
ELA

THE WEAK HAWKINS-SIMON CONDITION∗

CHRISTIAN BIDARD†

Abstract. A real square matrix satisfies the weak Hawkins-Simon condition if its leading
principal minors are positive (the condition was first studied by the French mathematician Maurice
Potron). Three characterizations are given. Simple sufficient conditions ensure that the condition
holds after a suitable reordering of columns. A full characterization of this set of matrices should
take into account the group of transforms which leave it invariant. A simple algorithm able, in some
cases, to implement a suitable permutation of columns is also studied. The nonsingular Stiemke
matrices satisfy the WHS condition after reorderings of both rows and columns.
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1. Introduction. A real square matrix is said to satisfy the weak Hawkins-
Simon [8] criterion, or to be of the WHS type, if all its leading principal minors are
positive. When the off-diagonal coefficients are nonpositive, the condition character-
izes the semipositivity of the inverse matrix. With no assumption on the signs of
the off-diagonal coefficients, three characterizations of the WHS property are given
(section 3). Fujimoto and Ranade [6] have recently considered matrices which are of
the WHS type after a suitable reordering of columns (these matrices are said to be of
the FR type) and shown that an inverse-semipositive matrix has this property. This
result is generalized and we show that, since the FR family of matrices is invariant by
a group of transforms, the identification of the FR matrices should take into account
the associated group (section 4). We define a simple algorithm for reordering the
columns of a matrix and wonder when it allows us to find a relevant permutation of
columns (section 5). We also consider the case when reorderings of rows and columns
are both allowed (section 6). Finally, a historical note does justice to Maurice Potron,
an unknown pioneer of the so-called Hawkins-Simon properties (section 7).

2. Generalities. Let A be a real square n× n matrix. A is said to be inverse-
(semi-) positive if it is non singular and A−1 is (semi-) positive. A tilde on a real
vector x or a real square matrix denotes transposition. Notations x � 0 (or x ∈
Rn

+), x ≥ 0, x > 0 (or x ∈ Rn
++) mean respectively that vector x is nonnegative,

semipositive or positive. A bar on a vector or a matrix either denotes truncation of
the last components, or suggests a vocation to further extension; a double bar denotes
truncation of the first components.

An LU factorization of A is a decomposition A = LU , where L is a lower tri-
angular matrix with unit diagonal entries, and U is an upper triangular matrix. It is
well known (and this results from the ensuing calculations) that such a factorization
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exists when all the leading principal minors (‘leading minors’, for short) are nonzero
and, then, the factorization is unique (Berman and Plemmons, [1]).

We shall consider a classical transform of the system of equations Ax = y:

a11x1 + a12x2 + ...+ a1nxn = y1

a21x1 + a22x2 + ...+ a2nxn = y2

...(2.1)
an1x1 + an2x2 + ...+ annxn = yn.

If a11 �= 0, the first equality can be used to eliminate x1 from the other equations.
This section is mainly devoted to the properties of the transformed system and its
associated (n−1)× (n−1) matrix S1, more generally to those of the (n−k)× (n−k)
matrix Sk obtained after the successive eliminations of x1, ..., xk.

A fruitful interpretation of the elimination of x1 is to consider that we have
premultiplied both members of the equality Ax = y by the lower triangular matrix

(2.2) L1 =




1 0 0 0
−a21/a11 1 0 0

... 0
. . . 0

−an1/a11 0 0 1


 .

In L1A, the first row coincides with that of A and the entries 2 to n of the first column
are zero. Let us denote ∆1i1j = a11aij − ai1a1j the 2 × 2 minor extracted from rows
1 and i and columns 1 and j of A. The (n− 1)× (n− 1) sub-matrix S1 made of rows
and columns 2 to n of L1A is writtenas

(2.3) S1 =


 ∆1212/a11 ... ∆121n/a11

... ... ...
∆1n12/a11 ... ∆1n1n/a11


 .

S1 = S1(A) is called the Schur complement of a11. The initial system of equations
(2.1) is transformed into the equivalent system

(2.4) a11x1 + a12x2 + ...+ a1nxn = y1

and

(2.5) S1


 x2

...
xn


 =


 y2

...
yn


 + y1


 −a21/a11

...
−an1/a11


 .

The n− 1 equations (2.5) are written more compactly as

(2.6) S1x(1) = y(1) + y1l(1),
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where x(1) (respectively y(1)) denotes the vector x (respectively, y) truncated of its

first component, and l(1) the column-vector made of the last n− 1 components of the
first column of L1.

Lemma 2.1. Let A be a nonsingular matrix such that a11 is nonzero. Then:
- the leading minor of order k of A is equal to a11 times the leading minor of

order k − 1 of S1 (k = 2, ..., n),
- the cth column of S−1

1 is obtained by deleting the first component of the (c+1)-th
column of A−1.

Proof. Because of the structure of matrix L1, the leading minors of order k in A
and L1A are equal and, because of the structure of L1A, this minor is a11 times the
leading minor of order k − 1 of S1. Hence, the first statement follows.

