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THE WEAK METRIC APPROXIMATION PROPERTY

ÅSVALD LIMA AND EVE OJA

Abstract. We introduce and investigate the weak metric approxima-
tion property of Banach spaces which is strictly stronger than the ap-
proximation property and at least formally weaker than the metric ap-
proximation property. Among others, we show that if a Banach space
has the approximation property and is 1-complemented in its bidual,
then it has the weak metric approximation property. We also study the
lifting of the weak metric approximation property from Banach spaces
to their dual spaces. This enables us, in particular, to show that the
subspace of c0, constructed by Johnson and Schechtman, does not have
the weak metric approximation property.

1. Introduction

Let X and Y be Banach spaces. We denote by L(X,Y ) the Banach
space of bounded linear operators from X to Y , and by F(X,Y ), K(X,Y ),
and W(X,Y ) its subspaces of finite rank operators, compact operators, and
weakly compact operators.

Recall that a Banach space X is said to have the approximation property

(AP) if there exists a net (Sα) ⊂ F(X,X) such that Sα → IX uniformly on
compact subsets of X. If (Sα) can be chosen with supα ‖Sα‖ ≤ 1, then X is
said to have the metric approximation property (MAP).

The following is a famous open problem (see, e.g., [1, page 289]).

Problem 1.1. Does the approximation property of the dual space X∗ of a
Banach space X imply the metric approximation property of X∗?

In Section 2 of this paper, we introduce the weak metric approximation
property of Banach spaces and make a preliminary study of it in a more
general context of the weak λ-bounded approximation property. The weak
metric approximation property is strictly stronger than the AP and at least
formally weaker than the MAP. But, for example, it is different from the
8-bounded approximation property.

In Section 3, we describe the weak metric approximation property in terms
of trace mappings. Among other things, we show that the approximation
property of X∗ implies the weak metric approximation property of X∗. Thus
Problem 1.1 is equivalent to the following.

Problem 1.2. Does the weak metric approximation property of X∗ imply the
metric approximation property of X∗?
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It is well known (see, e.g. [3, page 193]) that X∗ has the MAP if and only
if, for every Banach space Y , the trace mapping V : X∗⊗̂πY → F(Y,X)∗ is
isometric. Our results in Section 3 show that Problem 1.1 is equivalent to
the following.

Problem 1.3. If, for every reflexive Banach space Y , the trace mapping V :
X∗⊗̂πY → F(Y,X)∗ is isometric, must X∗ have the metric approximation
property?

In Section 4, we study the lifting of the weak metric approximation prop-
erty from Banach spaces to their dual spaces. This enables us, in particular,
to show that the subspace of c0, constructed by Johnson and Schechtman,
does not have the weak metric approximation property. This also permits
us to reformulate Problem 1.1 as follows.

Problem 1.4. If X has the weak metric approximation property in every
equivalent norm, must X∗ have the metric approximation property?

The main tool that we shall use in our proofs is the isometric version of
the famous Davis-Figiel-Johnson-PeÃlczyński factorization lemma [2] due to
Lima, Nygaard, and Oja [13]. In this paper, it will simply be called the
factorization lemma. We shall apply it in several different situations and,
in summa summarum, we probably need all aspects of it.

Let us fix some more notation. We consider normed linear spaces (Banach
spaces) over the same field of real or complex numbers. In a linear normed
space X, we denote BX(0, r) = {x ∈ X : ‖x‖ ≤ r} and BX = BX(0, 1). The
closure of a set A ⊂ X is denoted by A, its linear span by spanA, its convex
hull by convA, and its absolutely convex hull by absconvA. We shall always
regard X as a subspace of X∗∗. Thus the identity operator IX on X is also
considered as the embedding, identifying IX with the canonical embedding
jX : X → X∗∗. We denote the set of all weak∗ strongly exposed points of
BX∗ by w∗-sexpBX∗ .

2. The weak bounded approximation property

Let X be a Banach space and let 1 ≤ λ < ∞. Let us recall that X is
said to have the λ-bounded approximation property (λ-BAP) if there exists
a net (Sα) ⊂ F(X,X) with supα ‖Sα‖ ≤ λ such that Sα → IX uniformly on
compact subsets of X.

We shall say that X has the weak λ-bounded approximation property (weak
λ-BAP) if for every Banach space Y and for every operator T ∈ W(X,Y ),
there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤ λ‖T‖ such that
Sα → IX uniformly on compact subsets of X. We say that X has the weak
bounded approximation property (weak BAP) if X has the weak λ-BAP for
some λ. And we say that X has the weak metric approximation property

(weak MAP) if X has the weak 1-BAP.
Let us start with the following observations.

