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THE WEAK LEFSCHETZ PROPERTY

FOR MONOMIAL COMPLETE INTERSECTION

IN POSITIVE CHARACTERISTIC

ANDREW R. KUSTIN AND ADELA VRACIU

Abstract. Let A = k[x1, . . . , xn]/(xd
1, . . . , x

d
n), where k is an infinite field.

If k has characteristic zero, then Stanley proved that A has the Weak Lef-
schetz Property (WLP). Henceforth, k has positive characteristic p. If n = 3,
then Brenner and Kaid have identified all d, as a function of p, for which
A has the WLP. In the present paper, the analogous project is carried out
for 4 ≤ n. If 4 ≤ n and p = 2, then A has the WLP if and only if
d = 1. If n = 4 and p is odd, then we prove that A has the WLP if and

only if d = kq + r for integers k, q, r with 1 ≤ k ≤ p−1
2

, r ∈
{

q−1
2

, q+1
2

}
,

and q = pe for some non-negative integer e. If 5 ≤ n, then we prove that

A has the WLP if and only if
⌊
n(d−1)+3

2

⌋
≤ p. We first interpret the

WLP for the ring k[x1, . . . , xn]/(xd
1 , . . . , x

d
n) in terms of the degrees of the

non-Koszul relations on the elements xd1 , . . . , x
d
n−1, (x1 + . . . + xn−1)d in the

polynomial ring k[x1, . . . , xn−1]. We then exhibit a sufficient condition for
k[x1, . . . , xn]/(xd

1, . . . , x
d
n) to have the WLP. This condition is expressed in

terms of the non-vanishing in k of determinants of various Toeplitz matrices
of binomial coefficients. Frobenius techniques are used to produce relations of
low degree on xd

1 , . . ., x
d
n−1, (x1 + . . .+ xn−1)d. From this we obtain a neces-

sary condition for A to have the WLP. We prove that the necessary condition
is sufficient by showing that the relevant determinants are non-zero in k.

1. Introduction

Let A =
⊕

Ai be a standard graded algebra over the field k. Then A has the
Weak Lefschetz Property (WLP) if there exists a linear form L of A1 such that
multiplication by L from Ai → Ai+1 has maximal rank for each index i. In this
case, L is called a Lefschetz element of A. The set of Lefschetz elements forms a
(possibly empty) Zariski open subset of A1.

The WLP has been much investigated in recent times; see, for example, [4, 7, 9,
13–15]. Our interest in this topic was sparked by the following result, which was
established in [12].

Theorem 1.1. Let k be a field, P be the polynomial ring k[x1, x2, x3], n, N , and a
be positive integers, f = xn

1 +xn
2 +xn

3 , Rn = P/(f), and Rn,N = Rn/(x
N
1 , xN

2 , xN
3 ).

Assume that n does not divide N .
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(1) The following two statements are equivalent:
(a) The ring k̄[x1, x2, x3]/(x

a
1 , x

a
2 , x

a
3) does not have the WLP, where k̄ is

the algebraic closure of k.
(b) There exists a non-zero relation of degree less than � 3a

2 � on xa
1 , x

a
2 , (x1+

x2)
a in k[x1, x2].

(2) The following three statements are equivalent:
(a) The Rn-module Rn,N has finite projective dimension.

(b) The ring Rn,N has Cohen-Macaulay type 2.

(c) The algebra TorP• (Rn,N ,k) is in the class H(3, 2). (There is a very

short list of possible algebra structures for TorP• (P/I,k) when I is
an ideal of projective dimension two in a local ring (P,k). This list
was first found in [23] and later, using different techniques, in [3]. We
use the notation of [3], which is also used in [1] and [2]. The algebra

TorP• (P/I,k) is in the class H(3, 2) if it is isomorphic to a trivial
extension of the Tor-algebra of a hypersurface section of P/I ′, where
I ′ is a three-generated ideal of projective dimension one.)

(3) The assertions of (2) hold if and only if the the assertions of (1) hold for
at least one of the integers a = �N

n � or a = �N
n �. In particular,

pdRn
Rn,N < ∞ ⇐⇒ k̄[x1, x2, x3]/(x

a
1 , x

a
2 , x

a
3)

does not have the WLP for a = �N
n � or a = �N

n �.

The paper [12] is about the resolution of R by free R-modules. In particular, item
(2a) is one of the main concerns in [12]. Early in the investigation that led to [12], we
found a relationship between (2a) and (1b). Eventually, we found the equivalence
of (1a) and (1b) in [4]. (We have since learned that J. Watanabe [22, pg. 3165,
Rmk. (3)] knew some version of the equivalence of (1a) and (1b) and that this idea
is also used in [10].) In [12] we used the numerical values given in [4] to prove (3).
Lucho Avramov drew our attention to the equivalence of (2a), (2b), and (2c) in
a recent conversation. When we wrote [12] we were surprised by conclusion (3);
that is, we were surprised that the homological questions considered in [12] were
related to the WLP. Furthermore, we noticed that Li and Zanello [13] had found
“a surprising, and still combinatorially obscure, connection” between the monomial
complete intersection ideals in three variables which satisfy the WLP, as a function
of the characteristic of the base field, and the enumeration of plane partitions. In
the mean time, the connection between the WLP and the enumeration of plane
partitions has started to become less obscure and has started to be exploited; see
[5, 7]. At any rate, we now make sense of, generalize, and exploit the equivalence
of (1a) and (1b).

For a complete, up-to-date, history of the Lefschetz properties, both weak and
strong, over various types of Artinian algebras (those defined by monomials, or
defined by powers of linear forms, or complete intersections, or Gorenstein algebras,
or level algebras), in characteristic zero or positive characteristic, see [16]. The
present paper focuses on the WLP for monomial complete intersections.

Let A = k[x1, . . . , xn]/(x
d
1, . . . , x

d
n), where k is an infinite field. If k has char-

acteristic zero, then Stanley [20] (see also [18, 21]) proved that A has the Weak
Lefschetz Property (WLP). The story is much different in positive charac-
teristic! Henceforth, k has positive characteristic p. If n = 3, then Brenner and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE WLP FOR MONOMIAL COMPLETE INTERSECTIONS 4573

Kaid [4, Cor. 2.2 and Thm. 2.6] have identified all d, as a function of p, for which A
has the WLP. (Our version of the Brenner-Kaid answer may be found as [12, Thm.
5.11].) In the present paper, the analogous project is carried out for 4 ≤ n. If
4 ≤ n and p = 2, then A has the WLP if and only if d = 1; see Remark 5.2. Our
main results are Theorems 5.1 and 6.4. If n = 4 and p is odd, then we prove in
Theorem 5.1 that A has the WLP if and only if d = kq + r for integers k, q, r with
1 ≤ k ≤ p−1

2 , r ∈
{

q−1
2 , q+1

2

}
, and q = pe for some non-negative integer e. If 5 ≤ n,

then we prove in Theorem 6.4 that A has the WLP if and only if
⌊
n(d−1)+3

2

⌋
≤ p.

Basically there are five ingredients to our proof.
(1) We use ideas that we learned from [14] to interpret the WLP for the ring

k[x1, . . . , xn]/(x
d
1, . . . , x

d
n) in terms of the degrees of the non-Koszul relations on the

elements xd
1, . . . , x

d
n−1, (x1+ . . .+xn−1)

d in the polynomial ring k[x1, . . . , xn−1]. In
particular, we recover the result that conditions (1a) and (1b) from Theorem 1.1
are equivalent. (As previously noted, we learned about this equivalence from [4];
but it was also known in [22] and [10].) This step is carried out in Section 2.

(2) We obtain sufficient conditions that guarantee that the ring k[x1, . . . , xn]/
(xd

1, . . . , x
d
n) has the WLP. These conditions are based on estimates of the minimal

generating degree of

(xd
1, . . . , x

d
n−1) : (x1 + · · ·+ xn−1)

γ

(xd
1, . . . , x

d
n−1)

for various choices of γ (not only γ = d as ingredient (1) might suggest). This
minimal generator degree is known explicitly by Reid, Roberts, and Roitman [18]
(and implicitly by Stanley [20]) if the characteristic of k is zero; our calculations
take place when the field has positive characteristic. This step is carried out in
Section 3.

(3) Theorems 3.8 and 3.10 exhibit sufficient conditions for A = k[x1, . . . , xn]/
(xd

1, . . . , x
d
n) to have the WLP when n = 4 and 5 ≤ n, respectively. These conditions

are expressed in terms of the non-vanishing in k of determinants of various matri-
ces “Md,c,c,c” of binomial coefficients. These determinants have been calculated
classically; see [19].

(4) We use Frobenius techniques to find relations of low degree on

xd
1, . . . , x

d
n−1, (x1 + · · ·+ xn−1)

d.

This calculation produces our necessary conditions on d, p, n for A to have the WLP.
Section 4 culminates in Theorem 4.3 with a necessary condition for A to have the
WLP, when n = 4. The corresponding result for 5 ≤ n is Theorem 6.3.

(5) We prove that the necessary condition of (4) is indeed sufficient by showing
that the relevant determinants “detMd,c,c,c” are non-zero in k. Lemma 5.3 treats
the case n = 4; the case 5 ≤ n is contained in the proof of Theorem 3.10. The
verification that the relevant detMd,c,c,c are non-zero is much easier when 5 ≤ n
than when n = 4. This is because when 5 ≤ n, every integer that appears in
the classical expression for the factorization of detMd,c,c,c (see Proposition 3.3) is
less than p, whereas, when n = 4, one must actually count the number of p’s that
appear in the factorization for detMd,c,c,c.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4574 ANDREW R. KUSTIN AND ADELA VRACIU

We use the convention that if S is a statement, then

(1.1) χ(S) =

{
1 if S is true,

0 if S is false.

For example, if n is an integer, then �n
2 � =

n−χ(n is odd)
2 .

If m is a homogeneous element of a graded module M =
⊕

i∈Z
Mi, then we write

degm for the degree of M . We use sn( ) to indicate that the degree of an element
has been shifted by n. In other words, if m is an element of the graded module M ,
and n is an integer, then sn(m) is the element of M(−n) which corresponds to m.
In particular,

deg sn(m) = degm+ n.

So,

(1.2) m ∈ Mdegm =⇒ sn(m) ∈ M(−n)degm+n.

Definition 1.2. If M =
⊕

i∈Z
Mi is a graded module, then i0 ≤ mgd M means

Mi = 0 for all i < i0 and i0 = mgd M means Mi = 0 for all i < i0 with Mi0 �= 0.
In particular, if M is the zero module, then ∞ = mgd M , and if M is a finitely
generated non-zero graded module, then mgd M is an integer. The abbreviation
mgd stands for minimal generator degree.

Definition 1.3. Fix the data (k, n,a), where k is a field, n is a positive integer, and
a = (a1, . . . , an) is an ordered n-tuple of non-negative integers. Define ξ(k, n,a) to
be the homogeneous k[x1, . . . , xn−1]-module map

n⊕
i=1

k[x1, . . . , xn−1](−ai) → k[x1, . . . , xn−1],

which is given by the matrix

[xa1
1 , . . . , x

an−1

n−1 , (x1 + · · ·+ xn−1)
an ],

Syz(k, n,a) to be the kernel of ξ(k, n,a), Kos(k, n,a) the k[x1, . . . , xn−1]-sub-
module of Syz(k, n,a) which is generated by the Koszul relations on {xa1

1 , . . . , x
an−1

n−1 ,
(x1 + · · ·+ xn−1)

an},

Syz(k, n,a) =
Syz(k, n,a)

Kos(k, n,a)
,

A(k, n,a) the quotient

A(k, n,a) =
k[x1, . . . , xn]

(xa1
1 , . . . , xan

n )
,

K(k, n,a) the kernel of the homogeneous k[x1, . . . , xn]-module homomorphism

A(k, n,a)(−1)
L(k,n,a)

�� A(k, n,a) ,

where L(k, n,a) is the linear form x1 + ... + xn of k[x1, . . . , xn], and J(k, n,a, γ)
to be the ideal

J(k, n,a, γ) =
(xa1

1 , . . . , xan
n ) : (x1 + · · ·+ xn)

γ

(xa1
1 , . . . , xan

n )

of A(k, n,a).
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Remark 1.4. We use the notation a1 : r to mean that the integer a1 appears r
times. So, in particular, if d is a non-negative integer, then the map ξ(k, n, d :n) is
represented by the matrix

[xd
1, x

d
2, . . . , x

d
n−1, (x1 + · · ·+ xn−1)

d],

A(k, n, d :n) is the quotient

A(k, n, d :n) =
k[x1, . . . , xn]

(xd
1, . . . , x

d
n)

,

and if k and � are non-negative integers with � ≤ n, then the map ξ(k, n, (k + 1) :
�, k : (n− �)) is represented by the matrix

[xk+1
1 , . . . , xk+1

� , xk
�+1, . . . , x

k
n−1, (x1 + · · ·+ xn−1)

k].

