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THE WEAK ORDER ON THE HYPEROCTAHEDRAL GROUP AND THE

MONOMIAL BASIS FOR THE HOPF ALGEBRA OF SIGNED PERMUTATIONS

HOUYI YU

Abstract. We give a combinatorial description for the weak order on the hyperoctahedral group.

This characterization is then used to analyze the order-theoretic properties of the shifted products of

hyperoctahedral groups. It is shown that each shifted product is a disjoint union of some intervals,

which can be convex embedded into a hyperoctahedral group. As an application, we investigate

the monomial basis for the Hopf algebra HSym of signed permutations, related to the fundamental

basis via Möbius inversion on the weak order on hyperoctahedral groups. It turns out that the

image of a monomial basis element under the descent map from HSym to the algebra of type B

quasi-symmetric functions is either zero or a monomial quasi-symmetric function of type B.
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1. Introduction

The (left) weak order is a powerful tool in the combinatorial study of a Coxeter group. It can be

defined as the suffix order of reduced expressions of the group elements, or more combinatorially

as the inclusion order of the right associated reflection sets of the group elements. The general

structure of the weak order on an arbitrary Coxeter group was first systematically investigated by

Bjorner [8], and extensively studied in various recent works, including [6, 12, 14, 16, 17, 28].

The Coxeter groups of types A and B have combinatorial interpretations as the symmetric

groupSn of permutations and the hyperoctahedral groupBn of signed permutations, respectively.

The weak order on Sn was first studied by Yanagimoto and Okamoto [31], who showed that it

Key words and phrases. weak order, hyperoctahedral group, Hopf algebra of signed permutations, monomial

basis.
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coincides with the inclusion order of the inversion sets of permutations, where an inversion of

a permutation w ∈ Sn is a pair (i, j) such that 1 6 i < j 6 n and w(i) > w( j). Somewhat

surprisingly, there is not an analogous description for the weak order on Bn. One of the aims of

this paper is to provide a combinatorial characterization for the weak order on Bn, and apply this

description to investigate the order structures of the shifted products of hyperoctahedral groups.

The weak order is not only of interest for their own in combinatorics but also closely re-

lated to the structures of various algebras arising from Coxeter groups. Given positive integers

p1, p2, . . . , pk, where k > 2, for any (p1, p2, . . . , pk)-shuffle ξ, Aguiar and Sottile [4, Proposition

2.10] showed that the map

Sp1
×Sp2

× · · · ×Spk
֒→ Sp1+p2+···+pk

, u 7→ uξ−1(1)

is a convex embedding under the weak order on Sp1+p2+···+pk
, so that it preserves meets and joins.

When k = 2, this leads to a connected graded self-dual Hopf algebra structure on the space

SSym :=
⊕

n>0
kSn, which has a basis {Fu | u ∈ Sn, n > 0} called the fundamental basis. It is the

well-known Malvenuto-Reutenauer Hopf algebra of permutations [23], whose algebraic structure

is well understood in terms of the weak order on the symmetric group [4, 22].

In order to analyze the detailed Hopf structure ofSSym, Aguiar and Sottile [4] produced a new

basis, called the monomial basis, which is related to the fundamental basis by Möbius inversion

on the weak order on the symmetric group, and provided enumerative-combinatorial descriptions

of the Hopf algebra operations in terms of this basis. These results are all based on the convexities

of the embeddings defined by Eq. (1).

Recently, the techniques of Aguiar and Sottile [4] are abstracted by Bergeron, D’león, Li,

Pang and Vargas [7] to form a set of axioms so that one can define a monomial basis on any

combinatorial Hopf algebra. These axioms guarantee that the monomial basis enjoys many

remarkable algebraic properties, including a positive multiplication formula and a cancellation-

free antipode formula.

There is an analogous construction for hyperoctahedral groups. Given a (p1, p2, . . . , pk)-shuffle

ξ, we have a map corresponding to ξ defined by

Bp1
×Bp2

× · · · ×Bpk
֒→ Bp1+p2+···+pk

, u 7→ uξ−1,(2)

which induces a connected graded Hopf algebra structure on the space HSym :=
⊕

n>0
kBn,

whose nth graded component has the fundamental basis {Fu | u ∈ Bn}. This Hopf algebra structure

with shifted shuffle product was first considered by Aguiar, Bergeron and Nyman [1], and later in

more general setting by Novelli and Thibon [24]. Quite recently a generalization of this structure

was introduced in [18], where the product is replaced by the shifted quasi-shuffle product with a

weight, leading to a new Hopf algebra beyond the category of combinatorial Hopf algebras in the

sense of [2], since the product is in general no longer graded with respect to the size of signed

permutations.

Mainly motivated by the work in [4, 7], we investigate the monomial basis {Mu | u ∈ Bn, n > 0}

for the Hopf algebra HSym with respect to the weak order on Bn, where, for u ∈ Bn,

Mu =
∑

u6v

µBn
(u, v)Fv, or equivalently, Fu =

∑

u6v

Mv.

Here µBn
is the Möbius function of the weak order on Bn. To this end, we analyze in detail the

order structure of Bp1
×Bp2

× · · · ×Bpk
.

It turns out that the Hopf algebra HSym under the weak order on hyperoctahedral groups does

not satisfy the axioms established in [7]. However, the monomial basis Mu is well-behaved in
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the sense that it is compatible with the algebra BQSym of quasi-symmetric functions of type B.

Chow [13] showed that there is an algebra homomorphism from HSym onto BQSym that sends

one fundamental basis to the other, induced by taking descent sets of signed permutations. We

obtain an explicit formula for this map in terms of the monomial basis. Our main tool is the

combinatorial description of the weak order on Bn.

The structure of the paper is as follows. After summarizing the notation and basic facts on

Coxeter groups in Section 2, we give in Section 3 a combinatorial characterization of the weak

order on the hyperoctahedral group. This description is an effective criteria which enables us to

compare directly two signed permutations of the same size in the weak order by verifying their

inversion sets, negative index sets and negative sum pair sets, respectively. Section 4 is devoted to

studying the order structure of the shifted products of hyperoctahedral groups. Aguiar and Sottile

[4, Proposition 2.10] showed that any parabolic subgroup of a symmetric group can be convex

embedded into the symmetric group. We first generalize this result from type A to all Coxeter

groups, and then study the order structure of the shifted products of hyperoctahedral groups.

In particular, we show that each component of a shifted product of hyperoctahedral groups is

an interval isomorphic to the unique component which is a parabolic subgroup. Moreover, all

components can be convex embedded into a hyperoctahedral group under the restriction of the

map defined by Eq. (2). These results are applied in Section 5 to study the monomial basis of

the Hopf algebra HSym of signed permutations. We give sufficient conditions for the structure

constants of the coproduct and product in terms of the monomial basis to be nonnegative. It is

shown that the image of a monomial basis element under the descent map from HSym to BQSym

is either zero or a monomial quasi-symmetric function of type B.

2. Preliminaries

Unless otherwise specified, for any nonnegative integers m, n with m 6 n, let [m, n] = {m,m +

1, . . . , n} and [n] = [1, n] if n > 1. For a set I of integers, the notation I = {i1 < i2 < · · · < ik}

indicates that I = {i1, i2, · · · , ik} and i1 < i2 < · · · < ik. The cardinality of a finite set A will be

denoted by #A.

2.1. Coxeter groups. We begin by recalling some necessary background results on posets and

Coxeter groups. For a detailed treatment we refer to [9, 11, 20, 30].

Let (P,6P) be a poset. When no possible confusion may arise, we will simply denote 6P by 6

and write P for (P,6). If x, y ∈ P, then y covers x or x is covered by y, denoted x ≺ y or y ≻ x, if

x < y and there is no element z ∈ P such that x < z < y. For x 6 y in P, the closed interval [x, y]

is the subset {z ∈ P | x 6 z 6 y}, endowed with the partial order induced from P.

A Coxeter system is a pair (W, S ), where W is a group and S is a set of generators of W subject

to the relations

(ss′)m(s,s′) = e for all s, s′ ∈ S ,

where m(s, s′) denotes the order of ss′ and m(s, s′) = 1 if and only if s = s′. The group W is

called a Coxeter group and S is the set of Coxeter generators.

Let (W, S ) be a Coxeter system. For any element w of W, the length of w, denoted ℓ(w), is the

least k such that w = s1s2 · · · sk with all si ∈ S . Such a decomposition is called a reduced word (or

reduced expression) for w. Let T := {wsw−1 | s ∈ S ,w ∈ W} be the set of reflections of W. Then

ℓ(w) = #TR(w) for any w ∈ W, where TR(w) := {t ∈ T | ℓ(wt) < ℓ(w)}.

For u and v in a Coxeter group W, we say that u precedes v in left weak order, written u 6 v,

if ℓ(v) = ℓ(u) + ℓ(vu−1). The right weak order is defined similarly, with u−1v instead of vu−1. We
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will only use the left weak order and refer to it as the weak order for short. We abuse notation and

identify the Coxeter group W with the poset consisting of W equipped with the weak order. Any

finite Coxeter group W is a graded lattice with the least element e. In particular, the rank function

is given by length. For later reference, we state the following well-known useful characterizations

of the weak order, which can be found in [9].

Lemma 2.1. Let (W, S ) be a Coxeter system, and u, v ∈ W. Then the following conditions are

equivalent:

(a) u 6 v;

(b) TR(u) ⊆ TR(v);

(c) (Suffix Property) there exist reduced words u = s1s2 · · · sk and w = s′
1
s′

2
· · · s′qs1s2 · · · sk.

Given a subset J of S , the subgroup WJ generated by J is called a parabolic subgroup of W.

Hence, W∅ = {e} and WS = W. It is useful to mention that (WJ , J) is also a Coxeter group and

the length function of WJ with respect to J coincides with length function of W with respect to S .