Consider the solutions to S1x = ec, where x and ec are vectors in Rn−1, ec being
the cth unit vector. Let us extend ec into the (c + 1)-th unit vector ec+1 of Rn by
inserting a first component equal to zero. Relation Ax = ec+1 is of the type (2.1) with
y = ec+1, therefore equality (2.6) holds with x(1) = x, y(1) = ec and y1 = 0 and is
reduced to S1x = ec. Therefore the solution x to S1x = ec derives from the solution
x to Ax = ec+1 by deleting the first component. As x = S−1

1 ec is the cth column of
S−1

1 , and x = A−1ec+1 the (c+ 1)-th column of A−1, we obtain the result.
This transform is but the first step of an LU decomposition of the initial matrix A:

the successive elimination of variables x1, ..., xk from the first k equations is possible
if the leading minors of A up to order k are nonzero. The operation amounts to
premultiplying both members of the equality Ax = y by some lower triangular matrix
L(k) = Lk · · ·L1, with nonzero off-diagonal entries only in the first k columns. The
system Ax = y is then equivalent to a system written in two parts: in the first k
equations, the jth equation (j = 1, ..., k) is written

(2.7) ujjxj + uj,j+1xj+1 + ...+ ujnxn = yj + l′j(y1, ..., yj−1),

where u1j = a1j and l′j(y1, ..., yj−1) denotes some linear combination of (y1, ..., yj−1);
the last n− k equations are written in the matricial form

(2.8) Skx(k) = y(k) +
k∑

j=1

yj l(k)j ,

where Sk = Sk(A), the Schur complement of the leading minor of order k, is a square
matrix of dimension n − k, x(k) and y(k) are the vectors x and y reduced to their

last n − k components, and l(k)j is the jth column of L(k) reduced to its last n − k
components. Clearly,

(2.9) Sk(A) = S1[S1...S1(A)].

The step k = n can be reached if all the leading minors of A are nonzero. The initial
system Ax = y is then transformed into an equivalent system in which the generic
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equation j is of the type (2.7) for j = 1, ..., n. This final system is written Ux = L′y,
where U is an upper triangular matrix and L′ a lower triangular matrix with 1s on
the diagonal. The equivalence implies the matricial equality A = LU , where L = L′−1

is a matrix of the same type as L′.
Lemma 2.2. Let A be a WHS matrix. Then A admits an LU decomposition and,

for any k:
- Sk is a WHS matrix,
- if A is inverse- (semi-) positive, so is Sk,
- if the last column of A−1 is (semi-) positive, so is the last column of S−1

k .
Proof. These properties follow by induction from Lemma 2.1 and (2.9).

3. Three characterizations of WHS. A first characterization of a WHS ma-
trix is well known (Berman and Plemmons, [1]) but we remind the reader of the
argument for the historical reasons detailed in section 7.

Theorem 3.1. A is a WHS matrix if and only if it admits a factorization
A = LU , where L is a lower triangular matrix with unit diagonal entries and U is an
upper triangular matrix with positive diagonal entries.

Proof. A factorization A = LU exists if all the principal minors are nonzero. By
considering the first k rows and columns in the equality A = LU , it turns out that
the successive diagonal elements of U are u11 = a11, then the ratio of two consecutive
leading minors of A. Therefore, A is of the WHS type if and only if the diagonal
elements of U are positive.

The next two characterizations of WHS matrices refer to systems of equations:
Theorem 3.2 considers the system Ax = y, and Theorem 3.5 a linear complementarity
problem. Let us consider the set

(3.1) Ek = {(x, y); (x, y) �= (0, 0), Ax = y, y1 = ... = yk−1 = 0 = xk+1 = ... = xn} .

Theorem 3.2. A is a WHS matrix if and only if the implication

(3.2) (x, y) ∈ Ek ⇒ xkyk > 0

holds for any k = 1, ..., n.
Proof. Assume first that the k-th leading minor of A is zero: detA = 0. Then

there exists a nonzero vector x of dimension k such that Ax = 0. Let x be the vector
x completed by n− k zeroes, and y = Ax. Then (x, y) ∈ Ek and yk = 0, therefore the
implication (3.2) does not hold.

On the contrary, if the leading minors of A are nonzero, matrix A admits an
LU factorization. The system LUx = y is equivalently written Ux = L−1y. For
(x, y) ∈ Ek, the k-th equation is reduced to ukkxk = yk, therefore property (3.2)
amounts to stating that the diagonal elements of U are positive. By Theorem 3.1,
implication (3.2) holds if and only if A has the WHS property.

Definition 3.3. (w, z) is said to be a simple solution to the linear complemen-
tarity problem LCP(q, A)

(3.3) w = Az + q w � 0, z � 0, w̃z = 0
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if, for some minimal integer h (h ∈ [0, n] is called the height of the solution), the first
h components of w and the last n− h components of z are zero.

After deletion of the last n−h components of both w and z, the truncated vectors
are such that w = 0 and, by the minimality hypothesis, the last component of z is
positive.

If A has the WHS property, LCP (q, A) may have several simple solutions: for
instance, for

q =
(

1
1

)
, A =

[
1 −2
2 −3

]
two simple solutions, with respective heights h1 = 0 and h2 = 2, are

w1 =
(

1
1

)
, z1 =

(
0
0

)
;w2 =

(
0
0

)
, z2 =

(
1
1

)
.

