

On the other hand, strong circumstantial evidence for the

WGC comes from the absence of counterexamples in string

theory, which provides many examples of consistent quan-

tum gravities. While in some of the more involved string

constructions it may be difficult to check the WGC explic-

itly, there are many examples, such as compactifications of

the perturbative heterotic string, where the conjecture is both

non-trivial and verified by explicit calculation.

As yet there is no convincing proof of the Weak Grav-

ity Conjecture (WGC) in a general setting, although recently

there have been two interesting claims to derive a version of

the WGC from entropy bounds [5,6] in specific simple grav-

itational effective field theories, the latter closely related to

(but disagreeing with) earlier work that highlighted unusual

features of loop corrections to black hole entropy in the pres-

ence of WGC-violating particles [7,8]. (An even earlier argu-

ment based on entropy bounds was sketched in [9]). Other

recent work, based on detailed evidence from numerical GR,

has suggested that the WGC could be a consequence of the

Weak Cosmic Censorship Conjecture [10–12]. An incom-

plete sampling of other recent work related to the WGC

includes [13–34]. In this paper, we will not attempt to sort
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out the precise status of these various arguments, but merely

note that circumstantial evidence in favor of the WGC has

been steadily increasing, and it is plausible that some proof

of the conjecture will eventually become generally accepted.

The WGC generalizes in a straightforward manner to p-

form gauge symmetries and their corresponding charged p-

branes, as well as to theories with massless scalars (see, e.g.,

[35]) and/or with multiple massless gauge bosons. In the

latter case, the conjecture states that for any rational direc-

tion in charge space there is a superextremal state in the the-

ory (possibly a multiparticle state). Here “rational direction”

means any ray which intersects a site in the charge lattice and

“superextremal” means that the charge-to-mass ratio of the

state is greater than or equal to that of a large semiclassical

extremal black hole with a parallel charge vector �Q ∝ �QBH.1

This is equivalent to the graphical “convex hull condition”

(CHC) of [36]. It is important to note that the black hole

extremality bound (and hence the weak gravity bound) can

be modified by dilatonic couplings [37–40], but for the pur-

poses of this paper we will ignore this possibility.

Since its inception, the WGC has been considered along-

side a number of stronger variants of the conjecture. This is

in part because it is difficult to test the minimal WGC stated

above if we only have access to the low-energy effective field

theory (EFT); the superextremal charged particles which sat-

isfy the conjecture could be very heavy, and not part of the

EFT. However, we must be cautious in considering stronger

conjectures. While the WGC has no known counterexamples

in string theory, many stronger variants proposed in the lit-

erature do [41]! The earliest of these variants is the “strong

WGC” of [1], proposed alongside the original WGC itself.

For theories with a single photon, the strong WGC conjec-

tures that the lightest charged particle is superextremal, which

implies the WGC. For multiple photons, the same statement

does not imply the WGC, hence there have been various

attempts to formulate a generalization which does – see, e.g.,

[15,35] – all of which imply that the lightest charged particle

is superextremal. However, there are well-understood super-

symmetric examples in string theory for which this is not the

case [41], hence the strong WGC and all of its variants are

false.

In this paper we will be primarily concerned with a strong

variant of the WGC for which there is substantial evidence,

the “Sublattice WGC” (sLWGC) [41]. In more than four

dimensions, the sLWGC holds that in any theory of quantum

gravity with massless gauge fields, there must exist a sublat-

tice of the charge lattice (of finite index) with a superextremal

particle at every site. The sLWGC has been shown to hold in

toroidal orbifolds of type II and heterotic string theory, and

1 In the case of a multiparticle state, the “mass” is simply the sum of the

particle masses (equal to the ADM energy in the limit of large spatial

separation between the particles).

(up to some subtleties) it follows from modular invariance

in tree level string theory [41] (also see [42] for a closely

analogous AdS3/CFT2 argument).

There are some issues which arise in interpreting this con-

jecture. For one, what do we mean by “particle”? We have

previously argued that multiparticle states are insufficient,

because if the sLWGC is satisfied by multiparticle states

it may fail to be satisfied after dimensional reduction [35].

(Related work on the WGC in different dimensions appeared

in [15]). Furthermore, evidence from perturbative string the-

ory supports the sLWGC for single particles [41]. On the

other hand, it is clear in examples that at many lattice sites the

superextremal particles required by the sLWGC are unstable,

so the statement as formulated is only clearly defined at para-

metrically weak coupling. In this case “particle” can mean

an unstable (though narrow) resonance.

Secondly, we have purposefully excluded the four dimen-

sional case above because the conjecture, strictly as stated,

cannot be true in four dimensions: there are examples of

four-dimensional quantum gravities with photons coupled to

massless charged particles.2 In such a theory, the gauge cou-

pling of the photon runs to zero in the deep infrared, implying

that parametrically large black holes can have parametrically

large charge-to-mass ratios, and only massless particles are

superextremal; however, there cannot be massless charged

particles everywhere on a sublattice because this would imply

an infinite number of massless particles. The issue is quan-

tum in nature: for instance, in heterotic orbifolds of this type

the sLWGC is naively satisfied at tree level but fails due to the

one-loop running of the gauge coupling; a tower of charged

resonances is still present, but the resonances are now subex-

tremal due to the running. The same issue does not arise in

higher dimensional theories as massless charged particles do

not renormalize the gauge coupling to zero.3

Nonetheless, if the sLWGC is true in higher dimen-

sions then likely some analogous statement should hold

in four dimensions, perhaps with the notion of superex-

tremal replaced by a renormalized version. If there are no

very light charged particles then we expect that the sLWGC

should be satisfied up to order-one factors in the charge-

to-mass ratios. Throughout the paper we will discuss four-

dimensional examples on the same footing as higher dimen-

sional ones with this assumption in mind. Cases with very

2 For instance, this occurs in type II string theory compactified on a

Calabi-Yau manifold with a conifold singularity [43].

3 Quantum corrections may still be important in higher dimensions –

the evidence from [41] is entirely at tree-level, which is sufficient to

establish a superextremal sublattice in cases where the particles are

BPS but otherwise not – but no counterexamples to the strict statement

of the conjecture are known in D > 4.
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light charged particles are interesting in their own right, but

in this paper we consider them only very briefly in Sect. 7.3.4

Occasionally in this paper we will refer to the “LWGC”

[35], which is a criterion similar to the sLWGC but with

superextremal states across the entire charge lattice. The

LWGC holds in some but not all quantum gravities [41],

but – at least in simple examples – theories which violate the

LWGC have superextremal states at an order-one fraction of

sites in the charge lattice, hence many consequences of the

LWGC are robust against its violations.

1.2 Ultraviolet cutoffs

It has long been appreciated that the WGC has implications

for the energy scales of new physics. In particular, the “mag-

netic version” of the WGC holds that an abelian gauge the-

ory of coupling constant e should have superextremal mag-

netic monopoles. Assuming that the mass of the magnetic

monopole is not much less than the energy �/e2 stored in its

magnetic field yields [1]

� � eMPl. (1.1)

Here 1/� is the radius at which the semiclassical compu-

tation of the field energy breaks down. The magnetic WGC

requires new physics at or below this scale, but the nature of

this new physics varies in different examples, and does not

necessarily signal a breakdown in effective field theory in

general. The scale of quantum gravity – at which local quan-

tum field theory breaks down entirely – may be much higher,

and is not directly constrained by the magnetic WGC.

For instance, in the case of a ’t Hooft monopole, � is

roughly the scale at which the abelian gauge theory com-

pletes to a nonabelian gauge group. Above this scale, grav-

ity remains weakly coupled, and the nonabelian gauge the-

ory description is valid. The sLWGC postulates a tower of

particles arising at a scale of order eMPl, strengthening the

magnetic WGC argument that this is a new physics scale.

Nonetheless, the particles in the tower may remain weakly

coupled and be treated in an effective theory. For example, a

tower of Kaluza–Klein particles can signal the breakdown of

4d effective theory but be treated within a 5d effective theory.

In this paper, we will see that once we impose the sLWGC,

we can also make statements about a more fundamental cut-

off: the quantum gravity scale where gravity is strongly cou-

pled and QFT breaks down entirely. We will argue that theo-

ries satisfying the sLWGC obey a nontrivial property: if we

consider energy scales far up the tower of charged states, i.e.,

large compared to eG
−1/2
N , loop corrections imply that both

gravity and the gauge theory become increasingly strongly

4 Note that for our purposes, the Standard Model electron is not “very

light”, because the renormalized photon coupling near the WGC scale

eMPl differs only by an order-one amount from the infrared coupling.

coupled. A theory that saturates an sLWGC-like bound has

the property that gravity and gauge theory become strongly

coupled at the same parametric energy scale. This is a highly

suggestive property, and offers the possibility of answering

some of the interpretational questions about the meaning of

the sLWGC. As we approach strong coupling and the charged

particles become increasingly broad, it suggests that it is the

density of states of different charges that must behave nicely

in order that the evolving strengths of gravity and electromag-

netism become strong at the same scale. It also suggests that

we can think of the sLWGC as giving a sufficient condition

for us to be able to think of a gauge theory as emergent: the

smallness of the coupling at low energies is a consequence

of the dynamics of heavy particles in the ultraviolet. This fits

very comfortably with Harlow’s proposal that the WGC is a

property of emergent gauge fields needed to enforce factoriz-

ability of the Hilbert space in quantum gravity with multiple

asymptotic boundaries [44].

The sLWGC may be thought of as saying that, in effect,

all gauge theories in the context of quantum gravity share

properties of Kaluza–Klein theories, with associated towers

of charged particles. If we compactify a D + 1 dimensional

gravity theory on a circle of radius R, both the gauge the-

ory coupling eKK and the gravitational coupling are obtained

by tree-level matching in terms of the higher-dimensional

Planck scale:

1

e2
KK

= π R3 M D−1
Pl;D+1, (1.2)

M D−2
Pl;D = 2π RM D−1

Pl;D+1, (1.3)

with MPl;D the D-dimensional Planck scale. The higher-

dimensional Planck scale MPl;D+1 may be interpreted as the

scale at which quantum gravity necessarily becomes strong,

�QG � MPl;D+1, and the matching ensures that this is well

below the D-dimensional Planck scale. Counting Kaluza-

Klein modes shows that this parametrically agrees with the

“species bound” [45–49]

�D−2
QG � Nd.o.f.M

D−2
Pl;D , (1.4)

where Nd.o.f. is the number of degrees of freedom with mass

below �QG. The species bound and its gauge theory analog

will play a significant role in this paper.

For a general quantum gravity theory, such a simple tree-

level matching argument may not apply. However, in theo-

ries that satisfy the sLWGC, there will always be a tower of

charged particles, and these particles affect gravitational and

gauge interactions through loops. We will see that these loop

effects generically lower the scale �QG as well as the dynam-

ical scale of the gauge theory, and under certain assumptions

they naturally match these two scales. Furthermore, there

is a sort of converse statement: if gauge theory and gravity

become strongly coupled at (parametrically) the same energy
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scale, there must be a particle satisfying the WGC (up to order

one factors).

Our paper is organized as follows. In Sect. 2, we will exam-

ine the familiar case of a U(1) theory in 4d, showing that an

LWGC-saturating tower of particles leads to a coincidence of

the U(1) Landau pole scale �U(1) and the species bound scale

�QG. In Sect. 3, we discuss the form of loop corrections to the

photon and graviton propagators in a general D-dimensional

theory and generalize the argument to D dimensions; some

details are left to appendix A. In Sect. 4, we revisit our argu-

ments for the sLWGC from [41] to show that for nonabelian

gauge theories the WGC-obeying particles at each sublat-

tice site should be taken to be the highest-weight state in

their representation, so that different sublattice sites corre-

spond to different representations of the nonabelian group.

In Sect. 5, we apply this newfound understanding of the non-

abelian sLWGC to give a general argument for the UV cutoff

scale �QG demanded by the nonabelian sLWGC. We also

show that the coincidence of strong coupling scales for gauge

theory and gravity persists for arbitrary gauge groups.

In Sect. 6, we consider converse statements. In particular,

assuming that a gauge theory becomes strong below the quan-

tum gravity scale is sufficient to derive the original WGC.

Assuming that the parametric fractional size of loop correc-

tions to the gauge boson and graviton propagators are the

same over a range of energies allows a stronger sLWGC-like

statement to be derived. In this section we also consider the

case of Higgsed gauge theories, clarifying some arguments

from earlier literature. In Sect. 7 we consider some examples

of quantum gravity theories that do not fit in the paradigm we

have discussed elsewhere in this paper. For instance, string

theories with gs ≪ 1 have a Hagedorn density of states that

invalidates some of our arguments. In these cases our use of

simple EFT loop calculations is no longer valid, so modified

arguments may carry over. In Sect. 8 we briefly discuss some

possible phenomenological applications of our UV cutoffs to

nonabelian theories with very small gauge couplings. Finally,

in Sect. 9 we summarize our conclusions and discuss some

open questions.

2 Warmup: Landau pole and species bound for a 4d

LWGC spectrum

In theories with a tower of charged particles, both gauge inter-

actions and gravity become strongly coupled in the ultravi-

olet. Let us begin with the familiar case of four dimensions,

where it is well-known that charged particles lead to a Lan-

dau pole for abelian gauge theories due to the running of

the coupling. At one loop, the gauge coupling eUV at a scale

�UV is related to the low-energy gauge coupling e according

to:

1

e2
UV

= 1

e2
−

∑

i

bi

8π2
q2

i log
�UV

mi

, (2.1)

with mi and qi the mass and charge of the particles in the

tower and bi a beta function coefficient. For gravity, the UV

cutoff can be understood in terms of the “species bound,”

which can be thought of as a result of divergent quantum

corrections to the Einstein-Hilbert term cut off at �QG [45–

49]

M2
Pl � Nd.o.f.�

2
QG. (2.2)

Beyond this perturbative argument, there are various other

motivations of the species bound, for instance based on

demanding that semiclassical black holes of radius �−1
QG not

evaporate too quickly [49, §3.1].

Suppose now that we have a tower of particles with masses

approximately saturating the LWGC bound; that is, there is a

particle of every charge q with m ∼ eq MPl. Then the number

of particles below a mass scale � is N (�) ≥ �/(eMPl),

which implies the species bound

M2
Pl � N (�QG)�2

QG ≥
�QG

eMPl
�2

QG, (2.3)

and hence

�QG � e1/3 MPl. (2.4)

Compare this to the gauge theory Landau pole �U(1): if we

treat the logarithms and numerical prefactors as parametri-

cally order one,5 and ask for the scale at which eUV → 0

according to (2.1), we find

1

e2
∼

Q∑

q=1

q2 ∼ Q3, (2.5)

where Q is the largest charge in the tower, Q ∼ �U(1)/

(eMPl). Again, this leads to the conclusion

�U(1) ∼ e1/3 MPl. (2.6)

Thus we see that a tower of charged particles implies UV

cutoffs on both gauge theory and gravity. If the spectrum

consists solely of a tower of near-extremal particles, then

parametrically both the gauge theory and gravity cutoffs are

at the scale e1/3 MPl. We can think of this, loosely speaking,

as a form of “gauge-gravity unification.” We do not mean

that gravity and gauge theory are unified in the same way

that different gauge groups are unified in GUTs, but simply

that we can think of the weakness of the two forces as having

emerged in the infrared from integrating out a tower of states

starting at a common scale �QG in which all kinetic terms

have their naive, order-one size (in appropriate units).

5 See Sect. 7.3 for a discussion of large logarithms.
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It is straightforward to generalize the above argument to

the case where the LWGC is violated but the sLWGC is sat-

isfied on a sublattice of index k > 1. In this case, we obtain

�QG,�U(1) � (ke)1/3 MPl, (2.7)

with the two scales again parametrically the same when the

spectrum is dominated by near-extremal particles. In string

theory examples k cannot be parametrically large, thus – at

least in these cases – the consequences of the sLWGC are

similar to those of the LWGC.

If the spectrum differs greatly from our assumptions – for

instance, if there are many more neutral particles that enter in

the species bound but do not affect the running of the gauge

theory – then the sLWGC does not necessarily imply gauge-

gravity unification. However, the sLWGC always implies a

cutoff on the quantum gravity scale that goes to zero as e →
0.

3 Loops and UV cutoffs for gauge theory and gravity in

D dimensions

The discussion in the previous section focused on the familiar

case of four dimensions, where the Landau pole and species

bound arguments for UV cutoffs are familiar. Similar results

hold in a general D-dimensional theory, where both gauge

theory and gravity are generically non-renormalizable. If

many particles run in loops, the loop expansion can break

down at prematurely low scales. To explain this point it is

useful to adopt a somewhat different language that is suit-

able for both gauge theory and gravity.

3.1 Growth of amplitudes with energy

From the kinetic terms for gauge theory and gravity,

S =
∫

d Dx
√−g

(
1

16πG N

R− 1

4e2
Fμν Fμν

)
, (3.1)

we read off that G N has mass dimension 2 − D and e2 has

mass dimension 4− D. We customarily introduce a reduced

Planck mass M D−2
Pl = 1/(8πG N ), and we could likewise

introduce a mass scale associated with the gauge theory,

M D−4
U(1)

= 1/e2. We might guess that in D > 4, where both

gravity and gauge theory are nonrenormalizable, effective

field theory breaks down at the scale MPl or MU(1). How-

ever, in a theory with a large number of degrees of freedom

N we know that this naive dimensional analysis can be mod-

ified by powers of N .

In four dimensions we discussed the gauge theory cut-

off in terms of a logarithmically running coupling constant.