The same is true for the weak order. Fix a subset J of S , then

W J := {w ∈ W | ℓ(w) < ℓ(ws) for all s ∈ J}(3)

is a complete set of the left coset representatives of WJ in W, consisting of the unique representa-

tives of minimal length. When W is a finite Coxeter group, WJ and W J are both intervals [10]. One

basic fact about W J is that every w ∈ W has a uniquely factorization w = wJ ·wJ such that wJ ∈ W J

and wJ ∈ WJ . Moreover, this factorization satisfies ℓ(w) = ℓ(wJ) + ℓ(wJ). The map w 7→ wJ is a

lattice homomorphism from W to WJ , which is called a parabolic homomorphism, while the map

w 7→ wJ is order-preserving from W to W J but is not in general a lattice homomorphism [21, 27].

2.2. Coxeter groups of types A and B. We refer to [9, Section 8.1] for details on signed

permutations, and review some related notation here.

For a positive integer n, we write [±n] for the set {0,±1,±2, . . . ,±n}, and take the natural order

of integers on [±n]. For ease of notation, we use the bar to denote a negative sign, so i = −i for

i ∈ [n]. A signed permutation of size n is a permutation w on [±n] satisfying w(i) = w(i). Notice

that w(0) = 0 and the element w is completely determined by w(1),w(2), · · · ,w(n). So, in one-

line notation, we write w = (w1,w2, . . . ,wn), or simply denote w = w1w2 · · ·wn, where wi = w(i)

for i ∈ [n]. For example, w = 2513 4 is a signed permutation on [±5] with w(2) = 5, w(3) = 1 and

w(4) = 3. The set of all signed permutations on [±n] naturally form a group under composition,

called the n-th hyperoctahedral group and denoted by Bn, which is the Coxeter group of type Bn.

The element 1n denotes the identity of Bn. Let s0 be the permutation swapping 1 and −1, and for

i ∈ [n − 1], let si be the product of transpositions (i, i + 1)(i, i + 1). Write S B
n := {s0, s1, . . . , sn−1}.

Then (Bn, S
B
n ) is a Coxeter system of type Bn.

We identify the n-th symmetric group Sn with the subgroup of Bn consisting of all signed

permutations w such that w([n]) = [n]. ThenSn is the Coxeter group of type An−1 consisting of all

permutations of [n], and the set S A
n of Coxeter generators consists of the elementary transpositions

si = (i, i+ 1) for i ∈ [n − 1]. For the rest of this paper, if there is no danger of confusion, we write

simply S A and S B instead of S A
n and S B

n , respectively.

Let w be a signed permutation of size n. A positive integer i ∈ [n] is a negative index of w if

wi < 0. Given a pair (i, j) ∈ [n]× [n], the pair (i, j) is called an inversion of w if i < j and wi > w j,

while (i, j) is called a negative sum pair of w if i < j and wi + w j < 0. Let

neg(w) := #Neg(w), inv(w) := #Inv(w) and nsp(w) := #Nsp(w),
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where

Neg(w) := {i ∈ [n] |wi < 0}, Inv(w) := {(i, j) ∈ [n] × [n] | i < j,wi > w j}

and

Nsp(w) := {(i, j) ∈ [n] × [n] | i < j,wi + w j < 0}.

Then the length of w is given by

ℓ(w) = inv(w) + neg(w) + nsp(w) = inv(w) −
∑

i∈[n],wi<0

wi.(4)

In particular, if w is a permutation, then the length of w is equal to the number of inversions of w,

that is, ℓ(w) = inv(w).

Let a = a1a2 · · · an be a word of n nonzero integers. The standard permutation st(a) of a is the

unique permutation w ∈ Sn defined by

wi < w j ⇔ ai 6 a j

for all i, j with 1 6 i < j 6 n, while the standard signed permutation sts(a) of a is the unique

signed permutation w ∈ Bn such that Neg(w) = Neg(a) and

|wi| < |w j| ⇔ |ai| 6 |a j|

for all i, j with 1 6 i < j 6 n. Here Neg(a) := {i ∈ [n] | ai < 0}, and |m| is the absolute value

of m for an integer m. One can obtain sts(a) by first taking absolute values of the numbers, then

extracting the standard permutation, and finally putting back the signs of the original numbers.

Clearly, st coincide with sts when restrict to words on positive integers. For instance, st(352) =

sts(352) = 231, st(632735) = 623145 and sts(632735) = 521634.

Let J = S A\{sp1
, sp2
, . . . , spk

} where 1 6 p1 < p2 < · · · < pk 6 n − 1. Then the parabolic

subgroup of Sn generated by J is the subgroup

SJ := Sp1
×Sp2−p1

× · · · ×Sn−pk
,

where Spi−pi−1
permutes [pi−1 + 1, pi] for i ∈ [k + 1], with the notation p0 = 0 and pk+1 = n.

For u(i) ∈ Spi−pi−1
where i ∈ [k + 1], we use u(1) × u(2) × · · · × u(k+1) to denote the permutation in

Sn corresponding to (u(1), u(2), . . . , u(k+1)) ∈ SJ . Then for any w ∈ SJ , in terms of the standard

permutation of a word, we have

wJ = st(w1 · · ·wp1
) × st(wp1+1 · · ·wp2

) × · · · × st(wpk+1 · · ·wn).

By Eq. (3), the set SJ of minimal representatives of left cosets of SJ in Sn is

Sh(p1, p2 − p1, . . . , n − pk) := {w ∈ Sn |w1 < · · · < wp1
,wp1+1 < · · · < wp2

, . . . ,wpk+1 < · · · < wn},

whose elements are usually called (p1, p2 − p1, . . . , n − pk)-shuffles.

Now let J = S B\{sp1
, sp2
, . . . , spk

} where 0 6 p1 < p2 < · · · < pk 6 n − 1. Then the parabolic

subgroup BJ has the form

BJ := Bp1
×Sp2−p1

· · · ×Sn−pk
.

Here p1 = 0 corresponds to the case s0 < J and we write B0 = {10}, which is the trivial group

consisting of only one element. Hence,

BJ =


Sp2
× · · · ×Sn−pk

, p1 = 0,

Bp1
×Sp2−p1

· · · ×Sn−pk
, p1 > 0.



6 HOUYI YU

Then for any w ∈ Bn, we have

wJ = sts(w1 · · ·wp1
) × st(wp1+1 · · ·wp2

) × · · · × st(wpk+1 · · ·wn).(5)

The set of minimal left coset representatives of BJ is

BJ = {w ∈ Bn | 0 < w1 < · · · < wp1
,wp1+1 < · · · < wp2

, . . . ,wpk+1 < · · · < wn}.

3. The weak order on the hyperoctahedral group

Jedlička [21] provided a combinatorial construction of the weak order on a Coxeter group by

using the semidirect product of semilattices. In this section, we give a combinatorial description

for the weak order on the hyperoctahedral group Bn in terms of inversion sets, negative index

sets and negative sum pair sets of signed permutations. This enables us to compare directly two

signed permutations when they are expressed in the one-line notation.

A direct translation of the definition of the weak order implies that u 6 v in Sn if and only if

Inv(u) ⊆ Inv(v), while u 6 v in Bn if and only if v = siu and u−1(i) < u−1(i + 1) for some si ∈ S B.

The weak order on B3 is illustrated in Figure 1.

Let n be a positive integer and let u 6 v in Bn. Note that Sn is the parabolic subgroup of

Bn generated by S A, so it follows from Eq. (5) that st is indeed a lattice homomorphism from

Bn to Sn under weak orders, and hence st(u) 6 st(v) in Sn. Observe that the inversion set of a

signed permutation coincides with that of its standard permutation. Thus Inv(u) ⊆ Inv(v). More

generally, we have the following result, which can be regarded as a generalization of the weak

order on Sn and a refinement of the length function given by Eq. (4).

Theorem 3.1. Let u, v ∈ Bn. Then u 6 v if and only if Inv(u) ⊆ Inv(v), Neg(u) ⊆ Neg(v) and

Nsp(u) ⊆ Nsp(v).

To prove theorem 3.1, we need several lemmas.

Lemma 3.2. Let u, v ∈ Bn with u ≺ v, and let v = siu for some i ∈ [0, n − 1].

(a) If i = 0, then Inv(v) = Inv(u), Nsp(v) = Nsp(u) and Neg(v) = Neg(u) ∪ {u−1(1)}.

(b) If i > 0, then Neg(v) = Neg(u) and



Inv(v) = Inv(u) ∪ {(u−1(i), u−1(i + 1))},Nsp(v) = Nsp(u), if 0 < u−1(i) < u−1(i + 1),

Inv(v) = Inv(u), Nsp(v) = Nsp(u) ∪ {(u−1(i), u−1(i + 1))}, if 0 < u−1(i) < u−1(i + 1),

Inv(v) = Inv(u), Nsp(v) = Nsp(u) ∪ {(u−1(i + 1), u−1(i))}, if 0 < u−1(i + 1) < u−1(i),

Inv(v) = Inv(u) ∪ {(u−1(i + 1), u−1(i))}, Nsp(v) = Nsp(u), if 0 < u−1(i + 1) < u−1(i).

Proof. Assume that u ≺ v in Bn, and let v = siu for some i ∈ [0, n − 1]. If i = 0, then u ≺ s0u so

that u−1(1) > u−1(0) = 0, and hence v is the signed permutation obtained from u by replacing 1

by 1. Thus Inv(u) = Inv(v),Nsp(u) = Nsp(v) and Neg(v) = Neg(u) ∪ {u−1(1)}. If i ∈ [n − 1], then

from u ≺ v and v = siu we see that u−1(i) < u−1(i + 1), so v is the signed permutation obtained

from u by replacing i (respectively, i, i+ 1, i + 1) by i+ 1 (respectively, i + 1, i, i), if they exist. So

the proof follows. �
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1 2 3

1 3 2 1 2 3 2 1 3

2 3 1 1 3 2 3 1 2 2 1 3 2 1 3

2 3 1 2 3 1 3 2 1 3 1 2 3 1 2 21 3 1 2 3

1 3 2 2 3 1 3 2 1 3 2 1 3 2 1 3 1 2 1 3 2 1 2 3

1 2 3 1 3 2 3 1 2 3 2 1 3 2 1 3 2 1 2 3 1 1 3 2

1 2 3 2 1 3 3 1 2 3 1 2 3 2 1 2 3 1 2 3 1

2 1 3 2 1 3 3 1 2 1 3 2 2 3 1

2 1 3 1 2 3 1 3 2

1 2 3

Figure 1. The weak order on B3.

