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The Weak Patch Test for 
Nonhomogeneous Materials Modeled 
with Graded Finite Elements 
Functionally graded materials have an additional length scale associated to the spatial 
variation of the material property field which competes with the usual geometrical length 
scale of the boundary value problem. By considering the length scale of nonhomogeneity, 
this paper presents the weak patch test (rather than the standard one) of the graded 
element for nonhomogeneous materials to assess convergence of the finite element method 
(FEM). Both consistency (as the size of elements approach zero, the FEM approximation 
represents the exact solution) and stability (spurious mechanisms are avoided) conditions 
are addressed. The specific graded elements considered here are isoparametric 
quadrilaterals (e.g. 4, 8 and 9-node) considering two dimensional plane and axisymmetric 
problems. The finite element approximate solutions are compared with exact solutions for 
nonhomogeneous materials. 
Keywords: finite element method (FEM), patch test, weak patch test, functionally graded 
material (FGM), graded element 

Introduction 

The patch test was originated by the memorable Bruce Irons and 

coworkers (Irons, 1966; Bazeley et al., 1966; Irons and Razzaque, 

1972). The concept is so important that it can be easily found in 

many textbooks in finite elements, either classical (Hughes, 1987; 

Cook et al., 2002; Bathe, 1995) or more recent (Belytschko et al.,

2000; Zienkiewicz and Taylor, 2000) ones, and it is needed to 

ensure reliability of the finite element method (FEM) (Babuška and 

Strouboulis, 2001). The original patch test provided a necessary 

consistency condition and thus turned out to be very useful for 

assessing convergence of finite elements analysis, including 

nonconforming elements (Wilson et al., 1973; Taylor et al., 1976; 

Taylor et al., 1986). An early mathematical treatment was given by 

Strang (1972), and Strang and Fix (1973). For an element which 

appears to be convergent but fails the Iron's patch test, the weak 

patch test is an alternative test, as suggested by Taylor et al. (1986). 

In addition, Belytschko and Lasry (1988) have studied the behavior 

of a distorted element with a fractal patch test, which is also valid in 

the weak patch test sense. The patch test has been applied to many 

problem-types including, for example, mixed displacement-pressure 

finite element formulations (Taylor et al., 1986; Zienkiewicz et al.,

1986; Razzaque, 1986; Wu and Chen, 1997; Zienkiewicz and 

Taylor, 1997), three-dimensional (3-D) solid elements (Loikkanen 

and Irons, 1984), plate bending elements (Samuelsson et al., 1987; 

Zienkiewicz and Lefebvre, 1988; Zhifei, 1993; Zienkiewicz et al.,

1993; Auricchio and Taylor, 1993; Aricchio and Taylor, 1994; 

Martins and Sabino, 1997; Park and Choi, 1997), and shell elements 

(Herrmann, 1989). The patch test has also been used as a 

fundamental tool to create new elements or to improve existing ones 

(Ju and Sin, 1996; Cheung et al., 2002; Piltner and Taylor, 2000).1

The patch test has become a widely used procedure, which can 

be numerically performed, in order to check the validity of a finite 

element formulation and coding. It is the necessary and sufficient 

condition for finite element analysis convergence (Zienkiewicz and 

Taylor, 2000). For sufficiency, at least one internal element 

boundary is required to verify that consistency of a patch solution is 

maintained between elements. To ensure convergence, both 

consistency and stability conditions must be verified. The 

consistency requirement ensures that as the size of the elements h

tends to zero, the finite element approximation represents the exact 
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solution. The stability condition is a requirement that an element 

admits no zero-energy mode deformation states when adequately 

supported against rigid-body motion, which means that the element 

stiffness matrix ( e ) must be non-singular. Stability is usually 

checked by ensuring that the stiffness matrix is of appropriate rank, 

and thus doesn't allow for appearance of spurious mechanisms. 