In higher dimensions, we should be more cautious. For

p2 ≪ m2
i we can integrate out a heavy particle i , expand-

ing in powers of p2 to obtain a threshold correction to 1/e2

together with an infinite sum of higher-derivative operators.

For p2 ≫ m2
i , however, the result is that the size of the

loop correction grows with momentum – and faster than log-

arithmically, when D > 4. Although this may sometimes

be referred to as a “power-law running” of the coupling,

there is no straightforward sense in which the momentum

dependence of loops can be absorbed in a running cou-

pling in a process-independent manner in a general non-

renormalizable field theory [50].

Nonetheless, the lack of a well-defined renormalized cou-

pling does not prevent us from estimating the energy scale at

which loop amplitudes become large and perturbation theory

breaks down. Consider, for example, the two-point function

of the photon. The sum of iterated 1PI loop corrections to the

photon propagator, with the leading one-loop 1PI graph, has

the form

〈
Ãμ(p) Ãν(−p)

〉
= ημν − pμ pν/p2

p2 + iǫ

1

1+�(p2)
. (3.2)

The function �(p2) can be read off from the standard one-

loop QED vacuum polarization calculation. For example, for

a set of charged scalars of charge qi and mass mi , we compute

�unreg(p2) = 2e2

(4π)D/2
Ŵ(2− D/2)

∫ 1

0

dx x(2x − 1)

×
∑

i

q2
i

[
m2

i − p2x(1− x)

]D/2−2
. (3.3)

For D odd this expression is finite as written, while for D

even we can use dimensional regularization D → D − ǫ

to see that it contains additional logarithmic dependence on

p2. The divergent piece in even dimensions can be absorbed

by counterterms (including certain higher-derivative opera-

tors in D > 4). By rescaling the photon field we impose

the renormalization condition �(0) = 0.6 If all the charged

scalars are light, m2
i � p2, then we can estimate

|�(p2)| ∼ e2 pD−4
∑

i

q2
i , (3.4)

up to order-one factors and logarithms.

The lesson from this is that loop amplitudes grow with

momentum p at a rate that depends on both the space-

time dimension and the spectrum of charged particles with

m � p. In the above example, strong coupling arises

when |�(p2)| ∼ 1. For a tower of approximately LWGC-

saturating particles, that is a tower for which m2 ∼
e2q2 M D−2

Pl , if we sum up to energy p we reach a maximum

charge Q ∼ p/(eM
(D−2)/2
Pl ) and find

6 With this renormalization condition, the gauge coupling which

appears in (3.3) is the infrared gauge coupling. This condition cannot

be imposed in D = 4 with massless charged particles due to infrared

divergences, which corresponds to the fact that the gauge coupling

flows to zero in the deep infrared; this special case is discussed fur-

ther in Sect. 7.3.
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|�(p2)| ∼ e2 pD−4

Q∑

q=1

q2 ∼ e2

(
p

eM
(D−2)/2
Pl

)3

pD−4.

(3.5)

We denote the scale p at which this becomes order one by

�U(1), given by:

�U(1) ∼
(

eM
3(D−2)/2
Pl

)1/(D−1)

. (3.6)

This is the D-dimensional analogue of the 4d Landau pole

bound (2.6). Notice that we are not saying that the gauge

coupling becomes strong at this scale, since the meaning of

a running gauge coupling is unclear away from four dimen-

sions. Rather, we are saying that the loop expansion breaks

down at this scale because the large number of degrees of

freedom causes amplitudes to become large at energies well

below MPl.

The above calculation is rather naive, and there are several

possible objections one might raise. Firstly, the contribution

to �(p2) that we have computed is not the only one, or

even necessarily the largest one. In the spirit of Wilsonian

effective field theory, we should include higher-dimensional

operators (including higher-derivative operators) suppressed

by the cutoff �U(1).
7 This will generate power-law correc-

tions of the form �(p2) → �(p2) + p2/�2
U(1)

+ · · · ,
but the contribution of the light particles from above is of

the form pD−1/�D−1
U(1)

which is subleading to p2/�2
U(1)

for

p ≪ �U(1) and D ≥ 4.

In fact, this is far less problematic than it sounds. We are

mainly interested in estimating an upper bound on the cutoff

�U(1). It is always possible that higher dimensional opera-

tors appear at a lower scale and ruin the effective field theory,

but even if they do not, the light charged states will eventu-

ally cause the loop expansion to break down. This “highest

possible cutoff” due to the light spectrum is what we are

attempting to estimate.

Similarly, we have neglected charged particles with

masses between p and the cutoff. In “Appendix A.1” we

estimate their contribution, which turns out to be roughly of

the form �(p2)→ �(p2)+ p2/�2
U(1)

in the above example,

once we have summed of the entire LWGC-saturating heavy

spectrum. While this is again larger than the contribution of

light charged particles (and similar in form to corrections

from higher derivative operators), it doesn’t parametrically

change the scale at which the loop expansion breaks down: as

we approach the scale at which |�(p2)| becomes order-one

the heavy-particle contribution starts to go away for the sim-

ple reason that we are approaching the cutoff, hence there

are not many particles with p � m � �. For this reason,

7 Some of these operators appear as counterterms in even dimension

D > 4, in which case the remaining finite contribution is what we

consider here.

neglecting heavy particles will never change our estimate of

where the loop expansion breaks down.

A second objection is that we have only considered the

photon two-point function at one-loop, which is moreover

an off-shell quantity (meaning that it may not be well-

defined outside of the effective field theory description). In

“Appendix A.2” we briefly discuss higher loop diagrams and

on-shell S-matrix elements, arguing that the loop expansion

breaks down at parametrically the same scale as above.

To capture the heuristics discussed above, we find it con-

venient to define

λgauge(E) := e2 E D−4
∑

i :mi <E

I (i), (3.7)

where I (i) is the Dynkin index of the representation of parti-

cle i (simply q2
i in the U(1) case). Here we have purposefully

thrown out all numerical factors (which are process depen-

dent), neglected logarithmic factors, and assumed no signif-

icant degree of cancellation between the terms. λgauge(E)

estimates the contribution of particles with mass m < E

to the size of loop corrections. Effective field theory breaks

down due to loops of light particles when λgauge ∼ 1, unless

it breaks down at a lower energy scale for other reasons.

A similar analysis applies to gravity. Although the species

bound is often phrased in terms of loop corrections to the

Planck scale, the relevant aspect is not so much threshold cor-

rections per se as the growth of typical scattering amplitudes

with energy. A similar calculation of the off-shell graviton

propagator can be carried out to see this growth explicitly in

a class of diagrams, but again we will capture the parametric

dependence with a simple function

λgrav(E) := G N E D−2
∑

i :mi <E

dim(Ri ), (3.8)

where dim(Ri ) is the dimension of the gauge representation

of particle i (that is, the total number of degrees of free-

dom in the multiplet). We see immediately that the condition

λgrav(E) � 1 reproduces the familiar species bound:

M D−2
Pl ≥ Nd.o.f.�

D−2
QG . (3.9)

3.2 U(1) gauge theory in D dimensions

We now revisit the example of Sect. 2 in a general D dimen-

sional theory satisfying the sLWGC. We will choose a sub-

lattice with spacing k so that for each natural number n there

should exist a particle of charge kn and mass

G N m2 ≤ cWGCe2k2n2, (3.10)

with cWGC a fixed order-one number determined by the

extremal black hole solutions in the low energy effective

theory. Below we will systematically neglect this and other

order-one factors.
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To begin, we consider the effect of these particles on the

strong coupling scale of gravity. There is a tower of particles

up to charge knmax with masses below the cutoff �QG, with

nmax ∼
�QG

ek M
(D−2)/2
Pl

. (3.11)

Below the scale �QG, there are therefore Nd.o.f. ∼ nmax

such particles with mass below �QG. Plugging into (3.9)

and solving for �QG, we find

U(1) : �QG � (ek)
1

D−1 M
3(D−2)
2(D−1)

Pl , (3.12)

as we previously derived in [41]. For the case D = 4, this

reads �QG � (ek)1/3 MPl.

Next, consider the Landau pole of the U(1) gauge theory.

In this case, we have

λgauge(E) ∼ e2 E D−4

nmax∑

n=1

(kn)2

∼ e2k2 E D−4

(
E

ek M
(D−2)/2
Pl

)3

. (3.13)

In the second step we used Eq. (3.11). We see then that the

condition λgauge(�) ∼ 1 leads to � parametrically matching

the scale �QG in (3.12). Notice that in this analysis we have

ignored various constant factors as well as logarithms. We

have also assumed a tower of approximately equally-spaced

states. We have also assumed that the density of states of

a given mass is dominated by these charged states; if this

assumption is violated, e.g., if there is a large number of light

uncharged states, then the quantum gravity scale �QG could

be significantly below the scale of the Landau pole. Under

these assumptions, and as a parametric statement (rather

than a precise quantitative one), this suggests that theories

that approximately saturate the sLWGC bounds will tend

to exhibit the phenomenon of gauge-gravity unification as

defined in Sect. 2.

4 The nonabelian sLWGC

The sLWGC can be applied to commuting generators within

a nonabelian gauge group. In [35,41,51] we have essentially

ignored the nonabelian nature of the group and discussed the

(s)LWGC as a statement about the Cartan generators. This

can be motivated, for example, by compactifying the theory

on a circle with a Wilson line that breaks the gauge group to a

product of U(1)s. In this way, much of the evidence we have

found for the sLWGC in string theory applies to nonabelian

groups.

However, we would like to postulate a slightly stronger

statement: there should exist superextremal particles in each

representation of the group rather than simply with each Car-

tan charge. For instance, in an SU(2) gauge theory there is a

lattice site with Cartan charge 1, but states of this charge exist

in all representations with positive integer spin. We would

postulate that the correct nonabelian sLWGC cannot be sat-

isfied at this lattice site with representations of higher spin,

but requires a spin 1 representation with superextremal par-

ticles of charge 1, as shown in Fig. 1. This stronger statement

is satisfied, for instance, in the SO(32) and E8×E8 heterotic

string theories.

To make a precise conjecture, we first review some basic

facts about a compact nonabelian Lie group G. Let 
 denote

the set of roots of G, each designated by a weight vector
�Q ∈ 
, i.e., a set of Cartan charges. We choose a set of

positive roots 
+ such that for any root �Q, �Q ∈ 
+ iff

− �Q /∈ 
+ and for �Q1,2 ∈ 
+, �Q1 + �Q2 is in 
+ if it

is a root. Simple roots are positive roots which are not the

sum of two other positive roots. The simple roots are linearly

independent and span the space of roots, hence the number

of simple roots equals the rank of G minus the rank of its

center Z(G).

Given a set of positive roots, there is a partial ordering

on weights with �Q1 ≥ �Q2 if �Q1 − �Q2 is a non-negative

linear combination of positive (equivalently, simple) roots.

The highest weight �Q R of representation R (if it it exists) is

the unique weight which satisfies �Q R ≥ �Q for all weights
�Q in R. A weight �Q is dominant if �Q · �Qα ≥ 0 for all

simple roots �Qα .8 An irreducible representation (irrep) R has

a highest weight �Q R which is dominant. Moreover, for any

dominant �Q in the weight lattice9 ŴG of G there is a unique

irrep R of G and all finite dimensional representations of G

are direct sums of these.

The hyperplanes orthogonal to the roots divide the space of

weights into Weyl chambers, which are permuted by the Weyl

group (acting freely and transitively on them). The dominant

weights lie in a Weyl chamber �Q · �Qα ≥ 0, known as the

fundamental Weyl chamber. A choice of positive roots is

equivalent to a choice of fundamental Weyl chamber.

8 Here the Cartan generators are normalized so that within each simple

subalgebra Tr Hi H j ∝ δi j in any representation. This doesn’t com-

plete fix the inner product, which encodes additional information in the

worldsheet argument to follow.

9 The weight lattice is the set of all possible weights in finite dimen-

sional unitary representations of G, which form a lattice since G is

compact. While all weights �Q must be algebraically integral, i.e.,

2 �Qα · �Q/ �Q2
α ∈ Z, only for G simply connected does this completely fix

the weight lattice. Otherwise there are further conditions; for instance,

there are no spin-1/2 representations of SO(3), only of its simply con-

nected double cover SU(2). Moreover, when Z(G) has non-zero rank

the abelian charges are quantized as well. The weight lattice need not

factor between the abelian and semi-simple components of the Lie alge-

bra, as demonstrated by, e.g., G = U(N ) = (SU(N )× U(1))/ZN , for

which the U(1) charge mod N is fixed to be equal to the charge under

the ZN center of SU(N ).
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Q3

M

Q3

M

Fig. 1 The nonabelian sLWGC (left) and abelian sLWGC (right) for

an SU(2) gauge group. For a sublattice of fixed index, the nonabelian

sLWGC requires many more particles charged under the U(1) Cartan

below a given mass scale than the abelian sLWGC does, as the latter can

be satisfied by particles charged under a sparse set of representations,

provided they are sufficiently light

We can now state the nonabelian version of the sublattice

Weak Gravity Conjecture:

The nonabelian sLWGC For any quantum gravity in D ≥ 5

with zero cosmological constant and unbroken gauge group

G, there is a finite-index Weyl-invariant sublattice Ŵ0 of the

weight lattice ŴG such that for every dominant weight �Q R ∈
Ŵ0 there is a superextremal resonance transforming in the G

irrep R with highest weight �Q R .

Here “Weyl-invariant” means that Ŵ0 is invariant under the

action of the Weyl group W (G), which ensures that the con-

jecture is independent of the choice of fundamental Weyl

chamber. “Superextremal” means the same as in the abelian

case: the charge-to-mass ratio of the resonance is greater than

or equal to that of a large extremal black hole with a paral-

lel weight vector. Note that in the special case where G is

abelian this reduces to the abelian sLWGC of [41]; other-

wise the nonabelian sLWGC is strictly stronger.

We will make two arguments in favor of this conjecture.

First, we show that it holds in the NSNS sector of tree-level

string theory (with caveats similar to those for the abelian

sLWGC). Second, we show that it is preserved upon com-

pactification of a higher dimensional theory which satisfies

the conjecture on a Ricci flat manifold. Based on these argu-

ments, we conclude that the evidence for the nonabelian

sLWGC is similar to that for the abelian sLWGC of [41].

NSNS sector gauge bosons correspond to worldsheet con-

served currents, with OPEs

J a(z)J b(0) ∼ kab

z2
+ icab

c

z
J c(0)+ · · · ,

J ã(z̄)J b̃(0) ∼ k̃ ãb̃

z̄2
+ i c̃ãb̃

c̃

z̄
J c̃(0)+ · · · , (4.1)

corresponding to the Kac-Moody algebra. We fix kab = δab

and k̃ ãb̃ = δãb̃ by normalizing the currents. The cab
c and c̃ãb̃

c̃

are then structure constants, with normalizations depending

on the level for the nonabelian current algebra of each simple

factor of G. Note in particular that each simple factor of G is

either purely left-moving or purely right-moving (though the

weight lattice need not factor between left and right movers),

hence simple roots have either �QL = 0 or �Q R = 0.

We introduce a chemical potential for the Cartan, as in the

abelian case:

Z = Tr(q
L q̄
R yQL ȳQ R ). (4.2)

By the same arguments as before, the spectrum is invariant

under Q → Q + ρ for ρ ∈ Ŵ∗Q with TL ,R , defined by


L ,R = TL ,R +
1

2
Q2

L ,R, (4.3)

held fixed. The norm Q2 = Q2
L − Q2

R is invariant under

the Weyl group, as is the weight lattice ŴQ , hence so is Ŵ∗Q .

Starting with the graviton state 
L = 
R = 0 and QL ,R =
0, we produce a state with
L ,R = 1

2
Q2

L ,R for every Q ∈ Ŵ∗Q .

To show that this state is the highest weight in its G

irrep, we proceed by contradiction. If not, there is at least

one simple root �Q+ (a left-mover for definiteness) such that

there is a state with charge ( �QL + �Q+, �Q R) and 
L =
1
2

Q2
L = 1

2
( �QL + �Q+)2− �QL · �Q+− 1

2
�Q2
+ and 
R = 1

2
Q2

R .

Thus, there is a corresponding state with charge ( �Q+, 0) and


L = − �QL · �Q+ and 
R = 0, where 
L is a non-positive

integer because Q is dominant and lies in Ŵ∗Q . Since the

graviton has spin 2, this state also has spin 2, but then either

(1) 
L = 0 and there are additional (charged) massless spin

2 particles, or (2) 
L < 0, and by turning on left-moving

oscillators in the non-compact directions we obtain massless

particles of spin greater than 2. In either case, the low energy

limit is not Einstein gravity.10

The rest of the argument for the nonabelian sLWGC from

modular invariance goes the same way as in the abelian case,

with the same caveats as in [41].

We now consider compactification. As in the abelian case,

the non-trivial ingredients that can lift some of the KK modes

10 A similar argument can be made for a unitary CFT2, relevant for

the AdS3 WGC of [42]. In this case, there is a unique operator (the

identity) with 
L = −cL/24 and 
R = −cR/24. All other operators

have 
L > −cL/24 or 
R > −cR/24. If the charge ( �Q+, 0) state

constructed above has 
L = −cL/24 it contradicts the uniqueness of

the identity operator (which is uncharged), whereas if it has 
L <

−cL/24 it violates unitarity.
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are Wilson lines on torsion cycles.11 These can be viewed as

a coming from a quotient

G × M̂

G0
, (4.4)

where M = M̂/G0 is a Ricci-flat compact manifold, G0

acts freely and transitively on M̂ , and G0 is a finite subgroup

of G. To leave G unbroken, we need G0 ⊆ Z(G) (other-

wise, replace G with its unbroken subgroup in the following

argument). If Ŵ0 ⊆ ŴG is an extremal sublattice before com-

pactification then the intersection of Ŵ1 := Ŵ0×ŴKK with the

G0-invariant sublattice Ŵ2 ⊆ ŴG × ŴKK is an extremal sub-

lattice after compactification. Note that Ŵ1,2 are full dimen-

sional sublattices, hence so is Ŵ1∩Ŵ2 (each has finite coarse-

ness). Ŵ1 is Weyl-invariant by assumption, whereas since

G0 ⊂ Z(G) is Weyl-invariant, Ŵ2 is also. Thus Ŵ′0 := Ŵ1∩Ŵ2

satisfies the nonabelian sLWGC in the lower-dimensional

theory.