Lemma 3.3. Let w be a signed permutation of Bn. If (i, j) ∈ Nsp(w), then (i, j)(i, j) ∈ TR(w).

Proof. Choose a reduced word w = si1 si2 · · · sik . Assume that (i, j) ∈ Nsp(w) and let t = (i, j)(i, j).

Then

sik ≺ sik−1
sik ≺ · · · ≺ si1 · · · sik−1

sik = w.

It follows from Lemma 3.2 that

∅ = Nsp(sik ) ⊆ Nsp(sik−1
sik) ⊆ · · · ⊆ Nsp(w),

so there exists p ∈ [k] such that

(i, j) ∈ Nsp(sip
sip+1
· · · sik )\Nsp(sip+1

· · · sik ).

Let u = sik · · · sip+1
and v = sik · · · sip+1

sip
. Then (i, j) ∈ Nsp(v−1)\Nsp(u−1) and u−1 is covered by

v−1 in the weak order. Again by Lemma 3.2, either

i = u(ip) and j = u(ip + 1), where 0 < u(ip) < u(ip + 1),

or

i = u(ip + 1) and j = u(ip), where 0 < u(ip + 1) < u(ip).
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In the first case,

t = (i, j)(i, j) =
(
u(ip), u(ip + 1)

)(
u(ip), u(ip + 1)

)
= usip

u−1,

and in the second case,

t = (i, j)(i, j) =
(
u(ip + 1), u(ip)

)(
u(ip + 1), u(ip)

)
= usip

u−1.

Thus, in both cases, we have

t = usip
u−1 = sik · · · sip+1

sip
sip+1
· · · sik ,

and hence

wt = si1 · · · sip−1
sip+1
· · · sik .

Consequently, ℓ(wt) < ℓ(w), so that t ∈ TR(w), completing the proof. �

Lemma 3.4 ([9], Proposition 8.1.5). The set of reflections of Bn is the disjoint union

T = {(i, j)(i, j) | 1 6 i < | j| 6 n}
⊎
{(i, i) | i ∈ [n]}.

The next result provides an equivalent description of the set of right associated reflections to a

signed permutation.

Lemma 3.5. Let w be a signed permutation of Bn. Then we have a disjoint union

TR(w) = {(i, j)(i, j) | (i, j) ∈ Inv(w)}
⊎
{(i, i) | i ∈ Neg(w)}

⊎
{(i, j)(i, j) | (i, j) ∈ Nsp(w)}.

Proof. Let A be the set in the right-hand side of the desired identity. By Lemma 3.4, A is a subset

of T . We now show that A ⊆ TR(w). Let t be an arbitrary element of A. Then it suffices to show

that ℓ(wt) < ℓ(w).

If t = (i, j)(i, j) for some (i, j) ∈ Inv(w), then 1 6 i < j 6 n, wi > w j, and the one-line notation

of wt is obtained from that of w by exchanging the positions of wi and w j. So

neg(wt) + nsp(wt) = neg(w) + nsp(w)

and

inv(wt) = inv(w) − 2#{k ∈ [i + 1, j − 1] |w j < wk < wi} − 1.

Hence ℓ(wt) < ℓ(w) by Eq. (4). If t = (i, i) for some i ∈ Neg(w), then wi < 0, (wt)(i) = wi and

wt( j) = w j for all j ∈ [n] with j , i. Thus,

neg(wt) + nsp(wt) = neg(w) + nsp(w) + wi

and

inv(wt) = inv(w) − #{k ∈ [i − 1] |wi < wk < wi} + #{k ∈ [i + 1, n] |wi < wk < wi}

6 inv(w) + #{k ∈ [i + 1, n] |wi < wk < wi}

6 inv(w) + wi − 1.

Again by Eq. (4), we see that ℓ(wt) < ℓ(w). It now follows from Lemma 3.3 that ℓ(wt) < ℓ(w) for

all t ∈ A, and hence A ⊆ TR(w).

Our task now is to show that A = TR(w). It is straightforward to verify that A is a disjoint union

of the three sets in the right-hand side of the desired identity. Thus,

#A = inv(w) + neg(w) + nsp(w) = ℓ(w) = #TR(w),

so that A = TR(w), and the proof follows. �
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We are now ready to give the proof of Theorem 3.1.

Proof of Theorem 3.1. If Inv(u) ⊆ Inv(v), Neg(u) ⊆ Neg(v) and Nsp(u) ⊆ Nsp(v), then, by

Lemma 3.5, TR(u) ⊆ TR(v), which together with Lemma 2.1 yields that u 6 v. Conversely, assume

that u 6 v. Without loss of generality, we assume that u is covered by v, that is, ℓ(v) = ℓ(u) + 1

and there exists i ∈ [0, n − 1] such that v = siu. Then the proof follows from Lemma 3.2. �

4. Convex embeddings on Coxeter groups

As special order-preserving maps, parabolic convex embeddings on the symmetric group admit

nice combinatorial properties [4, Proposition 2.10], which were used by Aguiar and Sottile to

establish the product formula of two monomial basis elements of the Malvenuto-Reutenauer Hopf

algebra of permutations. In this section, we first generalize the result of Aguiar and Sottile to

any Coxeter group, and then study the convexities of a kind of nonparabolic embedding on the

hyperoctahedral group. In particular, we classify the order structures of the shifted products of

hyperoctahedral groups.

Throughout the rest of the paper, unless otherwise specified, n, p and q will be nonnegative

integers.

4.1. Parabolic convex embeddings on Coxeter groups.

Definition 4.1. Let P and Q be posets and f : P → Q a map. Then f is a convex embedding

provided the following conditions are fulfilled:

(a) f is injective;

(b) for all a, b ∈ P, we have a 6P b⇔ f (a) 6Q f (b);

(c) f is convex: if f (a) 6Q x 6Q f (c) for some a, c ∈ P and x ∈ Q, then there exists b ∈ P

such that x = f (b).

It is remarkable that a convex embedding is always a lattice homomorphism if P,Q are lattices.

Lemma 4.2. Let P and Q be posets and f : P→ Q a convex embedding.

(a) If P,Q are lattices, then f is a lattice homomorphism.

(b) If P is an interval, say p = [0P, 1P], then f (P) = [ f (0P), f (1P)].

Proof. (a) Assume that f : P → Q is a convex embedding. Let a, b be any elements of P and let

x = f (a) ∧ f (b). Then from a ∧ b 6 a and a ∧ b 6 b we see that

f (a ∧ b) 6 f (a) and f (a ∧ b) 6 f (b)

since f is order-preserving, and hence f (a∧b) 6 x 6 f (a). It follows from the convexity of f that

there exists c ∈ P such that x = f (c), and hence f (a ∧ b) 6 f (c) 6 f (a). According to Definition

4.1(b), we have a ∧ b 6 c 6 a. Similarly, we have a ∧ b 6 c 6 b so that a ∧ b = c, which yields

that f (a ∧ b) = f (a) ∧ f (b). Simple symmetry arguments show that f preserves joins.

(b) Since f is an order-preserving injection, we have f (P) ⊆ [ f (0P), f (1P)]. Take any y ∈ Q

with f (0P) 6 y 6 f (1P). Then, by the convexity of f , there exists d ∈ P such that y = f (d) ∈ f (P).

Therefore, f (P) = [ f (0P), f (1P)]. This completes the proof. �

Let J = S A\{sp1
, sp2
, . . . , spk

} where 1 6 p1 < p2 < · · · < pk 6 n − 1. Fix ξ ∈ Sh(p1, p2 −

p1, . . . , n − pk). Aguiar and Sottile [4, Proposition 2.10] showed that the map

ρξ : SJ → Sn, u 7→ uξ−1

is a convex embedding. This is indeed true for any Coxeter groups.



10 HOUYI YU

Theorem 4.3. Let (W, S ) be any Coxeter group and J a subset of S . Given ξ ∈ W, let ρξ : WJ →

W be the map defined by ρξ(u) = uξ−1. Then ρξ is a convex embedding if and only if ξ ∈ W J .

Proof. Assume that ξ ∈ W J . The injectivity of ρξ is trivial since W is a group. Note that (W J)−1 :=

{w−1 |w ∈ W J} is the complete set of the minimal right coset representatives of WJ in W. For any

u, v in WJ , it follows from ℓ(uξ−1) = ℓ(u) + ℓ(ξ−1) = ℓ(u) + ℓ(ξ) and ℓ(vξ−1) = ℓ(v) + ℓ(ξ) that

u 6 v⇔ ℓ(v) = ℓ(u) + ℓ(vu−1)

⇔ ℓ(vξ−1) = ℓ(uξ−1) + ℓ(vu−1)

⇔ ℓ(vξ−1) = ℓ(uξ−1) + ℓ(vξ−1(uξ−1)−1)

⇔ uξ−1
6 vξ−1

⇔ ρξ(u) 6 ρξ(v).

It remains to show that ρξ is convex. Let u, v ∈ WJ and w ∈ W such that ρξ(u) 6 w 6 ρξ(v). Since

W = WJ · (W
J)−1, there exist z ∈ WJ and η ∈ W J such that w = zη−1, and hence

uξ−1
6 zη−1

6 vξ−1.

Let ℓ(vξ−1) − ℓ(zη−1) = k and ℓ(zη−1) − ℓ(uξ−1) = m − k for some nonnegative integers k and m.

Then, by Lemma 2.1, there exists a reduced word s1 · · · sk sk+1 · · · sm such that

vξ−1 = s1 · · · sksk+1 · · · smuξ−1 and zη−1 = sk+1 · · · smuξ−1,(6)

and hence

s1 · · · sk sk+1 · · · sm = vu−1 ∈ WJ .

Since any element of a Coxeter group has the same set of letters appearing in its reduced words,

we get si ∈ J for all i ∈ [m]. Consequently, it follows from Eq. (6) that

η−1ξ = z−1sk+1 · · · smu ∈ WJ ,

which together with η ∈ W J and ξ ∈ W J yields that ξ = η, so that w = ρξ(z). Thus, ρu is convex.