Proposition 2.1. If X has the λ-BAP, then X has the weak λ-BAP. If X
has the weak BAP, then X has the AP.

Proof. The first assertion is immediate from the definitions. So is the second
one if we take T = 0. ¤
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Proposition 2.2. There exists a separable Banach space X such that all

its duals are separable, X has the AP, but X does not have the weak BAP.

Proof. Let X be the space of Reinov in [19]. Then X, X∗, X∗∗, . . . are
all separable, X has the AP, and there exist a separable reflexive Banach
space Y and an operator T ∈ K(X,Y ) such that for any λ ≥ 1 the operator
T cannot be uniformly approximated on compact subsets of X by finite
rank operators with norms bounded by λ. This clearly contradicts the weak
BAP. ¤

We do not know whether the weak MAP and the MAP are different
properties. We conjecture that they are. But, as the next result shows, the
weak MAP and the BAP are in general different. And, for example, the
weak MAP is different from the weak 8-BAP.

Proposition 2.3. There exists a closed subspace X of c0 such that X has

the 8-BAP, but X does not have the weak MAP.

The space X in Proposition 2.3 is the Johnson-Schechtman space (see [11,
Corollary JS]). The proof of Proposition 2.3 relies on a lifting result from
Section 4 (see Theorem 4.1) and will be given in Section 4.

Theorem 2.4. Let X be a Banach space and let 1 ≤ λ <∞. The following

statements are equivalent.

(a) X has the weak λ-BAP.
(b) For every separable reflexive Banach space Y and for every operator

T ∈ K(X,Y ), there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤
λ‖T‖ such that Sα → IX in the strong operator topology.

(c) For every separable reflexive Banach space Y and for every operator

T ∈ K(X,Y ), there exists a net (Sα) ⊂ F(X,X) with supα ‖TSα‖ ≤
λ‖T‖ such that TSα → T in the strong operator topology.

(d) For every Banach space Y , for every operator T ∈ W(X,Y ) with

‖T‖ = 1, and for all sequences (xn) ⊂ X, and (y∗n) ⊂ Y ∗ with
∑∞

n=1 ‖xn‖‖y
∗
n‖ <∞, one has the inequality

|
∞

∑

n=1

y∗n(Txn)| ≤ λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

y∗n(TSxn)|.

Proof. For the proof, it is convenient to introduce the following statements.

(a′) The particular case of (a) with separable reflexive Y and T ∈ K(X,Y ).
(d′) The particular case of (d) with separable reflexive Y and T ∈ K(X,Y ).

(a′)⇒ (b)⇒ (c) and (d)⇒ (d′) are trivial.
(c)⇒ (d′) and (a)⇒ (d). Let Y , T with ‖T‖ = 1, (xn), and (y∗n) be as in

(d′) or (d). Let ε > 0 and choose N ∈ N such that
∑

n>N ‖xn‖‖y
∗
n‖ < ε.

Choose S ∈ F(X,X) such that ‖TS‖ ≤ λ and ‖y∗n‖‖TSxn − Txn‖ < ε/N
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for all n ≤ N . Then

|
∞

∑

n=1

y∗n(Txn)| ≤|
N

∑

n=1

y∗n(TSxn)|+ |
N

∑

n=1

y∗n((T − TS)xn)|+
∑

n>N

‖xn‖‖T‖‖y
∗
n‖

≤|
∞

∑

n=1

y∗n(TSxn)|+ (2 + λ)ε.

From this we get

|
∞

∑

n=1

y∗n(Txn)| ≤ sup
‖TS‖≤λ

S∈F(X,X)

|
∞

∑

n=1

y∗n(TSxn)| = λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

y∗n(TSxn)|.

(d′)⇒ (a′). Let Y and T be as in (a′). We may assume that ‖T‖ = 1.
We need to show that IX belongs to the closure of the absolutely convex
set {S ∈ F(X,X) : ‖TS‖ ≤ λ} ⊂ L(X,X) in the topology τ of uniform
convergence on compact subsets of X. If this is not the case, then there
exists ϕ ∈ (L(X,X), τ)∗ such that

|ϕ(IX)| > sup{|ϕ(S)| : S ∈ F(X,X), ‖TS‖ ≤ λ}.