Note that the condition that Ŵ0 is a Weyl-invariant sublat-

tice of the weight lattice ŴG turns out to be rather restrictive.

For instance, when G is simple Ŵ0 must be a multiple of one

of a finite list of “primitive” Weyl-invariant sublattices, see

“Appendix B”.

5 UV cutoffs for general gauge groups

In this section we show that the phenomenon that we have

seen in Sect. 3.2 for a U(1) gauge theory coupled to gravity

holds for a general gauge group at weak coupling: the species

bound on �QG and the generalized Landau pole bound from

loop corrections to gauge couplings coincide. We will first

work out the case of an SU(2) gauge theory in detail, then gen-

eralize to arbitrary gauge groups including product groups.

We then give a very general argument for why this coinci-

dence of scales occurs.

5.1 SU(2) gauge theory

We now consider an SU(2) gauge theory coupled to grav-

ity, applying the nonabelian sLWGC from Sect. 4. SU(2)

invariance implies that states of large charge come in large

representations, which leads to an interesting new result com-

pared with the U(1) gauge theories we have considered so far

(which have the same Cartan subalgebra).

The SU(2) weight lattice is Z/2 in conventions where the

roots have charge ±1. An arbitrary finite-index sublattice

takes the form kZ/2 for k a positive integer. The Weyl group

is Z2, generated by charge conjugation, hence all of these are

11 Wilson lines on non-torsion cycles are moduli whose values affect

the masses of KK modes, but do not make them subextremal, since they

affect the masses of extremal black holes in exactly the same way.

Weyl invariant. Thus, the minimal sLWGC-satisfying spec-

trum consists of a spin kn/2 multiplet for each n ∈ Z>0. The

dimension of the spin j representation is 2 j + 1, so the total

number of states up to level nmax is

N =
nmax∑

n=1

(kn + 1) = k
nmax(nmax + 1)

2
+ nmax. (5.1)

Applying the species bound and the counting (3.11) we obtain

SU(2) : �QG � k
1
D g

2
D M

2(D−2)
D

Pl , (5.2)

for SU(2) gauge coupling g ≪ 1. In particular, in the four-

dimensional case we have �QG � k1/4g1/2 MPl.

The tower of SU(2) charged states makes the gauge theory

strongly coupled in the ultraviolet. As before, we compare

the quantum gravity scale with the strong coupling scale of

the gauge theory �SU(2), which generalizes the Landau pole

in four dimensions. As explained in Sect. 3.1, this is the scale

at which λgauge ∼ 1. We find

λgauge(E) = g2 E D−4

nmax∑

n=1

I (kn) ∼ g2 E D−4k3n4
max

∼ E D

g2k M
2(D−2)
Pl

, (5.3)

where we use the Dynkin index I ( j) of the spin- j represen-

tation,

I ( j) = 2

3
j ( j + 1)(2 j + 1) ∼ j3, (5.4)

as well as (3.11). Solving λgauge(�SU(2)) ∼ 1, we find para-

metric agreement with Eq. (5.2). That is, the parametric scal-

ing with g and k of the quantum gravity cutoff and the gauge

theory cutoff are the same, and we again find the phenomenon

we refer to as gauge-gravity unification.

In the above, we have assumed that resonances which

approximately saturate the sLWGC bound dominate the

spectrum. If there are many more subextremal resonances, or

if the tower of resonances is parametrically superextremal,

this would affect the coincidence of scales, but the upper

bound (5.2) still applies. Notice also that the SU(2) bound is

less sensitive to the sublattice spacing k than the U(1) bound:

the former depends on the combination g
√

k while the latter

depends on the combination ek.

5.2 Larger groups

We generalize to larger groups, beginning with SU(3). SU(3)

has two Cartan generators, and thus irreps are labeled by

two non-negative integers p, q. Each irrep has dimension

(p+1)(q+1)(p+q+2)/2 and a highest-weight state with

Q2 = (2/3)(p2+ pq+q2) in conventions where Q2 = 2 for
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the roots. By the results of appendix B, the Weyl-invariant

sublattices are k times the weight lattice and k times the root

lattice. We focus on the former case for definiteness, the latter

being similar. Thus, p, q ∈ kZ≥0 for irreps whose highest-

weight states fall on this sublattice.

We now estimate the species bound on the quantum grav-

ity scale. The total number of states in irreps whose high-

est weights lie on k times the weight lattice with charge

Q2 ≤ Q2
max is

N =
(2/3)k2(p2+pq+q2)≤Q2

max∑

p,q∈Z≥0

× (kp + 1)(kq + 1)(kp + kq + 2)

2
. (5.5)

Approximating the sum with an integral, we find N ∼
Q5

max/(5
√

6k2) asymptotically at large Qmax. Roughly

speaking, the fifth power of Q appears here because SU(3)

has three negative roots (half the total number of roots, which

equals the dimension of the group minus its rank). The neg-

ative roots act as lowering operators on the highest-weight

state, and lead to representations of size ∼ Q3. Summing

over the Cartan then gives ∼ Q5 total states. (We generalize

this argument below).

Thus, for an superextremal sLWGC tower m2 � g2 Q2

M D−2
Pl we estimate

λgrav(E) �
E D−2

M D−2
Pl

(
E/gM

D−2
2

Pl

)5

k2
, (5.6)

which gives

SU(3) : �QG � k
2

D+3 g
5

D+3 M
7(D−2)
2(D−3)

Pl . (5.7)

In four dimensions this is �QG � k
2
7 g

5
7 MPl.

We now consider the ultraviolet behavior of the gauge

theory. The Dynkin index for the (p, q) irrep of SU(3) is

I (p, q) = (p + 1)(q + 1)(p + q + 2)(p2 + pq + q2 + 3(p + q))

24
.

(5.8)

The total index for irreps with highest weights on k times the

weight lattice and Q2 ≤ Q2
max is then

Itot =
(2/3)k2(p2+pq+q2)≤Q2

max∑

p,q∈Z≥0

× (kp + 1)(kq + 1)(kp + kq + 2)(k2(p2 + pq + q2)+ 3k(p + q))

24

∼ Q7
max

56
√

6k2
, (5.9)

where we use an integral approximation at large Qmax as

before. Thus, for a superextremal tower

λgauge(E) � g2 E D−4

(
E/gM

D−2
2

Pl

)7

k2
, (5.10)

which gives parametrically the same bound as (5.7).

As before, if the spectrum is dominated by a tower of

near extremal resonances then gauge and gravitational loops

become large at parametrically the same scale. In other cases

this coincidence of scales may not occur, but (5.7) still applies

if the sLWGC holds.

It is straightforward to generalize these arguments to an

arbitrary simple gauge group G, as follows. The dimension

of an arbitrary irrep R with highest weight �Q R is determined

by the Weyl dimension formula

dim(R) =
∏
�Q∈
+

�Q · ( �Q R + �Q0)
∏
�Q∈
+

�Q · �Q0

,

�Q0 :=
1

2

∑

�Q∈
+

�Q, (5.11)

where 
+ denotes the set of positive roots, as in Sect. 4.

Asymptotically for large �Q R we find

dim(R) ∼ f (Q̂ R)| �Q R |ℓG ,

f (Q̂ R) :=
∏
�Q∈
+

�Q · Q̂ R

∏
�Q∈
+

�Q · �Q0

, (5.12)

where ℓG := |
+| = |
|/2 is the number of positive roots

and f (Q̂ R) is an order-one function which depends only

on the direction of �Q R within the fundamental Weyl cham-

ber. This makes precise the intuition from above that more

raising/lowering operators (positive/negative roots) leads to

larger representations.

We take k times the weight lattice as a representative exam-

ple of the Weyl-invariant sLWGC sublattice.12 Thus, there

are superextremal irreps for all

�Q R(n) = k
∑

i

ni
�Qi , ni ∈ Z≥0, (5.13)

with mass m2 � g2 �Q2
R M D−2

Pl , where �Qi are the fundamental

weights. The number of states below some scale E is then

N (E) �

�Q R(n)2≤Q2
max∑

n1,...,nrG
≥0

f (Q̂ R(n)) | �Q R(n)|ℓG ∼ Q
rG+ℓG
max

krG
,

(5.14)

12 As shown in appendix B, since G is simple any Weyl-invariant sublat-

tice is a multiple of one of a finite number of “primitive” Weyl-invariant

sublattices. The parametric dependence on k will be the same regardless

of which primitive Weyl-invariant sublattice we start with.
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where Q2
max ≃ E2/(g2 M D−2

Pl ) and rG is the rank of G.

Here we again use an integral approximation but drop all

numerical factors including the angular integral over f (Q̂ R)

and the volume of the fundamental domain of the weight

lattice. Putting this into the species bound, we obtain

simple G : �QG � k
rG

nG+D−2 g
nG

nG+D−2 M

nG+2

nG+D−2
D−2

2

Pl ,

(5.15)

up to numerical factors, where nG := rG + ℓG is the rank

plus half the number of roots, equal to (rG + dG)/2 where

dG is the dimension of G. In four dimensions, this takes the

simpler form �QG � kr/(n+2)gn/(n+2)MPl.

For instance, for SU(N ), dG = N 2 − 1 and rG = N − 1,

implying that

nSU(N ) =
N 2 + N − 2

2
. (5.16)

Notice that as N → ∞, the bound (5.15) asymptotically

brings the quantum gravity cutoff close to the “magnetic

WGC cutoff” of (1.1), i.e., the scale at which the tower of

charged states appears,

lim
N→∞

�QG → gM
(D−2)/2
Pl , (5.17)

where the dependence on k goes away because rG ≪ dG .

Similar results hold for other large rank simple groups. Thus

for larger nonabelian groups, small gauge couplings become

increasingly powerful constraints on the validity of effective

field theory.

The matching of gauge theory and quantum gravity cutoffs

continues to hold, as in the cases we have already considered.

In particular, the quadratic Casimir C2(R) and the Dynkin

index I (R) of R are given by

C2(R) = �Q R · ( �Q R + 2 �Q0),

I (R) = C2(R) dim(R)

dG

, (5.18)

hence C2(R) ≃ | �Q R |2 and I (R) ≃ f (Q̂ R)
dG

| �Q R |ℓG+2 at large

�Q R . Thus,

λgauge(E) � g2 E D−4

�Q R(n)2≤Q2
max∑

n1,...,nrG
≥0

f (Q̂ R(n))

dG

| �Q R(n)|ℓG+2

∼ g2 E D−4 Q
rG+ℓG+2
max

krG
∼ EnG+D−2

krG gnG M
(nG+2) D−2

2

Pl

,

(5.19)

which gives parametrically the same bound as above. We

give a simpler argument for this in Sect. 5.4.

5.3 Product groups

Next, we consider the case of product groups. For a product

group we can no longer describe the Weyl-invariant sublattice

Ŵ0 ⊆ ŴG satisfying the sLWGC by a single integer (plus a

finite number of choices) as above. While it is possible to pro-

ceed carefully and catalog the possibilities, we will assume

the full LWGC in this section for simplicity. Unless Ŵ0 is

very sparse within ŴG , the effect of the sublattice index is

competitive with other numerical factors that we consistently

ignore.

As a simple example, we consider an SU(2)×U(1) gauge

group with small gauge couplings g and e respectively. The

irreps are labeled by ( j, q) for j ∈ Z≥0/2 and q ∈ Z. The

LWGC requires a particle in each irrep with mass at most

m2
( j,q) �

(
g2 j2 + e2q2

)
M D−2

Pl . (5.20)

Since the dimension of each irrep is 2 j + 1, the number of

states below some mass scale E is at least

N (E) �

g2 j2+e2q2≤E2/M D−2
Pl∑

j,q

(2 j + 1) ∼ 1

eg2

(
E

M
(D−2)/2
Pl

)3

,

(5.21)

using an integral approximation for E ≫ gM
(D−2)/2
Pl and

E ≫ eM
(D−2)/2
Pl . Thus, applying the species bound, we

obtain

SU(2)× U(1) : �QG � e
1

D+1 g
2

D+1 M
5(D−2)
2(D+1)

Pl , (5.22)

up to order one factors and the dependence on the sublattice

index. Note that if e ∼ g, we can understand this result using

the logic of the previous section: we have one raising operator

(from the SU(2) factor) and two Cartan generators (one from

each factor), so the total number of states up to the nth rung

of the ladder scales as n3, and the bound is given by setting

nG = 3 in (5.15).

As before, the Landau pole bounds from the tower

of charged states parametrically coincide with �QG. For

instance, for the U(1)

λU(1)(E) ∼ e2 E D−4

g2 j2+e2q2≤E2/M D−2
Pl∑

j,q

q2(2 j + 1)

∼ e2 E D−4 1

e3g2

(
E

M
(D−2)/2
Pl

)5

∼ E D+1

eg2 M
5(D−2)/2
Pl

,

(5.23)

which reproduces equation (5.22). A similar result holds for

the SU(2) factor.

Note that the above discussion assumes gM
(D−2)/2
Pl ≪

�QG and eM
(D−2)/2
Pl ≪ �QG. Even if both gauge couplings

are small, this need not be true if one is much smaller than the
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other. Only gauge group factors with WGC scale gM
(D−2)/2
Pl

below the quantum gravity scale contribute to our bounds on

�QG. This is discussed further in Sect. 7.2.

More generally, we consider a gauge group G = U (1)r0×∏p
i=1 Gi for simple Gi with gauge couplings gi and an

r0 × r0 abelian gauge kinetic matrix τi j (generalizing 1/e2

for a single U(1)). Irreps are labeled by (�q0, R1, . . . , Rp) for

U(1)r0 charges �q0 and Gi representation Ri , corresponding to

the highest weight vector QR = (�q0, �q1, . . . , �qp). Superex-

tremal irreps must satisfy

m2
Q �

[∑

α,β

(q0)αταβ(q0)β +
∑

i

g2
i q2

i

]
M D−2

Pl =: ||Q||2,

(5.24)

where ταβ := (τ−1)αβ . The LWGC requires that the total

number of states below a mass scale E is at least

N (E) �

||QR ||<E∑

R

dim(R) ∼
∫

||Q||<E

dr0 �q0

×
p∏

i=1

fi (q̂i ) |�qi |ℓi dri �qi , (5.25)

where we use (5.12) to estimate dim(R), and ri and ℓi are

the rank and half the number of roots of Gi , respectively, as

above. Carrying out the integral,13 we obtain

N (E) �

√
det τ En

(∏
i g

ni

i

)
M

n(D−2)/2
Pl

, (5.26)

where n = ∑p
i=0 ni , ni = ri + ℓi (so that n0 = r0), and we

ignore the angular integrals along with all other numerical

factors. Thus, the species bound gives

�QG �

(
(det τ)−1/2

∏

i

g
ni

i

) 1
n+D−2

M
(n+2)(D−2)
2(n+D−2)

Pl , (5.27)

which generalizes (5.15).14

Estimating the size of loop corrections in the gauge theory

leads to parametrically the same bound, as in all our previous

examples. For instance, focusing on one of the non-abelian

factors Gi , we have

13 To perform the integral, it is useful to reimagine the integral over the

ri components of q(i) as an integral over ni = ri + ℓi components of

some fictitious vector by passing to spherical coordinates, factoring out

the angular integral (which we drop along with other numerical factors)

and passing back to rectangular coordinates. In this way, the integral

over �Q reduces to a straightforward spherical integral.

14 It is relatively straightforward to see how the sublattice data should

appear in this expression. For instance, if Ŵ0 includes only ki times

the weight lattice of Gi , then we should replace g
ni

i with k
ri

i g
ni

i . More

generally, the index |Ŵ0|/|ŴG | of the sublattice Ŵ0 within ŴG , i.e., the

fraction of ŴG sites which lie on Ŵ0, will appear as an extra factor inside

the parentheses.

Ii (R) = I (Ri )
∏

j �=i

dim R j ∼
fi (q̂i )

di

|�qi |ℓi+2

×
∏

j �=i

f j (q̂ j ) |�q j |ℓ j , (5.28)

using the estimate below (5.18), so that below the mass scale

E

I
(tot)
i �

∫

||Q||<E

dr0 �q0

(
fi (q̂i )

di

|�qi |ℓi+2 dri �qi

)

×
∏

j �=i

f j (q̂ j ) |�q j |ℓ j dr j �q j

∼
√

det τ En+2

g
ni+2
i

(∏
j �=i g

n j

j

)
M

(n+2) D−2
2

Pl

. (5.29)

This gives

λi �

√
det τ En+D−2

(∏
j g

n j

j

)
M

(n+2) D−2
2

Pl

, (5.30)

leading to the same bound as in (5.27).

5.4 A general argument

Now that we have checked a variety of examples, let us give a

general argument for why we consistently find that λgauge(E)

and λgrav(E) become O(1) at parametrically the same energy.