Conversely, suppose that ρξ is a convex embedding. In particular, ρξ is order-preserving. Then

for any s ∈ J, it follows from e 6 s that ξ−1 = ρξ(e) 6 ρξ(s) = sξ−1, and hence

ℓ(ξs) = ℓ(sξ−1) > ℓ(ξ−1) = ℓ(ξ)

which implies that ξ ∈ W J , completing the proof. �

4.2. Nonparabolic convex embeddings on hyperoctahedral groups. Given a sequence of pos-

itive integers p1, p2, . . . , pk, according to Theorem 4.3, the embedding of the parabolic subgroup

Bp1
×Sp2

· · · ×Spk
into Bp1+P2+···+pk

defined by

ρξ : Bp1
×Sp2

· · · ×Spk
→ Bp1+p2+···+pk

, u 7→ uξ−1(7)

is convex. Here ξ is any element of the set of minimal left coset representatives of Bp1
×Sp2

· · · ×

Spk
in Bp1+P2+···+pk

.

There exists another similar construction for hyperoctahedral groups. Given positive integers

p and q, consider the shifted product Bp ×Bq to be the subgroup of Bp+q, where we identify the

element (u, v) ∈ Bp ×Bq with the signed permutation u × v of Bp+q defined by

u × v := (u1, . . . , up, v1[p], . . . , vq[p]).
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Here for nonzero integer a we use the notation

a[p] := a + sgn(a) · p =


a + p, a > 0,

a − p, a < 0.

For example, 24 31[3] = 57 64 and 213 × 24 31 = 21357 64. The set of (p, q)-shuffles

Sh(p, q) = {ξ ∈ Sp+q | ξ1 < · · · < ξp, ξp+1 < · · · < ξp+q}

is a set of left coset representatives for Bp ×Bq in the group Bp+q. Thus we have a bijection

σ : Sh(p, q) ×Bp ×Bq → Bp+q, (ξ, u, v) 7→ ξ(u × v).

More generally, given positive integers p1, p2, . . . , pk, the shuffle set Sh(p1, p2, . . . , pk) is a set of

the left coset representatives for the subgroup Bp1
×Bp2

× · · · ×Bpk
in Bp1+p2+···+pk

.

We now study the order structure of the subgroup Bp1
× Bp2

× · · · × Bpk
. To mimic the map

given by (7), for any ξ ∈ Sh(p1, p2, . . . , pk), we define the nonparabolic embedding

τξ : Bp1
×Bp2

× · · · ×Bpk
→ Bp1+p2+···+pk

, u 7→ uξ−1.

Given a subset K of [n], let

Bn,K := {w ∈ Bn |Neg(w) = K}.

Let Li ⊆ [pi] where i = 2, 3 . . . , k, the set Bp1
×Bp2,L2

× · · · ×Bpk,Lk
is called the (L2, L3, . . . , Lk)-

component of Bp1+p2+···+pk
. We show below by induction on k that the restriction of τξ to each

component of Bp1
×Bp2

× · · · ×Bpk
is a convex embedding.

The following statement is straightforward and the proof is omitted.

Lemma 4.4. Let w ∈ Bn, and let ξ = w · (sts(w1 · · ·wp)× sts(wp+1 · · ·wn))−1. Then ξ ∈ Sh(p, n− p)

and σ−1(w) = (ξ, sts(w1 · · ·wp), sts(wp+1 · · ·wn)).

There is a simple combinatorial rule to get the shuffle ξ = w·(sts(w1 · · ·wp)×sts(wp+1 · · ·wn))−1.

Namely, ξ is obtained from w by first rearranging in increasing order the absolute values |w1|, |w2|,

· · · , |wp| so that they appear in the places 1, . . . , p, and then rearranging the absolute values

|wp+1|, |wp+2|, . . . , |wn| so that they appear in increasing order in the places p + 1, p + 2, . . . , n.

For example,

42 617358 = 12463578 · (32 41 × 3124).

Lemma 4.5. Let u 6 v in Bn. Then for any positive integers i and j with 1 6 i < j 6 n, we have

sts(uiui+1 · · · u j) 6 sts(vivi+1 · · · v j).

Proof. Let w ∈ Bn and write wi j = wiwi+1 · · ·w j. Observe that

Inv(sts(wi j)) =(Inv(w) ∩ [i, j] × [i, j]) − (i − 1, i − 1),

Neg(sts(wi j)) =(Neg(w) ∩ [i, j]) − i + 1

and

Nsp(sts(wi j)) =(Nsp(w) ∩ [i, j] × [i, j]) − (i − 1, i − 1).

Thus, if u 6 v, then sts(ui j) 6 sts(vi j) by Theorem 3.1. �



12 HOUYI YU

Given a signed permutation w ∈ Bn, let

Neg(w) := {i ∈ [n] | i < Neg(w)}, Ĩnv(w)) := {( j, i) ∈ [n] × [n] | (i, j) ∈ Inv(w)}

and

Inv(w) := {(i, j) ∈ [n] × [n] | i < j, (i, j) < Inv(w)}.

Then we have the following key observation about the elements belonging to the image of the

nonparabolic embedding τξ.

Lemma 4.6. Let w = (u × v)ξ−1 where ξ ∈ Sh(p, q), u ∈ Bp and v ∈ Bq. Then we have the

following disjoint unions

Neg(w) = ξ · Neg(u)
⊎
ξ ·
(
p + Neg(v)

)
,(8)

Inv(w) = ξ · Inv(u)
⊎
ξ ·
(
(p, p) + Inv(v)

)⊎
ξ ·
(
[p] × (p + Neg(v)) ∩ Inv(ξ)

)
⊎
ξ ·
(
(p + Neg(v)) × [p] ∩ Ĩnv(ξ)

)
(9)

and

Nsp(w) = ξ · Nsp(u)
⊎
ξ ·
(
(p, p) + Nsp(v)

)⊎
ξ ·
(
[p] × (p + Neg(v)) ∩ Inv(ξ)

)
⊎
ξ ·
(
(p + Neg(v)) × [p] ∩ Ĩnv(ξ)

)
.(10)

Proof. Let i be a positive integer and assume that i = ξr for some r ∈ [p + q]. Then

i ∈ Neg(w)⇔ w(ξr) < 0⇔ (u × v)(r) < 0⇔ r ∈ Neg(u) ∪ (p + Neg(v))

⇔ i ∈ ξ ·
(
Neg(u) ∪ (p + Neg(v))

)
,

so Eq. (8) follows.

Now consider Eqs. (9) and (10). Let i and j be positive integers with 1 6 i < j 6 p + q, and

assume that i = ξr and j = ξs for some r, s ∈ [p + q]. Then ξr < ξs. We use (i, j) = ξ · (r, s) to

indicate that i = ξr and j = ξs. It follows from ξ ∈ Sh(p, q) that there are four cases need to be

considered.

If r, s ∈ [p], then

wi = w(ξr) = (u × v)(r) = ur and w j = w(ξs) = (u × v)(s) = us.

It follows from ξr < ξs that 1 6 r < s 6 p, so (r, s) ∈ Inv(ξ), and hence

(i, j) ∈ Inv(w) ⇔ wi > w j ⇔ ur > us ⇔ (r, s) ∈ Inv(u) ∩ Inv(ξ)⇔ (i, j) ∈ ξ ·
(
Inv(u) ∩ Inv(ξ)

)

and

(i, j) ∈ Nsp(w)⇔ wi + w j < 0⇔ ur + us < 0

⇔ (r, s) ∈ Nsp(u) ∩ Inv(ξ)⇔ (i, j) ∈ ξ ·
(
Nsp(u) ∩ Inv(ξ)

)
.

Since

Inv(u) ⊆ {(i, j) | 1 6 i < j 6 p} ⊆ Inv(ξ) and Nsp(u) ⊆ {(i, j) | 1 6 i < j 6 p} ⊆ Inv(ξ),

in this case we obtain that

(i, j) ∈ Inv(w)⇔ (i, j) ∈ ξ · Inv(u) and (i, j) ∈ Nsp(w) ⇔ (i, j) ∈ ξ · Nsp(u).(11)
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If r, s ∈ [p + 1, p + q], then

wi = w(ξr) = (u × v)(r) = vr−p[p] and w j = w(ξs) = (u × v)(s) = vs−p[p].

From ξr < ξs we see that p + 1 6 r < s 6 p + q and (r, s) ∈ Inv(ξ), so that

(i, j) ∈ Inv(w)⇔ wi > w j ⇔ vr−p[p] > vs−p[p]⇔ (r − p, s − p) ∈ Inv(v)

⇔ (r, s) ∈ ((p, p) + Inv(v)) ∩ Inv(ξ)

⇔ (i, j) ∈ ξ ·
(
((p, p) + Inv(v)) ∩ Inv(ξ)

)

and

(i, j) ∈ Nsp(w) ⇔ wi + w j < 0⇔ vr−p[p] + vs−p[p] < 0⇔ vr−p + vs−p < 0

⇔ ((r, s) ∈
(
(p, p) + Nsp(v)

)
∩ Inv(ξ)

⇔ (i, j) ∈ ξ ·
(
((p, p) + Nsp(v)) ∩ Inv(ξ)

)
.

In this case we have

(p, p) + Inv(v) ⊆ {(i, j) | p + 1 6 i < j 6 p + q} ⊆ Inv(ξ)

and

(p, p) + Nsp(v) ⊆ {(i, j) | p + 1 6 i < j 6 p + q} ⊆ Inv(ξ),

so that

(i, j) ∈ Inv(w)⇔ (i, j) ∈ ξ ·
(
(p, p) + Inv(v)

)
(12)

and

(i, j) ∈ Nsp(w) ⇔ (i, j) ∈ ξ ·
(
(p, p) + Nsp(v)

)
.(13)

If r ∈ [p] and s ∈ [p + 1, p + q], then (r, s) ∈ Inv(ξ) since ξr < ξs, and we have

wi = (u × v)(r) = ur and w j = (u × v)(s) = vs−p[p].