Modeling of functionally graded materials (FGMs) by the FEM 

can be accomplished by using either graded or homogeneous 

elements (Santare and Lambros, 2000; Kim and Paulino 2002a), as 

illustrated by Fig. 1. Part (a) of this figure shows an example of an 

exponentially graded material and part (b) illustrates an L-shaped 

domain made of this material. The graded element (see Fig. 1(c)) 

incorporates the material property gradient at the size scale of the 

element, while the homogeneous element (see Fig. 1(d)) produces a 

step-wise constant approximation to a continuous material property 

field. The patch test has been used to verify convergence of 

conventional homogeneous elements (Fig. 1(d)). In order to assess 

convergence of the graded elements, they must be patch-tested in 

the context of the “weak patch test”. 
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Figure 1. FEM modeling of FGMs: (a) nonhomogeneous medium; (b) 
generic region, e.g. L-shaped domain; (c) graded element; (d) 
homogeneous element. The property of the homogeneous elements may 
be taken as the actual property at the centroid of the element (cf. (c) and 
(d)). Here the symbol  means a nodal point, and the symbol × means a 

Gauss sampling point. The symbol  indicates the location for material 
property sampling (see parts (a) and (c)). 

Various finite element investigations of graded materials have 

been conducted using either commercially available (e.g. ABAQUS, 

ANSYS) or research-oriented codes. A sampling (which is, by no 

means, exhaustive) of published papers include a broad range of 

applications such as elasticity (Santare and Lambros, 2000; Kim and 

Paulino 2002a); linear elastic fracture mechanics (Eischen, 1987; Gu 

et al., 1999; Anlas et al., 2000; Kim and Paulino, 2002b, 2003, 

2004, 2005; Paulino and Kim, 2004); nonlinear fracture mechanics 
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(Carpenter et al., 1999; Kim et al., 1997); cohesive zone elements 

for fracture of FGMs (Jin et al., 2002; Zhang and Paulino, 2005); 

notch effect on FGM specimens (Lin and Miyamoto, 2000); 

tribology (Stephens et al., 2000; Jitcharoen et al., 1998); thermal 

stresses (Giannakopoulos et al., 1995; Cho and Oden, 2000; Cho 

and Ha, 2001; Noda, 1999); residual stresses (Lee and Erdogan, 

1995; Williamson et al., 1993; Becker et al., 2000; Khor and Gu, 

2000); various aspects of micromechanical modeling (Grujicic and 

Zhang, 1998; Dao et al., 1997; Shen, 1998); numerical 

homogenization (Schmauder and Weber, 2001; Le le et al., 1999); 

sensitivity analysis and optimization (Tanaka et al., 1996); 

evaluation of the so called “higher order theory” (Pindera and Dunn, 

1997); and functionally graded piezoelectric actuators (Almajid et

al., 2001; Carbonari et al, 2006a, 2006b).

In particular, the use of graded finite elements is of direct 

relevance to this work. Such elements were used by Santare and 

Lambros (2000) to model the behavior of nonhomogeneous elastic 

materials, and by Lee and Erdogan (1995) to investigate 

residual/thermal stresses in FGMs and thermal barrier coatings. 

Both authors (Santare and Lambros, 2000; Lee and Erdogan, 1995) 

used the Gauss point sampling of material properties. Graded 

elements were also used by Kim and Paulino (2003, 2004, 2005) 

and Paulino and Kim (2004) to investigate fracture mechanics of 

FGMs and to model nonhomogeneous isotropic and orthotropic 

materials, however, they have employed a generalized isoparametric 

formulation (Kim and Paulino, 2002a). 

The goal of the remainder of this paper is to develop a 

comprehensive presentation of the weak patch test for 

nonhomogeneous materials modeled with graded finite elements, 

and assess convergence rate of graded elements. This paper is 

organized as follows. First, we provide some exact solutions for 

nonhomogeneous elasticity that will be used as reference solutions 

for numerical examples. Then we present the graded element 

formulations, and various examples on the weak patch test, and also 

assess convergence rate. Finally we address stability considerations 

for graded finite elements followed by conclusions of the present 

investigation.