We focus on a particular U(1), which might be either an

abelian factor in the gauge group or a Cartan generator of

a nonabelian factor. Let nE (q) be the number of charge q

particles with mass less than E , which for energies E ≫
eM

(D−2)/2
Pl we will approximate as a continuous function of

q. Thus,

λgauge(E) ∼ e2 E D−4

∫ Q(E)

0

dq q2nE (q),

λgrav(E) ∼ G N E D−2

∫ Q(E)

0

dq nE (q), (5.31)

where Q(E) is the largest charge in the spectrum for masses

below E . The average charge of all the particles with mass

less than E is

〈q2〉E =
∫ Q(E)

0 dq q2nE (q)
∫ Q(E)

0 dq nE (q)
. (5.32)

We will see that for a large family of smooth functions nE (q)

which cut off at q = Q(E) the average charge 〈q2〉E is

parametrically of the same order as Q(E)2. This means that

λgauge(E) ∼ e2

G N E2
〈q2〉Eλgrav(E)

∼ e2 Q(E)2

G N E2
λgrav(E). (5.33)
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However, the (s)LWGC requires Q(E) � E/
(
eM

(D−2)/2
Pl

)
,

and in particular if the constraint is nearly saturated for E ≫
eM

(D−2)/2
Pl then Q(E) ∼ E/

(
eM

(D−2)/2
Pl

)
. By (5.33) this

implies λgauge(E) ∼ λgrav(E) for E ≫ eM
(D−2)/2
Pl , and

in particular gauge theory and gravitational loop corrections

become large at parametrically the same scale �QG.

Having understood the consequences, we now give argu-

ments why typically 〈q2〉E ∼ Q(E)2 up to order-one factors.

We begin with a simple example: suppose that all particles

of a given mass have the same |q| and |q| = E/E0 increases

linearly with energy, as in an (s)LWGC saturating tower for

a single U(1) gauge group. Let ρ(E) := d N
d E

be the density

of states. We then have

nE (q) = E0ρ(|q|E0)�(E − |q|E0), (5.34)

where �(x) is the Heaviside step function, so that

〈q2〉E =
∫ E/E0

0 dq q2ρ(|q|E0)∫ E/E0

0 dqρ(|q|E0)

= 1

E2
0

∫ E

0 d E ′ E ′2ρ(E ′)
∫ E

0 d E ′ρ(E ′)
. (5.35)

For a minimal sLWGC saturating spectrum, and in real

quantum gravities that behave like this, such as Kaluza

Klein theory, ρ(E) is asymptotically a constant and we

obtain 〈q2〉E ≃ 1
3
(E/E0)

2 = 1
3

Q(E)2. Even if ρ(E)

grows asymptotically the large E part of the integral is

enhanced and 〈q2〉E is yet closer to Q(E)2. Only if ρ(E)

falls off as 1/E or faster does this conclusion change,

but the sLWGC sets a lower bound ρ(E) � 1/(k E0) for

a sublattice spacing k, so such a falloff is incompatible

with it.
For more complicated gauge groups, the spectrum is dif-

ferent because near-extremal particles which are charged
under other gauge group factors can have q ≪ E/

(
e

M
(D−2)/2
Pl

)
, as can the lower weights in nonabelian irreps. For

instance, consider n U(1)s with gauge couplings e1, . . . , en

and an LWGC saturating spectrum. We find

nE (q1) =

∑
e2

i q2
i ≤E2/M D−2

Pl∑

q2,...,qn

1 ∼ 1

e2 . . . en

(
E2

M D−2
Pl

− e2
1q2

1

) n−1
2

∝ (Q1(E)2 − q2
1 )

n−1
2 , (5.36)

where Q1(E)2 ≃ E2/
(
e2

1 M D−2
Pl

)
. This gives 〈q2

1 〉E ≃
1

n+2
Q1(E)2. The same result still holds when there are non-

abelian factors in the rest of the gauge group – with n equal to

the total rank plus half the total number of roots, as above –

as well as with arbitrary sublattice spacings.15 As in our first

15 If q1 is a Cartan charge of a nonabelian factor then nE (q1) can take

a more complicated functional form, but the qualitative behavior is

similar.

example, higher multiplicities for the near-extremal states

should not change the conclusion.

More generally, 〈q2〉E ∼ Q(E)2 when nE (q) is not

too sharply peaked at |q| ≪ Q(E). For instance, if nE (q)

∼ exp(Q − q), then
∫ Q

0 dq nE (q) ∼
∫ Q

0 dq q2nE (q) ∼
exp(Q), without a Q2 enhancement in the second integral.

This includes the caveat we have made above: if there are

large numbers of neutral particles, they correct λgrav(E) but

not λgauge(E) and hence spoil gauge-gravity unification.

6 Gauge-gravity unification implies the Weak Gravity

Conjecture

So far we have argued that the sLWGC leads naturally (with

some caveats) to a single scale at which gauge forces and

gravity become strong, suggesting a unification of forces.

We now consider the converse case, where we demand such

a unification and explore its consequences. More generally,

we will assume that gauge couplings become strong at or

below the quantum gravity scale, allowing for the possibil-

ity of gauge theories which emerge from non-gravitational

dynamics, as demonstrated, e.g., by Seiberg duality. Stated

alternately, we assume that there cannot be any weakly cou-

pled gauge bosons at the quantum gravity scale.16

6.1 Basic argument

The requirement that gauge forces become strong (λgauge ∼
1) at or below the quantum gravity scale is the requirement

that

1

e2
∼ �D−4

gauge

∑

i |mi <�gauge

q2
i , for �gauge � �QG. (6.1)

To derive the ordinary WGC from this, consider the particle

of largest charge-to-mass ratio (q/m)max =: zmax among all

the particles with mass below �gauge. For every i we have

q2
i < z2

maxm2
i and so

1

e2
� �D−4

gaugez2
max

∑

i |mi <�gauge

m2
i

� �D−2
gaugez2

max N (�gauge)

� �D−2
QG z2

max N (�QG)

� z2
max M D−2

Pl . (6.2)

In the second line we use m2
i < �2

gauge to place an upper

bound on the sum, in the third line we use �gauge �

�QG, and in the last line we apply the species bound

N (�QG)�D−2
QG � M D−2

Pl . Rearranging the last inequality, we

16 We explore some situations where these assumptions fail in Sect. 7.
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have e2z2
max M D−2

Pl � 1, which has the form of the original

Weak Gravity Conjecture. It is slightly strengthened, since

the superextremal particle we have found is below the quan-

tum gravity cutoff. (However, see Sect. 7 below for excep-

tions in which this argument does not apply.)

From the constraint (6.1) we can also obtain statements

about the spectrum as a whole. For instance, we can rewrite

it as

1

e2
∼ �D−4

gauge N (�gauge) 〈q2〉�gauge

�
1

�2
gauge

M D−2
Pl 〈q2〉�gauge , (6.3)

again using the species bound. We can rearrange this result

in the suggestive form

�2
gauge � e2〈q2〉�gauge M D−2

Pl . (6.4)

This is in itself an interesting WGC-like statement that

bounds the strong coupling scale in terms of the average

charge of particles with mass below that scale. Since every

weakly coupled particle has m < �gauge, all of their masses

are bounded in terms of the average charge; for instance (6.4)

implies that the particles lighter than �gauge are, on average,

superextremal.

6.2 Comparisons at lower energies

We have seen that gauge-gravity unification, in the sense

defined above, has very interesting consequences. We can

obtain even stronger statements if we assume that the

strengths of gauge and gravitational interactions unify below

the quantum gravity scale. However, to do so we need to

specify what exactly this means.

We argued in Sect. 3 that λgauge(E) and λgrav(E) – defined

in (3.7) and (3.8), respectively – are useful heuristics which

estimate the fractional size of gauge theory and gravity loop

corrections at a scale E coming from light particles (parti-

cles with mass below E). When λgauge � 1 or λgrav � 1

the corresponding loop expansion breaks down, though of

course it could break down at a lower scale for other rea-

sons. However, at scales where the λs are small, they have no

clear physical interpretation. They do not even represent the

fractional size of all loop corrections, but only those coming

from particles lighter than E ; the contributions from heavy

particles and/or higher dimensional operators are typically

much larger, though still suppressed by powers of E/�.

Nonetheless, in situations where we expect gauge and

gravitational forces to unify below the quantum gravity scale,

we find λgauge(E) ∼ λgrav(E) beginning at the expected uni-

fication scale. There are two principal examples of this: (1)

Kaluza–Klein theory, where the graviphoton shares a com-

mon origin with the graviton at the compactification scale,

and (2) perturbative string theory, where gauge bosons and

gravitons share a common origin as excitations of the string.

In the former case, the number of KK modes up to a scale E

is N (E) ∼ E R where R is the compactification radius. Thus,

by a familiar calculation (this is essential the same situation

as that in Sect. 3.2):

λgrav(E) ∼ E D−2

M D−2
Pl

(E R) , λgauge(E) ∼ e2 E D−4 (E R)3 .

(6.5)

However, 1/e2 = (1/2)R2 M D−2
Pl , hence λgrav(E) ∼

λgauge(E). Below the compactification scale 1/R, λgauge = 0

(there are no charged particles), but λgrav �= 0, so the match-

ing begins near the compactification scale, exactly where we

expect the forces to unify. More complicated KK examples

behave in the same way, as can be seen using, e.g., the general

arguments of Sect. 5.4.

The case of perturbative string theory is more complicated,

since gauge fields can have several different origins, from

both open and closed strings, and in the latter case from both

the NSNS and RR sectors. Since the graviton lives in the

NSNS closed string sector, we expect gauge fields from this

sector to unify with it at the string scale. In Sect. 7.1 we will

argue that indeed λgauge ∼ λgrav at the string scale for NSNS

sector gauge bosons (except those with no charged particles

at or below this scale; see Sect. 7.2 for related caveats.)

With this motivation, such as it is, we proceed to com-

pare λgauge(E) and λgrav(E) at scales parametrically below

the quantum gravity scale and derive the consequences of

certain simple assumptions. First, suppose that λgauge(E) �

λgrav(E) at some particular scale E � �QG. This means that

G N N (E)E2 � e2
∑

i |mi �E

q2
i � e2z2

max(E)
∑

i |mi �E

m2
i

� e2z2
max(E) N (E)E2, (6.6)

by essentially the same reasoning as in Sect. 6.1, where

zmax(E) is the largest charge-to-mass ratio among the parti-

cles lighter than E . Dividing by N (E)E2, we conclude that

there is a superextremal particle lighter than E , and the WGC

is satisfied.

A more intriguing statement arises if we assume

λgauge(E) ∼ λgrav(E) for E � E0, (6.7)

which is the heuristic notion of gauge-gravity unification at

weak coupling that we motivated above, with unification

scale E0 ≪ �QG. This means that for E0 � E � �QG

we have

e2
∑

i |mi �E

q2
i ∼ G N N (E) E2. (6.8)
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Here N (E) is a monotonically increasing function of E . Let

us assume that there are sufficiently many particles above E0

that we can approximate these functions as continuous. If we

differentiate both sides with respect to E , we can rewrite the

derivative of the left-hand side in terms of d(
∑

q2)/d E =
d(

∑
q2)/d N · d N/d E and divide through by d N/d E to

obtain:

e2 d(
∑

q2)

d N
∼ G N E2

(
1+ 2

d log E

d log N

)
, (6.9)

where d log E/d log N ≥ 0. Notice that
d(

∑
q2)

d E

E has the

interpretation as the total squared charge contributed by par-

ticles with mass in a range 
E near E , and as a result

d(
∑

q2)/d N can be interpreted as the average q2 of the

particles with mass near E . In other words, the condition

(6.7) implies that for all states with mass approximately E ,

we have

e2〈q2〉m≈E � G N m2, (6.10)

which is to say that the average particle of mass near m is

superextremal. Hence the relation (6.7) implies the existence

of a tower of superextremal resonances at energies above E0.

This is an sLWGC-like statement.

The close relationship between (6.7) and the sLWGC, at

least parametrically, suggests the intriguing possibility that

there is some sharp property of, e.g., the high energy behav-

ior of scattering amplitudes in quantum gravities that has

the same close relationship to the sLWGC. As we discussed

in the introduction, the sLWGC itself is somewhat poorly

defined in theories with strong coupling, since it refers to

single particles but these may be unstable. An alternate def-

inition in terms of the S-matrix could address this issue, but

at present it remains unclear whether any sharpened version

of the heuristic λ(E) can be extracted from the S-matrix. We

leave further exploration of this idea to the future.

Note that if we define a variant λ̃(E) which includes the

fractional size of loops of heavy particles as well as the light

particles accounted for in λ(E) – as discussed further in

“Appendix A.1” – then λ̃gauge(E) � λ̃grav(E) leads to a

different conclusion than above: there must be a superex-

tremal particle with mass between E and �QG. Moreover,

λ̃gauge(E) ∼ λ̃grav(E) for E � E0 does not have the same

strong implications. Because heavy particles typically give

the dominant contribution to λ̃(E), this parametric matching

does not directly constrain lighter particles, and no sLWGC-

like statement follows. None of our previous results were

sensitive to the distinction between λ(E) and λ̃(E), which

illustrates the more speculative nature of the present section:

gauge-gravity unification at weak coupling is a concept with

no obvious definition, and we could have chosen a different

one, such as λ̃gauge(E) ∼ λ̃grav(E).

Nonetheless, λ̃(E) does not have the same connection to

unification in the simple examples that we discussed above.

While λ̃gauge(E) ∼ λ̃grav(E) in KK theory, this continues

below the compactification scale even though at low ener-

gies the common origin of the graviphoton and graviton is

not evident. In perturbative string theory, it is difficult to even

define λ̃(E), in part because the two-point function is an off-

shell quantity. The results we get depend on whether we count

states above the string scale (and how we count them). Both

of these examples illustrate that λ̃(E) is a UV-sensitive quan-

tity, whereas λ(E) depends only on the light spectrum and

infrared couplings. While the precise physical interpretation

of λ(E) remains unclear, it is arguably both a better measure

of unification than λ̃(E) as well as a better behaved quantity

in effective field theory.

6.3 Product groups

The above discussion applies equally well to an arbitrary

gauge group as to the case of a single gauge boson or a simple

gauge group. In particular, the one-loop correction (3.3) to

the gauge boson propagator is unaffected by the presence

of other gauge group factors, except that we must allow for

kinetic mixing between photons, as we did above in Sect. 5.3.

Lkin = −
1

4
τab(Fa)μν(Fb)μν, (6.11)

for some positive definite gauge coupling matrix τab (gener-

alizing 1/e2 in the single-photon case). Loop corrections give

an energy-dependent correction to the gauge boson propaga-

tor scaling as

τ
(1−loop)

ab (E) ∼
∑

i |mi <E

qiaqib E D−4. (6.12)

The direct analogue of λgauge(E) is a matrix λa
c(E) =

τ abτ
(1−loop)

bc (E), but a more straightforward approach relies

on a choice of direction na in charge space.

Specifically, we can adapt our preceding arguments to the

kinetically mixed case as follows: the derivation of the WGC

from the condition (6.1) that a gauge interaction is strong at

the scale �QG carries through with the replacements

1

e2
�→ nanbτab, qi �→ naqia . (6.13)

In other words, if any particular linear combination of U(1)s is

strong at the quantum gravity scale, we deduce the existence

of a particle charged under that linear combination. If we

impose that gauge couplings are strong, in the sense of the

condition (6.1), for all possible choices of na , then we obtain

the convex hull condition for the product gauge theory.
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Similarly, the arguments of Sect. 6.2 comparing λgrav(E)

to λgauge(E) may be rephrased in terms of the condition

1

e2
�

1

G N E2
〈q2〉, (6.14)

a form suitable for making the replacements (6.13). Again,

the arguments go through once we select a direction na in

charge space.

6.4 Higgsing

It has been pointed out that the WGC and most of its known

stronger variants are not automatically preserved under Hig-

gsing ([52,53], see also [41]). In other words, given an effec-

tive field theory which apparently satisfies the variant of the

WGC in question and which contains a light charged scalar,

the effective field theory obtained by giving a vev to the scalar

may not satisfy the same variant of the WGC (or even the

WGC itself). Of course, this does not imply the same state-

ment about effective theories with quantum gravity comple-

tions: if the WGC variant in question is correct then these

must satisfy non-trivial additional constraints which ensure

that it remains true after Higgsing. In many concrete exam-

ples, this is the case, and the WGC/sLWGC remain true after

Higgsing.

Below, we review why the WGC and its lattice variants

are not automatically preserved under Higgsing. We then

discuss to what extent our arguments above are affected by

these subtleties. Other recent discussions of Higgsing and

the WGC include [34,54]. Attempts to exploit this kind of

loophole for large field axion inflation include [17,32].

We start with the very simple case of two abelian gauge

bosons, A and B, which are unmixed and do not couple to

massless dilatons:

L= −1

4

(
1

e2
A

A2
μν +

1

e2
B

B2
μν

)
. (6.15)

Suppose they are Higgsed to the diagonal by a scalar field of

charge (1,−P) for integer P , so that the linear combination

Hμ = Aμ − P Bμ becomes heavy. Then the light field that

is not Higgsed is

Lμ =
e2

A Bμ + Pe2
B Aμ

e2
A + P2e2

B

. (6.16)

In terms of the light and heavy eigenstates the original fields

are

Aμ= P Lμ+
e2

A

e2
A + P2e2

B

Hμ, Bμ=Lμ −
Pe2

B

e2
A + P2e2

B

Hμ ,

(6.17)

and the kinetic terms become

L= −1

4

((
P2

e2
A

+ 1

e2
B

)
L2

μν +
1

e2
A + P2e2

B

H2
μν

)
. (6.18)

Now, a particle of charge (qA, qB) under the original sym-

metries couples to the linear combination

qA Aμ + qB Bμ = (PqA + qB) Lμ

+qAe2
A − PqBe2

B

e2
A + P2e2

B

Hμ. (6.19)

As expected, the unbroken gauge field couples to a U(1) with

integer charges Q = PqA + qB while the heavy eigenstate

in general can couple to irrational charges.