The question examined below is whether it is possible to have h2 − h1 = 0 or 1.
Lemma 3.4. The following properties are equivalent:
- the leading principal minors of A are all nonzero,
- for any q, two simple solutions of LCP (q, A) have different heights.
Proof. If the leading minor of order h of A is zero (detA = 0), let z1 be a positive

vector of dimension h and q = −Az1. The problem LCP
(
q, A

)
admits two solutions

(w1 = 0, z1) and (w2 = 0, z2) of the same height h, where z1 and z2 are both positive
and A(z2−z1) = 0. For i = 1, 2, these solutions are extended to non truncated vectors
(q, z, w) by completing the last n − h components of q by positive and large enough
scalars, the last n−h components of zi by zeroes, and the last n−h components of wi

by the corresponding positive components of Azi + q. Two simple solutions (w1, z1)
and (w2, z2) of LCP (q, A) are thus obtained, with a common height h.

Conversely, let the leading minors of A be nonzero and consider two simple so-
lutions to LCP (q, A) with a common height h. Delete the last n− h components of
z1, z2, w1, w2, as well as the last n− h rows and columns of A. The truncated vectors
(w1, z1) and (w2, z2) are simple solutions to LCP

(
q, A

)
. As w1 = w2 = 0 and the

solution z to 0 = Az+ q is unique (invertibility of A), we have z1 = z2, hence z1 = z2

and the two solutions coincide.
Theorem 3.5. Matrix A has the WHS property if and only if, for any q, the

problem LCP (q, A) does not admit simple neighboring solutions, i.e. with heights
differing by zero or one.

Proof. Let A admit the WHS property and consider two simple solutions (w1, z1)
and (w2, z2) of LCP (q, A), with h2 > h1 (equality h1 = h2 is excluded by Lemma
3.4). After truncation of the last n − h2 components, we have w2 = 0, the h2-th
component of z2 is positive, the first h1 components of w1 are zeroes, and the h2-th
component of z1 is zero. A admits the decomposition A = LU , U with a positive
diagonal. Set v1 = L−1w1 and p = L−1q. From equalities wi = Azi + q = LUzi + q
for i = 1, 2, there follows, after pre-multiplication by L−1,

v1 = Uz1 + p(3.4)
0 = Uz2 + p.(3.5)
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Consider the (h1 + 1)-th component in the vector equality (3.4). Since the first h1

components of w1 are zeroes and (L−1)h1+1,h1+1 = 1, the (h1 + 1)-th component of
w1 coincides with that of L−1w1 = v1. Therefore, in the left-hand side, (v1)h1+1 is a
nonnegative scalar. In the right-hand side, the last h2−h1 components of z1 are zeroes,
therefore the same properties holds for the last h2 −h1 components of Uz1, including
(Uz1)h1+1. We conclude that equality (3.4) implies that the (h1 + 1)-th component
of p is nonnegative. Similarly, consider the h2-th component in the vector equality
(3.5). It follows from the structure of U and z2 that the h2-th component of Uz2 is
uh2,h2(z2)h2 > 0, therefore, from (3.5), the h2-th component of p is negative. The
overall conclusion is that h2 �= h1 + 1, i.e. two simple solutions are not neighboring.

Conversely, assume that all the leading minors of matrixA are nonzero (otherwise,
Lemma 3.4 applies), where the first h1 minors are positive and the next one negative.
Let A be the submatrix made of the first h2 = h1 + 1 rows and columns of A.
The following construction defines a vector q of dimension h2 such that the problem
LCP (q, A) admits two solutions of heights h2 and h1, then extend these solutions to
simple neighboring solutions to LCP (q, A) for a certain vector q.

In the factorization A = LU , we have uii > 0 for i = 1, ..., h1 and uh2h2 < 0.
For a given positive vector z2 of dimension h2, we define successively the vector p
by the equality (3.5), then the vector v1 by (v1)i = 0 for i = 1, ..., h1 and (v1)h2 =
(p)h2 = −(Uz2)h2 > 0, then the vector z1 by the equality (3.4). According to (3.4),
the last component (z1)h2 of z1 is such that (v1)h2 = uh2h2(z1)h2 + (p)h2 , therefore
(z1)h2 = 0 and vector z1 is orthogonal to v1. Let e be the last unit vector of Rh2

and δ the last column of U−1. By subtraction of equalities (3.4) and (3.5), we obtain
U(z1 − z2) = v1 = (v1)h2e, therefore z1 − z2 = (v1)h2U

−1e = (v1)h2δ. That is, z1 is
obtained by adding to z2 a vector proportional to the last column of U−1, in such a
way that the last component of z1 is zero. Clearly, the positive vector z2 , which has
been chosen arbitrarily at the beginning of the construction, can be chosen in order
that the other components of z1 are positive. Then, (v1, z1) and (0, z2) are simple
solutions to LCP (p, U), with respective heights h1 = h2 − 1 and h2.

Next, we define w1 = Lv1 = v1, w2 = 0 and q = Lp. (w1, z1) and (w2, z2) are
simple neighboring solutions to LCP

(
q, A

)
. Finally, let zi be the vector zi completed

by n− h2 zeros, q the vector q completed by positive and large enough components,
and wi (i = 1, 2) the vector defined by equality wi = Azi + q. Then (w1, z1) and
(w2, z2) are simple neighboring solutions to LCP (q, A) .