By the description of (L(X,X), τ)∗, due to Grothendieck [8] (see, i.e., [14,
page 31]), there exist (xn) ⊂ X and (x∗n) ⊂ X∗ such that

∑

n ‖x
∗
n‖‖xn‖ <

∞ and ϕ(A) =
∑

n x∗n(Axn) for all A ∈ L(X,X). We may assume that
∑

n ‖xn‖ <∞ and 1 ≥ ‖x∗n‖ → 0.
Using the description of ϕ, we have

|
∞

∑

n=1

x∗n(xn)| > sup
‖TS‖≤λ

S∈F(X,X)

|
∞

∑

n=1

x∗n(Sxn)| = λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

x∗n(Sxn)|.

To show that this inequality cannot hold, we use the factorization lemma.
Let K = absconv((x∗n)∞n=1 ∪ T ∗(BY ∗)) ⊂ BX∗ . Since K is compact, there
exists a separable reflexive Banach space Z, which is a linear subspace of X∗,
such that the identity embedding J ∈ K(Z,X∗), ‖J‖ ≤ 1, and K ⊂ J(BZ).
Let zn ∈ BZ be such that x∗n = Jzn for all n. Then

∑

n ‖xn‖‖zn‖ <∞, and
considering J∗|X ∈ K(X,Z∗) we have, by (d′),

|
∞

∑

n=1

x∗n(xn)| =|
∞

∑

n=1

zn(J∗xn)| ≤ λ sup
‖J∗|XS‖≤1
S∈F(X,X)

|
∞

∑

n=1

zn(J∗Sxn)|

≤λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

x∗n(Sxn)|,

because ‖TS‖ = ‖S∗T ∗‖ ≤ ‖S∗J‖ = ‖J∗|XS‖ (recall that T ∗(BY ∗) ⊂
J(BZ)). The contradiction proves (a′).

(a′)⇒ (a). Let Y and T be as in (a). We may assume that ‖T‖ = 1.
We also may assume that Y is reflexive, because T can be isometrically
factorized through a reflexive Banach space (see [13, Theorem 2.2]). As in
the previous proof, we need to show that IX belongs to the τ -closure of
{S ∈ F(X,X) : ‖TS‖ ≤ λ} ⊂ L(X,X).
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Let C be a compact subset of X and let ε > 0. Define

C = {TS : S ∈ F(X,X), ‖Sa− a‖ < ε, a ∈ C} ⊂ F(X,Y ).

We shall show that C cannot be strongly separated from BF(X,Y )(0, λ). From
this it then follows that, for all δ > 0, there is some S ∈ F(X,X) such that
TS ∈ C ∩BF(X,Y )(0, λ + δ). From this (a) follows.

Let ϕ ∈ F(X,Y )∗ with ‖ϕ‖ = 1. From a theorem of Feder and Saphar
[5], for any η > 0, we can find a representation of ϕ as ϕ =

∑

n y∗n ⊗ x∗∗n ∈
Y ∗⊗̂πX

∗∗ with
∑

n ‖y
∗
n‖‖x

∗∗
n ‖ < 1 + η. Moreover, we may assume that

1 ≥ ‖y∗n‖ → 0 and
∑

n ‖x
∗∗
n ‖ < 1+2η. Let K = absconv((T ∗y∗n)∞n=1) ⊂ BX∗ .

By the factorization lemma, since K is compact, we can construct a sepa-
rable reflexive Banach space Z, sitting inside X∗, such that the embedding
operator J ∈ K(Z,X∗), ‖J‖ ≤ 1, and K ⊂ J(BZ). Let zn ∈ BZ be such
that Jzn = T ∗y∗n for all n. We have J∗|X ∈ K(X,Z∗). Using (a′), we can
find S ∈ F(X,X) such that ‖J∗|XS‖ ≤ λ and ‖Sa − a‖ < ε for all a ∈ C.
We get ‖J∗S∗∗‖ ≤ λ and

|ϕ(TS)| =|
∞

∑

n=1

(S∗∗x∗∗n )(T ∗y∗n)| = |
∞

∑

n=1

(J∗S∗∗x∗∗n )(zn)|

≤λ

∞
∑

n=1

‖x∗∗n ‖ < λ(1 + 2η).

This shows that

inf{|ϕ(TS)| : TS ∈ C} ≤ λ,

so that C cannot be strongly separated from BF(X,Y )(0, λ). ¤

3. The weak bounded approximation property and trace

mappings

Let us consider the trace mapping V from the projective tensor product
X⊗̂πY

∗ to F(X,Y )∗, the dual space of F(X,Y ), defined by

(V u)(T ) = trace(Tu), u ∈ X⊗̂πY
∗, T ∈ F(X,Y ),

that is, if u =
∑

n xn ⊗ y∗n with
∑

n ‖xn‖‖y
∗
n‖ <∞, then

(V u)(T ) =
∑

n

y∗n(Txn).