Remark 1.5. For data (k, n,a) as described in Definition 1.3, Kos(k, n,a) is the
submodule of Syz(k, n,a) which is generated by all relations of the form[

0, · · · , 0, gj , 0, · · · , 0,−gi, 0, · · · , 0
]t
,

where gj appears in row i, −gi appears in row j and [g1, . . . , gn] = [xa1
1 , . . . x

an−1

n−1 ,
(x1 + · · ·+ xn−1)

an ].

Data 1.6. Fix the data (k, n,a), where k is a field, n is a positive integer, and
a = (a1, . . . , an) is an ordered n-tuple of positive integers.

Notation 1.7. If n is a positive integer, a = (a1, . . . , an) is an n-tuple of integers
and γ is an integer, then let |a|, E(n,a), and MN(n,a, γ) represent the integers

|a| =
n∑

i=1

ai, E(n,a) =

⌊
|a| − n+ 3

2

⌋
,

and MN(n,a, γ) = 1 +

⌊
|a| − n− γ

2

⌋
.

Many of our results are stated in terms of the relationship between the inte-
gers E(n,a) and mgd Syz(k, n,a) or between the integers MN(n,a, γ) and mgd
J(k, n,a, γ). The connection between these relationships and theWLP forA(k, n,a)
is explained in Corollary 2.2.

Remark 1.8. If A is a graded Artinian Gorenstein ring, then we write socdeg(A)
for the socle degree of A. If σ = socdeg(A), then Aσ �= 0, but Ai = 0 for all i with
σ < i. In particular, in the language of Data 1.6,

(1.3) socdeg(A(k, n,a)) = |a| − n.

Indeed, the monomial xa1−1
1 · · ·xan−1

n of k[x1, . . . , xn] represents a basis element of
the socle of A(k, n,a), which is a one-dimensional vector space.

Finally, we observe that our techniques also apply to the ring k[x1, . . . , xn]/
(xa1

1 , . . . , xan
n ), even when the ai’s do not all take the same value. Indeed, when a1 ≤

a2 ≤ a3 ≤ a1 + a2 and k is an infinite field, then the question “Does k[x1, x2, x3]/
(xa1

1 , xa2
2 , xa3

3 ) have the WLP?” is equivalent to

Question 1.9. Is the syzygy module for

k[x1, x2](−a1)⊕ k[x1, x2](−a2)⊕ k[x1, x2](−a3)
[x

a1
1 , x

a2
2 , (x1+x2)

a3 ]−−−−−−−−−−−−−−→ k[x1, x2]
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4576 ANDREW R. KUSTIN AND ADELA VRACIU

isomorphic to

k[x1, x2](−b1)⊕ k[x1, x2](−b2),

with b1 = �a1+a2+a3

2 � and b2 = �a1+a2+a3

2 �?

Question 1.9 is completely answered in Han’s thesis [8] for all data (a1, a2, a3, p),
where p is the characteristic of k. Our techniques reproduce Han’s answer to
Question 1.9.

2. The WLP and degrees of relations

Retain the notation of Data 1.6. In Corollary 2.2 we translate the weak Lef-
schetz property for A(k, n,a) into a condition on the minimal generator degree of
Syz(k, n,a). In particular, we recover the equivalence of (1a) and (1b) from The-
orem 1.1 when n = 3. The modules K(k, n,a) and Syz(k, n,a) may be found in
Definition 1.3.

Theorem 2.1. Fix (k, n,a) as in Data 1.6. Then the graded k[x1, . . . , xn]-modules
K(k, n,a) and Syz(k, n,a) are isomorphic.

Proof. We abbreviate A(k, n,a), K(k, n,a), Syz(k, n,a), Kos(k, n,a), and
Syz(k, n,a) as A, K, Syz, Kos, and Syz, respectively. Let P = k[x1, . . . , xn] and
Q = k[x1, . . . , xn−1] be polynomial rings, and L be the linear form x1 + ...+ xn of
P . View Q as the quotient of P under the k-algebra surjection ϕ : P → Q with
ϕ(xn) = −(x1 + ... + xn−1) and ϕ(xi) = xi for 1 ≤ i ≤ n − 1. Notice that the
ideal (L) of P is the kernel of ϕ. The ring Q is the homomorphic image of the ring
P under ϕ, so, every Q-module is also a P -module. In particular, Syz is a graded
P -module.

We first define a homogeneous P -module homomorphism α : K → Syz. Let
B be a homogeneous element of (xa1

1 , . . . , xan
n ) :P L. It follows that there exist

homogeneous polynomials B1, . . . , Bn in P with BL =
∑n

i=1 Bix
ai
i and degBix

ai
i =

degBL for all i. Let b be the element

b = [ϕ(B1), . . . , ϕ(Bn−1), (−1)anϕ(Bn)]
t of

n⊕
i=1

Q(−ai).

It is clear that b is in Syz because when ϕ is applied to BL =
∑n

i=1 Bix
ai
i , one

obtains

0 =
n−1∑
i=1

ϕ(Bi)x
ai
i + ϕ(Bn)(−(x1 + · · ·+ xn−1))

an

=
[
xa1
1 , ..., x

an−1

n−1 , (x1 + ...+ xn−1)
an
]
b.

Ultimately, α will send

(2.1) the class of s(B) in K to the class of b in Syz.

(The shift operator s is described in (1.2).) We need to show that this pro-
posed map is independent of the various choices which have been made. Notice
that if

∑n
i=1 Bix

ai
i =

∑n
i=1 B

′
ix

ai
i for some homogeneous forms {B′

i} in P , with
degBi equal to degB′

i, then [B1, . . . , Bn]
t − [B′

1, . . . , B
′
n]

t is in the submodule of⊕n
i=1 P (−ai) which is generated by the Koszul relations on xa1

1 , . . . , xan
n , and these

Koszul relations are carried to zero in Syz. Observe also that if B is in the ideal
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(xa1
1 , . . . , xan

n ) of P , then the proposed map sends B to zero. We have shown that

α : K → Syz, as described in (2.1), is a well-defined homomorphism of graded
P -modules.

Now we define a Q-module homomorphism β : Syz → K. Let b = [B1, . . . , Bn]
t

be a homogeneous element of Syz. It follows that

(2.2) B1x
a1
1 + · · ·+Bn−1x

an−1

n−1 +Bn(x1 + ...+ xn−1)
an = 0 in Q.

Let B be the polynomial B = B1x
a1
1 + · · · + Bn−1x

an−1

n−1 + Bn(−xn)
an in P . We

see that ϕ(B) is equal to the left hand side of (2.2); therefore, ϕ(B) = 0 and B is
divisible by L in P . It is clear that L(BL ) = B is in the ideal (xa1

1 , . . . , xan
n ) of P

and therefore the image of s(BL ) in A(−1) is in K. Ultimately, β will send

(2.3) the class of b in Syz to the class of s(BL ) in K.

We need to show that this proposed map is independent of the various choices
which have been made. If b had been in Kos, then it is easy to see that B

L is

in (xa1
1 , . . . , xan

n )P and hence s(BL ) represents the zero element in K. Thus, β :

Syz → K, as described in (2.3), is a well-defined Q-module homomorphism. We
notice that β is also a homomorphism of P -modules because every element of K is
annihilated by L; so xnθ + (x1 + · · ·+ xn−1)θ = 0 for all θ in K.

We show that β◦α is the identity map onK. LetB be a homogeneous polynomial
in P with LB =

∑n
i=1 Bix

ai

i for homogeneous polynomials Bi in P with degLB =
degBix

ai
i for all i. We have seen that

∑n
i=1 ϕ(Bi)x

ai
i is also divisible by L in P .

Let B′ be the homogeneous polynomial in P with LB′ =
∑n

i=1 ϕ(Bi)x
ai
i . We also

have seen that β ◦ α takes the class of sB in K to the class of sB′ in K. For each
i, we notice that Bi − ϕ(Bi) is in the kernel of ϕ; hence Bi − ϕ(Bi) is divisible by
L in P . It follows that L(B − B′) is in the ideal L(xa1

1 , . . . , xan
n ) in the domain P ,

and therefore B−B′ ∈ (xa1
1 , . . . , xan

n ) and B and B′ represent the same element of
A.

Finally, we consider the composition α ◦ β : Syz → Syz. If b = [B1, . . . , Bn]
t is a

homogeneous element of Syz, then β takes the class of b in Syz to the class of

s((B1x
a1
1 + · · ·+Bn−1x

an−1

n−1 +Bn(−xn)
an)/L)

in K and α ◦ β takes the class of b in Syz to the class of [ϕ(B1), . . . , ϕ(Bn−1),
(−1)an(−1)anϕ(Bn)]

t in Syz. ϕ acts like the identity on Q and each Bi is in Q, so,
α ◦ β is the identity map on Syz. �

Recall the integers MN(n,a, γ) and E(n,a) from Notation 1.7. Corollary 2.2 is
a list of equivalent conditions. Most of the equivalences are either due to [14] or
are due to bookkeeping. The new part of this result is the equivalence between (4)
or (5) and any of the other conditions. We use all of the conditions somewhere in
the paper. It is convenient to have them all in one place.

Corollary 2.2. Fix (k, n,a) as in Data 1.6. Let A represent A(k, n,a) and L
represent x1 + · · ·+ xn. The following statements are equivalent:

(1) The map, multiplication by L, from Ai to Ai+1, is injective for all i ≤⌊
|a|−n−1

2

⌋
.

(2) The map, multiplication by L, from Ai to Ai+1, is injective for all i =⌊
|a|−n−1

2

⌋
.
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(3) MN(n,a, 1) ≤ mgd J(k, n,a, 1).
(4) E(n,a) ≤ mgd Syz(k, n,a).
(5) MN(n− 1, (a1, . . . , an−1), an) ≤ mgd J(k, n− 1, (a1, . . . , an−1), an).

Furthermore, if the field k is infinite, then the above statements are also equivalent
to

(6) The ring A has the WLP.

Remark 2.3. Often, when one applies Corollary 2.2, one knows ahead of time that

E(n,a) ≤ mgd Kos(k, n,a).

Neither of these numbers require any algebraic calculation; in particular,
mgd Kos(k, n,a) is the sum of the two smallest elements of a. If E(n,a) ≤
mgd Kos(k, n,a), then Syzi = Syzi for all i < E(n,a); thus,

E(n,a) ≤ mgd Syz(k, n,a) ⇐⇒ E(n,a) ≤ mgd Syz(k, n,a).