A particle of charge (qA, qB) is superextremal with respect

to the un-Higgsed theory if

m2 ≤ γ

(
e2

Aq2
A + e2

Bq2
B

)
M D−2

Pl , (6.20)

where γ is a dimension-dependent factor, see, e.g., [35]. In

the Higgsed theory, it has a diagonal charge Q = PqA + qB

and couples via the diagonal coupling

1

e2
D

= P2

e2
A

+ 1

e2
B

, (6.21)

so it is superextremal if m2 ≤ γ e2
D Q2 M D−2

Pl . Suppose that

a particle of charge Q = PqA + qB is extremal in the un-

Higgsed theory, i.e., saturating (6.20). Whether it is superex-

tremal or not in the Higgsed theory depends on qA, qB .

Putting qB = Q−PqA into (6.20) and completing the square,

we find:

m2 = γ e2
D Q2 M D−2

Pl + γ
e2

Ae2
B

e2
D

(
qA − P

e2
D

e2
A

Q

)2

M D−2
Pl .

(6.22)

Thus, the particle is extremal in the Higgsed theory if and

only if

qA = P
e2

D

e2
A

Q, which is equivalent to qB =
e2

D

e2
B

Q;

(6.23)

otherwise, it is subextremal. In other words, extremality

is preserved if the charge vector (qA, qB) is parallel to(
Pe2

D/e2
A, e2

D/e2
B

)
. For other charged particles, Higgsing

makes them less extremal.

The ordinary WGC (i.e., the convex hull condition [36]) is

equivalent to the requirement that for every site in the charge

lattice (qA, qB) ∈ Z2 there is a superextremal multiparticle

state with charge (rqA, rqB) for some rational r > 0. If

e2
A/e2

B is rational then so are e2
D/e2

A and e2
D/e2

B , and
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Fig. 2 Higgsing in a lattice with e2
A/e2

B irrational. If the direction

orthogonal to the Higgsed particle (shown in red) does not intersect

any lattice points, then the WGC (and sLWGC) need not be satisfied in

the resulting theory

(
Pe2

D/e2
A

gcd(Pe2
D/e2

A, e2
D/e2

B)
,

e2
D/e2

B

gcd(Pe2
D/e2

A, e2
D/e2

B)

)
∈ Z2

(6.24)

is a lattice site.17 The ordinary WGC in the un-Higgsed

theory then implies that there is a superextremal multipar-

ticle state of charge (r Pe2
D/e2

A, re2
D/e2

B) for some rational

r > 0. By the above reasoning, this multiparticle state is also

superextremal in the Higgsed theory, which implies the exis-

tence of a superextremal charged particle, hence the WGC is

preserved.

The situation is similar for the sLWGC. When e2
A/e2

B is

rational, the lattice vector (6.24) generates a one-dimensional

sublattice of the charge lattice. The intersection of this sub-

lattice with the two-dimensional sublattice of superextremal

charged particles required by the un-Higgsed sLWGC is a

one-dimensional sublattice, and for each site on this sublat-

tice (corresponding to a one-dimensional sublattice of the

Higgsed charged lattice) we obtain a superextremal charged

particle in the Higgsed theory, hence the sLWGC is pre-

served.

If on the other hand e2
A/e2

B is irrational, then even if the

LWGC is satisfied in the un-Higgsed theory, i.e., if for every

(qA, qB) ∈ Z2 there is a superextremal charged particle, the

ordinary WGC in the Higgsed theory may not hold. In partic-

ular, if the charged particles are all extremal (or subextremal)

in the un-Higgsed theory then there are no superextremal

charged particles in the Higgsed theory precisely because

there are no charge vectors in the charge lattice parallel to(
Pe2

D/e2
A, e2

D/e2
B

)
, and the WGC is violated. This is depicted

graphically in Fig. 2.

17 Note that gcd is naturally defined for rational arguments via

gcd
(

p
r
,

q
s

)
= 1

rs
gcd(ps, qr) so that x/ gcd(x, y) and y/ gcd(x, y)

are always coprime integers for any x, y ∈ Q.

However, if the convex hull condition is satisfied by a

finite number of particles18 in the un-Higgsed theory then the

WGC is automatically satisfied in the Higgsed theory. This

is because the above argument produces multiparticle states

which are arbitrary close to extremal if we take qA, qB large

with qA/qB a rational approximant to Pe2
B/e2

A. If a finite

number of particles generate all of these multiparticle states

then at least one of these particles must be superextremal, and

the WGC is satisfied. This is depicted graphically in Fig. 3.

It is not too hard to generalize this argument to the case of

N > 2 photons and/or kinetic mixing between the photons.

It is convenient to canonically normalize:

L= −1

4

∑

a

(Fa
μν)

2 − m2
A

q2

(∑

a

qa Aa
μ

)2
. (6.25)

where qa ∈ ŴQ is the charge of the Higgs field and ŴQ ⊂ RN

is the charge lattice. We decompose into heavy and light fields

gauge fields Hμ and La
μ:

Aa
μ = q̂a Hμ + ea

i L i
μ, (6.26)

where q̂a := qa/|q| for |q|2 := δabqaqb and ea
i is chosen to

satisfy qaea
i = 0 and δabea

i eb
j = δi j . The superextremality

conditions before and after Higgsing are

m2 ≤ γ δab Qa Qb M D−2
pl and m2 ≤ γ δi j Q̃i Q̃ j M D−2

pl ,

(6.27)

respectively, where Q̃i = ea
i Qa is the charge after Higgsing.

Suppose a particle, charge Qa , is extremal before Higgsing,

then

m2 = γ δi j Q̃i Q̃ j M D−2
pl + γ (Qa q̂a)2 M D−2

pl , (6.28)

where we use δi j ea
i eb

j = δab − q̂a q̂b. Thus, the particle is

extremal after Higgsing if and only if Qa q̂a = 0; otherwise it

is subextremal. By the same arguments as above, if the plane

orthogonal to qa contains an N − 1 dimensional sublattice

of the charge lattice ŴQ then the WGC and the sLWGC are

each preserved under Higgsing, whereas if not then in general

stronger constraints are needed in the un-Higgsed theory to

satisfy the (sL)WGC in the Higgsed theory. If the convex hull

condition is satisfied by a finite number of particles before

Higgsing, it is still satisfied after Higgsing.19

Note that the condition that the charge lattice ŴQ inter-

sects the plane orthogonal to qa in an N − 1 dimensional

sublattice generalizes the requirement that e2
A/e2

B is rational,

18 There are concrete examples of (supersymmetric) quantum gravities

for which the convex hull condition cannot be satisfied by a finite number

of particles, see [35,41].

19 Our results disagree slightly with [53], which concluded that the

ordinary WGC and the sLWGC are automatically preserved under Hig-

gsing. As shown above, this is not the case in general, though the ordi-

nary WGC is automatically preserved if the convex hull condition is

satisfied by a finite number of particles.
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Fig. 3 Preservation of the

WGC under Higgsing for a

theory with a finitely generated

convex hull. Since the convex

hull condition is satisfied in the

direction �e⊥ orthogonal to the

Higgsed particle (shown in red,

with charge-to-mass vector �z0),

we necessarily have either

|�z1 · �e⊥| ≥ 1 or |�z2 · �e⊥| ≥ 1.

This ensures that one of these

two particles will still satisfy the

convex hull condition after

Higgsing

z1

z2

z3

z4

z5

z6

z0

since in that simple example the charge lattice is generated

by (eA, 0) and (0, eB) with qa = (eA,−PeB), so we require

non-trivial solutions to (meA, neB) · (eA,−PeB) = 0, i.e.,

e2
A/e2

B = Pn/m, for rational m, n. As in this simple exam-

ple, in general charge lattices which satisfy this property are

dense in the set of all charge lattices.

This means that the WGC is not necessarily preserved

under Higgsing, assuming the original theory exactly satu-

rated the WGC bound. The same argument applies to the

sLWGC: a theory which saturates the sLWGC can in prin-

ciple be Higgsed to a theory that violates it. This is not a

counterexample to the WGC or sLWGC, however: it simply

shows that stronger constraints must be imposed on the orig-

inal theory to ensure that these bounds are not violated after

Higgsing.

It is also worth noting that although the WGC can in prin-

ciple be violated, it will still be approximately true in the

Higgsed theory. In the above example, we may choose qA,

qB such that qA/qB ≈ Pe2
B/e2

A to arbitrarily good preci-

sion. If the WGC is satisfied in the un-Higgsed theory, then

there must exist some (possibly multiparticle) state with these

charges (or a multiple thereof), and this will reduce upon Hig-

gsing to a (possibly multiparticle) state that approximately

satisfies the WGC bound. The same statement is true for the

sLWGC, except we demand that these multiparticle states be

single particle states or resonances.

We now consider the effect of Higgsing on our arguments

about UV cutoffs. If the scale of at which the gauge group

is Higgsed is well below the quantum gravity scale, m A ≪
�QG, then from a UV perspective we can treat the gauge

group as unbroken, and we still expect a tower of charged

states to appear near the WGC scale, eM
(D−2)/2
Pl . Heavier

particles in such a tower generally dominate λgauge and λgrav,

hence the conclusions about UV cutoffs are the same as if

the gauge group were unbroken – even if m A lies above the

WGC scale – so long as m A ≪ �QG.20

In particular, gauge-gravity unification in the sense of

Sect. 2 is unaffected by Higgsing. We could reach the same

conclusion by ignoring the massive gauge bosons entirely

and focusing on some U(1) in the Cartan of the unbroken

group. If the sLWGC is satisfied in the un-Higgsed theory, the

arguments given above imply that it must be at least approxi-

mately satisfied in the Higgsed theory. The general argument

of Sect. 5.4 can then be applied, regardless of additional mul-

tiplicities which arise from sLWGC constraints coming from

the enhanced gauge group in the UV.

Conversely, if we assume that the gauge forces in the un-

Higgsed theory become strong at or below the quantum grav-

ity scale, we can apply the arguments of Sect. 6.1 to this un-

Higgsed theory. Equation (6.2) then ensures that the WGC

will be (approximately) satisfied for this theory. Furthermore,

the masses of the superextremal particles will be below �QG,

and there are only a finite number of such particles. This

means that the convex hull condition will be (approximately)

satisfied by a finite number of particles in the un-Higgsed

theory, which implies that it will also be (approximately)

satisfied in the Higgsed theory.

As before, we reach the same conclusion if we consider

a U(1) in the Cartan of the unbroken gauge group, ignoring

the broken generators. If we assume that this U(1) becomes

strongly coupled below �QG, (6.2) again ensures that the

WGC will be (approximately) satisfied for this U(1). If we

further assume that λgauge(E) ∼ λgrav(E) for this U(1) over

20 However, we need to be cautious about identifying any massive vec-

tor with an enhanced gauge group. One case in which this is obviously

incorrect is KK theory with a higher dimensional photon, for which

there is a tower of graviphoton-charged massive vectors, but no corre-

sponding nonabelian gauge group.
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some range of energies E � E0, as in Sect. 6.2, (6.10) ensures

the existence of a tower of superextremal resonances with

energy above E0.

Thus, the relationship between unification in the sense

of Sect. 2 and the (sL)WGC is largely unaffected by subtleties

related to Higgsing. There is, however, an important caveat

to keep in mind when considering bounds on the quantum

gravity scale, such as (3.12), (5.15), or (5.27): the sublat-

tice index can change upon Higgsing. Hence, even if k ∼ 1

in the UV theory, our arguments do not exclude k ≫ 1 in

the infrared theory, leading to weaker constraints on the UV

cutoff.

To illustrate this, consider the two-photon example dis-

cussed above. Assume for simplicity that the UV theory

contains an LWGC-saturating tower of extremal particles.

For fixed Q = PqA+qB there is an approximately extremal

particle in the IR theory (i.e., with m2/m2
ext ≤ 1 + ε2 for

ε � 1) whenever

P − εeA/eB

P2 + e2
A/e2

B

Q ≤ qA ≤
P + εeA/eB

P2 + e2
A/e2

B

Q (6.29)

has an integer solution. If P � eA/eB then qA = 0 is a solu-

tion for any Q, and keff ≃ 1 (the LWGC is approximately

satisfied after Higgsing). On the other hand, if P ≫ eA/eB

then qA = Q/P is a solution for any Q ∈ PZ (with

ε ≥ eA/(PeB)) and keff ≃ P (the sLWGC is approximately

satisfied with sublattice index P).

Thus, for P ≫ 1 and P ≫ eA/eB , it is possible for the

sublattice index to be parametrically larger in the Higgsed

theory.21 Accounting for the change in sublattice index, the

“infrared” constraint

�QG � (keff eD)
1

D−1 M
3(D−2)
2(D−1)

Pl , (6.30)

follows automatically in the UV theory. To see this, note that

eD ≃ eA/P for P ≫ eA/eB and eD ≃ eB for P ≪ eA/eB

from (6.21), where keff ≃ P and keff ≃ 1 in these two limits,

respectively. Thus, (6.30) follows from either

�QG � e
1

D−1

A M
3(D−2)
2(D−1)

Pl or �QG � e
1

D−1

B M
3(D−2)
2(D−1)

Pl (6.31)

in the two limits.22

Of course, since it is not possible to determine the sublat-

tice index in the deep infrared, the constraint (6.30) is of no

practical use unless we can assume that keff is not too large.

Thus, it would be very interesting to determine whether Hig-

gsing can lead to a very large (or even parametrically large)

21 These are the same as the conditions that the IR WGC scale

eD M
(D−2)/2
Pl is parametrically below the UV WGC scales eA M

(D−2)/2
Pl

and eB M
(D−2)/2
Pl , as in [52,53], though the sublattice index is not nec-

essarily the same as the ratio between these two scales.

22 When the UV WGC scales eA M
(D−2)/2
Pl and eB M

(D−2)/2
Pl are both

below �QG, the UV theory enforces the stronger constraint �QG �

(eAeB)1/D M
2(D−2)/D
Pl , but (6.31) holds regardless.

sublattice index in a real quantum gravity. We now give a

suggestive argument that this is unlikely to occur.

As before, suppose that the LWGC is saturated in the UV

theory. In the above example we needed a Higgs field with

parametrically large charge to obtain a parametrically large

keff . To quantify how large this charge is, observe that if the

Higgs field were extremal, it would have mass

m2
Higgs;ext = γ

e2
Ae2

B

e2
D

M D−2
Pl . (6.32)

If we demand that this lies below the quantum gravity scale,

�QG, then we obtain the constraint

eAeB

eD

M
D−2

2

Pl � �QG, (6.33)

where we drop the order-one factor γ . Combining this with

the UV constraint

�QG � (eAeB)
1
D M

2(D−2)
D

Pl (6.34)

from (5.27), we obtain

(eAeB)
2(D−1)

D M
4(D−1)(D−2)

D

Pl � e2
D M

3(D−2)
Pl , (6.35)

hence

�QG � (eAeB)
1
D M

2(D−2)
D

Pl � e
1

D−1

D M
3(D−2)
2(D−1)

Pl , (6.36)

and the naive k ≃ 1 constraint is enforced in the infrared

theory.

Note that this is not quite the same as enforcing that keff ∼
1. Rather, we merely showed that under these assumptions

the constraint (6.30) holds with keff set to 1. To illustrate the

difference, consider, e.g., the case eA = eB = e and D = 4.

Then, the constraint that mHiggs;ext � �QG is

e2(P2 + 1) � e ⇒ P � e−1/2, (6.37)

so for e ≪ 1 we can have keff ≃ P ≫ 1, but nonetheless

eD ≃ e/P � e3/2, so that

�QG � e1/2 MPl � e
1/3
D MPl, (6.38)

and the IR k ∼ 1 constraint is enforced. The reason for

this discrepancy is that there are more near-extremal charged

states in the infrared theory than the minimal ones required

by the sublattice index keff ; in this example, for instance,

there are O(n) charged particles with charge q ≃ keff n.

It is not difficult to generalize this line of reasoning to the

case of N photons and arbitrary kinetic mixing, using the

notation of (6.25) and following. The UV constraint on �QG

from (5.27) can be written as

�QG � |ŴQ |
1

N+D−2 M
(N+2)(D−2)
2(N+D−2)

Pl , (6.39)

for k ∼ 1, where ŴQ is the UV charge lattice and |ŴQ | is the

volume of the fundamental domain of ŴQ . We can assume
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that the Higgs charge qa is primitive – i.e., not a non-unit

multiple of another charge in the charge lattice ŴQ – since

otherwise we can choose a Higgs field with a smaller charge

and the same effect. In this case, |Ŵ
Q̃
| = |ŴQ |/|q|, where

Ŵ
Q̃

is the charge lattice after Higgsing. The assumption that

mHiggs;ext � �QG becomes

γ |q|M
D−2

2

Pl ≃ (|ŴQ |/|ŴQ̃
|)M

D−2
2

Pl � �QG, (6.40)

so that combining with (6.39) gives

�QG � |ŴQ |
1

N+D−2 M
(N+2)(D−2)
2(N+D−2)

Pl

� |Ŵ
Q̃
| 1

N+D−3 M
(N+1)(D−2)
2(N+D−3)

Pl , (6.41)

and the IR k ∼ 1 constraint follows from the UV k ∼ 1

constraint. Thus, to parametrically violate these constraints

using Higgsing we need mHiggs;ext ≫ �QG.