It is well known and easy to see that

‖V u‖ ≤ ‖u‖π, u ∈ X⊗̂πY
∗.

The following characterization of the λ-BAP, which is essentially due to
Grothendieck [8], is well known.

Theorem 3.1 (see, e.g., [3, page 193]). A Banach space X has the λ-BAP
if and only if, for every Banach space Y , the trace mapping V : X⊗̂πY

∗ →
F(X,Y )∗ satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X⊗̂πY

∗.

Defant and Floret [3, page 283] state as an open question whether it
is enough, for the λ-BAP of X, to check the condition of Theorem 3.1 only
for reflexive Banach spaces Y (they conjecture that it is not). As the next
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result shows, this would precisely mean the equivalence of the λ-BAP and
the weak λ-BAP.

Theorem 3.2. A Banach space X has the weak λ-BAP if and only if, for

every reflexive Banach space Y , the trace mapping V : X⊗̂πY
∗ → F(X,Y )∗

satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X⊗̂πY
∗.

Proof. Let X have the weak λ-BAP and let Y be a reflexive Banach space.
Consider any u =

∑

n xn ⊗ y∗n ∈ X⊗̂πY
∗ with

∑

n ‖xn‖‖y
∗
n‖ < ∞. Since

(X⊗̂πY
∗)∗ = L(X,Y ∗∗) = W(X,Y ), there exists T ∈ W(X,Y ) with ‖T‖ =

1 such that

‖u‖π = trace(Tu) =
∞

∑

n=1

y∗n(Txn).

Hence, using condition (d) of Theorem 2.4, we have

‖u‖π ≤ λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

y∗n(TSxn)| ≤ λ sup
‖S‖≤1

S∈F(X,Y )

|
∞

∑

n=1

y∗n(Sxn)| = λ‖V u‖.

To prove the converse, we shall verify condition (d) of Theorem 2.4. Let Y
be a Banach space, let T ∈ W(X,Y ), ‖T‖ = 1, and let sequences (xn) ⊂ X
and (y∗n) ⊂ Y ∗ satisfy

∑

n ‖xn‖‖y
∗
n‖ < ∞. We may assume that ‖y∗n‖ = 1,

n ∈ N.
Let K = T ∗(BY ∗). Since K is weakly compact absolutely convex subset

of BX∗ , by the factorization lemma, there exists a reflexive Banach space
Z, which is a linear subspace of X∗, such that the identity embedding J :
Z → X∗ has norm ≤ 1 and J∗(X∗∗) = Z∗. Moreover, T = UJ∗|X for some
operator U ∈ L(Z∗, Y ) with ‖U‖ = ‖T‖ = 1 and T ∗(BY ∗) ⊂ J(BZ). Let
zn ∈ BZ be such that T ∗y∗n = Jzn, n ∈ N. Denote

u =
∞

∑

n=1

xn ⊗ zn ∈ X⊗̂πZ

and consider the trace mapping V : X⊗̂πZ → F(X,Z∗)∗. By assumption,
‖u‖π ≤ λ‖V u‖.

Before applying this inequality, let us show that

BF(X,Z∗) ⊂ {J∗|XS : S ∈ F(X,X), ‖J∗|XS‖ ≤ 1}

in the norm topology of F(X,Z∗). First observe that J∗(X) = Z∗. In

fact, by the factorization lemma, we know that J ∗(X∗∗) = Z∗. For any
x∗∗ ∈ X∗∗, there is a bounded net (xα) ⊂ X such that xα → x∗∗ weak∗ in
X∗∗. Then J∗xα → J∗x∗∗ weak∗ in Z∗, hence weakly, because Z∗ is reflexive.

Consequently, J∗x∗∗ ∈ J∗(X)
w

= J∗(X), and therefore J∗(X) = J∗(X∗∗) =
Z∗. Finally, for any operator

∑m
n=1 x

∗
n ⊗ z∗n ∈ F(X,Z∗), one can now find

un ∈ X with ‖z∗n − J∗un‖ so small that for S =
∑m

n=1 x
∗
n ⊗ un ∈ F(X,X),

one has

‖
m

∑

n=1

x∗n ⊗ z∗n − J∗|XS‖ = ‖
m

∑

n=1

x∗n ⊗ (z∗n − J∗un)‖ ≤
m

∑

n=1

‖x∗n‖‖z
∗
n − J∗un‖

as small as one wants. From this, the above inclusion is clear.