Proof. It is obvious that (1) ⇒ (2). The implication (2) ⇒ (1) may be found
in [14, Prop. 2.1]. The equivalence of (1) and (3) follows from the definition of
MN(n,a, 1) and J(k, n,a, 1). Observe that

assertion (1) holds ⇐⇒
[
Ker

(
A(−1)

L−→ A
)]

i
= 0 ∀i ≤

⌊
|a|−n+1

2

⌋
⇐⇒

⌊
|a|−n+3

2

⌋
≤ mgd

[
Ker

(
A(−1)

L−→ A
)]

⇐⇒ E(n,a) ≤ mgd K(k, n,a)

⇐⇒ assertion (4) holds,

where the final equivalence is due to Theorem 2.1. The map[
f1, . . . , fn

]t �→ fn,

from

Syz(k, n,a) = ker[xa1
1 , . . . , x

an−1

n−1 , (x1 + · · ·+ xn−1)
an ]

to
(
(xa1

1 , . . . , x
an−1

n−1 ) : (x1 + · · ·+ xn−1)
an
)
(−an),

induces a degree preserving isomorphism

Syz(k, n,a)= Syz(k,n,a)
Kos(k,n,a) →

(
(x

a1
1 ,...,x

an−1
n−1 ):(x1+···+xn−1)

an

(x
a1
1 ,...,x

an−1
n−1 )

)
(−an)

= J(k, n− 1, (a1, . . . , an−1), an)(−an),

and this isomorphism explains (4) ⇐⇒ (5). Now assume that k is infinite. It
is shown in Propositions 2.2 and 2.1 of [14] (see also Remark 2.4 of the present
paper) that A has the WLP if and only if L is a Lefschetz element for A, and this is
equivalent to the assertion that the multiplication by L map from A�σ−1

2 � to A�σ+1
2 �

is injective, where σ = |a| − n is the socle degree of A; see (1.3). Thus, [14] shows
(1) ⇐⇒ (6). �

Remark 2.4 is well known; we include a proof of it for the sake of completeness.
This remark allows us to appeal to the results of [14] as they are written.

Remark 2.4. Let A be a standard graded Artinian Gorenstein algebra with even
socle degree 2s. If L is an element of A1 and multiplication by L gives an injective
map As−1 → As, then multiplication by L gives a surjection As → As+1.
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Proof. Fix a non-zero socle element ω of A2s. Let a be a non-zero element of As+1.
Multiplication gives a perfect pairing As−1 × As+1 → A2s; hence, there exists a
basis b1, . . . , br for As−1 such that ab1 = ω and abi = 0 for i ≥ 2. The hypothesis
ensures that Lb1, . . . , Lbr are linearly independent elements of As. Multiplication
As×As → A2s is a perfect pairing, so there exists an element c in As with c(Lb1) =
ω and c(Lbi) = 0 for i ≥ 2. We see that a − Lc is an element of As+1 with
(a − Lc)As−1 = 0. The fact that As−1 × As+1 → A2s is a perfect pairing yields
a = Lc. �

3. Conditions that guarantee that A(k, n, d : n) has the WLP

Data 3.1. Fix the data (k, n,a, γ), where k is a field, n is a positive integer, a =
(a1, . . . , an) is an n-tuple of positive integers, and γ is a non-negative integer. We
say that “inequality (3.1) holds for the data (k, n,a, γ)” if the inequality

(3.1) MN(n,a, γ) ≤ mgd J(k, n,a, γ)

holds.

The connection between inequality (3.1) and the Lefschetz property is made
quite clear in Corollary 2.2. In particular, if the field k is infinite, then

A(k, n,a) has the WLP ⇐⇒ inequality (3.1) holds for the data (k, n,a, 1)
⇐⇒ inequality (3.1) holds for the data

(k, n− 1, (a1, . . . , an−1), an).

Furthermore, the same style of argument shows that L = x1 + · · ·+ xn is a strong
Lefschetz element for A(k, n,a) if and only if inequality (3.1) holds for the data
(k, n,a, γ), for all values of γ. Stanley’s original proof [20] that L = x1+ · · ·+xn is
a strong Lefschetz element for A(C, n,a) involved the hard Lefschetz theorem from
algebraic geometry. Later proofs of the statement

if the characteristic of k is zero, then A(k, n,a) has the WLP

pass through inequality (3.1); see [21] and especially [18, Theorem 5]. In Lemma
3.6 we prove inequality (3.1) for the data (k, n, d : n, γ), under the hypothesis
that certain matrices Mt,b,s,s (see Definition 3.2) have non-zero determinant in
k. Lemma 3.6, as stated, includes an inductive hypothesis, but ultimately, in the
applications, this hypothesis is replaced by the assumption that detMt,b,s,s �= 0 in
k for certain choices of t, b, s. We apply Lemma 3.6 in two situations: n = 4 (see
Theorem 3.8 and also Theorem 5.1) and 5 ≤ n with d small when compared to the
characteristic of k (see Theorem 3.10 and also Theorem 6.4).

The matrices Mt,b,s,s have become ubiquitous in the study of the WLP. We were
first introduced to them in [13] where we learned that Paul Roberts calculated their
determinants in [19]. Roberts gives a reference to [17] from 1930. These matrices
are used to count plane partitions and other combinatorial objects (see the work
of Cook and Nagel [6, 7]); they are also used in the calculation of Hilbert-Kunz
multiplicities.
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Definition 3.2. Let t, b, r, c be integers, with r and c positive. Define Mt,b,r,c to
be the following r × c matrix of integers:

Mt,b,r,c =

⎡
⎢⎢⎢⎢⎣

(
t
b

) (
t

b−1

)
. . .

(
t

b−c+1

)
(

t
b+1

) (
t
b

)
. . .

(
t

b−c+2

)
...

...
...(

t
b+r−1

) (
t

b+r−2

)
. . .

(
t

b+r−c

)

⎤
⎥⎥⎥⎥⎦ .

(The parameters “t” and “b” stand for the top and bottom components in the
binomial coefficient in the upper left hand corner and “r” and “c” stand for the
number of rows and the number of columns. When r = c, we are likely to use the
parameter “s” for side length.) Recall that the binomial coefficient

(
m
i

)
is defined

to be

(
m

i

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m(m− 1) · · · (m− i+ 1)

i!
if 0 < i,

1 if 0 = i, and

0 if i < 0,

for all integers i and m. In particular,
(
m
i

)
= 0 whenever 0 ≤ m < i.

Proposition 3.3. If b, s, t are integers, with 0 ≤ b ≤ t and 1 ≤ s, then detMt,b,s,s

is a non-zero integer. Furthermore, if k is a field of characteristic p and t+ s ≤ p,
then detMt,b,s,s is a non-zero element of k.

Proof. The determinant of the matrix Mt,b,s,s is calculated in [19, page 335] to be(
t
b

)(
t+1
b

)
· · ·
(
t+s−1

b

)
(
b
b

)(
b+1
b

)
· · ·
(
b+s−1

b

) .
�

We collect a few properties of detMt,b,s,s.

Proposition 3.4. Let b, s, and t be integers, with 0 ≤ b ≤ t− 1 and 1 ≤ s. Then
the following statements hold:

(1) detMt,b,s,s = detMb+s,b,t−b,t−b and
(2) the matrix Mt,b,s,s is the transpose of Mt,t−b,s,s.

Proof. For (1), apply the proof of Proposition 3.3 to see that

detMt,b,s,s =

(
t
b

)(
t+1
b

)
· · ·
(
t+s−1

b

)
(
b
b

)(
b+1
b

)
· · ·
(
b+s−1

b

)

=

⎧⎪⎪⎨
⎪⎪⎩

(b+s
b )···(t−1

b )(tb)(
t+1
b )···(t+s−1

b )
(bb)(

b+1
b )···(b+s−1

b )(b+s
b )···(t−1

b )
if b+ s ≤ t,

(tb)(
t+1
b )···(b+s−1

b )(b+s
b )···(t+s−1

b )
(bb)(

b+1
b )···(t−1

b )(tb)(
t+1
b )···(b+s−1

b )
if t ≤ b+ s

=

(
b+s
b

)
· · ·
(
t+s−1

b

)
(
b
b

)
· · ·
(
t−1
b

) = detMb+s,b,t−b,t−b.
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For (2), the entry of Mt,t−b,s,s in position (r, c) is(
t

t− b+ (r − 1)− (c− 1)

)
=

(
t

t− b+ r − c

)
=

(
t

b− r + c

)

=

(
t

b+ (c− 1)− (r − 1)

)
,

which is the entry of Mt,b,s,s in position (c, r). The middle equality used the fact
that

(
a
b

)
=
(

a
b−a

)
for all integers a and b with 0 ≤ a. �

Often we consider the data

(3.2) (k, n, d, γ) where k is a field, n and d are positive integers

and γ is a non-negative integer.

From this data we create the n-tuple a = d :n.

Observation 3.5. Consider (k, n, d, γ) as described in (3.2) with n = 2 and γ
even. If inequality (3.1) holds for the data (k, n, d :n, γ), then inequality (3.1) holds
for the data (k, n, d :n, γ + 1).

Proof. Let γ = 2c and L = x1 + x2. We are given that d− c ≤ mgd
(

(xd
1 ,x

d
2):L

2c

(xd
1 ,x

d
2)

)
.

We must show that d− c− 1 ≤ mgd
(

(xd
1 ,x

d
2):L

2c+1

(xd
1 ,x

d
2)

)
. We have d− c− 1 < d− c ≤

mgd (xd
1, x

d
2); so we are also given that d−c ≤ mgd

(
(xd

1, x
d
2) :L

2c
)
, and it suffices to

prove that d−c−1 ≤ mgd
(
(xd

1, x
d
2) :L

2c+1
)
. Take a non-zero homogeneous element

b of (xd
1, x

d
2) :L

2c+1. It follows that bL is in (xd
1, x

d
2) :L

2c; thus, by hypothesis, the
degree of bL is at least d− c, and therefore, the degree of b is at least d− c− 1. �
Lemma 3.6. Fix (k, n, d, γ), as described in (3.2) with 2 ≤ n, and let

δ = min{MN(n, d :n, γ)− 1, d− 1}.
If n = 2, then assume that detMd,� γ

2 �,�
γ
2 �,�

γ
2 � �= 0 in k. If 3 ≤ n, then assume that

(1) detMγ,d−1−δ+�,δ−�+1,δ−�+1 �= 0 in k and
(2) inequality (3.1) holds for the data (k, n− 1, d : (n− 1), γ − 2�+ 2δ − d+ 1)

for all � with 0 ≤ � ≤ min{δ, γ}. Then inequality (3.1) holds for the data (k, n, d :
n, γ).

Proof. It is clear that inequality (3.1) holds for the data (k, n, d : n, γ) when
n(d−1)+1 ≤ γ and also when γ = 0 . Henceforth, we assume that 1 ≤ γ ≤ n(d−1).
Also, if n = 2 and the conclusion holds for even γ, then Observation 3.5 shows that
the conclusion holds for odd γ. Henceforth, when n = 2 we assume that γ is even.
We prove that

(3.3)
every element of (xd

1, . . . , x
d
n) :k[x1,...,xn](x1 + · · ·+ xn)

γ

of degree equal to
⌊
n(d−1)−γ

2

⌋
is in (xd

1, . . . , x
d
n).

Indeed, once we have shown (3.3), then the usual trick involving socle degree (see
Observation 3.7) yields that every homogeneous element of

(xd
1, . . . , x

d
n) :k[x1,...,xn](x1 + · · ·+ xn)

γ

of degree at most
⌊
n(d−1)−γ

2

⌋
is already in (xd

1, . . . , x
d
n). Of course,

⌊
n(d−1)−γ

2

⌋
=

MN(n, d :n, γ)− 1.
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In light of the goal (3.3), fix a homogeneous polynomial u ∈ k[x1, . . . , xn], with

u ∈ (xd
1, . . . , x

d
n) : (x1 + · · ·+ xn)

γ

and

(3.4) deg u =

⌊
n(d− 1)− γ

2

⌋
.

We show that u ∈ (xd
1, . . . , x

d
n). We write u as an element of (k[x1, . . . , xn−1])[xn].