This can be interpreted in two ways. Firstly, we need

mHiggs ≪ �QG in order to describe the Higgsing in effective

field theory, hence to violate the k ∼ 1 constraints the Higgs

field must be very superextremal. Secondly – following the

arguments of Sect. 6.1, in particular (6.4) – if weakly cou-

pled gauge theory and gravity emerge from the same strong

coupling scale �QG then to violate the k ∼ 1 constraints the

Higgs field must have a charge much larger than the aver-

age charge of other particles within the effective field theory.

In fact, in typical examples only a few light particles will

be very superextremal, with the rest of the spectrum near-

extremal or subextremal, implying that the Higgs field has a

charge which is much larger than almost every other particle

in the effective field theory.

Although these suggestive arguments do not rule anything

out, they show that violating the k ≃ 1 constraints on �QG

through Higgsing in a way consistent with our other assump-

tions about emergence from a UV cutoff requires the Higgs

field to have peculiar properties such as a charge that is much

larger than most or all of the other particles in the effective

field theory. For this reason – and because we know of no

quantum gravities with a very large sublattice index – we

expect that the the UV cutoff bounds such as (3.12), (5.15),

or (5.27) with k ∼ 1 are never parametrically violated.

7 Caveats

7.1 String theory at weak coupling

We have discussed examples in which the spectrum of par-

ticles approximately saturates sLWGC bounds. This is char-

acteristic of Kaluza-Klein theories, for example, and related

quantum gravities such as large volume compactifications

of M-theory. Of course, other examples of weakly coupled

gauge theory can arise in string theory at gs ≪ 1.

Does gauge-gravity unification arise in such theories? If

we naively compute λgauge(E) and λgrav(E) in a weakly cou-

pled string theory for energies E above the string scale, we

find that both grow very rapidly, a simple consequence of the

Hagedorn density of states ρ(E) ∼ exp(E/TH ). However,

states with higher charge come with lower multiplicities, and

as a consequence 〈q2〉 ∝ E , even though q2
max ∝ E2. Thus,

well above the string scale λgauge(E)≪ λgrav(E).

We illustrate this in the simple example of ten-dimensional

heterotic string theory, with spectrum determined by the con-

ditions

α′

4
m2 = NL +

1

2
Q2 − 1 = NR . (7.1)

Here NL ,R ∈ Z≥0 count left and right-moving oscillators,

and each comes with an associated multiplicity dL(NL) and

dR(NR), equal to the multiplicity at the N th level of the open

bosonic string and the open superstring, respectively. Thus,

the number states at a given mass-level α′
4

m2 = N is

d(N ) =
Q2≤2(N+1)∑

Q∈Ŵ

dL(N + 1− Q2/2) dR(N ). (7.2)

To estimate this, we use the asymptotic formulae [55, §2.3,

5.3]

dL(n) ∼ e4π
√

n

n27/4
, dR(n) ∼ eπ

√
8n

n11/4
, (7.3)

up to order-one constants. Thus,

d(N ) ∼ dR(N )

∫

Q2≤2N

e4π
√

N+1−Q2/2

(N + 1− Q2/2)27/4
d16 Q

∼ dR(N )

∫
e

4π
√

N− π√
N

Q2

N 27/4
d16 Q

∼ e2π(2+
√

2)
√

N

N 11/2
, (7.4)

where in the second step we use the fact that the integrand is

dominated by the region Q2 � O(N 1/2). This agrees with,

e.g., [55, §6.4].

Thus,

λgrav(E) ∼ g2
s

e2π(2+
√

2)
√

N

N 3/2
, N = α′

4
E2. (7.5)

To compute λgauge, we follow the same steps but count states

weighted with Q2
1 for some particular Cartan generator Q1.

By a straightforward calculation we obtain 〈Q2
1〉 ≃ 1

2π

√
N

as well as

λgauge(E) ∼ g2
s

e2π(2+
√

2)
√

N

N 2
, N = α′

4
E2. (7.6)

Therefore, both λgrav and λgauge grow rapidly above the string

scale, but λgauge grows slightly less rapidly.
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The same conclusion should follow for NSNS charges

in an arbitrary string theory. A rough argument is as fol-

lows: the modular invariance argument of [41,42] implies

that the multiplicities depend only on tL ,R := 
L ,R− 1
2

Q2
L ,R

(and some additional discrete data). Thus, if the multiplici-

ties in the neutral sector, QL = Q R = 0, are Hagedorn then

dL(tL) ∼ eaL
√

tL and dR(tR) ∼ eaR
√

tR are Hagedorn. We

find the density of states

d(
) =
Q2

L ,R≤2(
+1)∑

Q∈Ŵ

dL(
− Q2
L/2) dR(
− Q2

R/2),

(7.7)

or

d(
) ∼
∫

e
aL

√

−Q2

L/2+aR

√

−Q2

R/2
dr Q

∼
∫

e
(aL+aR)

√

− aL

4
√



Q2

L−
aR

4
√



Q2

R dr Q

∼ e(aL+aR)
√


, (7.8)

to leading order. Redoing this calculation weighted by Q2
1

for some left-moving charge Q1, we find

〈Q2
1〉 ∼

2

aL

√

, 
 = α′

4
E2, (7.9)

and likewise for right-moving charges, hence λgauge(E) ≪
λgrav(E) far above the string scale, as before.

What should we make of this? It is clear that in string the-

ory there is a sense in which both gauge theory and gravity are

emergent. What has really broken down is our ability to use

simple, field-theoretic one-loop arguments to discuss the rel-

ative strength of gauge theory and gravity. One way to argue

this is that the particles running in loops, for mass well above

the string scale, are not particles at all: they are extended

objects, and their couplings should involve form factors. It is

a familiar property of closed string worldsheet perturbation

theory that naive quantum field theoretic expectations about

the behavior of loops are modified due to modular invariance.

It is unclear what energy scale we should call �QG in

weakly coupled string theory. It is tempting to say that it is the

string scale, since quantum field theory breaks down there.

Such an identification has been argued for in the context of

the species bound, with an effective number of species 1/g2
s

[56,57]. In other words, the explosive Hagedorn growth of

the density of states may translate into an effectively finite

number of degrees of freedom from the point of view of black

hole evaporation or of loop corrections to the Planck mass.

On the other hand, above we have taken �QG to be the

energy at which a theory can no longer be viewed as weakly

coupled in any sense. When gs ≪ 1, string theory is still

weakly coupled at the string scale – it is simply not a field

theory. Above the string scale it is no longer straightforward –

and perhaps not possible at all – to distinguish between gauge

forces, gravitational forces, and other interactions; λgauge and

λgrav as we have defined them become meaningless. Whether

some improved notion can be found is beyond the scope of

this paper.

Nonetheless, we can still ask whether unification occurs at

or below the string scale. We again consider ten-dimensional

heterotic string theory as an example. We have

G N ∼ g2
s /M8

s , g2 ∼ g2
s /M6

s , (7.10)

which gives

λgrav ∼ g2
s (E/Ms)

8, λgauge ∼ g2
s (E/Ms)

6, (7.11)

below the string scale, up to numerical constants. Thus, well

below the string scale λgrav ≪ λgauge, but at the string scale

itself λgauge ∼ λgrav, at least parametrically in gs ≪ 1.

Similarly, if we compactify heterotic string theory on a

rectangular p-torus with radii R1, . . . , Rp ≫ ℓs and no Wil-

son lines then

G N ∼
g2

s

M8
s R1 . . . Rp

, g2 ∼ g2
s

M6
s R1 . . . Rp

,

g2
i ∼

g2
s

M8
s R2

i R1 . . . Rp

, (7.12)

where gi denotes the gauge coupling of the KK photon asso-

ciated to the Ri circle.23 Below the compactification scale,

we find

λgrav ∼
g2

s E8−p

M8
s R1 . . . Rp

, λgauge ∼
g2

s E6−p

M6
s R1 . . . Rp

, (7.13)

with no KK modes contributing, and thus nothing charged

under the KK photons. Above the compactification scale but

below the string scale, we find

λgrav ∼ g2
s (E/Ms)

8, λgauge ∼ g2
s (E/Ms)

6,

λKK,i ∼ g2
s (E/Ms)

8, (7.14)

by counting KK modes. Here λKK ∼ λgrav as expected from

the general argument of Sect. 5.4, but still λgauge ≫ λgrav. At

the string scale, however, we find λgauge ∼ λgrav ∼ λKK ∼
g2

s , and the forces “unify” in the sense of Sect. 6.2.

On the other hand, consider type I string theory in ten

dimensions, with gauge fields in the open string sector. In

this case,

G N ∼ g2
s /M8

s , g2 ∼ gs/M6
s , (7.15)

which gives

λgrav ∼ g2
s (E/Ms)

8, λgauge ∼ gs(E/Ms)
6, (7.16)

23 In addition, there are p gauge bosons associated to the reduction of

the Kalb-Ramond B-field, but the lightest charged particles are well

above the string scale; these are discussed further in the next section.
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so that at the string scale λgauge ∼ gs ≫ λgrav ∼ g2
s , with

similar results upon toroidal compactification and in T-dual

toroidal orientifolds of type II string theories with D-branes.

Thus, in these examples

λgrav(Ms) ∼g2
s , λ(closed)

gauge (Ms) ∼ g2
s ,

λ
(open)
gauge (Ms) ∼ gs . (7.17)

We expect this simple result to generalize to a broad class of

perturbative string theories with charged particles at or below

the string scale. In such examples λgauge � λgrav at the string

scale – regardless of whether the gauge bosons come from

closed or open strings – implying the Weak Gravity Conjec-

ture up to order-one factors by the arguments of Sect. 6.2.

Gauge fields in the RR sector are a potential exception

to (7.17), but in this case the charged objects are wrapped

D-branes. If the cycle in question is large in string units then

the wrapped branes are heavy, and don’t appear in the low-

energy effective field theory (see Sect. 7.2 for further discus-

sion). However, in K3 and Calabi-Yau compactifcations of

type II string theory, shrinking two-, three- and four-cycles

can appear at singular points in the moduli space while main-

taining a large overall volume. These can lead to light RR

charged states, as in, e.g., [43]. We won’t attempt to address

the issue of force unification in such cases in this paper, but

we discuss the related issue of ultralight charged particles in

four dimensions in Sect. 7.3.

7.2 Heavy spectra

Throughout this paper, we have assumed that there are

charged particles with masses below the quantum gravity

scale. We can heuristically motivate this assumption in a

four dimensional weakly coupled gauge theory by noting

that the WGC scale eMPl is below the Planck scale, and the

sLWGC suggests that charged particles must appear at or

below this scale. However, this argument is too naive, and

fails even in the case of two weakly coupled photons A, B

with freely adjustable couplings eA,B . If eA � e3
B ≪ eB

then the WGC scale eB MPl for the second gauge theory lies

above �QG � e
1/3
A MPl, so there is no reason for B-charged

particles to appear below the quantum gravity scale.

In fact, eM
(D−2)/2
Pl � �QG occurs frequently in real quan-

tum gravities, and in many such cases there are no charged

particles below �QG. A simple example of this is the RR pho-

ton C1 in ten-dimensional type IIA string theory, for which

g2 ∼ 1/M6
s , M8

Pl ∼ M8
s /g2

s , (7.18)

so that

gM4
Pl ∼ Ms/gs ≫ Ms . (7.19)

The lightest charged object is the D0 brane which has mass

gM4
Pl ∼ Ms/gs (up to order-one factors), so there are no

charged particles below �QG ∼ Ms .

There are many other string theory examples of a similar

nature where the charged objects are BPS branes wrapped

on cycles. For instance, consider type II string theory com-

pactified on a circle of radius R. The Kalb-Ramond B-field

generates a photon whose charged states are wound strings.

The lightest of these has mass of order RM2
s , which for a

large torus R ≫ ℓs is well above the string scale. A para-

metrically similar scaling arises in the WGC bound for gauge

fields on D7 branes in approximately isotropic, large-volume

compactifications of the IIB string.

In these examples, the WGC scale is above the string scale

and so the simple perturbative field theory arguments we

have given throughout the paper do not apply. The under-

lying gauge theories may still be thought of as emerging,

in some sense, from the quantum gravity scale. In the case

of the D0 brane this becomes manifest in the gs ≫ 1 limit

where they are simply KK modes; in the case of winding

strings, the U(1) symmetry arises from the B-field which is

part of the supergravity multiplet, and which is T-dual to a

graviphoton in toroidal examples. It may be worthwhile to

search for a modified version of our arguments that can apply

to examples like these. For now, we simply highlight them

as a shortcoming of our approach.

7.3 Logarithmic running and ultralight particles

In our previous discussion we have ignored the possibility

of large logarithms. This is justified in many cases. Consider

for example the one-loop beta function of a KK photon in

four dimensions:

1

e2(μ)
≃ 1

2
R2 M2

Pl −
b

8π2

⌊μR⌋∑

n=1

n2 log
μR

n
, (7.20)

for some order-one constant b, where for simplicity we

assume no massless particles in the original five-dimensional

theory. We have

N∑

n=1

n2 log
N

n
∼ N 3

9
− N

12
+ . . . , whereas

N∑

n=1

n2 ∼ N 3

3
+ N 2

2
+ . . . , (7.21)

at large N , so we obtain the same behavior at large N – up

to order-one constants – regardless of whether we include

the log or omit it. This is because for most terms in the sum

the logarithm is not large: the KK modes become increasing

dense near the cutoff on a logarithmic scale even as they are

spaced evenly on a linear scale.
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For this reason, we expect that logarithmic corrections can

be consistently neglected to leading order in many of our cal-

culations. However, there are certain circumstances in which

this is not the case. For instance, in a four dimensional theory

with a light charged particle electric forces are screened at

large distances. As explained in the introduction, if there are

massless charged particles then screening continues at arbi-

trarily large distances and parametrically large black holes

can carry a parametrically large charge-to-mass ratio. This

precludes an infinite tower of superextremal resonances, and

the sLWGC cannot hold in its original form.

In the remainder of this section, we provide some prelim-

inary discussion of how logarithms can be accounted for in

our analysis (focusing on the four-dimensional case of most

interest), and what this tells us about theories with ultralight

charged particles.

Consider a U(1) gauge theory coupled to gravity in four

dimensions, with the one-loop renormalized gauge coupling

1

e2(E)
= 1

e2
IR

−
∑

i :mi <E

bi

8π2
q2

i log
E

mi

, (7.22)

where the bi are order-one constants and we neglect threshold

corrections for simplicity. Requiring that the Landau pole

occurs at or below �QG gives the condition

1

e2
IR

∼
∑

i :mi <�gauge

bi

8π2
q2

i log
�gauge

mi

, �gauge � �QG,

(7.23)

analogous to (6.1). By a similar line of reasoning to before,

1

e2
IR

� z2
max

∑

i :mi <�gauge

bi

8π2
m2

i log
�gauge

mi

� z2
max N (�gauge)�2

gauge

� z2
max M2

Pl, (7.24)

where zmax := (q/m)max, on the second line we use the fact

that x2 log(1/x) ≤ 1/(2e) for 0 ≤ x ≤ 1 and drop order-one

factors, and on the third line we apply the species bound.

Thus, gauge-gravity unification in the sense of Sect. 2 still

implies the WGC up to order-one factors, even when there

are large logarithms.

What about the sLWGC? We have already argued that

it cannot hold in its original form in situations with very

light particles in four dimensions. In Sect. 6.2, we saw that

perturbative gauge-gravity unification, in the form

λgauge(E) ∼ λgrav(E) for E � E0 (7.25)

has similar consequences to the sLWGC. It is interesting to

ask what this means in situations with ultralight particles in

four dimensions.

To do so, we need to define λgauge(E) properly in the

presence of large logarithms. Recall that in an abelian four-

dimensional gauge theory, we had previously

λgauge(E) := e2

16π2

∑

i :mi <E

q2
i . (7.26)

where now we will be slightly more careful about tracking

loop factors.24 Since λgauge is intended as a heuristic measure

of the size of loop corrections from light particles at a scale E ,

we interpret e2 in (7.26) as the renormalized gauge coupling

at this scale, given by (7.22) at one-loop order. We might

try to compute the physics at the scale E with couplings

renormalized in the deep infrared instead, but then the loop

expansion can break down due to large logarithms, hence

λgauge(E) computed with the gauge coupling renormalized

at E is a better measure of the validity of the loop expansion.

As a consistency check, we verify that with this definition

λgauge(E) ∼ 1 always signals an imminent Landau pole.

Writing this out, we obtain

1

e2
IR

−
∑

i :mi <E

bi

8π2
q2

i log
E

mi

∼ 1

16π2

∑

i :mi <E

q2
i , (7.27)

but then:

1

e2
IR

∼
∑

i :mi <E

bi

8π2
q2

i log
E ′

mi

, (7.28)

for E ′ ∼ E exp(1/2b). Thus, the Landau pole is nearby on

a log scale.

Suppose that gauge interactions are strong compared to

gravitational interactions at some scale E � �QG, in the

sense that λgauge(E) � λgrav(E) as in Sect. 6.2. Thus,

1

e2(E)
λgauge(E) �

1

e2
IR

λgrav(E)− λgrav(E)

×
∑

i :mi <E

bi

8π2
q2

i log
E

mi

. (7.29)

This can be rearranged to give

1

N (E)

∑

i :mi <E

[
1+ 2biλgrav(E) log E

mi

E2/m2
i

]
q2

i

m2
i

�
1

e2
IR M2

Pl

.

(7.30)

Since λgrav(E) � 1 by assumption the prefactor to the log is

at most order-one, and the quantity in brackets is order-one

or smaller for any E > mi . It follows that 〈q2/m2〉m≤E �

1/(e2
IR M2

Pl), i.e., the average particle with m < E is superex-

tremal and the WGC is satisfied.