Finally, a necessary condition is:
Theorem 3.6. A WHS matrix A preserves the sign of some vector:

(3.6) ∃x ∀i xi(Ax)i > 0.

Proof. The proof is by induction on the dimension n of A. The result holds
for n = 1. Let S1 be the Schur complement of a11. Since S1 is a WHS matrix, the
induction hypothesis implies the existence of (n− 1)-column vectors x = (x2, ..., xn)
and y = (y2, ..., yn) such that y = S1x and xiyi > 0 for i = 2, ..., n. These inequalities
still hold in a neighborhood of (x, y) and, in particular, we can assume a12x2 +
... + a1nxn �= 0 (except in the degenerate case a12 = ... = a1n = 0 which can be
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studied separately). In that neighborhood, let us consider the vector z, whose i-th
component is yi+1 + ε(−ai+1,1/a11), and the vector x

′ = S−1
1 z, whose components

are denoted by (x′
2, x

′
3, . . . , x

′
n). By construction, equality (2.5) holds for the (n− 1)-

vectors x
′ and y

′ and the scalar y1 = ε. Let us define the scalar x′
1 by a11x

′
1 =

ε − a12x
′
2 − ... − a1nx

′
n �= 0, so that both equalities (2.4) and (2.5) hold for the n-

vectors x′ = (x′
1, x

′) and y′ = (y′1, y), therefore y′ = Ax′. We have x′
iy

′
i > 0 for

i = 2, ..., n (continuity argument). As for the first components (x′
1, y

′
1 = ε), we

choose ε small enough and such that sign(ε) = sign(−a12x2 − ...− a1nxn), therefore
sign(x′

1) = sign(a11x
′
1) = sign(ε− a12x

′
2 − ...− a1nx

′
n) = sign(−a12x2 − ...− a1nxn)

(this last equality by a continuity argument), hence sign(x′
1) = sign(ε) = sign(y′1).

Sum, the n-vectors x′ and y′ are such that x′
iy

′
i > 0 for any i and y′ = Ax′, so that

the n-vector x′ is a solution to (3.6).

4. WHS after reordering of columns. This section and the next are devoted
to the study of a class of matrices introduced by Fujimoto and Ranade [6].

Definition 4.1. A square matrix is said to be of the FR type if it becomes of
the WHS type after a suitable reordering (‘permutation’) of columns or, equivalently,
if it is written as the product of a WHS matrix and a permutation matrix.

Fujimoto and Ranade’s Theorem 3.1 states that an inverse-semipositive matrix
(that they call inverse-positive matrix) is of the FR type. The criterion considered in
the following statement only refers to the last column of A−1.

Theorem 4.2. Let A be a nonsingular matrix. If the last column of A−1 is
positive (or if A−1 is semipositive), A is of the FR type.

Proof. The proof is by induction on the dimension n of A. The result holds for
n = 1, and we assume it for dimension n− 1. If the last column of A−1 is positive, at
least one element in the first row of A is positive. A permutation of columns moves
it to position a11 (matrix A1 is obtained). Since the rows of the inverse matrix are
permuted, the last column of A−1

1 remains positive. Let us premultiply A1 by the
matrix L1 defined by (2.2). The matrix S1 defined in (2.3) appears. By the second
assertion of Lemma 2.1, the last column of S1 is positive and, by the induction
hypothesis, the columns of S1 can be reordered in such a way that the matrix becomes
of the WHS type. By the first assertion of Lemma 2.1, the same reordering of columns
2 to n of A1 transforms the initial matrix into a WHS matrix, hence the result follows.

Fujimoto and Ranade’s result can be obtained by replacing everywhere, in the
above argument, the positivity hypothesis on the last column of A−1 by the semipos-
itivity hypothesis onthe matrix A−1.

A permutation matrix, denoted Pi (i = 0, 1, ...), admits one entry equal to 1 in
every row and every column, and 0s elsewhere so that no two 1’s occupy the same
row or column. Permutation matrices form a subgroup of themuliplicative group of
orthogonal matrices (P̃ = P−1). Pre-multiplying (resp. post-multiplying) a matrix
by Pi amounts to reordering its rows (resp. columns). Let P0 be the permutation
matrix with 1s on the anti-diagonal (P̃0 = P−1

0 = P0): pre- and post-multiplying by
P0 moves the i-th row and the i-th column of A to row and column n+1−i. A matrix
is called an inverse-WHS matrix if the principal minors made up of the last k rows
and columns are positive, for k = 1, ..., n. Combining pre- and post-multiplication by
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P0 transforms an inverse-WHS matrix into a WHS matrix, and vice-versa. The WHS
and the inverse-WHS properties are stable under transposition. As the decomposition
A = LU implies A−1 = U−1L−1, it turns out, by calculating the minor made up of
the last k rows and columns of A−1 and using Theorem 3.1, it follows that the inverse
of a WHS matrix is an inverse-WHS matrix, and vice-versa (the property also results
from the Jacobi equality).

Let H denote a WHS matrix. The matrix P0H
−1P0 is a WHS matrix, and the

same for P0H̃
−1P0. An FR matrix is written F = HP , where H is a WHS matrix

and P a permutation matrix. Equality P0F̃
−1 = P0H̃

−1P = (P0H̃
−1P0)(P0P ) shows

that γ(F ) = P0F̃
−1 is also an FR matrix.