So

(i, j) ∈ Inv(w) ⇔ wi > w j ⇔ ur > vs−p[p]⇔ r ∈ [p], vs−p < 0

⇔ (r, s) ∈ [p] × (p + Neg(v)) ∩ Inv(ξ)

⇔ (i, j) ∈ ξ ·
(
[p] × (p + Neg(v)) ∩ Inv(ξ)

)
(14)

and

(i, j) ∈ Nsp(w)⇔ wi + w j < 0⇔ ur + vs−p[p] < 0⇔ r ∈ [p], vs−p < 0

⇔ (r, s) ∈ [p] × (p + Neg(v)) ∩ Inv(ξ)

⇔ (i, j) ∈ ξ ·
(
[p] × (p + Neg(v)) ∩ Inv(ξ)

)
.(15)

If r ∈ [p + 1, p + q] and s ∈ [p], then (r, s) ∈ Ĩnv(ξ), wi = vr−p[p] and w j = us. So

(i, j) ∈ Inv(w)⇔ wi > w j ⇔ vr−p[p] > us ⇔ s ∈ [p], vr−p > 0

⇔ (r, s) ∈ (p + Neg(v)) × [p] ∩ Ĩnv(ξ)

⇔ (i, j) ∈ ξ ·
(
(p + Neg(v)) × [p]) ∩ Ĩnv(ξ)

)
(16)
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and

(i, j) ∈ Nsp(w) ⇔ wi + w j < 0⇔ vr−p[p] + us < 0⇔ s ∈ [p], vr−p < 0

⇔ (r, s) ∈ (p + Neg(v)) × [p] ∩ Ĩnv(ξ)

⇔ (i, j) ∈ ξ ·
(
(p + Neg(v)) × [p] ∩ Ĩnv(ξ)

)
.(17)

Eq. (9) now follows from Eqs. (11), (12), (14) and (16), while Eq. (10) follows from Eqs. (11),

(13), (15) and (17). �

Corollary 4.7. Let u, u′ ∈ Bp and v, v′ ∈ Bq. Then u × v 6 u′ × v′ if and only if u 6 u′ and v 6 v′.

In this case we have

ℓ(u′ × v′) − ℓ(u × v) = ℓ(u′) − ℓ(u) + ℓ(v′) − ℓ(v) + 2p(neg(v′) − neg(v)).

Proof. Putting ξ = 1p+q in Lemma 4.6 yields that

Neg(u × v) =Neg(u)
⊎

(p + Neg(v)),

Inv(u × v) = Inv(u)
⊎

((p, p) + Inv(v))
⊎

[p] ×
(
p + Neg(v)

)

and

Nsp(u × v) =Nsp(u)
⊎(

(p, p) + Nsp(v)
)⊎

[p] ×
(
p + Neg(v)

)
.

Then the proof follows from Eq. (4) and Theorem 3.1. �

The following proposition shows that each component of the shifted product Bp × Bq can be

convex embedded into Bp+q under the restriction of the map τξ.

Proposition 4.8. Let ξ ∈ Sh(p, q). Then for any K ⊆ [q], τξ is a convex embedding when restricted

to Bp ×Bq,K . In particular, this restriction preserves meets and joins.

Proof. It is clear that τξ is injective. Theorem 3.1 and Lemma 4.6 guarantee that τξ is order-

preserving. It remains to prove that the restriction of τξ to Bp × Bq,K is convex. To see this, set

w ∈ Bp+q, u′, u′′ ∈ Bp and v′, v′′ ∈ Bq,K such that τξ(u
′×v′) 6 w 6 τξ(u

′′×v′′). Let w′ = τξ(u
′×v′)

and w′′ = τξ(u
′′ × v′′). Then w′ 6 w 6 w′′. According to Lemma 4.4, there exist η ∈ Sh(p, q),

u ∈ Bp and v ∈ Bq such that w−1 = η(u−1 × v−1), that is, w = (u × v)η−1. We claim that ξ = η.

Suppose to the contrary that ξ , η. Then there exist i, r ∈ [p] and j, s ∈ [p + 1, p + q] such that

ξi = ηs and ξ j = ηr.

We first consider the case ξi > ξ j. Then (i, j) ∈ Inv(ξ) and (r, s) ∈ Inv(η). Comparing Eqs. (9)

and (10) yields that

(ηr, ηs) ∈ Inv(w)⇔ (r, s) ∈ [p] × (p + Neg(v)) ∩ Inv(η)⇔ (ηr, ηs) ∈ Nsp(w).

Since (ξ j, ξi) = (ηr, ηs), we have

(ξ j, ξi) ∈ Inv(w) ⇔ (ξ j, ξi) ∈ Nsp(w).

Again by Eqs. (9) and (10), if j ∈ p + Neg(v′), then

( j, i) ∈ (p + Neg(v′)) × [p] ∩ Ĩnv(ξ)⇒ (ξ j, ξi) ∈ Nsp(w′) ⊆ Nsp(w)

⇒ (ξ j, ξi) ∈ Inv(w) ⊆ Inv(w′′)

⇒ j ∈ p + Neg(v′′).
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But Neg(v′) = Neg(v′′), so j ∈ p + Neg(v′), a contradiction. Similarly, if j ∈ p + Neg(v′), then

( j, i) ∈ (p + Neg(v′)) × [p] ∩ Ĩnv(ξ)⇒ (ξ j, ξi) ∈ Inv(w′) ⊆ Inv(w)

⇒ (ξ j, ξi) ∈ Nsp(w) ⊆ Nsp(w′′)

⇒ j ∈ p + Neg(v′′)

⇒ j ∈ p + Neg(v′),

a contradiction.

Thus, we must have ξi < ξ j, and hence (i, j) ∈ Inv(ξ) and (r, s) ∈ Inv(η). According to Eqs. (9)

and (10), we have

(ξi, ξ j) ∈ Inv(w′)⇔ (i, j) ∈ [p] × (p + Neg(v′)) ∩ Inv(ξ)⇔ (ξi, ξ j) ∈ Nsp(w′)

and

(ξi, ξ j) ∈ Inv(w′′)⇔ (i, j) ∈ [p] × (p + Neg(v′′)) ∩ Inv(ξ)⇔ (ξi, ξ j) ∈ Nsp(w′′).

It then follows from Neg(v′) = Neg(v′′) that

(ξi, ξ j) ∈ Inv(w′)⇔ (ξi, ξ j) ∈ Nsp(w′)⇔ (ξi, ξ j) ∈ Inv(w′′)⇔ (ξi, ξ j) ∈ Nsp(w′′).

Consequently, in view of Eqs. (9) and (10), if s ∈ p + Neg(v), then

(s, r) ∈ (p + Neg(v)) × [p] ∩ Ĩnv(η)⇒ (ξi, ξ j) = (ηs, ηr) ∈ Nsp(w) ⊆ Nsp(w′′)

⇒ (ηs, ηr) = (ξi, ξ j) ∈ Inv(w′) ⊆ Inv(w)

⇒ s ∈ p + Neg(v);

if s ∈ p + Neg(v), then

(s, r) ∈ (p + Neg(v)) × [p] ∩ Ĩnv(η)⇒ (ξi, ξ j) = (ηs, ηr) ∈ Inv(w) ⊆ Inv(w′′)

⇒ (ηs, ηr) = (ξi, ξ j) ∈ Nsp(w′) ⊆ Nsp(w)

⇒ s ∈ p + Neg(v).

Thus, in both cases, we reach a contradiction. So ξ = η.

Now we have (u′ × v′)ξ−1 6 (u × v)ξ−1 6 (u′′ × v′′)ξ−1. Since Neg(v′) = Neg(v′′) = K, we see

that Neg(v) = K by Eq. (8), and hence u × v ∈ Bp × Bq,K. Therefore, τξ is a convex embedding

when restricted to Bp ×Bq,K. �

Corollary 4.9. Let K ⊆ [q]. If u 6 u′ inBp and v 6 v′ inBq,K , then [u, u′]×[v, v′] = [u×v, u′×v′]

in Bp+q.

Proof. Since [x, y] � [1p+q, yx−1] for any x, y ∈ Bp+q, we have [u×v, u′×v′] � [1p+q, u
′u−1×v′v−1].

From v, v′ ∈ Bq,K we see that v′v−1 ∈ Bq,∅, so it suffices to assume that u ∈ Bp and v ∈ Bq,∅ and

show that

[1p, u] × [1q, v] = [1p+q, u × v].

By Corollary 4.7, [1p, u] × [1q, v] ⊆ [1p+q, u × v]. For the other inclusion, pick w ∈ [1p+q, u × v].

In view of Proposition 4.8, the map (u, v) 7→ u× v is a convex embedding from Bp ×Bq,∅ to Bp+q,

so w = u′′ × v′′ for some (u′′, v′′) ∈ Bp × Bq,∅. Again by Corollary 4.7 we have u′′ ∈ [1p, u] and

v′′ ∈ [1q, v
′], so that w ∈ [1p, u] × [1q, v]. Thus, [1p, u] × [1q, v] = [1p+q, u × v], completing the

proof. �
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We now are in a position to give the main result of this subsection. The proof relies upon

the following fact given in [4]. Let p1, p2, . . . , pk be positive integers with sum p. Then for any

positive integer q, the map

Sh(p, q) × Sh(p1, p2, . . . , pk)→ Sh(p1, p2, . . . , pk, q), (ζ, ζ′) 7→ ζ(ζ′ × 1q)(18)

is a bijection.

Theorem 4.10. Let p1, p2, . . . , pk be positive integers where k > 2.

(a) We have

Bp1
×Bp2

× · · · ×Bpk
=
⊎

Li⊆[pi]

i=2,...,k

Bp1
×Bp2 ,L2

× · · · ×Bpk,Lk

and

Bp1+p2+···+pk
=

⊎

ξ∈Sh(p1 ,p2,...,pk)

⊎

Li⊆[pi]

i=2,...,k

(
Bp1
×Bp2,L2

× · · · ×Bpk,Lk

)
· ξ−1.

(b) For any Li ⊆ [pi], i = 2, . . . , k, the subset Bp1
× Bp2 ,L2

× · · · × Bpk,Lk
is a sublattice of

Bp1+p2+···+pk
isomorphic to Bp1

×Sp2
× · · · ×Spk

.