Exact Solutions for Nonhomogeneous Elasticity: 

Reference Solutions 

This section revisits a few closed-form solutions for 

nonhomogeneous elasticity problems. Two classes of problems are 

considered: plane and axisymmetric. In the first class, we consider 

an infinitely long plate, graded along its finite width, under 

symmetric loading conditions (fixed grip, tension, and bending) and 

also a simple shear problem. In the second class, we consider an 

axisymmetric problem, graded along the radial direction, under 

axisymmetric loading conditions. These closed-form solutions will 

be used as reference solutions for the weak patch test. 

Plane Problems 

Erdogan and Wu (1997) derived exact solutions for stresses to 

plane elasticity problems involving functionally graded plates of 

infinite length and finite width under symmetric loading conditions 

such as fixed grip, tension, and bending away from the center region 

of the specimen (see Fig. 2). Kim and Paulino (2002a) extended the 

work to orthotropic FGMs, and provided exact solutions for 

displacements. Let's consider the graded plate illustrated by Fig. 2, 

and let's assume the Poisson's ratio as constant. The shear modulus 

is given by  
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Figure 2. A graded strip: (a) geometry – the shaded region indicates the 
symmetric region of the plate used in the present FEM analyses (ux(a,0) = 
uy(a,0) = 0 with a = 0 where “a” denotes the x coordinate.); (b) fixed-grip 
loading; (c) tension; (d) bending. 
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where 1/  is the length scale of the nonhomogeneity, which is 

characterized by 

2

1

1
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with E=E(x) where E1 = E(x=0) and E2 = E(x=W).

Fixed Grip Loading 

For fixed grip loading (Fig. 2(b)) with
0

,
yy

x , the 

stress is given by 

0

8
,

1
yy

x
x  (3) 

where
3 4  :  plane strain

3 1  :  plane stress.

Using the strain-displacement relations and applying the 

following boundary conditions 

, 0 0,    ,0 0,x yu a u x  (4) 

where the parameter a  denotes a reference point for the 

displacement boundary condition, one obtains the following 

displacement fields 

0

0

3
,

1

, .

x

y

u x y x a

u x y y

 (5) 

Notice that the displacement fields are linear and thus strains are 

constant; however, stresses vary exponentially. 
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Tension and Bending 

For tension (Fig. 2(c)) and bending (Fig. 2(d)) loads applied 

perpendicular to material gradation, the applied stresses are defined 

by 

2

  ,   ,
6

b
t

W
N W M  (5) 

where N  is a membrane resultant applied along the 2x W  line, 

and M  is the bending moment. An infinitely long strip under these 

two loading cases can be considered as one-dimensional problem 

where xx = xy = 0, and yy  0. Thus the compatibility condition 
2 2

0
yy

x  gives

8
,

1
yy

x
x Ax B  (7) 

where the constants A  and B  are determined from 

0 0
 ,

W W

yy yyx dx N x xdx M  (8) 

by assuming 

2  for tension and 0 for bending.M NW N  (9) 

Thus, for tension load, the constants A  and B  are: 
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respectively. For bending load, the constants A  and B  are: 
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respectively. 

Using the strain-displacement relations and applying the 

boundary conditions given by Eq.(4), one obtains the following 

displacement field 

2 2 23
, ,

1 2 2 2

, .

x

y

A A A
u x y x Bx a Ba y

k

u x y Ax B y

 (12) 

Simple Shear 

Figure 3 shows a graded plate under uniform simple shear load, 

i.e. xy =  = 1.0. Assume that the Poisson's ratio is constant, and the 

shear modulus varies in the y direction as follows: 

E(y)=E e
βy

L

τ

τ

y

x

τ

W

Figure 3. A functionally graded plate under constant shear ( xy =  = 1.0). 
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 everywhere, the shear strain distribution 

becomes 
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Using the strain-displacement relations and applying the 

boundary conditions: 

,0 ,0 0,
x y

u x u x

one obtains the following displacement field 

1

1
, 1 ,   , 0.y

x yu x y e u x y
 (15) 

Axisymmetric Problem 

Horgan and Chan (1999) provided exact solutions for stresses 

for a hollow circular cylinder subjected to uniform pressure pi and 

0
p  on the inner (ri = a) or outer (r0 = b) surfaces, respectively (see 

Fig. 4). They assumed power-law variation of Young's modulus 

given by 

z
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Figure 4. An axially symmetric hollow cylinder or disk. 
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1

n
r

E r E
a

 (16) 

with
1

E E a  and the power n being a dimensionless constant. 