The following statement extends Theorem 4.2 to semipositivity hypotheses (Fuji-
moto and Ranade, [7]) and, more importantly, makes use of the transform γ to state a
simple result based on matrix A itself: the second statement includes the cases where
the first row of A is positive, or matrix A itself is semipositive.

Theorem 4.3. Let A be a nonsingular matrix. Then A is of the FR type if one
of the following two sufficient conditions are met:

- the last nonzero element in every row of A−1 is positive,
- the first nonzero element in every column of A is positive.
If the last column of A−1 or the first row of A is semipositive, the columns of A

can be reordered in such a way that the leading minors are all positive or null.
Proof. Under the first hypothesis, any column j of A−1 can be transformed

into a semipositive column by adding to it some positive combination of columns
j +1 to n. The operation amounts to post-multiplying A−1 by some lower triangular
matrix L with 1s on the diagonal. As matrix L−1A admits a semipositive inverse,
Theorem 4.2 applies to it, and we can therefore write an equality L−1A = HP , hence
A = (LH)P. Since the leading minors of LH coincide with those of H , LH is a WHS
matrix and A is an FR matrix.

Under the second hypothesis, let B = γ(A) = P0Ã
−1. Since the (n + 1 − j)-th

column of B−1 = ÃP0 is the jth row of A, the last nonzero element in every row of
B−1 is positive. According to the above result, B is of the FR type. Hence, the same
for γ(B) = P0B̃

−1 = A.
Under the final hypotheses, A can be approximated by a sequence of matrices to

which the previous results apply. Therefore A is the limit of an infinite sequence of FR
matrices. As the number of permutation matrices is finite, there exists a permutation
matrix P and a subsequence of WHS matrices Ht such that A = limHtP . Hence, the
property follows.

If either the last column of A−1 or the first row of A has no positive entry (the
polar hypotheses symmetrical to those retained in Theorems 4.2 and 4.3), A cannot
be of the FR type. If the last column of A−1 (respectively, the first row of A) is
semipositive instead of positive, A is not necessarily of the FR type, as shown by the
example

A =
[
0 −1
1 −1

]
with A−1 =

[ −1 1
−1 0

]
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(the argument which does not extend in the proof of Theorem 4.2 is that, if the last
column of A−1 is semipositive, it is not guaranteed that the first row of A admits a
positive entry).

To take a more abstract view of some arguments used in the proofs of Theorems
4.2 and 4.3, an interpretation in terms of a group of transforms is useful. The basic
idea is that the family F of the FR matrices F = HP is stable under three types of
transforms:

- transform α is the pre-multiplication by a lower triangular matrix with a positive
diagonal: αL(F ) = LF (this set L of matrices is a subgroup under multiplication of
matrices);

- transform β is the post-multiplication by a permutation matrix or, more gen-
erally, by a matrix Q with one positive element in every row and every column and
zeroes elsewhere: βQ(F ) = FQ (this set Q of matrices is a subgroup for the multipli-
cation of matrices);

- transform γ is the involutive transform: γ(F ) = P0F̃
−1.

Any combination of operations of the types α, β or γ transforms a matrix in F
into another matrix in the same family: in other words, F is stable by the group G of
transforms generated by these operations. It is therefore natural to study the group
G and the set G(M), called the orbit of M .

Theorem 4.4. Let M be a nonsingular square matrix. The orbit G(M) is the set
of matrices N which are written either N = LMQ (L lower triangular matrix with
a positive diagonal, Q with one positive element in every row and column and zeroes
elsewhere) or N = L′M̃−1Q (L′ with a positive anti-diagonal and zeroes above it). If
M is of the FR type, so is any matrix N in G(M).

Proof. By definition, G(M) is the set of matrices which can be written as N =
∆(M), where ∆ = δm ◦ δm−1 ◦ ... ◦ δ1 for some natural integer m, δi being any of the

transforms α, β or γ. For an invertible matrix R, we have γ ◦ αL(R) = P0 (̃LR)
−1

=
P0L̃

−1R̃−1 = (P0L̃
−1P0)(P0R̃

−1) = αL1 ◦ γ(R), with L1 = P0L̃
−1P0 ∈ L. Therefore

the identity γ ◦αL = αL1 ◦γ holds. Similarly, γ ◦βQ(R) = P0(̃RQ)
−1

= P0R̃
−1Q̃−1 =

βQ1 ◦ γ(R) with Q1 = Q̃−1 ∈ Q, hence the identity γ ◦ βQ = βQ1 ◦ γ. Moreover, a
transform of type α commutes with a transform of type β. These properties imply
that, in the sequence of transforms defining ∆, the transforms of type α can be
written first, then those of type β, finally the transforms γ. As the product of α-
transforms is an α-transform, a product of β-transforms is a β-transform, and γ is
involutive (γ ◦ γ = Id), ∆ is reduced to either ∆ = αL ◦ βQ or ∆ = αL ◦ βQ ◦ γ
for some adequate matrices L and Q. Therefore, N is written as N = LMQ, or as
N = LP0M̃