(c) Let Li, L
′
i ⊆ [pi], i = 2, . . . , k, where there is at least one i such that Li , L′i . If w ∈

Bp1
× Bp2 ,L2

× · · · × Bpk ,Lk
and w′ ∈ Bp1

× Bp2,L
′
2
× · · · × Bpk,L

′
k

such that w < w′, then

ℓ(w′) − ℓ(w) > 3.

(d) For any ξ ∈ Sh(p1, p2, . . . , pk) and Li ⊆ [pi], i = 2, . . . , k, the map τξ is a convex embedding

when restricted toBp1
×Bp2 ,L2

× · · · ×Bpk ,Lk
. In particular, this restriction preserves meets

and joins.

Proof. (a) Since Bpi
=
⊎

Li⊆[pi]
Bpi,Li

for i = 2, 3, . . . , k, the first identity is true. Note that the set

{ξ−1 | ξ ∈ Sh(p1, p2, . . . , pk)} is a set of the right coset representatives for the subgroupBp1
×Bp2

×

· · · ×Bpk
in Bp1+p2+···+pk

. Hence the second identity holds.

(b) The proof is by induction on k. We first show that for any subset L2 of [p2], Bp1
×Bp2,L2

is

a sublattice of Bp1+p2
isomorphic to Bp1

×Sp2
. Suppose that

L2 = {i1 < i2 < · · · < ir} and [p2]\L2 = {ir+1 < ir+2 < · · · < ip2
}.

Let v′, v′′ ∈ Bp2
where

v′i1 = r, v′i2 = r − 1, · · · , v′ir = 1, v′ir+1
= r + 1, v′ir+2

= r + 2, · · · , v′ip2
= p2,

and

v′′i1 = p2 − r + 1, v′′i2 = p2 − r + 2, · · · , v′′ir = p2, v′′ir+1
= p2 − r, v′′ir+2

= p2 − r − 1, · · · , v′′ip2
= 1.

It is now straightforward to check that Bp2,L2
= [v′, v′′] by Theorem 3.1.

Since Bp1
= [1p1

, ωp1
] where ωp1

is the largest element of Bp1
, it follows from Corollary 4.9

that Bp1
× Bp2,L2

= [1p1
× v′, ωp1

× v′′], which is a sublattice of Bp1+p2
. It is easily seen that

v′′v′−1 = p2(p2 − 1) · · · 1 which is the largest element of Sp2
, so Bp2,L2

� [1p2
, v′′v′−1] = Sp2

, and

hence

Bp1
×Bp2 ,L2

≃ [1p1
× 1p2

, ωp1
× (p2(p2 − 1) · · · 1)] = Bp1

×Sp2
.

Now assume for k − 1. Then Bpk,Lk
and Bp1

× Bp2 ,L2
× · · · × Bpk−1,Lk−1

are intervals, and hence

so does Bp1
× Bp2,L2

× · · · × Bpk,Lk
by Corollary 4.9. It is routine to show that this interval is

isomorphic to the parabolic subgroup Bp1
×Sp2

× · · · ×Spk
.
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(c) Suppose w = u(1) × u(2) × · · · × u(k) and w′ = u′(1) × u′(2) × · · · × u′(k), where u(1), u′(1) ∈ Bp1
,

u(i) ∈ Bpi,Li
and u′(i) ∈ Bpi,L

′
i

for i = 2, . . . , k. Since w < w′, it follows from Corollary 4.7 that

u(i) 6 u′(i), i = 1, 2, . . . , k. Then, by Theorem 3.1, we have Li ⊆ L′
i
, i = 2, . . . , k. Choose j maximal

so that L j , L′
j
. Then j > 2, L j $ L′

j
and ℓ(u′( j)) − ℓ(u( j)) > 1. From Corollary 4.7 it follows that

ℓ(w′) − ℓ(w) >

k∑

i=1

(
ℓ(u′(i)) − ℓ(u(i))

)
+ 2(p1 + · · · + p j−1)(|L′j| − |L j|)

> ℓ(u′( j)) − ℓ(u( j)) + 2(p1 + · · · + p j−1)

> 3.

(d) Let ξ ∈ Sh(p1, p2, . . . , pk) and Li ⊆ [pi], i = 2, . . . , k. It follows from Lemma 4.2 and

Proposition 4.8 that the statement holds for k = 2. Now assume for k − 1. Write p = p1 +

p2 + · · · + pk−1. Then, by Eq. (18), there exists (η, ζ′) ∈ Sh(p, pk) × Sh(p1, p2, . . . , pk−1) such that

ξ = η(ζ′ × 1pk
). So for any w = u(1) × u(2) × · · · × u(k) ∈ Bp1

×Bp2,L2
× · · · ×Bpk ,Lk

, we have

wξ−1 =
(
(u(1) × · · · × u(k−1))ζ′−1 × u(k)

)
η−1.

From Proposition 4.8 it follows by induction that τξ is a convex embedding when restricted to

Bp1
×Bp2,L2

×· · ·×Bpk,Lk
. Thus, the restriction of τξ preserves meets and joins by Lemma 4.2. �

From Theorem 4.10(c) we see that different components ofBp1
×Bp2

×· · ·×Bpk
are not adjacent

in the Hasse diagram of Bp1+p2+...+pk
under the weak order.

Example 4.11. In the hyperoctahedral group B3, as illustrated in Figure 1, the subgroup B2 ×B1

is the disjoint union of

B2 ×B1,∅ = [123, 1 23] and B2 ×B1,{1} = [123, 1 2 3],

while the subgroup B1 ×B2 is the disjoint union of

B1 ×B2,∅ = [123, 1 32], B1 ×B2,{1} = [123, 1 32], B1 ×B2,{2} = [132, 123]

and

B1 ×B2,{1,2} = [13 2, 1 2 3].

For signed permutations 132 ∈ B1 ×B2,∅ and 132 ∈ B1 ×B2,{2}, we have 132 < 132 and ℓ(132) −

ℓ(132) = 3. So 3 is the best lower bound of ℓ(w′) − ℓ(w) when w′ > w and they come from

different components.

Note that Sh(2, 1) = {123, 132, 231} and Sh(1, 2) = {123, 213, 312}. We have

τ132

(
B2 ×B1,∅

)
= [132, 132], τ231

(
B2 ×B1,∅

)
= [312, 31 2],

τ132

(
B2 ×B1,{1}

)
= [132, 1 3 2], τ231

(
B2 ×B1,{1}

)
= [312, 3 1 2],

τ213

(
B1 ×B2,∅

)
= [213, 312], τ312

(
B1 ×B2,∅

)
= [231, 321],

τ213

(
B1 ×B2,{1}

)
= [213, 3 12], τ312

(
B1 ×B2,{1}

)
= [231, 321],

τ213

(
B1 ×B2,{2}

)
= [312, 21 3], τ312

(
B1 ×B2,{2}

)
= [321, 23 1],

τ213

(
B1 ×B2,{1,2}

)
= [312, 2 1 3], τ312

(
B1 ×B2,{1,2}

)
= [3 21, 2 3 1].
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5. Monomial basis for the Hopf algebra of signed permutations

In this section, we apply our results obtained in Sections 3 and 4 to study the monomial basis

{Mu | u ∈ Bn, n > 0} for the Hopf algebra HS ym of signed permutations with respect to the weak

order on hyperoctahedral groups. In general the structure constants in terms of this basis is not

nonnegative. However, it is shown that for u ∈ Bp,[p] the coproduct of Mu is obtained by splitting

the signed permutation u at global descents, and that for (u, v) ∈ Bp ×Bq,[q], the product MuMv is

a nonnegative linear combination of the monomial basis. Moreover, under the descent map from

HS ym to the algebra of type B quasi-symmetric functions, we show that the image of Mu is either

0 or a monomial type B quasi-symmetric function.

5.1. Hopf algebras of permutations and of signed permutations. Let k be a field of charac-

teristic zero, and let

HS ym :=

∞⊕

n=0

kBn

be the graded k-vector space whose n-th graded component has a linear basis Bn. By convention

B0 is the set containing the empty permutation. Write Fu for the basis element corresponding

to the signed permutation u in Bn for n > 0 and ι for the basis element of degree 0. We call

{Fu | u ∈ Bn, n > 0} the fundamental basis.

The space HS ym has a self-dual connected graded Hopf algebra structure, whose product and

coproduct are induced by the non-parabolic embeddingBp×Bq ֒→ Bp+q. For u ∈ Bp and v ∈ Bq,

the product and coproduct are respectively defined by

FuFv =
∑

ξ∈Sh(p,q)

F(u×v)ξ−1 and ∆(Fu) =

p∑

i=0

Fsts(u1···ui) ⊗ Fsts(ui+1···up),(19)

where the element ι is the multiplicative identity. For instance,

F12F21 = F12 43 + F14 23 + F1432 + F4123 + F4132 + F4312

and

∆(F14 23) = ι ⊗ F14 23 + F1 ⊗ F3 12 + F12 ⊗ F12 + F13 2 ⊗ F1 + F14 23 ⊗ ι.

LetSS ym be the vector subspace of HS ym generated by {Fu | u ∈ Sn} indexed by permutations,

that is

SS ym :=

∞⊕

n=0

kSn.

Then SS ym is indeed a Hopf subalgebra of HS ym, called the Malvenuto-Reutenauer Hopf al-

gebra of permutations. The product on SS ym is defined by Eq. (19), which corresponds to the

parabolic embedding Sp × Sq ֒→ Sp+q of symmetric groups. Since sts coincides with st on

permutations, we can write the comultiplication on SS ym as

∆(Fu) =

p∑

i=0

Fst(u1···ui) ⊗ Fst(ui+1···up)

where u ∈ Sp. To illustrate the product and coproduct rules for SS ym, we have

F12F21 = F1243 + F1423 + F1432 + F4123 + F4132 + F4312
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and

∆(F1423) = ι ⊗ F1423 + F1 ⊗ F312 + F12 ⊗ F12 + F132 ⊗ F1 + F1423 ⊗ ι.