The part of u that has degree at least d in xn already is in (xd
1, . . . , x

d
n). No harm

is done if we ignore this part of u and merely keep those terms that have degree in
xn of degree d− 1 or less. The parameter δ satisfies δ = min{deg u, d− 1}. Write

u =
∑δ

j=0 ujx
j
n with uj homogeneous of degree deg u − j in k[x1, . . . , xn−1]. We

show that u0, . . . , uδ are in (xd
1, . . . , x

d
n−1). Let L be the linear form

L = x1 + · · ·+ xn−1

in k[x1, . . . , xn−1]. If 0 ≤ k ≤ d− 1, then the coefficient of xk
n in

(L+ xn)
γu =

(∑
i∈Z

(
γ

i

)
Lγ−ixi

n

)⎛⎝ δ∑
j=0

ujx
j
n

⎞
⎠ =

∑
0≤k

⎛
⎝ δ∑

j=0

(
γ

k − j

)
Lγ+j−kuj

⎞
⎠xk

n

is in (xd
1, . . . , x

d
n−1). (Recall that the binomial coefficient

(
γ
i

)
is defined for all

integers i; furthermore, the product
(
γ
i

)
Lγ−i is in k[x1, . . . , xn−1] because

(
γ
i

)
is

zero whenever γ − i is negative.) It follows that

(3.5) 0 ≤ k ≤ d− 1 =⇒ Lγ−k
δ∑

j=0

(
γ

k − j

)
Ljuj ∈ (xd

1, . . . , x
d
n−1).

We express (3.5) as a statement about the entries of a product of matrices. Each
entry in the product

(3.6)

⎡
⎢⎣
Lγ

. . .

Lγ−(d−1)

⎤
⎥⎦Mγ,0,d,δ+1

⎡
⎢⎣
u0L

0

...
uδL

δ

⎤
⎥⎦

is in (xd
1, . . . , x

d
n−1). The matrix on the left of (3.6) is a d × d diagonal matrix;

the exponent decreases by 1 for each step down the diagonal. The product (3.6)
makes sense in k[x1, . . . , xn−1] because it is merely a re-phrasing of (3.5) which
clearly makes sense in k[x1, . . . , xn−1]. On the other hand, some of the individual
expressions in the matrix on the left of (3.6) might actually be rational functions
rather than polynomials. This does not cause a problem because before we employ
(3.6) (or any of its successors – especially (3.11)) we multiply on the left by a matrix
of polynomials which has the effect of clearing the denominators; see (3.12).

We have δ + 1 “unknowns” u0, . . . , uδ. We need only keep δ + 1 equations. In
other words, we may throw away the top d− 1− δ rows of (3.6). This means that
we may also remove the top d−1−δ rows of Mγ,0,d,δ+1 to obtain Mγ,d−1−δ,δ+1,δ+1.
Of course, we use

(3.7)

[
A 0
0 B

] [
C
D

]
=

[
AC
BD

]
.
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At this point, each entry of the product

(3.8)

⎡
⎢⎣
Lγ−(d−1−δ)

. . .

Lγ−(d−1)

⎤
⎥⎦Mγ,d−1−δ,δ+1,δ+1

⎡
⎢⎣
u0L

0

...
uδL

δ

⎤
⎥⎦

is in (xd
1, . . . , x

d
n−1).

We prove that the uj are in (xd
1, . . . , x

d
n−1) by descending induction on j begin-

ning at j = δ and continuing until j = 0. As soon as we learn that a given uj is in
(xd

1, . . . , x
d
n−1), we create a smaller square system of equations by removing uj and

the top equation. We remove the top equation because it is the equation which is
multiplied by the highest power of L. In practice, we find it convenient to set up
the entire family of systems of equations – one for each parameter “�” – and then
quickly apply the induction. To that end, we fix � with

(3.9)

{
0 ≤ � ≤ min{deg u, d− 1, γ} if 3 ≤ n,

� = 0 if 2 = n.

Recall that δ = min{deg u, d− 1} so

(3.10) � ≤ δ.

Delete the top � rows and the leftmost � columns of the matrix on the left of (3.8),
the top � rows and the rightmost � columns of the middle matrix, and the bottom
� rows of the column vector on the right. We obtain that each entry of the product

(3.11)

⎡
⎢⎣
Lγ−(d−1−δ)−�

. . .

Lγ−(d−1)

⎤
⎥⎦Mγ,d−1−δ+�,δ−�+1,δ−�+1

⎡
⎢⎣

u0L
0

...
uδ−�L

δ−�

⎤
⎥⎦

is in (xd
1, . . . , x

d
n−1, uδ+1−�, . . . , uδ). Be sure to notice that the matrix on the left

of (3.8) is a block diagonal matrix so the idea of (3.7) applies once again, and so
deleting the top � rows and the leftmost � columns of the matrix on the left and
the top � rows of the matrix in the middle merely deletes the top � rows from
the product. Also notice that it is legal to remove the rightmost � columns of the
middle matrix in (3.8) and the bottom � rows of the column vector on the right
because we moved this information to the other side of the equation. The middle
matrix Mγ,d−1−δ,δ+1,δ+1 of (3.8) becomes Mγ,d−1−δ+�,δ−�+1,δ−�+1 in (3.11) because
the new entry in position (1, 1) is

(
γ

d−1−δ+�

)
and the new matrix has δ− �+1 rows

and columns. Multiply the (δ − �+ 1)× (δ − �+ 1) matrix on the left of (3.11) by
the (δ − �+ 1)× (δ − �+ 1) matrix

(3.12)

⎡
⎢⎣
L0

. . .

Lδ−�

⎤
⎥⎦

to get Lγ−(d−1−δ)−� times the identity matrix, which is a scalar matrix. The scalar
matrix commutes with Mγ,d−1−δ−�,δ−�+1,δ−�+1. Notice that each entry of the ma-

trix of (3.12) is a polynomial by (3.10). Furthermore, we show that Lγ−(d−1−δ)−�

is also a polynomial by showing that

(3.13) d− 1 + � ≤ γ + δ.
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Indeed, if n = 2, then

(3.14) d− 1 ≤ d− 1 +
⌊γ
2

⌋
= min

{
d− 1 + γ, d− 1 +

⌊γ
2

⌋}
= γ + δ.

To establish (3.13) for 3 ≤ n, we first observe that

(3.15) γ ≤ d− 1 =⇒ d− 1 ≤ deg u.

Indeed, if one adds (n− 1)(d− 1)− γ to both sides of γ ≤ d− 1, then one obtains

(n− 1)(d− 1) ≤ n(d− 1)− γ.

Divide to see n−1
2 (d− 1) ≤ n(d−1)−γ

2 . The parameter n is at least 3 by hypothesis,

so 1 ≤ n−1
2 and d − 1 ≤ n(d−1)−γ

2 . Furthermore, d − 1 is an integer, so, d − 1 ≤
�n(d−1)−γ

2 � = deg u. Statement (3.15) has been established. We return to the proof
of (3.13). If d − 1 ≤ γ, then (3.13) holds because � ≤ δ by (3.10). On the other
hand, if γ ≤ d−1, then d−1 ≤ deg u by (3.15); hence, δ = min{d−1, deg u} = d−1
and (3.13) still holds because � ≤ γ by (3.9). Thus, (3.13) holds in all cases and
Lγ−(d−1−δ)−� is a polynomial, as was promised in the paragraph beneath (3.6).

Multiply (3.11) on the left by (3.12) to see that each entry of the product

(3.16) Mγ,d−1−δ+�,δ−�+1,δ−�+1L
γ−(d−1−δ)−�

⎡
⎢⎣

u0L
0

...
uδ−�L

δ−�

⎤
⎥⎦

is in the ideal (xd
1, . . . , x

d
n−1, uδ+1−�, . . . , uδ) of k[x1, . . . , xn−1].

At this point, we focus on the case n = 2. We saw at the very beginning of the
proof that when n = 2, it suffices to prove the result for even values of γ. So we
assume γ is even. We have � = 0 and δ = deg u = d− 1− γ

2 , so

detMγ,d−1−δ+�,δ−�+1,δ−�+1 = detMγ, γ2 ,d−
γ
2 ,d−

γ
2
= detMd, γ2 ,

γ
2 ,

γ
2
.

The final inequality is due to Proposition 3.5(1). Thus, Mγ,d−1−δ+�,δ−�+1,δ−�+1 is
an invertible matrix and (3.16) shows that

uiL
γ
2+i = uiL

γ−(d−1−δ)−�+i ∈ (xd
1)

for 0 ≤ i ≤ δ. On the other hand, deg ui+ i = deg u = d− 1− γ
2 . So, deg uiL

γ
2 +i =

d− 1, and therefore, ui = 0 for 0 ≤ i ≤ δ. The proof is complete when n = 2.
Henceforth, we assume that n = 3. Use (3.10) and (3.13) to verify that

0 ≤ d− 1− δ + � ≤ γ and 1 ≤ δ − �+ 1.

Recall from Proposition 3.3 that if b, s, t are integers, with 0 ≤ b ≤ t and 1 ≤
s, then detMt,b,s,s is a non-zero integer. It follows from hypothesis (1) that
Mγ,d−1−δ+�,δ−�+1,δ−�+1 is an invertible matrix over k. Multiply (3.16) by the in-
verse of Mγ,d−1−δ+�,δ−�+1,δ−�+1 in order to see that

(3.17) uδ−� ∈ (xd
1, . . . , x

d
n−1, uδ+1−�, . . . , uδ) : L

γ−2�+2δ−d+1.

Apply (3.13) and (3.10) to see that

0 ≤ γ − 2�+ 2δ − d+ 1.
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According to hypothesis (2), inequality (3.1) holds for the data (k, n−1, d, γ−2�+
2δ − d+ 1); therefore,
(3.18)

deg uδ−� = deg u− (δ − �) < 1 + �− δ + deg u = 1 + �− δ +
⌊
n(d−1)−γ

2

⌋
= 1 +

⌊
(n−1)(d−1)−(γ−2�+2δ−d+1)

2

⌋
≤ mgd

(xd
1 ,...,x

d
n−1):L

γ−2�+2δ−d+1

(xd
1 ,...,x

d
n−1)

.

Suppose that we have shown that uδ+1−�, . . . , uδ are in (xd
1, . . . , x

d
n−1), for some �

as described in (3.9); then (3.17) gives

uδ−� ∈ (xd
1, . . . , x

d
n−1) : L

γ−2�+2δ−d+1.

However, (3.18) shows that deg uδ−� < mgd
(xd

1 ,...,x
d
n−1):L

γ−2�+2δ−d+1

(xd
1 ,...,x

d
n−1)

, so uδ−� ∈
(xd

1, . . . , x
d
n−1). Thus, induction gives uδ−� ∈ (xd

1, . . . , x
d
n−1) for all � described in

(3.9). The maximum possible value of � is

min{deg u, d− 1, γ} = min{δ, γ}.
We have shown that

(3.19) uδ−min{δ,γ}, . . . , uδ ∈ (xd
1, . . . , x

d
n−1).

If δ ≤ γ, then min{δ, γ} = δ; hence u0, . . . , uδ are in (xd
1, . . . , x

d
n−1) and the proof

is complete.
Henceforth, we assume that γ < δ. In particular, we have γ < d − 1 (since

δ = min{d − 1, deg u}). Hence, (3.15) shows that d − 1 ≤ deg u, and therefore
δ = d− 1. In this case, (3.19) shows that

(3.20) ud−1−γ , . . . , uδ ∈ (xd
1, . . . , x

d
n−1).

Let k be a fixed parameter with γ ≤ k ≤ d− 1. We know from (3.5) that

(3.21) A+B + C ∈ (xd
1, . . . , x

d
n−1),

where

A =
k−γ−1∑
j=0

(
γ

k−j

)
Lj+γ−kuj ,

B =
k−γ∑

j=k−γ

(
γ

k−j

)
Lj+γ−kuj , and

C =
d−1∑

j=k−γ+1

(
γ

k−j

)
Lj+γ−kuj .