−1Q = L′M̃−1Q.
The usefulness of the approach in terms of transformation groups is illustrated

by the following alternative proof of Theorem 4.2, once Fujimoto and Ranade’s initial
result is admitted. Their result can be stated as: the set F1 of inverse-semipositive
matrices belongs to F . It follows from Theorem 4.4 that F also contains the matrices
of the type N = LM , with M ∈ F1, i.e. the nonsingular matrices N such that N−1L
is semipositive for some lower triangular matrix L ∈ L. It is easily seen that this
property holds as soon as the last column of N−1 is positive (choose positive and
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large enough coefficients in the last row of L), hence Theorem 4.2; similarly, Theorem
4.3 results from the application of transform γ. In technical terms, Theorems 4.2 and
4.3 may be viewed as the completion of Fujimoto and Ranade’s initial result by the
group G.

Theorems 4.2 and 4.3 state sufficient criteria for a matrix to be of the FR type.
These properties are not necessary: for n = 3, matrix

A =


 1 −1 1

0 1 1
0 0 1




and any matrix close to it (the zeroes are inessential) is of the WHS type, but both
the first row of A and the last column of A−1 have negative elements. The lesson is
that a further extension of the above results requires identifying another subset F2

for which the FR property also holds. Then the property will automatically hold for
its completion G(F2).

5. The simple algorithm. Beyond the existence results, the question examined
here concerns the effective determination of a reordering of columns which transforms
an FR matrix into a WHS matrix (if one knows that the initial matrix is indeed of the
FR type) or the determination of the type of the matrix (if it is a priori unknown):
how can we find a suitable permutation, or identify the type, without having to check
each of the possible n! substitutions of columns? We do not know a general answer
to the question, but we define a specific algorithm and study its convergence.

The simple algorithm, applied to a given square matrix A0, is defined as follows:
in the first row of A0, pick any positive element a1j (for instance, the one for which j
is minimum) and permute the j-th column with the first. Matrix A1 is obtained, and
the choice of the first column is definitive. Next, we look for a column j (j ≥ 2) such
that the 2 × 2 minor ∆121j is positive. Once such a column is found, we permute it
with the second column of A1 and obtain a new matrix A2. The choice of the second
column is definitive. At step k, the first k− 1 columns of Ak−1 are given, we look for
a new column which gives us a positive k × k leading minor and put it in the k-th
position in Ak; and so forth until k = n, when the algorithm stops (in fact, it stops
at step n− 1, as no choice remains for the last column).

Starting from an arbitrary matrix, the simple algorithm fails if, at some step, it
is impossible to complete the actual (k − 1) × (k − 1) leading minor and obtain a
positive k × k leading minor. But there are two possible causes of failure: (i) it may
be the case that A0 is not of the FR type, or (ii) though A0 is of the FR type, it is
the algorithm itself which goes in a wrong direction, as it is the case for

A0 =
[
1 1
3 2

]
.

At the first step (if one follows the min j rule), the first column remains in its position,
hence A1 = A0 and the reordering is finished, but det(A1) < 0. However, the initial
matrix is of the FR type (permute the two columns). The example shows the difference
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between the existence result and the successfulness of the simple algorithm, hence the
question: for which type(s) of FR matrices are we sure that the simple algorithm
ends up with a suitable reordering of columns? By ‘success’ of the simple algorithm,
we mean that it ends up with a convenient reordering of columns, independent of
the secondary rule relative to the choice of the new column (e.g., the min j rule), i.e.
independent of chance.

Theorem 5.1. Let a nonsingular matrix be such that its inverse admits a positive
last column. Then the simple algorithm works, which is not always the case if the
matrix has a positive first row.

Proof. The above numerical example illustrates the second statement. Assume
that the last column of A−1, of components αj (1 ≤ j ≤ n), is positive and that,
for a given k (0 ≤ k ≤ n − 2), the columns of A = A0 have already been permuted
(matrix Ak is obtained) in such a way that the matrix Ak made of the first k rows
and columns of Ak is of the WHS type. Consider the n vectors aj ∈ Rk+1 made by
the columns of Ak, truncated to their first (k + 1) components. The vector equality∑n

j=1 αjaj = 0 holds, component by component. Therefore:

n∑
j=k+1

αj det(a1, ..., ak, aj) = det(a1, ..., ak,

n∑
j=k+1

αjaj)

= −det(a1, ..., ak,
k∑

j=1

αjaj),

hence

(5.1)
n∑

j=k+1

αj det(a1, ..., ak, aj) = 0.

As the αjs are positive and not all determinants det(a1, ..., ak, aj) are zero (otherwise,
the first k + 1 rows of Ak, and therefore of A, would be linearly dependent), at
least one det(a1, ..., ak, aj) is positive for k + 1 ≤ j ≤ n. By moving any column
j of this type to the (k + 1)-th position, it turns out that the matrix Ak+1 thus
obtained has positive principal minors up to order k + 1 (permute accordingly the
components αj and renumber them). By repeating the argument from k = 0 to
k = n − 2, the columns of A can be reordered in such a way that all the leading
minors of An−1 up to order n−1 are positive. The argument for the last step relies on
equality αn = detAn−1/ detAn−1: since αn is positive by hypothesis and detAn−1 by
construction, so is detAn−1. Therefore, the simple algorithm transforms the initial
matrix into the WHS matrix An−1.