D
R

A
FT

 2005-01-13 15:34

THE WEAK METRIC APPROXIMATION PROPERTY 7

Now we can conclude our proof in an obvious way (recall that J ∗|X ∈
L(X,Z∗) = (X⊗̂πZ)∗ and ‖TS‖ ≤ ‖J∗|XS‖ for all S ∈ F(X,X) because
T ∗(BY ∗) ⊂ J(BZ)):

|
∞

∑

n=1

y∗n(Txn)| =|
∞

∑

n=1

(J∗xn)(zn)| = |trace(J∗u)| ≤ ‖J‖‖u‖π

≤‖u‖π ≤ λ‖V u‖ = λ sup
S∈BF(X,Z∗)

|trace(Su)|

≤λ sup
‖J∗|XS‖≤1
S∈F(X,X)

|trace(J∗Su)| ≤ λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

(J∗Sxn)(zn)|

=λ sup
‖TS‖≤1

S∈F(X,X)

|
∞

∑

n=1

y∗n(TSxn)|.

¤

Corollary 3.3. Let a Banach space X be complemented in its bidual X∗∗

by a projection P . If X has the AP, then X has the weak ‖P‖-BAP.

Proof. Let Y be a reflexive Banach space. Consider the trace mapping
V : X⊗̂πY

∗ → F(X,Y )∗ and let u =
∑

n xn ⊗ y∗n ∈ X⊗̂πY
∗. We need to

show that ‖u‖π ≤ ‖P‖‖V u‖ (see Theorem 3.2). We are going to use some
well-known facts from the theory of tensor products of Banach spaces (see,
e.g., [4] or [20]).

Since X has the AP, X⊗̂πY
∗ can be canonically identified with the Banach

spaceN (Y,X) = (N (Y,X), ‖·‖N ) of nuclear operators. Let U ∈ N (Y,X) be
canonically identified with u. Then Uy =

∑

n y∗n(y)xn, y ∈ Y . On the other
hand, we also have the canonical identification of F(X,Y )∗ with the Banach
space I(Y,X∗∗) = (I(Y,X∗∗), ‖·‖I) of integral operators. The functional V u
considered as an integral operator acts as (V u)(y) =

∑

n y∗n(y)jXxn. Now
we clearly have U = P ◦ (V u). Since V u ∈ N (Y,X∗∗) and Y is reflexive,
N (Y,X∗∗) = I(Y,X∗∗) as Banach spaces. Consequently,

‖u‖π = ‖U‖N ≤ ‖P‖‖V u‖N = ‖P‖‖V u‖I = ‖P‖‖V u‖

as desired. ¤

Corollary 3.4. Let X be a Banach space. If X∗ has the AP, then X∗ has

the weak MAP.

Proof. Use that X∗ is complemented in X∗∗∗ by P = jX∗(jX)∗ and apply
Corollary 3.3. ¤

Thus, for dual Banach spaces the AP and the weak MAP are equivalent
properties. This means that Problems 1.1 and 1.2 (see Introduction) are
equivalent.

For dual spaces, the well-known analogue of Theorem 3.1 reads as follows.

Theorem 3.5 (see, e.g., [3, page 193]). A dual space X∗ of a Banach space

X has the λ-BAP if and only if, for every Banach space Y , the trace mapping
V : X∗⊗̂πY → F(Y,X)∗ satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X∗⊗̂πY .
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Using only reflexive Banach spaces instead of all Banach spaces gives the
following.

Theorem 3.6. For a Banach space X, the following statements are equiv-

alent.

(a) There exists λ ≥ 1 such that, for every reflexive Banach space Y ,
the trace mapping V : X∗⊗̂πY → F(Y,X)∗ satisfies ‖u‖π ≤ λ‖V u‖
for all u ∈ X∗⊗̂πY .

(b) For every reflexive Banach space Y , the trace mapping V : X∗⊗̂πY →
F(Y,X)∗ is isometric.

(c) X∗ has the weak MAP.

(d) X∗ has the AP.

Proof. (a)⇒ (d). Let us also consider the trace mapping W : X∗⊗̂πY →
F(X∗, Y ∗)∗. Then, for all u ∈ X∗⊗̂πY ,

‖u‖π ≤λ‖V u‖ = λ sup
T∈BF(Y,X)

|trace(Tu)| = λ sup
T∈BF(Y,X)

|trace(T ∗u)|

≤λ sup
S∈BF(X∗,Y ∗)

|trace(Su)| = λ‖Wu‖.