We see that γ < k−j in A; hence,
(

γ
k−j

)
= 0, and A = 0. We also see that B = uk−γ

and C is in (uk−γ+1, . . . , ud−1). Induction on k starting at k = d−2 and descending
until k = γ shows that ud−2−γ , . . . , u0 ∈ (xd

1, . . . , x
d
n−1, ud−1−γ , . . . , uδ). The most

recent ideal is equal to (xd
1, . . . , x

d
n−1) by (3.20), and the proof is complete. �

Observation 3.7. Let A be a standard graded Artinian Gorenstein algebra with
socle degree σ, J be a homogeneous ideal of A, and i and N be integers with
0 ≤ i ≤ N ≤ σ. If JN = 0, then Ji = 0.

Proof. Observe that JiAσ−i ⊆ JiAN−iAσ−N ⊆ JNAσ−N = 0. The ring A is Goren-
stein, so the multiplication Ai × Aσ−i → Aσ is a perfect pairing and
Ji = 0. �
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Theorem 3.8. Fix the data (k, d) with k a field and d a positive integer. If
detMd,c,c,c �= 0 in k for all integers c with 1 ≤ c ≤ d, then the following statements
hold:

(1) Inequality (3.1) holds for the data (k, 3, d :3, d).
(2) If the field k is infinite, then the ring A(k, 4, d :4) has the WLP.

Proof. According to Corollary 2.2 it suffices to prove (1). To that end, we apply
Lemma 3.6 to the data (k, n, d, γ) = (k, 3, d, d). In this case, we have

δ = MN(3, d :3, d)− 1 =

⌊
3(d− 1)− d

2

⌋
= d− 2.

Once we verify that

(1) detMγ,d−1−δ+�,δ−�+1,δ−�+1 �= 0 in k and
(2) inequality (3.1) holds for the data (k, n− 1, d : (n− 1), γ − 2�+ 2δ − d+ 1)

for all � with 0 ≤ � ≤ min{δ, γ}, then we may conclude that inequality (3.1) holds
for the data (k, n, d :n, γ). That is, once we verify that

(a) detMd,1+�,d−1−�,d−1−� �= 0 in k and
(b) inequality (3.1) holds for the data (k, 2, d :2, 2(d− 2− �) + 1)

for all � with 0 ≤ � ≤ d− 2, then inequality (3.1) holds for the data (k, 3, d :3, d).
Proposition 3.4(2) shows that detMd,�+1,d−1−�,d−1−� = detMd,c,c,c for c = d −

1 − � and that this determinant is non-zero in k by hypothesis; so (a) has been
verified. Observation 3.5 shows that if inequality (3.1) holds for the data (k, 2, d :
2, 2(d−2−�)), then inequality (3.1) also holds for the data (k, 2, d :2, 2(d−2−�)+1).
It is clear that inequality (3.1) also holds for the data (k, 2, d : 2, 0). Thus, to
establish (b), it suffices to verify that inequality (3.1) also holds for the data (k, 2, d :
2, 2c), with 1 ≤ c ≤ d− 1. Therefore, according to Lemma 3.6, it suffices to verify
that detMd,c,c,c is not zero in k for 1 ≤ c ≤ d− 1, and once again this assertion is
guaranteed by our hypothesis. So (a) and (b) have been verified and the proof is
complete. �

Corollary 3.9. Fix the data (k, n, d, γ) as described in (3.2) with 2 ≤ n and let p

be the characteristic of k. If
⌊
nd−n+2+γ

2

⌋
≤ p, then inequality (3.1) holds for the

data (k, n, d :n, γ).

Proof. The proof proceeds by induction on n. If n = 2 and d + �γ
2 � ≤ p, then

Proposition 3.3 shows that detMd,� γ
2 �,�

γ
2 �,�

γ
2 � is not zero in k; hence, Lemma 3.6

gives that (3.1) holds for the data (k, 2, d : 2, γ). Assume by induction that the

result holds at n− 1 and that we are given (k, n, d, γ) with
⌊
nd−n+2+γ

2

⌋
≤ p. Let

δ = min{MN(n, d :n, γ)− 1, d− 1} = min

{⌊
nd− n− γ

2

⌋
, d− 1

}
.

Apply Lemma 3.6. Once we verify that

(1) detMγ,d−1−δ+�,δ−�+1,δ−�+1 �= 0 in k and
(2) inequality (3.1) holds for the data (k, n− 1, d : (n− 1), γ − 2�+ 2δ − d+ 1)

for all � with 0 ≤ � ≤ min{δ, γ}, then we may conclude that inequality (3.1) holds
for the data (k, n, d : n, γ). Proposition 3.3 shows that if γ + δ + 1 ≤ p, then
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hypothesis (1) holds. The induction hypothesis shows that if

(3.22)

⌊
[(n− 1)d− (n− 1) + 2] + [γ + 2δ − d+ 1]

2

⌋
≤ p,

then hypothesis (2) is satisfied. Let Y be the expression on the left side of inequality
(3.22) and X = max{γ + δ + 1, Y }. We complete the proof by showing that

X ≤
⌊
nd−n+2+γ

2

⌋
. If d− 1 ≤

⌊
nd−n−γ

2

⌋
, then δ = d− 1 and

γ + δ + 1 = γ + d ≤ γ +

⌊
nd− n− γ

2

⌋
+ 1 =

⌊
nd− n+ 2 + γ

2

⌋
= Y ;

thus, X = Y =
⌊
nd−n+2+γ

2

⌋
. On the other hand, if

⌊
nd−n−γ

2

⌋
≤ d − 2, then

δ =
⌊
nd−n−γ

2

⌋
and

Y =

⌊
(n− 2)d− n+ 4 + γ

2

⌋
+ δ =

⌊
nd− n− γ

2

⌋
− d+ 2 + γ + δ ≤ γ + δ;

thus,

X = γ + δ + 1 = γ +

⌊
nd− n− γ

2

⌋
+ 1 =

⌊
nd− n+ 2 + γ

2

⌋
.

�

Theorem 3.10. Fix the data (k, n, d), where k is a field of positive characteristic

p, and d and n are positive integers with 3 ≤ n. Assume that
⌊
n(d−1)+3

2

⌋
≤ p.

Then the following statements hold:

(1) Inequality (3.1) holds for the data (k, n− 1, d : (n− 1), d).
(2) If the field k is infinite, then the ring A(k, n, d :n) has the WLP.

Proof. Apply Corollary 3.9 to the data (k, n − 1, d, d) in order to prove assertion
(1). Now apply Corollary 2.2 in order to prove (2). �

4. Producing relations of small degrees

Recall Definition 1.3 and Notation 1.7. In this section we use the Frobenius
endomorphism to produce elements of Syz(k, 4, d :4) of low degree. This calculation
gives rise to a necessary condition for

(4.1) E(4, d :4) ≤ mgd Syz(k, 4, d :4).

The necessary condition obtained in Theorem 4.3 is shown to be sufficient in The-
orem 5.1. Of course, when the field k is infinite, then inequality (4.1) is equivalent
to A(k, 4, d :4) has the WLP; see Corollary 2.2.

Lemma 4.1. Consider the data (k, d), where k is a field of positive characteristic
p and d is a positive integer. Write d = kq+r for integers k, q, r with 0 ≤ r ≤ q−1
and q = pe, for some positive integer e. Then the following statements hold:

(1) If 1 ≤ k, then mgd Syz(k, 4, d :4) ≤ qmgd Syz(k, 4, k :4) + 4r.
(2) If 0 ≤ k, then mgd Syz(k, 4, d :4) ≤ qmgd Syz(k, 4, (k + 1):4).
(3) If E(4, d :4) ≤ mgd Syz(k, 4, d :4), then E(4, (k + 1):4)− 1 ≤ mgd

Syz(k, 4, (k + 1):4).
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Proof. To prove (1), let η = [v1, v2, v3, v4]
t ∈ k[x1, x2, x3](−k)4 be a homogeneous

non-zero element of Syz(k, 4, k : 4) of degree mgd Syz(k, 4, k : 4). This gives the
equation

ξ(k, 4, k :4) · η = 0.

Apply the Frobenius endomorphism ( )q and multiply by xr
1x

r
2x

r
3(x1+x2+x3)

r to
see that ⎡

⎢⎢⎣
vq1x

r
2x

r
3(x1 + x2 + x3)

r

vq2x
r
1x

r
3(x1 + x2 + x3)

r

vq3x
r
1x

r
2(x1 + x2 + x3)

r

vq4x
r
1x

r
2x

r
3

⎤
⎥⎥⎦

is a non-zero homogeneous element of Syz(k, 4, d :4) of degree qmgd Syz(k, 4, k :
4) + 4r. For (2), let η = [v1, v2, v3, v4]

t ∈ k[x1, x2, x3](−k − 1)4 be a homogeneous
element of Syz(k, 4, (k + 1):4) of degree mgd Syz(k, 4, (k + 1) : 4), with η �= 0. It
follows that ⎡

⎢⎢⎢⎣
vq1x

q−r
1

vq2x
q−r
2

vq3x
q−r
3

vq4(x1 + x2 + x3)
q−r

⎤
⎥⎥⎥⎦ ∈ k[x1, x2, x3](−d)4

is a non-zero element of Syz(k, 4, d : 4) of degree qmgd Syz(k, 4, (k + 1) : 4). To
prove (3), apply (2) to see that

2qk− 1 ≤ 2(qk+ r)− 1 = 2d− 1 ≤ mgd Syz(k, 4, d :4) ≤ qmgd Syz(k, 4, (k+1):4).

Divide by q and recall that E(4, (k + 1):4) = 2k + 1 to obtain the conclusion. �

Lemma 4.2. Consider the data (k, k), where k is a field of characteristic p ≥ 3 and
k is an integer with 1 ≤ k ≤ p− 1. Then the following statements are equivalent:

(1) E(4, k :4)− 1 ≤ mgd Syz(k, 4, k :4),
(2) 1 ≤ k ≤ p+1

2 , and
(3) E(4, k :4) = mgd Syz(k, 4, k :4).

Proof. Recall that E(4, k :4) = 2k − 1. We show (1) ⇒ (2). The element

η =

⎡
⎢⎢⎣

xp−k
1

xp−k
2

xp−k
3

−(x1 + x2 + x3)
p−k

⎤
⎥⎥⎦ ∈ k[x1, x2, x3](−k)4

is a non-zero element of Syz(k, 4, k : 4) of degree p. If 2k − 2 ≤ mgd Syz(k, 4, k : 4),
then 2k − 2 ≤ p; hence k ≤ p+1

2 , since p is odd. For (2) ⇒ (3), note that k ≤
p+1
2 =⇒

⌊
4(k−1)+3

2

⌋
≤ p; hence, Theorem 3.10 yields

(4.2) inequality (3.1) holds for the data (k, 3, d :3, k).

On the other hand,

(4.2) holds ⇐⇒ MN(3, k :3, k) ≤ mgd J(k, 3, k :3, k)
⇐⇒ E(4, k :4) ≤ mgd Syz(k, 4, k :4)
⇐⇒ E(4, k :4) ≤ mgd Syz(k, 4, k :4).
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The first equivalence is the definition of (3.1); the second equivalence is Corol-
lary 2.2; the third equivalence is Remark 2.3 since E(4, k : 4) = 2k − 1 < 2k =
mgd Kos(k, 4, k :4). Thus,

k ≤ p+1
2 =⇒ 2k − 1 ≤ mgd Syz(k, 4, k :4).

To complete the proof of (2) ⇒ (3) it suffices to exhibit a relation of degree 2k− 1.
Let

g =
xk
2 − (−x3)

k

x2 + x3
∈ k[x2, x3],

and write (x1 + x2 + x3)
k = xk

1 + h(x2 + x3), with h ∈ k[x1, x2, x3]. We have

(x1 + x2 + x3)
kg = xk

1g + h(xk
2 − (−x3)

k),

which is a relation of the desired degree on xk
1 , x

k
2 , x

k
3 , (x1+x2+x3)

k. The assertion
(3) ⇒ (1) is obvious. �

Theorem 4.3. Consider the data (k, d), where k is a field of characteristic p ≥ 3
and d is a positive integer. If E(4, d :4) ≤ mgd Syz(k, 4, d :4), then
(4.3)

d = kq + r for integers k, q, r with 1 ≤ k ≤ p−1
2 , r ∈

{
q−1
2 , q+1

2

}
, and q = pe

for some non-negative integer e.