The Hopf algebra of permutations was introduced by Malvenuto and Reutenauer [23] and

extensively studied in [4, 5, 15, 25, 26]. The Hopf algebra HS ym was introduced by Aguiar,

Bergeron and Nyman [1] in the dual version, and generalized by Novelli and Thibon [24] to a

family of graded Hopf algebras with bases labeled by colored permutations. Recently, a non-

graded Hopf structure was imposed on the underlying space HS ym in [18], where it was shown

that SS ym is a quotient Hopf algebra of HS ym. The nonparabolic embedding Bp × Bq ֒→

Bp+q was used by Huang in [19] to study the representation theory of the hyperoctahedral group,

and it is shown that the underlying space HS ym has module and comodule structures over the

Malvenuto-Reutenauer Hopf algebra SS ym.

5.2. Monomial basis. Aguiar and Sottile [4] defined the monomial basis {Mu} for SS ym with

respect to the weak order on Sn by

Mu :=
∑

u6v

µSn
(u, v)Fv,

where µSn
is the Möbius function of the weak order on Sn. This basis has a simple coproduct

formula. For a signed permutation u ∈ Bn, its descent set is

Des(u) := {i ∈ [0, n − 1] | ui > ui+1},

while its global descent set is

GDes(u) := {i ∈ [n − 1] | u j > uk for all j, k with 1 6 j 6 i < k 6 n}.

Here we use the notation u0 = 0. Then

∆(Mu) =
∑

p∈GDes(u)

Mst(u1···up) ⊗ Mst(up+1···un),

where u ∈ Sn and GDes(u) = GDes(u) ∪ {0, n}.

In an analogous manner, we define a monomial basis {Mu} for HS ym indexed by signed

permutations with respect to the weak order on the hyperoctahedral group. For each n > 0

and u ∈ Bn, let

Mu :=
∑

u6v

µBn
(u, v)Fv, or equivalently, Fu =

∑

u6v

Mv.(20)

where µBn
is the Möbius function of the weak order on Bn.

Although SS ym is a Hopf subalgebra of HS ym and Fu = Fu for all permutations u, the

monomial bases elements Mu ∈ SS ym and Mu ∈ HS ym indexed by the same permutation u

are distinct. For example,

M231 = F231 − F321, while M231 = F231 − F321 − F231 + F321.

So we write M and F in bold type for HS ym.

Remark 5.1. Recently, Bergeron, D’león, Li, Pang and Vargas [7] used an axiomatized version of

the methods of Aguiar and Sottile [4] on SS ym to define a monomial basis on any combinatorial

Hopf algebra, and showed that the product is nonnegative and the coproduct is cofree on the

monomial basis elements. It is not difficult to verify that the Hopf algebra HSym under the weak
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order on the hyperoctahedral group does not satisfy the axioms established in [7]. The following

Example 5.2 shows that the coproduct structure constants of the monomial basis may be negative.

Let ϕ : Bn → Sn be the map forgetting the signs of signed permutations. Then it follows from

the definition that the map Fu 7→ Fϕ(u) is a graded Hopf homomorphism from HSym to SSym.

Note that the map w 7→ (ϕ(w),Neg(w)) is a bijection between Bn and Sn × 2[n], where 2[n] is the

power set of [n]. Define a partial order 6′ on Bn by

u 6′ v ⇔ ϕ(u) 6 ϕ(v) and Neg(u) ⊆ Neg(v).

It is straightforward to verify that the Hopf algebra HSym satisfies the axioms given in [7] under

the order 6′. So we can obtain a monomial basis, with respect to the order 6′, in the sense of [7].

Example 5.2. It can be seen from Figure 1 that

M123 = F123 − F213 − F123 + F1 2 3 and M132 = F132 − F231 − F1 32 + F1 3 2.

Direct computations yield that

∆(M123) = ι ⊗M123 +M12 ⊗M1 −M1 ⊗M12 +M123 ⊗ ι

and

∆(M132) = ι ⊗M132 −M1 ⊗M21 −M1 2 ⊗M1 +M132 ⊗ ι.

However, when all entries of u are negative, the coproduct formula of the monomial basis

element Mu is completely analogous to that for SSym. For instance,

∆(M3 1 2 4 6 5) = ι ⊗M3 1 2 4 6 5 +M3 1 2 ⊗M1 3 2 +M3 1 2 4 ⊗M2 1 +M3 1 2 4 6 5 ⊗ ι.

Theorem 5.3. For any u ∈ Bn,[n], we have

∆(Mu) =
∑

p∈GDes(u)

Msts(u1···up) ⊗Msts(up+1···un),

where GDes(u) = GDes(u) ∪ {0, n}.

Proof. Let ∆′ : HSym → HSym ⊗ HSym be the map defined by the right-hand side sum in

the desired identity. Then it suffices to show that ∆′ coincides with the coproduct ∆ defined

by Eq. (19). For any w ∈ Bn,[n] and nonnegative integer p with 0 6 p 6 n, we write w
p

(1)
=

sts(w1 · · ·wp) and w
p

(2)
= sts(wp+1 · · ·wn). Then p ∈ GDes(w) is equivalent to w = w

p

(1)
× w

p

(2)
. Let

u ∈ Bn,[n]. If v ∈ Bn with u 6 v, then by Theorem 3.1, v ∈ Bn,[n]. Thus,

∆′(Fu) =
∑

u6v

∆′(Mv) =
∑

u6v

∑

p∈GDes(v)

Mv
p

(1)
⊗Mv

p

(2)
=

n∑

p=0

∑

u6v

v=v
p
(1)
×v

p
(2)

Mv
p

(1)
⊗Mv

p

(2)
.

According to Theorem 3.1 and Lemma 4.5, u 6 v
p

(1)
× v

p

(2)
if and only if u

p

(1)
6 v

p

(1)
and u

p

(2)
6 v

p

(2)
.

Consequently,

∆′(Fu) =

n∑

p=0

∑

u6v1×v2

Mv1
⊗Mv2

=

n∑

p=0

∑

u
p

(1)
6v1

Mv1
⊗
∑

u
p

(2)
6v2

Mv2

=

n∑

p=0

Fu
p

(1)
⊗ Fu

p

(2)
= ∆(Fu),

as desired. �
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In general, the product structure constants of HSym in terms of its monomial basis are not

nonnegative. For example,

M12M1 =M123 + 2M132 +M132 +M231 +M231 +M312 −M132 −M312

and

M12M1 =M123 + 2M132 +M132 +M231 +M231 +M312 −M1 32 −M3 12.

However, we will deduce from Proposition 4.8 that the product MuMv is a nonnegative linear

combination of monomial basis for any (u, v) ∈ Bp ×Bq,[q]. For instance,

M1M2 1 =M13 2 +M312 +M3 21.

Given u ∈ Bp, v ∈ Bq and w ∈ Bp+q, define Bw
u,v to be the set of ξ ∈ Sh(p, q) satisfying

(a) (u × v)ξ−1 6 w;

(b) if u 6 u′ such that (u′ × v)ξ−1 6 w, then u = u′.

Also, define Cw
u,v to be the set of ξ ∈ Sh(p, q) satisfying

(a) (u × v)ξ−1 6 w;

(b) if u 6 u′ and v 6 v′ such that (u′ × v′)ξ−1 6 w, then u = u′ and v = v′.

Denote bw
u,v = #Bw

u,v and cw
u,v = #Cw

u,v. Then we have the following theorem.

Theorem 5.4. Let p, q be positive integers. Then for any u ∈ Bp and v ∈ Bq, we have

MuMv =
∑

w∈Bp+q

∑

v6v′

µ(v, v′)bw
u,v′Mw.(21)

Moreover, if Neg(v) = [q], then

MuMv =
∑

w∈Bp+q

cw
u,vMw.(22)

Proof. We first consider Eq. (21). Applying Eq. (20) to the product MuMv gives that

MuMv =
∑

u6u′,v6v′

µ(u, u′)µ(v, v′)Fu′Fv′ =
∑

ξ∈Sh(p,q)

∑

u6u′,v6v′

µ(u, u′)µ(v, v′)F(u′×v′)ξ−1 .

Then expressing the fundamental basis in terms of monomial basis yields that

MuMv =
∑

ξ∈Sh(p,q)

∑

u6u′,v6v′

(u′×v′)ξ−16w

µ(u, u′)µ(v, v′)Mw =
∑

w∈Bp+q

∑

u6u′,v6v′

µ(u, u′)µ(v, v′)aw
u′,v′Mw,(23)

where aw
u′,v′

is the cardinality of the set

Aw
u′,v′ = {ξ ∈ Sh(p, q) | (u′ × v′)ξ−1

6 w}.

Thus, if we can show that

Aw
u,v′ =

⊎

u6u′

Bw
u′,v′ ,

then, by Möbius inversion on Bp, we have

bw
u,v′ =

∑

u6u′

µ(u, u′)aw
u′,v′ ,

and hence the desired identity follows.
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To see this, let ξ ∈ Bw
u′,v′
∩ Bw

u′′,v′
, where u 6 u′ and u 6 u′′. Then we have

(u′ × v′)ξ−1
6 w and (u′′ × v′)ξ−1

6 w.

By Proposition 4.8, ((u′ ∨ u′′)× v′)ξ−1 6 w, and hence u′ = u′ ∨ u′′ = u′′. So the union is disjoint.

Let ξ ∈ Bw
u′,v′

for some u′ > u. Then it follows from Corollary 4.7 and Proposition 4.8 that

(u × v′)ξ−1 6 (u′ × v′)ξ−1 6 w, so that ξ ∈ Aw
u,v′

. Conversely, if ξ ∈ Aw
u,v′

, then put

u′′ =
∨
{u′ ∈ Bp | u 6 u′ and (u′ × v′)ξ−1

6 w}.

By Proposition 4.8, the restriction of τξ to the set Bp×Bq,Neg(v′) is convex, so τξ is join-preserving

and we have (u′′ × v′)ξ−1 6 w. By definition, u′′ is the maximum element of the set of those u′

satisfying (u′ × v′)ξ−1 6 w, and hence ξ ∈ Bw
u′′,v′ . Consequently, Aw

u,v′ =
⊎

u6u′ Bw
u′,v′ , and Eq. (21)

follows.

We now consider Eq. (22). Since Neg(v) = [q], it follows from Theorem 3.1 that if v ≤ v′ in

Bq, then v′ ∈ Bq,[q]. By Proposition 4.8, τξ is a convex embedding when restricted to Bp ×Bq,[q],

a completely analogous argument shows that

Aw
u,v =

⊎

u6u′,v6v′

Cw
u′,v′ .