Thus, by Theorem 3.2, X∗ has the weak λ-BAP, hence X∗ has the AP.
(d)⇒ (c). See Corollary 3.4.
(c)⇒ (b). From Theorem 3.2, we know that the trace mapping W above

satisfies ‖u‖π = ‖Wu‖. To see that ‖Wu‖ = ‖V u‖, let us consider Wu and
V u as integral operators: Wu ∈ I(Y ∗, X∗∗∗) and V u ∈ I(Y ∗, X∗). As in
the proof of Corollary 3.3, one can easily verify that Wu = jX∗ ◦ (V u). But
then, by a well-known result of Grothendieck [8] (see, e.g., [4, page 233] or
[20, page 65]), ‖Wu‖I = ‖V u‖I as desired.

(b)⇒ (a). This is obvious. ¤

Remark 3.1. The trace mapping V is surjective in Theorem 3.6 because
the algebraic tensor product X∗ ⊗ Y is dense in both spaces (recall that
F(Y,X)∗ = I(X,Y ) = N (X,Y ) since Y is reflexive).

Remark 3.2. Since V is a bounded linear operator, one can clearly replace
X⊗̂πY

∗ by X ⊗π Y ∗ (the algebraic tensor product X ⊗ Y ∗ in its projective
norm) in Theorems 3.1 and 3.2. And one can replace X∗⊗̂πY by X∗ ⊗π Y
in Theorems 3.5 and 3.6.

In view of Theorem 3.6, one can reformulate Problem 1.1 as Problem 1.3
(see Introduction).

4. Lifting the weak metric approximation property from

Banach spaces to their dual spaces

There are Banach spaces having special geometric structure that permits
to lift the weak MAP from the space to its dual space. The following result
applies, for example, to Banach spaces X whose dual space X∗ has the
Radon-Nikodým property and contains no proper norming closed subspace
(see Remark 4.1 below).

Theorem 4.1. Let X be a Banach space such that X∗ = span(w∗-sexpBX∗).
If X has the weak MAP, then X∗ has the weak MAP.
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Proof. Since the weak MAP and the AP are equivalent for X∗ (see Corol-
lary 3.4), it suffices to prove that X∗ has the AP. This is equivalent to
the following well-known condition (due to Grothendieck [8]; see, e.g., [14,
Theorem 1.e.4]). For all sequences (x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ such that
∑

n ‖x
∗
n‖‖x

∗∗
n ‖ < ∞ and

∑

n x∗∗n (Tx∗n) = 0, whenever T ∈ F(X∗, X∗), one
has

∑

n x∗∗n (x∗n) = 0.
Let (x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ be as above. We may assume that

x∗n → 0, supn ‖x
∗
n‖ ≤ 1, and

M :=
∞

∑

n=1

‖x∗∗n ‖ <∞.

We shall use the factorization lemma. Let

c =

√

1

2
+

2

ln a

be the absolute constant, where a > 1 is the unique solution of the equation

∞
∑

n=1

an

(an + 1)2
= 1.

We know that c > 1.
For proving that

∑

n x∗∗n (x∗n) = 0, let us fix an arbitrary ε > 0, assuming
that ε < 4M . Choose N ∈ N such that

∑

n>N

‖x∗∗n ‖ <
ε

8
.

Approximating x∗1, . . . , x
∗
N respectively by x̂∗1, . . . , x̂

∗
N ∈ BX∗∩ span(w∗-sexpBX∗),

we have a finite subset C of w∗-sexpBX∗ and x̂∗1, . . . , x̂
∗
N ∈ BX∗ ∩ spanC

such that
√

‖x∗n − x̂∗n‖ <
ε

4Mc
, n = 1, . . . , N.

Notice that then

‖x∗n − x̂∗n‖ <
ε

4M
, n = 1, . . . , N.

Let us denote by K the closed absolutely convex hull in X∗ of the compact
set C ∪ {x̂∗1, . . . , x̂

∗
N} ∪ {0, x

∗
1, x

∗
2, . . .}. Since K ⊂ BX∗ and K is compact,

by the factorization lemma, there exists a reflexive Banach space Y , which
is a linear subspace of X∗, such that the identity embedding J : Y → X∗ is
compact and ‖J‖ ≤ 1. Moreover,

C ∪ {x̂∗1, . . . , x̂
∗
N} ∪ {0, x

∗
1, x

∗
2, . . .} ⊂ J(BY ).