The displacements are given by: 

1/ 22 2 2

1 2 ,   4 4
n k n k

u r C r C r k n n , (17) 

where C1 and C2 are constants which can be determined by applying 

the axisymmetric boundary conditions – see the paper by Horgan 

and Chan (1999). 

Graded Finite Element Formulation 

Displacements for an isoparametric finite element can be written 

as 

1

m
e e

i i

i

Nu u
 (18) 

where Ni are shape functions, ui
e is the nodal displacements 

corresponding to node i of element e, and m is the number of nodes 

in an element. For example, for a Q4 element, the standard shape 

functions are 

1 1 4,     i=1,...,4i i iN  (19) 

where ( , ) denote intrinsic coordinates in the interval [-1,1] and 

( i, i) denote the local coordinates of node i. Strains are obtained by 

differentiating displacements as 

,e e eB u  (20) 

where Be is the strain-displacement matrix of shape function 

derivatives. The strain-stress relations are given by  

,e e e
D x  (21) 

where De(x) is the constitutive matrix, which is a function of spatial 

position, i.e. 

, .e e x yD x D  (22) 

The principle of virtual work yields the following finite element 

stiffness equations (Hughes, 1987): 

  ,
T

e

e e e e e e e

edk u f k B D x B
 (23) 

where f e is the load vector, ke is the element stiffness matrix, and e

is the domain of element (e). For the graded element, the De(x)

matrix varies spatially within the element. The polynomial order of 

the matrix will influence the number of Gauss integration points 

required for the reduced and full integrations. This behavior is 

investigated in the numerical examples section using two sets of 

Gauss integration points. A system of algebraic equations is 

assembled such that 

1 1

  ,   , ,
e e

ij ij i i

e e

n n

K u F K k F f
 (24) 

where n is the number of elements. The linear system and the 

derivatives (e.g. strains and stresses) are recovered using standard 

procedures (Cook et al., 2002). 

Two kinds of FEM formulations are used for graded elements: 

direct Gaussian integration formulation and generalized 

isoparametric formulation (GIF). These approaches differ on the 

location that the material properties are sampled in the element: 

Gauss sampling points for the direct Gaussian formulation (Fig. 

5(a)) and nodal sampling points for the GIF (Fig. 5(b)). In this work, 

we selectively use both formulations. 

P

P(x,y) P(x,y)

y

x

Figure 5. Graded finite elements: (a) Direct Gaussian integration 
formulation; (b) Generalized isoparametric formulation (Kim and Paulino, 
2002a). P denotes a generic property. 

Direct Gaussian Integration Formulation 

The integral of Eq.(23) is evaluated by Gaussian quadrature, and 

the matrix De(x) can be directly specified by employing the Young's 

modulus and the Poisson's ratio at each Gaussian integration point 

(see Fig. 5(a)). Thus, for 2D problems, the resulting integral 

becomes 

,

,
Te e e e

i j

i j i j

tJWWk B D B
 (25) 

where i and j indicates the corresponding Gauss sampling points in 

the element,  = ( , ), t denotes thickness, J is the determinant of 

the Jacobian matrix, i.e. J = det(J), and Wi is the weight of each 

Gauss point. 

Generalized Isoparametric Formulation (GIF) 

The displacements (u,v) = (ux, uy) are interpolated for 2-D 

problems as 

 ,     i i i i

i i

u N u v N v
 (26) 

where the summation is done over the element nodal points. 

Similarly, the spatial coordinates (x,y) are interpolated as 

 ,     i i i i

i i

x N x y N y% %  (27) 

Material properties can also be interpolated from the element 

nodal values by means of shape functions, as illustrated by Fig. 5(b). 

For instance, the Young's modulus E = E(x) and Poisson's ratio       

 = (x) are given by 

ˆ ,     i i i i

i i

E N E v N v
 (28) 

respectively, where 
iN  and ˆ

iN  are appropriate shape functions, 

which may be distinct from each other. The generalized 

isoparametric formulation (GIF) concept leads to  
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ˆ .N N N N%  (29) 

In this approach, material properties at Gaussian integration points 

are interpolated from the nodal material properties of the element 

using isoparametric shape functions, which are the same shape 

functions as spatial coordinates and displacements. 