Proof. Notice first that d = p+1
2 is one of the numbers described by (4.3) because

p+1
2 = kq + r, with k = p−1

2 , q = p0, and r = q+1
2 . Therefore if 1 ≤ d ≤ p, then

d is described by (4.3) if and only if 1 ≤ d ≤ p+1
2 . If d < p, then the present

result follows from Lemma 4.2. Henceforth, we consider p ≤ d. Write d in the form
d = kq+ r, where 1 ≤ k ≤ p−1, 0 ≤ r ≤ q−1, and q = pe for some positive integer
e. Part (3) of Lemma 4.1 implies that E(4, (k+1):4)−1 ≤ mgd Syz(k, 4, (k+1):4).
Therefore Lemma 4.2 implies that k + 1 ≤ p+1

2 ,

2k − 1 = E(4, k :4) = mgd Syz(k, 4, k :4),

and

2k + 1 = E(4, (k + 1):4) = mgd Syz(k, 4, (k + 1):4).

Parts (1) and (2) of Lemma 4.1 now give

2(kq + r)− 1 = 2d− 1 ≤ mgd Syz(k, 4, d :4) ≤ min{q(2k − 1) + 4r, q(2k + 1)},
and the conclusion follows. �

5. The calculation of detMd,c,c,c

In this section we complete the proof of Theorem 5.1.

Theorem 5.1. Fix the data (k, d), where k is a field of characteristic p ≥ 3 and d
is a positive integer. Then

E(4, d :4) ≤ mgd Syz(k, 4, d :4) ⇐⇒ d is described by (4.3).

In particular, if the field k is infinite, then

A(k, 4, d :4) has the WLP ⇐⇒ d is described by (4.3).

Proof. Theorem 4.3 establishes the direction (⇒). The direction (⇐) is shown in
Theorem 3.8 and Lemma 5.3. The connection between mgd Syz(k, 4, d :4) and the
WLP may be found in Corollary 2.2 and Remark 2.3. �
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Remark 5.2. If k is a field of characteristic 2 and d is an integer with 2 ≤ d, then

mgd Syz(k, 4, d :4) < E(4, d :4),

and, if the field k is infinite, then A(k, 4, d :4) does not have the WLP; see (6.7).

Lemma 5.3. Let p be an odd prime and k a field of characteristic p. If (d, c)
is a pair of integers with 1 ≤ c ≤ d and d of the form described in (4.3), then
detMd,c,c,c �= 0 in k.

Proof. Write d = kpe + r for integers k, q, d with 1 ≤ k ≤ p−1
2 , r = pe+1

2 − ε where
ε ∈ {0, 1}, and 0 ≤ e. We know from Proposition 3.3 that

detMd,c,c,c =

(
d
c

)(
d+1
c

)
· · ·
(
d+c−1

c

)
(
c
c

)(
c+1
c

)
· · ·
(
2c−1

c

) ;

therefore, detMd,c,c,c is equal to

(5.1)
(d+ c− 1)1(d+ c− 2)2 · · · (d+ 1)c−1dc(d− 1)c−1 · · · (d− c+ 1)1

(2c− 1)1(2c− 2)2 · · · (c+ 1)c−1cc(c− 1)c−1 · · · (1)1 .

Notice that if c = d, then detMd,c,c,c is non-zero in k. Henceforth, we assume that
1 ≤ c ≤ d− 1.

Let N and D be the numerator and the denominator of (5.1), respectively. Also,
let op( ) be the p-adic order function, that is, pop(N) divides N , but pop(N)+1 does
not divide N . For each positive power λ, let Nλ =

∑
�i (respectively, Dλ =

∑
�i),

where the sum is taken over all listed factors v�ii of N (respectively, D) from (5.1)
such that pλ divides vi in Z. Observe that

op(N) =
∑
1≤λ

Nλ and op(D) =
∑
1≤λ

Dλ.

We show that detMd,c,c,c is non-zero in k by showing op(N) = op(D) in Z; indeed,
we show that Nλ = Dλ in Z, for all positive integers λ.

Fix a positive integer λ with the property that at least one of the integers Nλ

or Dλ is non-zero. In other words, pλ divides at least one of the listed factors of

either N or D. Let ρλ = pλ+1
2 . We first observe that λ ≤ e because

pλ ≤ d+ c− 1 ≤ 2d− 2 = 2
(
kpe + pe+1

2 − ε
)
− 2

≤ 2
(

p−1
2 pe + pe+1

2 − ε
)
− 2 = pe+1 − 1− 2ε < pe+1.

Now we observe that

(5.2) d+ ε− ρλ = pλ · uλ,

for some non-negative integer uλ. Indeed,

d+ ε− ρλ =

(
kpe +

pe + 1

2

)
− pλ + 1

2
= pλ

(
kpe−λ +

pe−λ − 1

2

)
,

and we may take kpe−λ + pe−λ−1
2 to be uλ. Finally, we observe that

(5.3) ρλ ≤ c.

Indeed, we show that if (5.3) fails, then pλ does not divide any of the listed factors
of N or D. We treat D first. If (5.3) fails, then 2c− 1 < 2ρλ − 1 = pλ and pλ does
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not divide any of the listed factors of D. Now we treat N . Suppose that (5.3) fails
and α = pλi satisfies

d− c+ 1 ≤ α ≤ d+ c− 1,

for some positive integer i. We know from (5.2) that d+ ε = ρλ + pλuλ, so,

pλuλ = d+ ε− ρλ < d− c+ 1 ≤ α = pλi ≤ d+ c− 1 < d+ ρλ − 1
= (ρλ + pλuλ − ε) + ρλ − 1 = pλρλ + pλ − ε ≤ pλ(uλ + 1).

That is, pλuλ < pλi < pλ(uλ + 1), which is impossible because the parameters
uλ < i < uλ + 1 all are integers. Now that (5.3) is established, we let

#λ =

⌊
c− ρλ
pλ

⌋
and bλ = c− ρλ − pλ#λ.

Notice that #λ is a non-negative integer and 0 ≤ bλ ≤ pλ − 1. Observe that
Dλ = D′

λ +D′′
λ with

D′
λ =

∑
{α|1≤α≤c and pλ|α}

α and D′′
λ =

∑
{α|c+1≤α≤2c−1 and pλ|α }

(2c− α).

We simplify D′
λ. Let α = i · pλ, for some positive integer i. We add over all i with

1 ≤ i · pλ ≤ c.

In other words, i must satisfy

1 · pλ ≤ i · pλ ≤ bλ + ρλ + pλ#λ.

If bλ + ρλ < pλ, then the sum stops at pλ#λ. If pλ ≤ bλ + ρλ, then the sum stops
at pλ(#λ + 1). At any rate,

D′
λ =

#λ∑
i=1

i · pλ + χ(pλ ≤ bλ + ρλ)p
λ(#λ + 1).

Our use of “χ” is described in (1.1). The index i in D′′
λ must satisfy

1 + bλ + ρλ + pλ#λ ≤ i · pλ ≤ 2(bλ + ρλ + pλ#λ)− 1 = 2bλ + (2#λ + 1)pλ.

If bλ + ρλ + 1 ≤ pλ, then the sum starts at i = #λ + 1; otherwise, the sum starts
at i = #λ + 2. The sum always goes at least until i = 2#λ + 1. If pλ ≤ 2bλ, then
the sum also includes a term for i = 2#λ + 2. Thus,

D′′
λ =

⎧⎨
⎩ χ(bλ + ρλ < pλ)(2c− (#λ + 1) · pλ) +

2#λ+1∑
i=#λ+2

(2c− i · pλ)

+χ(pλ ≤ 2bλ)(2c− (2#λ + 2) · pλ).
At this point we have

Dλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#λ∑
i=1

i · pλ + χ(pλ ≤ bλ + ρλ)p
λ(#λ + 1)

+χ(bλ + ρλ < pλ)(2c− (#λ + 1) · pλ) +
2#λ+1∑
i=#λ+2

(2c− i · pλ)

+χ(pλ ≤ 2bλ)(2c− (2#λ + 2) · pλ).
Notice that
(5.4)

χ(pλ ≤ bλ + ρλ) = χ(pλ ≤ bλ +
pλ+1

2 ) = χ(2 · pλ ≤ 2bλ + pλ +1) = χ(pλ ≤ 2bλ +1).
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Notice also that if pλ = 2bλ + 1, then

c = bλ + ρλ + pλ#λ = pλ−1
2 + pλ+1

2 + pλ#λ = (#λ + 1)pλ;

hence,

χ(pλ = 2bλ + 1)(2c− (2#λ + 2) · pλ) = 0

and

χ(pλ ≤ 2bλ)(2c− (2#λ + 2) · pλ) = χ(pλ ≤ 2bλ + 1)(2c− (2#λ + 2) · pλ).

It follows that

Dλ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#λ∑
i=1

i · pλ + χ(pλ ≤ 2bλ + 1)pλ(#λ + 1)

+χ(bλ + ρλ < pλ)(2c− (#λ + 1) · pλ) +
2#λ+1∑
i=#λ+2

(2c− i · pλ)

+(χ(pλ ≤ 2bλ + 1))(2c− (2#λ + 2) · pλ)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

#λ∑
i=1

i · pλ + χ(bλ + ρλ < pλ)(2c− (#λ + 1) · pλ)

+
2#λ+1∑
i=#λ+2

(2c− i · pλ) + χ(pλ ≤ 2bλ + 1)(2c− (#λ + 1) · pλ).

Apply (5.4) again to see that

Dλ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

#λ∑
i=1

i · pλ + χ(bλ + ρλ < pλ)(2c− (#λ + 1) · pλ)

+
2#λ+1∑
i=#λ+2

(2c− i · pλ) + χ(pλ ≤ bλ + ρλ)(2c− (#λ + 1) · pλ)

=
#λ∑
i=1

i · pλ +
2#λ+1∑
i=#λ+1

(2c− i · pλ)

= 2c(#λ + 1)− pλ(#λ + 1)2.

Now, we simplify Nλ = N ′
λ +N ′′

λ for

N ′
λ =

∑
{α|d−c+1≤α≤d and pλ|α }

(c− d+ α)

and

N ′′
λ =

∑
{α|d+1≤α≤d+c−1 and pλ|α }

(c+ d− α).

We continue to write α = i · pλ, for some i. Recall the integer uλ from (5.2).
Observe that

d− c+ 1 ≤ i · pλ ≤ d ⇐⇒ pλ(uλ −#λ)− bλ − ε+ 1 ≤ i · pλ ≤ pλuλ + ρλ − ε.

In N ′
λ, the parameter i always stops at i = uλ because 0 ≤ ρλ − ε < pλ. In N ′

λ, the
parameter i begins at i = uλ −#λ, unless 0 < −bλ − ε+1. If 0 < −bλ − ε+1, then
the parameter i does not begin until i = uλ −#λ + 1. Thus,

N ′
λ = −χ(bλ + ε < 1)(c− d+ (uλ −#λ) · pλ) +

uλ∑
i=uλ−#λ

(c− d+ i · pλ).
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On the other hand, if bλ + ε < 1, then bλ = ε = 0 and (c− d+ (uλ −#λ) · pλ) = 0.
It follows that

N ′
λ =

uλ∑
i=uλ−#λ

(c− d+ i · pλ).

We study N ′′
λ . When α = i · pλ, we use 2ρλ − 1 = pλ to see that

d+1 ≤ α ≤ d+ c− 1 ⇐⇒ pλ ·uλ+1+ ρλ− ε ≤ i · pλ ≤ pλ · (uλ+#λ +1)+ bλ− ε.