Thus, it follows from Möbius inversion on Bp ×Bq,[q] that

cw
u,v =

∑

u6u′ ,v6v′

µ(u, u′)µ(v, v′)aw
u′,v′ ,

which together with Eq. (23) yields Eq. (22), completing the proof. �

5.3. The descent map to quasi-symmetric functions of type B. Chow [13] introduced a type

B analogous algebra of quasi-symmetric functions, which admits the fundamental basis {Fα} and

the monomial basis {Mα} indexed by pseudo-compositions.

Recall that a pseudo-composition of n is a sequence α = (α1, α2, . . . , αk) of nonnegative integers

such that α1 + α2 + · · · + αk = n with α1 > 0 and αi > 0 for i > 2. Let PC(n) denote the set of

pseudo compositions of n. To each pseudo composition α, we associate the set

D(α) := {α1, α1 + α2, . . . , α1 + α2 + · · · + αk−1}.

This gives a bijection between the set PC(n) and the power set 2[0,n−1] of [0, n−1], and refinement

of pseudo compositions corresponds to inclusion of subsets, i.e., α 6 β if and only if D(α) ⊆ D(β).

So we simply identify the poset PC(n) of pseudo compositions with the Boolean lattice 2[0,n−1] of

subsets of [0, n − 1].

Let X = {x0, x1, x2, · · · } be a set of commutating indeterminates. Given a pseudo-composition

α = (α1, α2, . . . , αk) of n, the monomial and fundamental quasi-symmetric functions of type B

corresponding to α are defined by

Mα :=
∑

0<i2<···<in

x
α1

0
x
α2

i2
· · · x

αk

ik
and Fα :=

∑

06i16i26···6in
j∈D(α)⇒i j<i j+1

xi1 xi2 · · · xin ,

respectively, where i0 = 0. Then

Fα =
∑

α6β

Mβ and Mα =
∑

α6β

(−1)ℓ(β)−ℓ(α)Mβ.
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Let BQSym :=
⊕

n>0
BQSymn where BQSymn denotes the space spanned by {Mα |α ∈ PC(n)},

or equivalently by {Fα |α ∈ PC(n)}. Then BQSym is a subalgebra of k[[X]], called the algebra of

quasi-symmetric functions of type B.

Chow [13, Proposition 2.2.6] showed that the map

D : HSym→ BQSym, D(Fu) = FDes(u)

is a homomorphism of algebras. We will describe this map in terms of monomial basis. To

this end, we first study a relationship between Galois connections and the transfers of monomial

bases on two spaces generated by posets. A Galois connection is an important tool used in [4] to

establish the relationship between the monomial bases of the Malvenuto-Reutenauer Hopf algebra

of permutations and the Hopf algebra of quasi-symmetric functions.

Let P and Q be posets, let f : P→ Q and g : Q→ P be order-preserving maps. The pair ( f , g)

is said to be a Galois connection between P and Q if for any x ∈ P and y ∈ Q,

f (x) 6Q y⇔ x 6P g(y).

When this occurs, Rota [29, Theorem 1] showed that the Möbius functions of P and Q are related

by
∑

p6x, f (x)=q

µP(p, x) =
∑

y6q, g(y)=p

µQ(y, q)(24)

for all p ∈ P and q ∈ Q. A generalization of this formula in the context of Hopf algebras can be

found in [3].

When f is surjective we provide a necessary and sufficient condition for a pair of order-

preserving maps ( f , g) : P ⇄ Q to be a Galois connection, which may be useful in its own

right.

Lemma 5.5. Let P and Q be posets, and let f : P → Q and g : Q → P be order-preserving

maps, where f is surjective. Then ( f , g) : P ⇆ Q is a Galois connection if and only if for any

y ∈ Q, g(y) is the largest element of f −1(y) := {x ∈ P | f (x) = y}. In this case, f g = IdQ.

Proof. If ( f , g) is a Galois connection between P and Q, then for any y ∈ Q and any x ∈ f −1(y),

we have f (x) 6 y so that x 6 g(y). Thus, g(y) is an upper bound of the set f −1(y). Since f is

order-preserving, we have y = f (x) 6 f (g(y)). On the other hand, it follows from g(y) 6 g(y) that

f (g(y)) 6 y, and hence f (g(y)) = y, so g(y) ∈ f −1(y). Consequently, g(y) is the largest element of

the set f −1(y).

Conversely, assume that g(y) is the largest element of f −1(y) for any y ∈ Q. Then f g is the

identity map IdQ. Moreover, for any x ∈ P, g( f (x)) is the largest element of f −1( f (x)), so that

x 6 g( f (x)). Take any y ∈ Q. If f (x) 6 y, then x 6 g( f (x)) 6 g(y) because g is order-preserving.

If x 6 g(y), then f (x) 6 f (g(y)) = IdQ(y) = y because f is order-preserving. Thus, ( f , g) : P⇆ Q

is a Galois connection. �

Given a poset P, let {Fp | p ∈ P} be the starting “fundamental” basis for the space kP and define

the “monomial” basis {Mp | p ∈ P} by

Mp :=
∑

p6p′

µP(p, p′)Fp′ , or equivalently, Fp :=
∑

p6p′

Mp′ .

Then we have the following result.
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Proposition 5.6. Let P and Q be posets with a Galois connection ( f , g) : P ⇄ Q where f is a

surjection. If π : kP → kQ is a linear map induced by π(Fp) = F f (p) where p ∈ P, then

π(Mp) =


My, y ∈ Q and p = g(y),

0, otherwise.

Proof. It follows from Mp =
∑

p6x µP(p, x)Fx that

π(Mp) =
∑

p6x

µP(p, x)F f (x) =
∑

q∈Q

( ∑

p6x, f (x)=q

µP(p, x)
)
Fq.

Since ( f , g) : P⇄ Q is a Galois connection, we see by Eq. (24) that

π(Mp) =
∑

q∈Q

( ∑

y6q, g(y)=p

µQ(y, q)
)
Fq.

Note that f is a surjection, so by Lemma 5.5, we have f g = IdQ so that g is injective. Then there

exists a unique element in Q, say yp, satisfying p = g(yp) if p ∈ Im g; otherwise, the index set

{y ∈ Q | y 6 q, g(y) = p} is empty. Thus,

∑

y6q, g(y)=p

µQ(y, q) =


µQ(y, q), y ∈ Q and p = g(y),

0, otherwise.

Consequently, π(Mp) = My if y is the (unique) element in Q such that p = g(y), and π(Mp) = 0

otherwise. �

Now we are ready to establish a Galois connection between Bn and 2[0,n−1], so that we can use

Proposition 5.6 to obtain the relationship between the monomial bases of HSym and BQSym.

Pseudo compositions can encode descent classes of signed permutations. Given I ⊆ [0, n − 1],

let YI denote the descent class of I in Bn, that is, YI := {w ∈ Bn |Des(w) = I}. It is well known

(see [10, Theorem 6.2]) that YI is an interval of Bn. There is a concrete description of the largest

element of YI .

Lemma 5.7. Let I be a subset of [0, n − 1] and ζI the largest element of YI .

(a) If I = {0 < p1 < p2 < · · · < pk}, then

ζI = (p1, . . . , 1, p2, . . . , p1 + 1, . . . , n, . . . , n − pk).

(b) If I = {p1 < p2 < · · · < pk} where p1 > 0, then

ζI = (1, . . . , p1, p2, . . . , p1 + 1, . . . , n, . . . , n − pk).

Proof. It is straightforward to verify that Des(ζI) = I, so by Theorem 3.1 it suffices to show that

if w ∈ YI , then Neg(w) ⊆ Neg(ζI), Inv(w) ⊆ Inv(ζI) and Nsp(w) ⊆ Nsp(ζI). Let w be any signed

permutation of YI . Then wp1
> wp1+1,wp2

> wp2+1, . . . ,wpk
> wpk+1 and

w1 < · · · < wp1
,wp1+1 < · · · < wp2

, . . . ,wpk+1 < · · · < wn.

If I = {0 < p1 < p2 < · · · < pk}, then Neg(ζI) = [n], Nsp(ζI) = {(i, j) | 1 6 i < j 6 n} and

Inv(ζI) = {(i, j) | 1 6 i 6 pr < j 6 n for some r ∈ [k]}.

If I = {p1 < p2 < · · · < pk} where p1 > 0, then Neg(ζI) = [p1 + 1, n],

Nsp(ζI) = {(i, j) | 1 6 i 6 p1 < j 6 n} ∪ {(i, j) | p1 + 1 6 i < j 6 n}
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and

Inv(ζI) = {(i, j) | 1 6 i 6 pr < j 6 n for some r ∈ [k]}.

Moreover, in the former case, we have w1 < 0, while in the latter case, we have w1 > 0.

Consequently, in any cases, we must have Neg(w) ⊆ Neg(ζI), Inv(w) ⊆ Inv(ζI) and Nsp(w) ⊆

Nsp(ζI), and hence w 6 ζI. �

Combining Proposition 5.6 and Lemma 5.7, the map D : HSym → BQSym can be described

in terms of the monomial basis.

Theorem 5.8. For any w ∈ Bn, we have

D(Mw) =


MDes(w) if w = ζDes(w),

0 otherwise.

Proof. By Proposition 5.6, it suffices to show that the pair of maps (Des, g) : Bn ⇆ 2[0,n−1] is a

Galois connection, where g : 2[0,n−1] → Bn is the map defined by g(I) = ζI. Observe that for any

signed permutation u, we have p ∈ Des(u) is equivalent to (p, p + 1) ∈ Inv(u). It then follows

from Theorem 3.1 that the map Des is order preserving. According to Lemma 5.7,

g(I) = ζI = max{w ∈ Bn |Des(w) = I} = max{w ∈ Bn |Des(w) ⊆ I},

so g is also order preserving. Note that Des is surjective, so by Lemma 5.5, (Des, g) : Bn ⇆ 2[0,n−1]

is a Galois connection, and the proof follows from Proposition 5.6 and Lemma 5.7. �
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