24 We keep the loop factor to be consistent with the loop factor which

appears in (7.22). We should also keep the loop factor in λgrav, roughly

λgrav(E) = κ2 E2

16π2

∑
i :mi <E d(i), where κ :=

√
8πG = 1/MPl is the

gravitational coupling.
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Next, suppose that λgauge(E) ≃ λgrav(E) above some

scale E0 ≪ �QG. Following the same steps as in Sect. 6.2,

we obtain

M2
Pl

d(
∑

q2)

d N
≃ E2

e2(E)
+ 2E2 d log E

d log N

×
(

1

e2(E)
−

∑

i :mi <E

bi

16π2
q2

i

)
, (7.31)

where d log E/d log N ≥ 0 as before. Unless E is very close

to a Landau pole, hence by assumption E ∼ �QG, it is

straightforward to check that the second term in the paren-

thesis must be small compared to the first, and we conclude

that

e2(E) 〈q2〉m≃E �
E2

M2
Pl

. (7.32)

On the other hand, when E ∼ �QG effective field theory

begins to break down, so there is no point analyzing the case

where the second term in parenthesis in (7.31) becomes sig-

nificant.

Note that (7.32) is very similar to (6.10), except that

the renormalized gauge coupling e2(E) appears explicitly.

Thus, if gauge and gravitational forces unify (in the sense

of λgauge(E) ≃ λgrav(E)) above some scale E0 ≪ �QG,

there must be a tower of charged particles above this scale

which are “superextremal” in the renormalized sense, m2 �

q2e2(m)M2
Pl. This lends support to a renormalized version of

the sLWGC even for 4d theories with massless charged par-

ticles involving the renormalized gauge coupling e(m) rather

than the infrared value coupling eIR, which runs to zero.

Note that if d log E/d log N � O(1) – implying at least a

power-law growth in the number of states with energy about

E0 – then e2 cannot change very much above E0 until very

near �QG. This is because, on the one hand,

∑

i :mi <E

bi

8π2
q2

i ≪
1

e2(E)
for E ≪ �QG, (7.33)

as we already argued, but also

1

e2(E0)
− 1

e2(E)
�

∑

i :mi <E

bi

8π2
q2

i , (7.34)

since a power law density of states makes the logs small on

average. Therefore, 1
e2(E0)

− 1
e2(E)

≪ 1
e2(E)

, or

e2(E)

e2(E0)
− 1 ≪ 1 (7.35)

and the tower of charged states must also satisfy m2 �

q2e2(E0)M2
Pl.

On the other hand, e2
IR can be very different than e2(E0) if

there are ultralight charged particles, and the tower of states

above E0 may be very subextremal with respect to e2
IR as a

result. Nonetheless, as we showed above, the Weak Gravity

Conjecture follows automatically (in the usual form m2 �

e2
IRq2 M2

Pl), because by assumption λgauge(E0) ≃ λgrav(E0).

The mechanism for this is conceptually simple: if there are

charged particles light enough to substantially renormalize

e2
IR versus e2(E0) then these charged particles are necessarily

superextremal.

By turning around the above arguments, its easy to see

that a tower of charged particles beginning at some scale E0

with masses m2 ∼ q2e2(E0)M2
Pl will lead to gauge-gravity

unification. Thus, it is natural to expect that the sLWGC takes

this form in the presence of ultralight charged particles, where

E0 is roughly the WGC scale, E0 ∼ e(E0)MPl. In particular,

bounds on the quantum gravity scale for gauge theories with

ultralight particles should constrain the renormalized gauge

coupling at the WGC scale. For instance

�QG �
[
e(E0)

]1/3
MPl, (7.36)

in the case of a single U(1). If we instead put the infrared

gauge coupling into (7.36) it is easy to derive wrong state-

ments.

The above discussion suggests how our arguments might

be extended to four dimensional quantum gravities with ultra-

light particles, and gives a rough idea of what form a modified

sLWGC might take in such theories while still implying the

ordinary WGC. We leave further discussion of these inter-

esting questions to a future work.

8 Phenomenological applications

Effective field theory breaks down irrevocably above the

scale �QG. Thus the bounds that we have derived poten-

tially constrain physics beyond the Standard Model with

very small gauge couplings. In [41] we already pointed

out one implication: if an unbroken U(1)B−L gauge theory

exists, it is constrained to have such a tiny gauge coupling

e � 10−24 [58,59] that even the modest U(1) sLWGC bound

�QG � e1/3 MPl would tell us that there is no weakly coupled

physics above 1010 GeV.

Here we will focus on new physics involving nonabelian

gauge theories, for which the bound derived in this paper

is stronger than the one stated in [41]. If the coupling is

sufficiently small, we might rule out interesting physics at

high energy scales. In particular, several large energy scales

that are often phenomenologically relevant include:

• The GUT scale, MGUT ≈ 2× 1016 GeV.

• The energy density during inflation, V
1/4
inf ≈ r1/4×3.1×

1016 GeV.

• The Hubble scale during inflation, Hinf ≈ r1/2 × 2.4 ×
1014 GeV.
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• The seesaw mass of right-handed neutrinos, MN ∼ y2×
6× 1014 GeV× 0.1 eV

mν
.

• The string scale Mstring ∼ gs MPl/
√
V where V is the

volume of the internal six dimensions in string units.

• The QCD axion decay constant fa , which is around

1012 GeV for conventional axion cold dark matter sce-

narios but could be larger in other scenarios.

• The SUSY-breaking scale
√

F0 ∼
√

m3/2 MPl, which is

larger than 6 × 1011 GeV if we demand that gravitinos

decay before BBN (and can be even larger in sequestered

scenarios).

We should be careful about drawing too-hasty conclusions

about which of these scales must be below �QG in a con-

sistent theory. Any scale that we treat as the mass scale of a

weakly coupled particle, including MGUT, MN, and Mstring,

are bounded above by �QG. However, expectation values

of fields are not obviously constrained in this way; for one

familiar example, consider the transplanckian field ranges

in large-field inflation, which may have potential tensions

with quantum gravity but certainly do not with effective field

theory. The Hubble constant during inflation, Hinf , should

also be below �QG as it corresponds to the curvature scale

of space. However, the energy density in a spacetime is less

obviously bounded. On the other hand, in many concrete sce-

narios, such as a natural inflation model where the potential

Vinf is generated by confinement [60], there will be such a

bound. Similarly, in many axion theories, for instance of the

KSVZ type, there are physical particle masses of order fa

which must be below �QG.

One general consideration for �QG is the extremely strong

experimental constraint on proton decay. Processes like p →
e+π0 or p → K+ν arise from dimension-six operators of

the type Q Q QL or ucucdcec in the Standard Model. Super-

Kamiokande has constrained the lifetime of these processes

to be larger than about 1034 years [61]. If we write the oper-

ators suppressed simply by �QG, we obtain a bound

�QG � 2× 1016 GeV ≈ MGUT. (8.1)

This means that in a quantum gravity theory with no addi-

tional structure, proton decay requires a large �QG and

is inconsistent with the existence of very weakly coupled

gauge theories. In some theories, this bound becomes much

stronger. For instance, in the context of theories with approx-

imate supersymmetry, we have dimension-five proton decay

from superpotential operators (after using R-parity to forbid

the dimension-four terms). In such theories the bound would

require not only a large �QG but also a sufficiently large scale

of supersymmetry breaking [62–65]. However, it is worth

keeping in mind that certain quantum gravity theories may

contain special structure that allows �QG to be much smaller

than this naive estimate. In the extreme limit, the proton could

even be absolutely stable due to a discrete gauge symmetry

like baryon triality [66]. More generally, approximate flavor

symmetries (e.g. arising from massive U(1) gauge bosons

obtaining stringy Stückelberg masses) could provide addi-

tional spurions suppressing the decay rate. Hence we cannot

make absolute statements, except that the discovery of a very

small gauge coupling in nature could be consistent with the

sLWGC only if additional structure exists to protect the pro-

ton.

Nonabelian gauge groups with small couplings have been

advocated in several cosmological contexts, which we will

now summarize.

8.1 Nonabelian dark radiation interacting with dark matter

Nonabelian dark radiation interacting with dark matter has

the unusual property that, due to the t-channel scattering dia-

gram, the scattering rate Ŵ ∼ T 2. This is the same scaling as

the Hubble rate during a radiation-dominated era, and so the

scattering does not decouple. This can lead to striking cos-

mological consequences even for small couplings [67]. Large

couplings would predict sizable deviations from �CDM cos-

mology that have not been observed, so any phenomeno-

logically viable version of this scenario potentially has an

sLWGC constraint.

Studies have found that tensions in CMB data (involving

the values of the Hubble constant and σ8) may be partially

relaxed in such a model with gauge couplings g ∼ 2× 10−4

[68–70], though early Lyman-alpha data diminishes the sig-

nificance [71]. (Likelihoods are not yet available to test this

model with more recent Lyman-alpha data.) If this scenario

is true, then for an SU(2) gauge theory we would have

�QG � g1/2 MPl ≈ 3× 1016 GeV. (8.2)

This would be in modest tension with GUT unification or with

the value of V 1/4 in a just-around-the-corner detection of r ,

since both scenarios involve physics very near the scale �QG.

Theories with larger SU(N) groups would have stronger con-

straints. However, similar cosmological phenomenology can

be obtained in models with larger couplings but with only

a fraction of dark matter interacting with dark radiation

[70,72]. Further observations of the matter power spectrum at

smaller scales would be needed to distinguish the signatures

of these models.

The sLWGC tower would involve particles with non-

abelian gauge charges beginning at a mass scale of gMPl ∼
5× 1014 GeV, which is heavy enough relative to the Hubble

scale during inflation as to not be an obvious problem on its

own. On the other hand, if r is relatively large these particles,

with masses only an order-one factor above the Hubble scale,

might leave detectable imprints in non-Gaussianities.

We emphasize that in this case, the tension would be

between the interacting nonabelian dark radiation scenario
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and other, unrelated physics, like GUTs. Experimental con-

firmation of this cosmological scenario would not, in itself,

disprove the sLWGC.

8.2 Chromonatural inflation

There are few known cosmological mechanisms for gener-

ating detectable primordial tensor modes. The most famil-

iar is large-field inflation. In recent years another sce-

nario, chromonatural inflation [73], has claimed to generate

detectable tensor modes via a different mechanism [74–76].

Tensor modes arise as the product of a classical gauge field

background and perturbations in the gauge field. The classi-

cal gauge field background spontaneously breaks the prod-

uct of spatial rotations and nonabelian gauge symmetries to

a diagonal, as first suggested in the related theory of gauge-

flation [77].

Aside from kinetic terms, the Lagrangian for chromonat-

ural inflation includes

− μ4 [1+ cos(χ/ f )]− λ

8 f
χ Fa

μν F̃aμν . (8.3)

Here χ is an axion field, and its coupling to the gauge

fields (which are approximately static) generates an effec-

tive friction term that modifies the evolution compared to

standard slow-roll inflation. Demanding that the model gives

rise to inflation with sufficiently many e-folds and matches

the observed values of the scalar power spectrum amplitude

Ps ∼ 2×10−9 and of the spectral index ns tightly constrains

the available parameter space [75,76,78]. In fact, the mini-

mal version of the model predicts a primordial tensor signal

r that is too large, but a modified Higgsed version of the the-

ory is compatible with data without qualitatively changing

the properties of the model [79].

The upshot of the fit to data is that the standard chromonat-

ural inflation benchmark models have g ∼ 10−6, a small

number that is approximately obtained as P
1/2
s multiplied

by order-one numbers. (For a full explanation, we refer

readers to the literature.) The model parametrically favors

μ ∼ g1/2 MPl, the same scaling as �QG in the (most opti-

mistic) SU(2) case. For instance, all benchmark points in

Table 1 of [79] have μ = √
g/50MPl, and are thus only

marginally compatible with μ � �QG. A different set of

phenomenologically consistent parameters can be obtained

if the axion starts very close to the minimum of its potential.

In this regime chromonatural inflation matches onto the ear-

lier gauge-flation model [80–82]. This regime accommodates

larger values of g ∼ 10−3, but μ must be taken significantly

larger: μ ≈ 0.1MPl. Such a large μ is in clear tension with

sLWGC constraints on even mildly small gauge couplings.

We emphasize, however, that the original gauge-flation sce-

nario did not invoke a χ field, and so one could consider other

possible UV completions that may evade WGC bounds. A

Fig. 4 (s)LWGC UV cutoff bound as a function of g and N (solid con-

tours, labeled by representative physical scenarios). The dashed lines

are benchmark choices of g in two particular cosmological scenarios

that favor small nonabelian gauge couplings

different variant of the model has χ serving as a spectator

field while another field φ drives inflation [83]. Recently it

has been claimed that such a theory can produce detectable

tensor modes even for very low-scale inflation, with a Hub-

ble scale just above that constrained by BBN [84]. However,

accomplishing this requires exponentially small gauge cou-

plings, and so we expect the sLWGC constraint to be even

more severe for such a scenario than for the minimal real-

ization of chromonatural inflation. We will not consider the

constraint on this alternative scenario in detail here.

Our results suggest that the sLWGC is in modest, but not

decisive, tension with chromonatural inflation. Another field

theoretic concern with this theory is that if χ is a compact

axion field of period 2π f (as suggested by the choice of

cosine potential), then the coupling λ is actually quantized:

λ = n
g2

4π2
, n ∈ Z. (8.4)

Given that the fit to inflationary phenomenology prefers

g ∼ 10−6 and λ ∼ 100, this requires a large integer of

order 1015 to appear in the theory! This suggests that a fairly

extreme version of axion monodromy must appear in the UV

completion of chromonatural inflation. Since the sLWGC

puts the UV cutoff of the theory just overhead, it will be diffi-

cult to explain the origin of this large dimensionless number

from smaller input parameters. We will not undertake this

challenge here.

8.3 Summary of phenomenological consequences

In Fig. 4, we show contours of the largest �QG allowed by

the sLWGC as a function of g and N for SU(N ) gauge theo-

ries. The dashed horizontal lines correspond to the approxi-

mate size of couplings of interest for dark matter–dark radi-
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ation interactions and chromonatural inflation. We see that

the sLWGC has the potential to put a variety of interest-

ing high-scale physics in tension with small gauge couplings

that may be of phenomenological interest. On the other hand,

some high-scale physics, like a conventional QCD axion with

decay constant fa ≈ 1012 GeV, is relatively safe; we would

need a theory to predict a small gauge coupling of order 10−7

or smaller to have tension between the sLWGC and the PQ-

breaking scale.

To be interesting from the viewpoint of sLWGC con-

straints on �QG, gauge couplings have to be quite small;

for instance, merely demanding that the nonabelian gauge

theory’s confinement scale be smaller than the Hubble scale

of our universe today is not sufficient to derive an inter-

esting bound. Cases of interest generally arise in cosmol-

ogy and come from tight constraints on the size of gauge

couplings. For instance, nonabelian gauge preheating [85]

requires small couplings, of order 10−4 or smaller, because

otherwise the gauge fields’ interactions with each other back-

react to shut off resonant particle production. On the other

hand, this scenario has potential difficulties purely within

effective field theory, since it assumes that higher-dimension

operators play a crucial role in the scalar coupling to gauge

fields but not in the scalar potential.

Another theory that would be interesting to explore from

the sLWGC viewpoint is gaugid inflation [86], which relies

not on a nonabelian group but on a U(1)3 gauge theory.

The product of spatial rotations and rotations among the 3

gauge fields is broken to the diagonal. In a theory of free

gauge fields, a rotation among the 3 gauge fields is a symme-

try (though one without a gauge-invariant Noether current).

However, the existence of a charge lattice explicitly breaks

the symmetry. Since the scenario relies on higher-dimension

operators built out of the gauge fields, one would need some

sort of discrete symmetry to ensure that these operators (at

least approximately) respect the appropriate symmetry after

integrating out the particles whose existence the sLWGC

demands. (In other words, in the presence of a charge lattice,

the full SO(3) rotation symmetry must be an accidental sym-

metry, enforced by some smaller discrete symmetry.) Again,

we will defer further consideration of this model for future

work.

Finally, we note that the bounds on �QG can in princi-

ple be relaxed if there is a substantial screening effect from

light charged particles, since in four dimensions – as we

argued in Sect. 7.3 – the gauge coupling renormalized near

the WGC scale E0 ∼ e(E0)MPl is what should appear in the

bounds, rather than the infrared gauge coupling. However,

phenomenological constraints do not depend on the infrared

gauge coupling either, but rather the gauge coupling renor-

malized at some finite scale, albeit possibly a very low scale.

Due to the logarithm and the loop factor the screening effect

is not very large, even if we choose the largest hierarchy of

scales we can imagine:

b

8π2
log

E

m
�

(4/3)n f

8π2
log

1019 GeV

10−33 eV
∼ 2.4 n f , (8.5)

where we consider n f Dirac fermions for definiteness and

put the ratio of the Planck scale to the present-day Hubble

scale into the log. This means that unless we have a large

number of light charged particles, or light particles with para-

metrically large charge, the screening effect is negligible for

small gauge couplings e ≪ 1. Even if we choose n f and/or

q to be large, we cannot completely evade constraints. For

instance, if we fix q ∼ 1, then we need n f � 1/e2 to gen-

erate significant screening, but then the species bound gives

�QG � n
−1/2
f MPl � eMPl, which is a much stronger bound

then the one we were trying to evade! If instead we fix n f ∼ 1

then we need q � 1/e to generate significant screening, but

then qe � 1, and the light particles have O(1) couplings!

Thus, for all practical purposes we can ignore screening

effects when placing phenomenological constraints on weak

gauge couplings.