The parameter i in N ′′
λ always begins at i = uλ +1 because 0 < 1+ ρλ − ε ≤ pλ. If

0 ≤ bλ − ε, then the parameter i in N ′′
λ ends at uλ +#λ +1. If bλ − ε < 0, then the

parameter i ends at i = uλ +#λ. On the other hand, bλ − ε < 0 only if bλ = 0 and
ε = 1, and, in this case, the term from N ′′

λ which corresponds to i = uλ +#λ + 1
is c+ d− (uλ +#λ + 1)pλ = 0. We conclude that

N ′′
λ =

uλ+#λ+1∑
i=uλ+1

(c+ d− ipλ).

Thus,

Nλ =

uλ∑
i=uλ−#λ

(c− d+ i · pλ) +
uλ+#λ+1∑
i=uλ+1

(c+ d− ipλ) = 2c(#λ + 1)− (#λ + 1)2pλ.

We have Nλ = Dλ, and the proof is complete. �

6. The WLP for A(k, n, d :n) when 5 ≤ n

Our answer to the question “What is the intuition behind the fact that A(k, n, d :
n) never has the WLP when n is at least 5, unless d is very small with respect to the
characteristic of k?”, is contained in the proof of part (1) of Lemma 6.2. There are
many ways to produce relations of low degree on [xd

1, . . . , x
d
n−1, (x1 + · · ·+ xn−1)

d]
when d and n are sufficiently large; see especially (6.6). We nail down the details
in Theorem 6.3. The ultimate result is Theorem 6.4.

Recall that if A =
⊕

i∈Z
Ai is a graded algebra over the field A0, with A finitely

generated as an algebra over A0, then the Hilbert function of A is the function
H(A, ) : Z → N with H(A, i) equal to the dimension of Ai as a vector space
over A0. Assertion (1) of Proposition 6.1 is a statement about the unimodality
of the Hilbert function of a complete intersection. The word “strictly” is the key
word in the assertion. We have imposed sufficient hypotheses to guarantee that the
Hilbert function does not reach a wide plateau before it starts its descent. (Notice
that k[x1]/(x

a1
1 ) has a wide plateau if 2 ≤ a1.) This calculation is well known by

the experts; see for example [18, Thm. 1]. Our interest in Hilbert functions is
explained in part (2) of Proposition 6.1. Recall, from Corollary 2.2, that if the field
k is infinite, then

A(k, n,a) has the WLP ⇐⇒ E(n,a) ≤ mgd Syz(k, n,a).

In Proposition 6.1 we have identified a hypothesis that guarantees that the reverse
inequality automatically holds on the right hand side. Of course, this inequality
provides the starting point for the relations of low degree which are built in Lemma
6.2.
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Proposition 6.1. Fix (k, n,a) as in Data 1.6. Let A = A(k, n,a). Assume that
2 ≤ n and |as − at| is equal to 0 or 1 for all indices s and t. Then the following
statements hold:

(1) the Hilbert function H(A, i) is a strictly increasing function for 0 ≤ i ≤
socdeg(A)/2 and

(2) mgd Syz(k, n,a) ≤ E(n,a).

Proof. Let σ = socdeg(A). Assume (1) for the time being. We show that (1) ⇒ (2).
The k-algebra A is a standard graded Artinian Gorenstein ring, so the Hilbert
function of A satisfies the symmetry

(6.1) H(A, i) = H(A, σ − i), for all integers i.

(The symmetry of H(A, ) is well known; see, for example, [11, Thm 9.1].) We now
have

H(A, �σ+3
2 �) = H(A, σ − �σ−2

2 �) = H(A, �σ−2
2 �) < H(A, �σ

2 �)
= H(A, σ − �σ

2 �) = H(A, �σ+1
2 �).

The inequality in the middle follows from (1); the inner equalities follow from
(6.1) and the outer equalities amount to calculations with rational numbers. At
any rate, the vector space A�σ+3

2 � has less dimension than A�σ+1
2 �, multiplication

by L = x1 + · · · + xn from A�σ+1
2 � to A�σ+3

2 � is not injective; and the minimal

generator degree of the kernel of L : A(−1) → A is at most �σ+3
2 �. (As always, we

have A(−1)�σ+3
2 � = A�σ+1

2 �.) In other words,

mgd K(k, n,a) ≤
⌊
σ+3
2

⌋
.

Apply Theorem 2.1, (1.3), and Notation 1.7 to obtain the conclusion of (2).
Now we prove (1). It suffices to prove the result when 2 ≤ as for all s, because, by

deleting all indices s with as = 1, one obtains new data (k, n′,a′) with A(k, n,a) =
A(k, n′,a′) and 2 ≤ a′s for all s. It is possible that n′ is equal to 0 or 1, but in this
case, some of the original ai are equal to 1 and A is equal to k or k[x1]/(x

2
1). The

assertion that H(A, i) is a strictly increasing function for 0 ≤ i ≤ σ/2 is not very
interesting for these rings A, but it is true. Henceforth, we assume that 2 ≤ as for
all s and 2 ≤ n.

Fix an index i with 1 ≤ i ≤ σ/2. We show that H(A, i − 1) < H(A, i). The
proof is by induction on n. Assume first that n = 2. In this case, σ = a1 + a2 − 2,
and the hypothesis that a2 differs from a1 by at most 1 guarantees that �σ/2� ≤
min{a1 − 1, a2 − 1}. It follows that

H(A, i− 1) = H(k[x1, x2], i− 1) = i < i+ 1 = H(k[x1, x2], i) = H(A, i).

Henceforth, we assume that 3 ≤ n. Partition the monomials of Ai−1 into two sets
S1 ∪ S2, where S1 consists of those monomials that are not divisible by xan−1

n and
S2 consists of those monomials that are divisible by xan−1

n . In a similar manner,
we partition the monomials of Ai in two sets T1 ∪ T2, where T1 consists of those
monomials divisible by xn and T2 consists of those monomials not divisible by xn.
We see that H(A, i− 1) = |S1|+ |S2| and H(A, i) = |T1|+ |T2|, where |“set”| is the
number of elements of “set”. Observe that multiplication by xn gives a bijection
between S1 and T1. To prove the result, it suffices to show that |S2| < |T2|.

Let A′ = k[x1, . . . , xn−1]/(x
a1
1 , . . . , x

an−1

n−1 ) and σ′ = socdegA′. We see that
|S2| = H(A′, i − an) and |T2| = H(A′, i). The induction hypothesis applies to A′;
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furthermore, the Hilbert function H(A′, ) is symmetric about σ′/2. To prove the
result it suffices to prove

(1) i ≤ σ′ and
(2) |i− σ′/2| < |(i− an)− σ′/2|.

We start with i ≤ σ/2; thus, to show (1), it suffices to show that σ/2 ≤ σ′. We see
that σ′ = σ − (an − 1). It suffices to show that σ/2 ≤ σ − (an − 1) and hence, it
suffices to show that 2an ≤ σ+2. This is clear because the hypotheses ensure that
3 ≤ n and an ≤ aj + 1 for all j.

To prove (2) it is useful to consider the three rational numbers λ < μ < ν with
λ = σ′/2, μ = σ/2, and ν = σ′/2 + an. We see that μ − λ = (an − 1)/2 and
ν − μ = (an + 1)/2; therefore,

(6.2) 0 ≤ μ− λ ≤ ν − μ.

The hypothesis gives i < μ. We must prove |i−λ| < |i−ν|. The triangle inequality,
together with (6.2), gives

|i− λ| = |(i− μ) + (μ− λ)| ≤ |i− μ|+ |μ− λ| ≤ |i− μ|+ (ν − μ)

= (μ− i) + (ν − μ) = ν − i = |ν − i|.
�

Lemma 6.2. Consider the data (k, n, d), where k is a field of positive characteristic
p, and d and n are integers with 1 ≤ d and 2 ≤ n. Write d = kq + r for integers
k, q, r with 0 ≤ r ≤ q − 1 and q = pe, for some positive integer e.

(1) If 1 ≤ k and � is an integer with 0 ≤ � ≤ n− 1, then

mgd Syz(k, n, d :n) ≤
⌊
n(k − 1) + �+ 3

2

⌋
q + r(n− �).

(2) If k = 1, then mgd Syz(k, n, d :n) ≤ q + nr.
(3) If q

2 < d ≤ q, then mgd Syz(k, n, d :n) ≤ q.

(4) If k = 0, p = q, and p− d ≤ (n− 1)(d− 1), then mgd Syz(k, n, d :n) ≤ p.
(5) If p = 3 and d = 4, then mgd Syz(k, n, d :n) ≤ 9.

Proof. Let Q be the polynomial ring k[x1, . . . , xn−1] and let D represent the data
(k, n,a) with a equal to (d :n). For each assertion, we exhibit a non-zero element
of Syz(D) of the appropriate degree.

(1) Fix integers k and � with 1 ≤ k and 0 ≤ � ≤ n − 1. Assume further that
either

(6.3) � = r = 0 or 1 ≤ r ≤ q − 1 and 0 ≤ � ≤ n− 1.

Observe that once (1) is established for � = r = 0, it also holds for 0 ≤ � ≤ n − 1
and r = 0. Indeed, when r = 0, the minimum of the set{⌊

n(k − 1) + �+ 3

2

⌋
q + r(n− �) | 0 ≤ � ≤ n− 1

}
is

⌊
n(k − 1) + 3

2

⌋
q,

and this value is attained when � = 0.
Let D′ represent the data (k, n,a′) with a′ = ((k + 1) : �, k : (n − �)). Observe

that Proposition 6.1 may be applied to the data D′. Conclude that

mgd Syz(D′) ≤
⌊
�(k + 1) + (n− �)k − n+ 3

2

⌋
=

⌊
n(k − 1) + �+ 3

2

⌋
.
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Let η′ ∈ Syz(D′) be a homogeneous representative of a non-zero element of Syz(D′)
of degree mgd Syz(D′). We have η′ = [v1, . . . , vn]

t ∈ Syz(D′), for some homoge-
neous polynomials vi in k[x1, . . . , xn−1], with ξ(D′) · η′ = 0 and

(6.4) vn /∈ (xk+1
1 , . . . , xk+1

� , xk
�+1, . . . , x

k
n−1)Q.

Apply the Frobenius endomorphism to obtain the equation

(6.5) [ξ(D′)][q] · [η′][q] = 0

with [ξ(D′)][q] = [x
(k+1)q
1 , . . . , x

(k+1)q
� , xkq

�+1, . . . , x
kq
n−1, (x1+ · · ·+xn−1)

kq] and [η′][q]

= [vq1 , . . . , v
q
n]

t. Multiply equation (6.5) by xr
�+1 · · ·xr

n−1(x1+ · · ·+xn−1)
r to obtain

(6.6) η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vq1x
q−r
1 xr

�+1x
r
�+2 · · ·xr

n−1(x1 + · · ·+ xn−1)
r

...

vq�x
q−r
� xr

�+1x
r
�+2 · · ·xr

n−1(x1 + · · ·+ xn−1)
r

vq�+1 xr
�+2 · · ·xr

n−1(x1 + · · ·+ xn−1)
r

...

vqn xr
�+1x

r
�+2 · · ·xr

n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

in Syz(D). In other words, η is a homogeneous element of Q(−d)n which is in the
kernel of ξ(D) = [xd

1, . . . , x
d
n−1, (x1 + · · ·+ xn−1)

d]. It is clear that

deg η = (deg η′)q + r(n− �) ≤
⌊
n(k − 1) + �+ 3

2

⌋
q + r(n− �).

It remains to show that η /∈ Kos(D). In other words, it remains to show that
vqnx

r
�+1x

r
�+2 · · ·xr

n−1 is not an element of the ideal (xd
1, . . . , x

d
n−1)Q. The original

hypothesis (6.4) about vn guarantees that there is a monomial m = xe1
1 . . . x

en−1

n−1

which appears in vn with a non-zero coefficient and for which{
ei < k + 1 for 1 ≤ i ≤ � and

ei < k for �+ 1 ≤ i ≤ n− 1.