This proof shows that the last step is treated separately, and suggests that the
signs of the intermediate principal minors can be chosen arbitrarily. To state a simple
result, we avoid the complications, due to the presence of zeroes, studied in Theorem
4.3.

Theorem 5.2. Let a simple profile of signs be a sequence of n signs + or -, the
last two signs being identical. We consider the family of nonsingular matrices with
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no zeroes in the last column of the inverse matrix. For a matrix A of this type, the
following two properties are equivalent:

- the last column of A−1 is positive,
- the simple algorithm succeeds in reordering the columns in such a way that the

sequence of the leading minors of A follows any predetermined simple profile of signs.
Proof. Let the last column of A−1 be positive, and assume that the first k columns

(0 ≤ k ≤ n−2) have been reordered in such a way that the signs of the first k principal
minors follow the beginning of the predetermined sequence of signs. Equality (5.1)
with all αjs positive shows that at least two of the determinants have opposite signs,
therefore it is possible to follow the profile one step further. At the last step (k = n−1)
however, there is no room for reordering and detA has the sign of detAn−1.

Conversely, assume that the last column of A−1 has at least one negative compo-
nent, that can be moved to the last position αn. Once this is done, for the sequence of
profiles corresponding to that of (detA1, detA2, ...,detAn−1), the simple algorithm
completed by the min j rule does not permute the columns of A, but the sequence
cannot be completed as a simple profile since detA/ detAn−1 = αn < 0.

6. WHS after general reorderings. We now allow for reorderings of both
rows and columns of the initial matrix. A matrix which transforms some positive
vector (notation: x > 0) into a positive vector is usually called a Stiemke matrix [16].

Theorem 6.1. Let A be a nonsingular matrix such that

(6.1) ∃x > 0 Ax > 0 or x̃A > 0.

After suitable reorderings of rows and columns, A is transformed into a matrix with
positive leading principal minors.

Proof. The proof is by induction on the dimension n of the matrix. The result
being obvious for n = 1, we assume it for any k (k ≤ n − 1) and extend it to
n = dim(A). We retain the hypothesis that A transforms some positive column-vector
into a positive column-vector (otherwise, transpose A): Ax = y > 0. If A admits a
semipositive inverse, the conclusion holds by Fujimoto and Ranade’s result. If not,
there exists a positive vector y′ such that the vector x′ = A−1y′ is not positive and not
proportional to x. Therefore, some convex combination v of x and x′ is semipositive
but not positive, and its image by A is positive. Let us reorder the components of v
and, accordingly, the columns of A (vector w and matrix B are obtained), in order
that the first k components of w are positive (they represent a vector w ∈ Rk

++),
while the last n− k (n− k ≥ 1) are zero. By construction, Bw is positive. Note also
that the first k columns of B, being extracted from A, have maximal rank.

Let M be the matrix obtained by replacing the first column of B by the vector
Bw, i.e., by a positive combination of the first k columns of B. According to the
second statement of Theorem 4.3 applied to M̃ , the rows of M can be reordered in
such a way that its leading minors become positive: M is transformed into N , and
the same reordering of the rows of B gives the matrix C; N and C coincide, except
that the first column of N is a positive combination of the first k columns of C. In
particular, since all the leading minors of N of order greater than or equal to k are
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positive and since, up to a positive factor, these minors are those of C, it turns out
that all the leading minors of C of order greater than or equal to k are positive.

Vector Cw, being obtained by reordering the components of Bw, is positive. In
particular, the sub-matrix C made of the first k rows and columns of C is such that
Cw > 0 (because the components k+1 to n of w are zero, so that vector Cw coincides
with the first k components of Cw) and detC > 0 (because it is the leading minor
of order k of C). By the induction hypothesis applied to C, there exists a reordering
of the first k rows and columns of C (call this new matrix D) such that the leading
minors of D of order smaller than or equal to k are positive. These last reorderings
alter the sign of the leading minors of order greater than or equal to k by a common
factor ±1, which however is +1 since the sign of the leading minor of order k is
positive in both C and D.

The conclusion is that all leading minors of D, be they of order smaller, equal or
greater than k, are positive, where D is deduced from A by reorderings of rows and
columns.

The matrix

S =


 −1 −2 2

−2 −3 2
2 −3 2




is a Stiemke matrix (Sx > 0 for x̃ = (1, 1, 3)) with a positive determinant. In an
attempt to obtain a WHS matrix after a reordering of columns only, the third column
must be put in the first position (to have a positive 1× 1 leading minor), followed by
a permutation of the other two columns (to preserve the sign of the determinant), but
the leading minor of order 2 is then negative. A similar experiment on the rows shows
that reorderings of both rows and columns are required in the statement of Theorem
6.1.