9 Conclusions

We have argued that towers of charged particles generically

lead to low cutoffs on both gauge theory and gravity, and

that for towers of approximately WGC-saturating particles,

these cutoffs are parametrically the same. This suggests that

in sufficiently weakly coupled gauge theories, we can con-

cretely understand the emergence of the gauge theory from

the quantum gravity scale: the size of the gauge field kinetic

term is parametrically determined by loops of the tower of

charged particles.

We have also shown some interesting converse statements

to this, most notably that if we assume an approximate match-

ing between the gauge theory and gravitational cutoffs then

the Weak Gravity Conjecture follows. Yet stronger state-

ments follow if we make additional assumptions concerning

“unification” between gauge and gravitational forces, though

the physical meaning of these assumptions is not complete

clear at present.

There are a number of open questions remaining. As

emphasized in Sect. 7, there are simple examples of quantum

gravity theories for which our arguments do not apply. These

include perturbative heterotic strings at gs ≪ 1, D0 branes,

and winding strings. In these cases we should not necessarily

trust the perturbative field theory calculations we have per-

formed, but there may be generalizations of our arguments.

Another concern arises from cases with ultralight charged

particles in four dimensions, as in the conifold example,

which suggests that the sLWGC must be modified in the

context of running couplings. These shortcomings should be

explored more fully in the future.
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Throughout this paper we have treated gauge couplings

as constants, but in quantum gravity theories we expect cou-

plings to be determined by the expectation values of mod-

uli fields. The original Swampland conjectures suggest that

whenever we find a tower of particles becoming light, we

should expect a logarithmic divergence in distance in the

moduli space [2,3]. Recently these moduli space conjectures

have appeared in work on the WGC and its connection to

scalar fields [23,24,31,32,87,88]. One could consider the

role of moduli and the Swampland Conjectures from a per-

turbative viewpoint similar to that taken in this paper: if we

treat gauge couplings as background fields, then loop effects

of the tower of charged particles can produce kinetic terms for

these fields. It would be interesting to explore these effects.

More generally, it continues to be important to seek a

proof of the WGC and of potentially stronger forms of the

WGC. There is substantial evidence for the Sublattice Weak

Gravity Conjecture in perturbative string theory, but at larger

coupling the meaning of the conjecture is ambiguous. Our

results suggest that reformulating the conjecture in terms of

the density of states of a given mass and charge might be

promising, as this is the key quantity determining the size of

loop effects.
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A Further loop contributions

In the main text we have focused on the quantities λgauge(E)

and λgrav(E) which sum the loop corrections to the photon

and graviton propagators from particles with mass m < E .

These stand in for the full loop corrections �(p2). In this

appendix we will carry out two checks of our reasoning.

First, we will argue that the contributions from particles with

m > E do not change our logic. Second, we will argue that

loop corrections to the n-point functions do not lead to lower

cutoffs than those we have discussed.

A.1 Loops of heavy particles

Particles with mass m > E run in loops, but have contri-

butions that may be expanded as a series in powers of E2.

This suggests that rather than equation (3.7) we could have

defined

λ̃gauge(E) := e2 E D−4
∑

i :mi <E

I (i)

+e2 E2
∑

i : E<mi <�

m D−6
i I (i), (A.1)

now including all particles and not just light ones. Similarly

(3.8) may be replaced by

λ̃grav(E) := G N E D−2
∑

i :mi <E

d(i)

+G N E2
∑

i : E<mi <�

m D−4
i d(i). (A.2)

The question, then, is whether these modified definitions that

take into account heavy particles alter our parametric esti-

mates throughout the paper. Notice that we have assumed

that we should not include particles heavier than the effec-

tive field theory cutoff �.

Consider the case of a U(1) tower of particles of charge q

and mass mq ∼ eq M
(D−2)/2
Pl . In this case, the second term

in λ̃gauge is

δ̃λgauge(E) ∼ e2 E2
∑

q: E<mq<�

q2(eq M
(D−2)/2
Pl )D−6

∼ eD−4 E2 Q(�)D−3 M
(D−2)(D−6)/2
Pl

∼ E2�D−3 1

eM
3(D−2)/2
Pl

, (A.3)

where Q(E) ∼ E/(eM
(D−2)/2
Pl ) is the charge of a particle

in the tower with mass near E and we have dropped terms

scaling as Q(E)D−3 ≪ Q(�)D−3 at energies well below

the cutoff (assuming D ≥ 4). Compared to the sum over

light particles (3.13), we see that including this contribution

does not change our parametric estimate for the gauge theory

cutoff,

�gauge ∼ e
1

D−1 M
3(D−2)
2(D−1)

Pl . (A.4)

Similarly, in the case of �grav we have

δ̃λgrav ∼ G N E2

Q(�)∑

q∼Q(E)

(eq M
(D−2)/2
Pl )D−4

∼ E2�D−3 1

eM
3(D−2)/2
Pl

, (A.5)

which is the same scaling as for λ̃gauge(E).
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More generally, if we assume a smooth function N (M)

characterizing the total number of particles of mass below

M , with average squared charge Q2(M) for the particles of

mass near M , we have:

δ̃λgrav(E) ∼ G N E2

∫ �

E

d M
d N

d M
M D−4

δ̃λgauge(E) ∼ e2 E2

∫ �

E

d M
d N

d M
Q2(M)M D−6. (A.6)

From these results we immediately see that δ̃λgrav(E) ∼
δ̃λgauge(E) whenever Q2(M) ∼ G N M2/e2, which is the

case for a tower of approximately WGC-saturating particles.

In this manner, one can rewrite all the arguments of Sects. 5

and 6 in terms of the modified λgauge(E) and λgrav(E) includ-

ing contributions of particles with m ≫ E .

Notice that because we only apply these formulas at

E � �, these modifications to the definition of the λ(E)s

actually dominate over the formulas used elsewhere in the

paper. However, they are conceptually somewhat murkier;

as discussed in Sect. 3.1, for most of the paper we assume

that we can study an effective theory at the scale E with-

out necessarily committing ourselves to assumptions about

much heavier particles, which are difficult to distinguish from

higher-dimension operators.

It is not surprising that our conclusions about the cut-

off scale do not change when we include particles with

E ≪ m ≪ � in loops. The reason is that as E → �,

almost all of the particles we should consider have masses

below E , for which the formulas used in the bulk of the paper

apply. Furthermore, particles of mass near E can be treated as

either heavy or light without any parametric difference in the

formulas. We never consider particles parametrically heavier

than �, and so the modifications above become irrelevant at

energies near the cutoff. Hence, all results in the paper based

on ascertaining when λgauge(E) ∼ 1 or λgrav(E) ∼ 1 should

be unaffected by the above modifications.

One place where our arguments require more careful atten-

tion to the definition of the λ(E)s is in Sect. 6.2, when we

studied the consequences of λgauge(E) � λgrav(E) at an

energy E below the cutoff and of λgauge(E) ∼ λgrav(E)

over a range of energies E � E0. These arguments did not

assume that the λ(E)s were O(1). We can produce modified

versions of these arguments, making use of the form (A.6)

where appropriate. However, there is an interesting concep-

tual difference. The assumption that λgauge(E) � λgrav(E)

is valid at some energy E was argued in Sect. 6.2 to imply

the existence of a particle with m � E obeying the original

WGC (up to order-one factors). With the modified defini-

tion, the assumption that λ̃gauge(E) � λ̃grav(E) now implies

that the original WGC is obeyed by a particle with mass

E � m � �. Moreover, the ostensibly stronger statement

that λ̃gauge(E) ∼ λ̃grav(E) over a range of energies E � E0 is

far less constraining that the analogous statement with λ(E)s,

since in typical examples λ̃(E) is dominated by particles near

the cutoff, and λ̃gauge(E) ∼ λ̃grav(E) for E ≪ � follows if

these particles are near extremal, regardless of the light spec-

trum.

Thus, in this specific context we need to be more careful

about which loop corrections we are considering. This is pre-

cisely because the notion of gauge-gravity unification at weak

coupling has no obvious definition. We argue in Sect. 6.2

that the notion λgauge(E) ∼ λgrav(E) has the right behavior

in examples and has nice properties in effective field theory,

but do not attempt to motivate it from first principles.

A.2 Higher-point loop amplitudes

Rather than focusing on loop corrections to the off-shell pho-

ton and graviton propagators, we can consider the behavior

of on-shell S-matrix elements. We would like to argue that

the cutoff � at which the loop expansion of the S-matrix

breaks down is the same as the cutoff we have inferred from

two-point functions. We will only discuss the case of a simple

U(1) tower for brevity.

Consider, as an illustration, the 2 → 2 photon scatter-

ing amplitude. In a D-dimensional theory this amplitude has

scaling dimension 4 − D. We show several contributions

to the amplitude in Fig. 5. At tree level, graviton exchange

produces an amplitude with parametric scaling E2G N or

E2 M2−D
Pl . At one loop, there is a contribution from charged

particles of mass m and charge q. If E ≫ m, this scales as

e4q4 E D−4, while if E ≪ m, we obtain an Euler-Heisenberg

Lagrangian with four field strengths so the amplitude scales

as e4q4 E4m D−8. If we are interested in behavior near the

cutoff E ∼ �, we need only consider the m � E case, and

we have

M1−loop

Mtree
∼ e4 E D−4

∑
q4

E2G N

∼ e4 E D−4 Q(E)5

E2G N

∼ E D−1

eM
3(D−2)/2
Pl

. (A.7)

Hence we see that the energy E at which the 1-loop contri-

bution is of the same order as the tree-level contribution is

the familiar scale (3.12)

� ∼ e
1

D−1 M
3(D−2)
2(D−1)

Pl . (A.8)

Do higher loops change the result? At two loops we have

multiple contributions; from the lower diagrams in Fig. 5 we

see that

M2−loop ∼ e6 E2D−8
∑

q6 + e4G N E2D−6
(∑

q2
)2

.

(A.9)
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Fig. 5 Contributions to four-photon scattering: at tree level, through graviton exchange at order G N ; at one loop, through electromagnetic inter-

actions with charged particles at order e4; at two loops, from one diagram of order e6 and one of order e4G N

Writing
∑

q6 ∼ Q(E)7 and
(∑

q2
)2 ∼ Q(E)6, we see that

the second term grows more quickly with energy, so that

M2−loop

Mtree
∼ e4G N E2D−6 Q(E)6

E2G N

∼ e4 E2D−8 E6

e6 M
3(D−2)
Pl

. (A.10)

Again, we read off that the scale where this becomes order-

one is the familiar scale (3.12).

Similar results can be extracted for higher-point diagrams.

For instance, the tree-level n-photon scattering amplitude

through graviton exchange scales as E2G
n/2−1
N . The one-

loop n-photon scattering through charged particles scales

as en E D−n
∑

qn . Again writing
∑

qn ∼ Q(E)n+1 ∼
(E/(eM

(D−2)/2
Pl ))n+1, we derive the same cutoff � for the

scale at which the one-loop contribution becomes compet-

itive with the tree-level result. Once again one can readily

check that there is a class of 2-loop diagrams (containing

two closed loops of charged particles) that become of the

same order at the same scale �. Thus, we believe our results

to be quite robust against the specific choices of the loop

diagrams we have considered to obtain them.

B Weyl-invariant sublattices

In this appendix, we classify Weyl invariant sublattices of

the weight lattice ŴG of a compact Lie group G. We focus

on the case where G is simple, but similar techniques can be

extended to arbitrary G.

We say that a sublattice Ŵ ⊆ ŴG is primitive if it is not a

multiple of another sublattice. Any sublattice can be written

as a multiple of a primitive sublattice, hence it suffices to

classify primitive Weyl-invariant sublattices.

We initially assume that G is simply connected. A lattice

Ŵ is a Weyl-invariant sublattice of ŴG if and only if

∀ �Qα ∈ 
, �Q∨α · Ŵ ⊆ Z and ( �Q∨α · Ŵ) �Qα ⊆ Ŵ, (B.1)

where �Q∨α := 2 �Qα/Q2
α is the coroot associated to �Qα . The

first condition requires that Ŵ is a sublattice of the weight

lattice, whereas the second is equivalent to Weyl invariance,

since the Weyl group reflection associated to �Qα takes

�Q → �Q − ( �Q∨α · �Q) �Qα. (B.2)

Note that the coroots are the roots of the Langlands dual

group G∨, whose weight lattice is the dual of the G weight

lattice and which is simple if and only if G is simple.

Thus, for each root �Qα there is a positive integer kα such

that �Q∨α ·Ŵ = kαZ. Since G is simple, the Weyl group relates

any two roots of the same length, and we can have at most

two distinct ks, klong and kshort. Moreover, the short roots

generate the root lattice, and likewise the short coroots –

corresponding to the long roots – generate the coroot lattice,

implying that klong divides kshort. Therefore, Ŵ̃ := Ŵ/klong

with k̃long = 1 and k̃short = kshort/klong ∈ Z is a Weyl
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invariant sublattice, implying that klong = 1 if and only if Ŵ

is primitive.25

Using the second condition in (B.1), we find that Ŵlong ⊆
Ŵ for primitive Ŵ, where Ŵlong ⊆ ŴG is the sublattice gen-

erated by the long roots. Thus, primitive Weyl-invariant sub-

lattices correspond to Weyl invariant subgroups of the finite

group ẐG := ŴG/Ŵlong. Not all such subgroups corre-

spond to primitive lattices, since Ŵlong ⊆ Ŵ does not imply

klong = 1,26 but every primitive Weyl-invariant sublattice

corresponds to a unique Weyl-invariant subgroup of ẐG .

To compute ẐG and the Weyl group action on it, we note

that there is a simply laced Lie group Ĝ with root lattice

Ŵlong and weight lattice ŴG , where G = Ĝ if and only if G

is simply laced. Since Ŵlong = Ŵroot(Ĝ), ẐG is the center

Z(Ĝ) of Ĝ. Precisely when G is not simply laced, the Weyl

group WG acts non-trivially on ẐG , with the non-trivial action

generated by the reflections associated to the short roots. This

action is a homomorphism φ : WG → Aut(ẐG), hence it is

encoded by ŴG := WG/ ker φ. The elements of ŴG are

outer automorphisms of Ĝ.

It is now straightforward to compute Ĝ, ẐG , and ŴG for

all simply connected, simple Lie groups G:

G ẐG G Ĝ ẐG ŴG

SU(n) Zn USp(2k) USp(2)k
Z

k
2 Sk

Spin(4k) Z2 ⊕ Z2 Spin(4k + 1) Spin(4k) Z2 ⊕ Z2 Z2

Spin(4k + 2) Z4 Spin(4k + 3) Spin(4k + 2) Z4 Z2

E6 Z3 G2 SU(3) Z3 Z2

E7 Z2 F4 Spin(8) Z2 ⊕ Z2 S3

E8 −−
(B.3)

On the left are the simply laced groups, for which Ĝ = G,

ẐG = Z(G), and ŴG is trivial. On the right are non-simply-

laced groups, for which the ŴG action is as follows: for

Spin(4k + 3) and G2, ŴG
∼= Z2 maps elements of ẐG to

their inverses, preserving all subgroups. For USp(2k) and

Spin(4k + 1), ŴG
∼= Sn permutes the Z2 factors of ẐG

∼=
Zn

2 . Finally, for F4, ŴG
∼= S3 permutes the three non-trivial

elements of the Klein four-group Z2 ⊕ Z2.

Therefore, the Weyl-invariant subgroups of ẐG are as fol-

lows: for simply laced G, Spin(4k+3), or G2, any subgroup

of ẐG is Weyl invariant. For F4, only the trivial subgroup

and ẐG itself are Weyl-invariant. Finally, for USp(2k) and

Spin(4k + 1), the Weyl invariant subgroups are the permu-

tation invariant subgroups of ẐG
∼= Zn

2 . There are four of

these: Zn
2 itself, the trivial subgroup, the diagonal subgroup

Z2 ⊂ Zn
2 , and the index-two subgroup

25 If G is simply laced, we consider the roots to be “long” by convention.

26 Ŵlong ⊆ Ŵ does imply either klong = 1 or klong = 2 since �Q∨α · �Qα =
2; klong = 2 implies that Ŵlong/2 ⊆ ŴG , which holds for USp(2k),

including Spin(2) ∼= SU(2) ∼= USp(2) and Spin(5) ∼= USp(4), but not

in other simple groups.

H+ :=
{

(a1, . . . , an)

∣∣∣∣ai ∈ {0, 1},
∑

i

ai ≡ 0 mod 2

}
,

(B.4)

where the latter two are equivalent for n = 2.

We can summarize the above classification as follows.

For each H ⊆ Z(G), there is a primitive Weyl-invariant

sublattice corresponding to the weight lattice of G/H . In

addition, for G not simply laced and G �= USp(2k), Ŵlong

is a primitive Weyl-invariant sublattice. Finally, for G =
USp(2k) – for which Ŵlong is twice the weight lattice –

there is a primitive Weyl-invariant sublattice of the form

(2Z)k ∪ [(2Z)k + (1, . . . , 1)] in a basis where the weight

lattice is Zk and the root lattice is the index-two sublat-

tice {(n1, . . . , nk)|
∑

i ni
∼= 0 mod 2}. Thus, besides the

G/H weight lattices, there is exactly one additional primi-

tive Weyl-invariant sublattice for each non-simply-laced G.

When G is not simply connected, the weight lattice ŴG is

a sublattice of the weight lattice Ŵ
G̃

of the universal cover G̃,

and the smallest multiple of each primitive Weyl-invariant

sublattice of Ŵ
G̃

which lies inside ŴG is a primitive Weyl-

invariant sublattice of ŴG . All primitive Weyl-invariant sub-

lattices take this form, since any primitive sublattice of ŴG

is a multiple of a primitive sublattice of Ŵ
G̃

.
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