LetM be the monomialmqxr
�+1x

r
�+2 · · ·xr

n−1. We see thatM appears in vqnx
r
�+1x

r
�+2

· · ·xr
n−1 with a non-zero coefficient. We must show that M is not in the ideal (xd

1,

. . . , xd
n−1)Q. Write M = xε1

1 · · ·xεn−1

n−1 for

εi =

{
eiq for 1 ≤ i ≤ �,

eiq + r for �+ 1 ≤ i ≤ n− 1.

We see that εi < d{
provided 1≤r for 1≤ i≤�, because d=kq+r and ei<k+1,
without any restrictions for �+1 ≤ i ≤ n− 1, because d=kq+r and ei<k.

The assumptions of (6.3) are in effect; hence, εi < d for all i and the proof of (1) is
complete.

(2) Proceed as in (1), with � = 0, until reaching η as given in (6.6). Notice
that η′ = [1, . . . , 1, (−1)]; so vqn = (−1)q and vqnx

r
1 · · ·xr

n−1 /∈ (xd
1, . . . , x

d
n−1) because

r < q + r = d. Thus, η represents a non-zero element of Syz(D) of degree q + nr.

(3) Let η = [xq−d
1 , . . . , xq−d

n−1,−(x1 + · · · + xn−1)
q−d]t in Q(−d)n. It is clear

that η is in the kernel of ξ(D); hence η is an element of Syz(D) of degree q. The
hypothesis that q

2 < d guarantees that q − d < d, and therefore η /∈ Kos(D).
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(4) Take η as described in (3). Notice that the hypothesis p−d < (n−1)(d−1)
guarantees that (x1+· · ·+xn−1)

p−d /∈ (xd
1, . . . , x

d
n−1); therefore, η represents a non-

zero element of Syz(D) of degree p.
(5) Take η as described in (3) with q = 9. Notice that x2

1x
3
2 appears in (x1 +

· · ·+xn−1)
5 with the non-zero coefficient 1. Thus, (x1+· · ·+xn−1)

5 /∈ (x4
1, . . . , x

4
n−1)

and η represents a non-zero element of Syz(D) of degree 9. �

Theorem 6.3. Fix the data (k, n, d), where k is a field of positive characteristic p,
and d and n are positive integers with p < E(n, d :n) and 5 ≤ n. Then the following
statements hold:

(1) mgd Syz(k, n, d :n) < E(n, d :n) and
(2) if the field k is infinite, then the ring A(k, n, d :n) does not have the WLP.

Proof. In this proof, we write A and Syz in place of A(k, n, d :n) and Syz(k, n, d :n),
respectively. In light of Corollary 2.2, it suffices to prove (1). The proof is carried
out by analyzing a large number of cases. In each case, we apply Lemma 6.2 to
estimate an upper bound for mgd Syz.

Case 1. Assume that d = q, for some q = pe, where e is an integer with 1 ≤ e. Part

(3) of Lemma 6.2 gives mgd Syz ≤ q. We see that q < 5(q−1)+3
2 ≤

⌊
n(d−1)+3

2

⌋
=

E(n, d :n).

Henceforth in this proof we may assume that d is not equal to a pure power
of p.

Case 2. Assume that p = 2. The hypothesis p < E(n, d : n) is equivalent, when
p = 2, to the hypothesis 2 ≤ d; therefore, we may identify an integer e with 2 ≤ e
and 2e−1 < d < 2e. Part (3) of Lemma 6.2 shows that mgd Syz ≤ 2e. On the other
hand, we see that

(6.7) 2e =
2e+1

2
<

4(2e−1) + 3

2
≤
⌊
n(d− 1) + 3

2

⌋
= E(n, d :n).

In (6.7), we used the inequality 4 ≤ n. Therefore, we have shown that

mgd Syz(k, n, d :n) < E(n, d :n)

when k is a field of characteristic 2, 2 ≤ d, and n = 4; see Remark 5.2.

Henceforth in this proof we may assume that p is an odd prime.

Case 3. Assume d < p. The hypothesis p < �n(d−1)+3
2 � guarantees that 2 ≤ d;

therefore,

p− d < p <

⌊
n(d− 1) + 3

2

⌋
≤ n(d− 1) + 3

2
≤ n(d− 1) + 3(d− 1)

2

=
n+ 3

2
(d− 1) ≤ (n− 1)(d− 1).

Apply part (4) of Lemma 6.2 to see that mgd Syz ≤ p, which is less than E(n, d :n)
by hypothesis.

Henceforth in this proof we may assume that p < d. (The case p = d is covered
in Case 1.)
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Case 4. Assume p = 3 and 4 ≤ d ≤ 8. If n = 5 and d = 4, then part (2) of Lemma
6.2 gives mgd Syz ≤ 8, which is less than 9 = E(n, d : n). Throughout the rest
of Case 4 we assume that 6 ≤ n or 5 ≤ d. Parts (3) and (5) of Lemma 6.2 give
mgd Syz ≤ 9. If 6 ≤ n, then

9 < 10 = � 6·3+3
2 � ≤ �n(d−1)+3

2 � = E(n, d :n).

If 5 ≤ d, then 9 < 11 = � 5·4+3
2 � ≤ �n(d−1)+3

2 � = E(n, d :n).

Before we consider Case 5, we lay out the plan of attack that will be used in
the main body of the argument. As noted in Case 3, we may assume that p < d.
Throughout the rest of the proof, we write d in the form

d = kq + r for integers k, q, r with 1 ≤ k, 0 ≤ r ≤ q − 1 and q = pe,

for some positive integer e.

Cases 4 and 2 show that we need only consider q that are at least 5. Part (1) of
Lemma 6.2 shows that

mgd Syz ≤
⌊
n(k − 1) + �+ 3

2

⌋
q + r(n− �),

for each integer � with 0 ≤ � ≤ n− 1. So, if

(6.8)

⌊
n(k − 1) + �+ 3

2

⌋
q + r(n− �) <

⌊
n(d− 1) + 3

2

⌋
,

for some integer �, with 0 ≤ � ≤ n− 1, then mgd Syz ≤ E(n, d :n) and the proof is
complete for the data (k, n, d). We have

n(kq + r − 1) + 2

2
=

n(d− 1) + 2

2
≤
⌊
n(d− 1) + 3

2

⌋
.

We also have⌊
n(k − 1) + �+ 3

2

⌋
=

n(k − 1) + �+ 3− χ(n(k − 1) + � is even)

2
,

so the inequality (6.8) is implied by(
n(k − 1) + �+ 3− χ(n(k − 1) + � is even)

2

)
q + r(n− �) <

n(kq + r − 1) + 2

2
,

which is equivalent if

(6.9) r(n− 2�) + n− 2 < (n− �− 3 + χ(n(k − 1) + � is even))q.

We have shown that if (6.9) holds for some integer �, with 0 ≤ � ≤ n− 1, then the
proof is complete for the data (k, n, d).

Case 5. Assume r = 0 and 5 ≤ q. If � = 0, then

(6.10) (6.9) ⇐⇒ n− 2 < (n− 3 + χ(n(k − 1) is even))q.

To show the right side of (6.10), it suffices to observe (n− 2) < (n− 3)5, and this
is clear. Thus, (6.9) holds in this case.

Henceforth in this proof we may assume that 1 ≤ r.
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Case 6. Assume n = 5 and 5 ≤ q. If � = 4, n = 5, and k is odd, then

(6.11) (6.9) ⇐⇒ 1
3q + 1 < r.

If � = 3, n = 5, and k is even, then

(6.12) (6.9) ⇐⇒ 3 < r.

If � = 2, n = 5, and k is odd, then

(6.13) (6.9) ⇐⇒ r < q − 3.

If � = 1, n = 5, and k is even, then

(6.14) (6.9) ⇐⇒ r < 2
3q − 1.

If 7 ≤ q and k is odd, then 1
3q + 1 < q − 3; hence (6.11) and (6.13) show that

(6.9) holds. If q = 5, k is odd, and r �= 2, then (6.11) and (6.13) again show that
(6.9) holds. If 7 ≤ q and k is even, then 3 < 2

3q − 1; hence (6.12) and (6.14) show
that (6.9) holds. If q = 5, k is even, and r �= 3, then again (6.12) and (6.14) show
that (6.9) holds. It is still necessary to consider q = 5 and d equal to 1 · 5 + 2,
3 · 5 + 2, 2 · 5 + 3, and 4 · 5 + 3. If d = 7, then part (2) of Lemma 6.2 gives
mgd Syz ≤ 15 < 16 = E(5, 7 : 5). If d is 13, 17, or 23, then 25

2 < d < 25; thus,

part (3) of Lemma 6.2 gives mgd Syz ≤ 25 < 31 = � 5(13−1)+3
2 � ≤ E(5, d : 5). Thus,

the inequality of assertion (1) from the statement of Theorem 6.3 holds whenever
n = 5 and q ≤ 5,

Case 7. Assume n = 6 and 5 ≤ q. If � = 4, then

(6.9) ⇐⇒ 2 < r.

If � = 2, then

(6.9) ⇐⇒ r < q − 2.

We have 2 < q − 2; so, (6.9) holds always under the hypotheses of Case 7.

Case 8. Assume n is odd, 7 ≤ n, 5 ≤ q, and 1 ≤ r. Let χ0 = χ(k is odd). If
� = 3 + χ0, then

(6.9) ⇐⇒ r(n− 6− 2χ0) + n− 2 < q(n− 6− χ0 + χ(k + χ0 is even)).

We see that k + χ0 is always even; therefore χ(k + χ0 is even) = 1 and (6.9) is
equivalent to

(6.15) r(n− 6− 2χ0) + n− 2 < q(n− 5− χ0).

If (n − 6 − 2χ0) is negative, then n = 7, χ0 = 1, and (6.15) holds. Otherwise,
0 ≤ (n− 6− 2χ0) and

r(n− 6− 2χ0) ≤ (q − 1)(n− 6− 2χ0),

since r ≤ q − 1. To prove (6.15), it suffices to prove

(q − 1)(n− 6− 2χ0) + n− 2 < (n− 5− χ0)q,

and this is equivalent to 4 + 2χ0 < (1 + χ0)q. The most recent inequality holds
because 5 ≤ q and χ0 is either 0 or 1. So, (6.9) always holds under the hypotheses
of Case 8.
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Case 9. Assume n is even, 8 ≤ n, and 5 ≤ q. If � = n
2 , then

(6.16) (6.9) ⇐⇒ n− 2 < (n2 − 3 + χ(n2 is even))q.

The inequality on the right side of (6.16) holds when n = 8 because 6 < (2)5 ≤ 2q.
For 10 ≤ n, it suffices to observe that n− 2 < (n2 − 3)5, and this is clear. �
Theorem 6.4. Fix the data (k, n, d), where k is a field of positive characteristic p,
and d and n are positive integers with 5 ≤ n. Then the following statements hold:

(1) E(n, d :n) ≤ mgd Syz(k, n, d :n) ⇐⇒ E(n, d :n) ≤ p and
(2) if the field k is infinite, then the ring A(k, n, d :n) has the WLP if and only

if
⌊
n(d−1)+3

2

⌋
≤ p.

Proof. The integer E(n, d :n) is equal to
⌊
n(d−1)+3

2

⌋
; thus, in light of Corollary 2.2

it suffices to establish (1). The direction

mgd Syz(k, n, d :n) < E(n, d :n) ⇐ p < E(n, d :n)

is Theorem 6.3. The direction

inequality (3.1) for (k, n− 1, d : (n− 1), d) ⇐ E(n, d :n) ≤ p

is Theorem 3.10. Of course,

inequality (3.1) for (k, n− 1, d : (n− 1), d) ⇐⇒ E(n, d :n) ≤ mgd Syz(k, n, d :n)

is (5) ⇐⇒ (4) in Corollary 2.2. �
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