As a simple application of Theorem 6.1 to economics, consider a square linear
model of production: given n goods, a multiple-product method is described by an
input vector and an output vector, both semipositive column-vectors of dimension n,
where the input vector represents investment (labor can be ignored for the present
purpose) and the output vector the corresponding gross product. A square joint pro-
duction system is obtained by stacking n input vectors (representing n methods) as
columns of an input matrix A and n output vectors as columns of an output matrix
B (Leontief [9], Sraffa [15]). For activity levels of the various methods represented by
a nonnegative vector x, it is assumed (linear model hypothesis) that the overall input
vector in the economy is Ax, while the overall product is Bx. When applied to matrix
B−A, the Stiemke hypothesis means that the economy is productive, i.e. there exist
activity levels such that the overall physical net product Bx−Ax is positive. Theorem
6.1 then asserts that it is possible to reorder the methods (i.e., the columns) and the
commodities (i.e., the rows), in such a way that the net product matrix B − A has
the WHS property. This is a generalization of the result obtained in the traditional
case of single-product systems, when method i only produces one unit of commodity
i: then B is the identity matrix, and the productivity hypothesis combined with the
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‘Ostrowski-Hawkins-Simon theorem’ (see comments on this reference below) implies
that B −A has the WHS property. The economic interpretation of the dual hypoth-
esis x̃(B − A) > 0 is that all methods are profitable at the prices represented by the
row-vector x̃.

7. Historical note. Maurice Potron (1872-1942) is a French mathematician
and a Jesuit, whose economic works have been recently rediscovered and published
[14]. As soon as 1911, with no connection with the economists of his time, Potron
built an economic model which anticipates input-output analysis. He considered a
single-product system and applied the recently published Perron-Frobenius theorem
[3, 4, 11] to prove the existence of (semi-) positive prices and wages (in order to state
general results, Potron anticipated Frobenius’ later extension [5] to decomposable
matrices). In his views, the solution defines the ‘just’ prices and the ‘just’ wages
referred to by the scholastic doctrine of the Church, as updated by pope Leo XIII
in the encyclical Rerum Novarum (1891). The semipositivity property of prices and
wages follows from the fact that matrix (I − A)−1 (the ‘Leontief inverse’, in modern
parlance) is semipositive when the scalar 1 is greater than the dominant eigenvalue
of the semipositive input-output matrix A.

How can it be checked that a given scalar ρ is greater than the dominant eigenvalue
α of A, when α is not precisely known? A necessary condition is that det(ρI − A) is
positive (because the sign of det(xI−A) does not change for x > α and is positive for
x large enough), more generally all principal minors of ρI − A are positive (because
the dominant root of A is at least equal to that of the extracted principal matrices).
In 1913, Potron [12] stated the converse statement that, today, most mathematicians
(e.g. [1], 1994, chapter 6) attribute to Ostrowski ([10], 1937), and most economists to
Hawkins and Simon ([8], 1949). Potron’s proof is based on the observation that the
first derivative of det(xI − A) is equal to the sum of the principal minors of order
n − 1; more generally, its k-th derivative is a positive combination of the principal
minors of order n− k. Therefore, if all principal minors are nonnegative for x = ρ, a
Taylor expansion of det(xI − A) at point ρ shows that the characteristic polynomial
is positive for x > ρ, hence ρ ≥ α.

Potron was not totally satisfied with this result, because he had in mind numerical
applications of his model: the number of principal minors is 2n, and Potron considered
n = 106 as a realistic magnitude for the number of goods and services. In March and
April 1937, he gave a series of six lectures at the Catholic Institute of Paris [13]. In
his fifth lecture, Potron showed that it suffices to check the positivity of the leading
principal minors of ρI − A. This is the criterion we have referred to as the WHS
criterion. Potron’s argument is that, if the leading minors are positive, the matrices
L and U in the LU factorization of ρI − A have positive diagonal elements and
nonpositive off-diagonal elements (hint: just proceed to the calculation of the entries
of L and U). Then U−1 is semipositive (hint: solve the system Ux = y for y > 0), as
well as L−1 (same argument), and so is the product U−1L−1 = (ρI−A)−1, therefore ρ
is greater than α. This WHS criterion reduces the number of positivity conditions from
2n to n. In spite of this significant improvement, the value n = 106 remains beyond any
scope, hence Potron’s final appraisal: “By making us touch the theoretical difficulties
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of the problem, the mathematical science gives us a new reason to repeat to our Father
in Heaven the traditional prayer: Give us today our daily bread”. Potron’s priority
in the statement of both ‘Ostrowski-Hawkins-Simon’ criteria and the elegance of his
proofs should be acknowledged, and many other features of his economic model are
very innovative as well (Bidard et al., [2]).

8. Summary. We have first given three characterizations of WHS matrices, one
in terms of the LU factorization, the second in terms of the solutions to a linear sys-
tem, the third in terms of a linear complementarity problem. Fujimoto and Ranade’s
sufficient condition for ensuring that a matrix meets the WHS criterion after a suit-
able reordering of columns considers the signs of the n2 entries of the inverse matrix,
whereas the WHS condition itself requires to check n signs only. In this respect, the
sufficient criteria we propose (positivity of the first row of A or the last column of the
inverse matrix) are parsimonious. An important idea is that, once it has been shown
that the matrices belonging to some family are of the WHS type, the result holds
for the extended family obtained by considering a group of transforms. If the last
column of the inverse matrix is positive, a simple algorithm determines a convenient
permutation of columns. If permutations of the rows and columns are both allowed,
a nonsingular Stiemke matrix can be transformed into a matrix of the WHS type.
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