Since X has the weak MAP, for the operator J ∗|X ∈ K(X,Y ∗), there
exists a net (Sα) ⊂ F(X,X) with ‖J∗|XSα‖ ≤ 1 for all α such that J∗Sαx→
J∗x in Y ∗ for all x ∈ X. This yields that (S∗αJy)(x) → (Jy)(x) for all y ∈ Y
and x ∈ X. Observe that ‖S∗αJ‖ ≤ 1 for all α because S∗αJ = (J∗|XSα)∗

and ‖J∗|XSα‖ ≤ 1.
Consider now any x∗ ∈ C. Then x∗ = Jy with y ∈ BY , implying that

‖S∗αx
∗‖ = ‖S∗αJy‖ ≤ ‖y‖ ≤ 1. Since x∗ is also a weak∗ strongly exposed

point of BX∗ and (S∗αx
∗)(x) → x∗(x) for all x ∈ X, it follows that S∗αx

∗ →
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x∗ in X∗. Consequently, S∗αx
∗ → x∗ for all x∗ ∈ spanC, in particular,

S∗αx̂
∗
n → x̂∗n for n = 1, . . . , N . Let us fix an α such that

‖x̂∗n − S∗αx̂
∗
n‖ <

ε

4M
, n = 1, . . . , N.

Finally, recalling that x̂∗n = Jŷn with ŷn ∈ BY for n = 1, . . . , N , and
x∗n = Jyn with yn ∈ BY for n ∈ N, we have

|
∞

∑

n=1

x∗∗n (x∗n)|

=|
∞

∑

n=1

x∗∗n (x∗n)−
∞

∑

n=1

x∗∗n (S∗αx
∗
n)|

≤
N

∑

n=1

‖x∗∗n ‖‖x
∗
n − x̂∗n‖+

N
∑

n=1

‖x∗∗n ‖‖x̂
∗
n − S∗αx̂

∗
n‖

+
N

∑

n=1

‖x∗∗n ‖‖S
∗
αx̂
∗
n − S∗αx

∗
n‖+

∑

n>N

‖x∗∗n ‖‖x
∗
n − S∗αx

∗
n‖

<
ε

4
+

ε

4
+

N
∑

n=1

‖x∗∗n ‖‖(S
∗
αJ)(ŷn − yn)‖+

∑

n>N

‖x∗∗n ‖‖x
∗
n − (S∗αJ)yn‖

≤
ε

2
+

N
∑

n=1

‖x∗∗n ‖‖ŷn − yn‖+
∑

n>N

‖x∗∗n ‖(‖x
∗
n‖+ ‖yn‖)

<
ε

2
+ c

N
∑

n=1

‖x∗∗n ‖
√

‖x̂∗n − x∗n‖+
ε

4

<
3ε

4
+

ε

4
= ε.

(Let us mention that the estimate

‖y − z‖2 ≤ c2‖Jy − Jz‖, y, z ∈ K,

we used above, can be found in [13, page 335].) Hence,
∑

n x∗∗n (x∗n) = 0 as
desired. ¤

Remark 4.1. If X∗ has the Radon-Nikodým property, then BX∗ = convw
∗
(w∗-sexpBX∗)

(see, e.g., [18, page 86]). Hence span(w∗-sexpBX∗) is a norming subspace
and must be equal to X∗ whenever X∗ contains no proper norming closed
subspace. The condition X∗ = span(w∗-sexpBX∗) is satisfied if X is a
Banach space with property M∗(a,B,c), max |B| + c > 1, introduced and
studied in [15] and [16]. Any Banach space X with separable dual can be
equivalently renormed to have such a property (see [16, Proposition 1.2]).
One has X∗ = span(w∗-sexpBX∗) if X is an M-ideal in X∗∗ (see, e.g., [9,
page 127]), in particular, if X is a closed subspace of c0.

Proof of Proposition 2.3. Let X be the closed subspace of c0 constructed by
Johnson and Schechtman (see [11, Corollary JS]). Then X has the 8-BAP
(see [6, Theorem VI.3 and its proof]) and X∗ does not have the AP. As we
mentioned in Remark 4.1, X∗ = span(w∗-sexpBX∗). If X had the weak



D
R

A
FT

 2005-01-13 15:34

THE WEAK METRIC APPROXIMATION PROPERTY 11

MAP, then by Theorem 4.1, X∗ would also have the weak MAP, hence the
AP. This is not the case. ¤

We have seen that the weak MAP passes up from X to X∗ whenever X∗

has the Radon-Nikodým property and X∗ contains no proper norming closed
subspace. Godefroy and Saphar [7] have proved (in a completely different
manner) that the MAP passes up from X to X∗ whenever X∗ contains no
proper norming closed subspace. Concerning the MAP, there is another
well-known lifting result due to Johnson [10] (see, e.g., [1, page 289]): if X
has the MAP in every equivalent norm, then X∗ has the MAP. We show
(the proof is completely different from Johnson’s) that the same holds true
for the weak MAP.

Theorem 4.2. Let X be a Banach space. The following statements are

equivalent.

(a) X has the weak MAP in every equivalent norm.

(b) X∗ has the weak MAP.

(c) X∗ has the AP.

Proof. (a)⇒ (c). As in the proof of Theorem 4.1, we shall show that when
(x∗n) ⊂ X∗ and (x∗∗n ) ⊂ X∗∗ satisfy

∑∞
n=1 ‖x

∗
n‖‖x

∗∗
n ‖ <∞ and

∑∞
n=1 x

∗∗
n (S∗x∗n) =

0 for all S ∈ F(X,X), then
∑∞

n=1 x
∗∗
n (x∗n) = 0.

We may assume that 1 ≥ ‖x∗n‖ → 0 and

M :=

∞
∑

n=1

‖x∗∗n ‖ <∞.

Let ε > 0 and choose N ∈ N such that
∑

n>N

‖x∗∗n ‖ <
ε

4
.

Let F = span {x∗1, . . . , x
∗
N}. Let (X̂, ‖ · ‖∧) be an equivalent renorming of

X such that X̂∗ is locally uniformly rotund (LUR) on F . We can assume
that ‖x∗‖∧ ≤ ‖x

∗‖ for all x∗ ∈ X∗ (see, e.g., [12]). Let K = absconv (B
F̂
∪

(x∗n)∞n=1). Then K ⊂ B
X̂∗

is compact. Using the factorization lemma, we
find a reflexive Banach space Z, which is a linear subspace of X∗, such that
the the identity embedding J : Z → X̂∗ is compact and ‖J‖ ≤ 1. Moreover,

K ⊂ J(BZ). Since X has the weak MAP, for T = J∗|
X̂
∈ K(X̂, Z∗),

there exists a net (Sα) ⊂ F(X̂, X̂) such that supα ‖TSα‖ ≤ ‖T‖ ≤ 1 and
J∗Sαx → J∗x for all x ∈ X. For all z ∈ Z and x ∈ X we get (S∗αJz)(x) =
(J∗Sαx)(z) → (J∗x)(z) = (Jz)(x). Thus S∗αx

∗ → x∗ weak∗ for all x∗ ∈
J(Z). In particular, S∗αx

∗ → x∗ weak∗ for all x∗ ∈ F .
Since ‖TSα‖ ≤ 1, we also have ‖S∗αJ‖ ≤ 1. If x∗ ∈ F and ‖x∗‖∧ = 1, then

x∗ = Jz for some z ∈ BZ . Thus ‖S∗αx
∗‖∧ ≤ 1. The norm of X̂∗ is LUR on

F̂ , so the weak∗ convergence S∗αx
∗ → x∗ is also the ‖ · ‖∧-norm convergence.

Thus S∗αx
∗ → x∗ also in the equivalent ‖ · ‖-norm. Hence, there is some Sα

such that

‖x∗n − S∗αx
∗
n‖ <

ε

2M
, n = 1, . . . , N.
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Now we get

|
∞

∑

n=1

x∗∗n (x∗n)| =|
∞

∑

n=1

x∗∗n (x∗n − S∗αx
∗
n)|

≤
N

∑

n=1

‖x∗∗n ‖‖x
∗
n − S∗αx

∗
n‖+

∑

n>N

‖x∗∗n ‖∧‖Jzn − S∗αJzn‖∧

≤
ε

2
+

∑

n>N

‖x∗∗n ‖∧(‖J‖+ ‖S∗αJ‖)‖zn‖

≤
ε

2
+

ε

2
= ε.

Hence
∑∞

n=1 x
∗∗
n (x∗n) = 0.

(c)⇒ (a). If X∗ has the AP, then X∗ has the AP in every equivalent norm.
Therefore it suffices to prove that X has the weak MAP. We are going to
apply Theorem 3.2 (see also Remark 3.2). Let Y be a reflexive Banach space
and let u ∈ X ⊗π Y ∗. As in the beginning of the proof of Theorem 3.2, we
find T ∈ W(X,Y ) with ‖T‖ = 1 such that ‖u‖π = trace(Tu). By a criterion
of the AP for X∗ in [17, Theorem 5], there exists a net (Tα) ⊂ F(X,Y ) with
supα ‖Tα‖ ≤ ‖T‖ = 1 such that T ∗αy

∗ → T ∗y∗ for all y∗ ∈ Y ∗. But then

‖u‖π =trace(Tu) = lim
α

trace(Tαu)

≤ sup
α
|trace(Tαu)| = sup

α
|(V u)(Tα)| ≤ ‖V u‖

as desired.
(b)⇔ (c). See Theorem 3.6. ¤

It is clear from Theorem 4.2 that Problems 1.1 and 1.4 (see Introduction)
are equivalent.
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