Numerical Examples 

In order to assess convergence and convergence rates of graded 

finite elements by means of the weak patch test, a set of problems in 

plane and axisymmetric states are investigated under mesh 

refinement using both an in-house MATLAB code and the 

commercial software ABAQUS. 

Plane Problems 

A few problems in plane stress state are considered where 

Young's modulus is a function of x, i.e. E = E(x), while the 

Poisson's ratio is constant. The modulus is assumed to vary 

exponentially, i.e. 

1

xE x E e  (30) 

where E1 = E(0) and 1/  is the length scale of the nonhomogeneity 

characterized by Eq.(2). The applied loading involves fixed-grip, 

tension, and bending cases. The GIF is used for this study. 

Patch Test for Graded Element: Standard or Weak? 

Figure 6 shows a 5-element patch of isoparametric, 4-node (Q4), 

8-node (Q8) Serendipity (not shown) and 9-node (Q9) Lagrangian 

(shown) quadrilateral elements under fixed-grip loading. The 

applied loading corresponds to constant normal strains, i.e. yy(x,1) 

= 0E1e
x where 0 = 1.0, E1=1.0, and  = log(2)/1. This stress 

distribution was obtained by applying nodal forces along the right 

edge of the finite element mesh. The displacement boundary 

conditions are prescribed such that uy = 0 in the region 0 1x

along y = 0 line and, in addition, ux = 0 at either top (for Q4) or 

middle (for Q8 and Q9) node on the left edge (see Fig. 6). 

G4

G1

G2

G3

G1

G4

G2

G3

A

C

A

B

C

Sampling points
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2x2 Gauss

3x3 Gauss

W
 =

 1

L = 1

x

y

0.9542

0.6666

0.8333

0.1609

0.3276

Shaded Element1

2

E=1
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2
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Figure 6. The patch test with 5 graded elements for 4-node, 8-node (not 
shown) and 9-node (shown) isoparametric quadrilaterals. The applied load 

corresponds to yy(x,1) = 0E1e
x
 ( 0 = 1, E1 = 1.0,  = log(2)) for the fixed 

grip case. The equivalent nodal loads are shown in the figure. 

The following data were used for the finite element analysis: 

1 1.0,  0.3,

plane   stress, 2 x 2 and 3 x 3 Gauss quadratures

E v  (31) 

Table 1 compares the FEM results for stresses and 

displacements with the analytical solutions given by Erdogan and 

Wu (1997) and in the Section for Exact Solutions (Kim and Paulino, 

2002a), respectively. The nodal displacements are calculated at 

nodes A, B, and C and stresses are computed at the 2 x  2 and 3 x 3 

Gaussian integration points as specified in Fig. 6. Table 1 shows that 

the graded Q4, Q8 and Q9 elements provide slightly inaccurate 

displacements and stresses with the given level of mesh refinement. 

One can conclude from the above patch test that the performance of 

graded elements depends on the degree of mesh refinement 

corresponding to material gradation and loading conditions. Thus, 

the patch test needs to be performed for the graded elements by 

subdividing the mesh. This example justifies the need for the 

“weak” rather than the “standard” patch test for the graded elements. 

Table 1. The patch test with a constant-strain condition using five graded elements (Q4, Q8 and Q9) subjected to fixed-grip loading (see Figure 6). The 

displacements are u = ux and  = uy. Generalized isoparametric formulation (GIF) is used for sampling material properties.  Exact solutions for the 
displacements for the Q4 element are different from those for the Q8 and Q9 elements due to different displacement boundary conditions. The numeric 
precision is O(10

–4
).

4-node 8-node 9-node Exact Loading 

Case 

Displacements 

& Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2(Q4)  2 × 2 3× 3 

uA -0.0911 0.0602 0.0598 0.0597 -0.0900 0.0600

vA 0.3571 0.3516 0.3503 0.3496 0.3500 0.3500

uB - 0.0000 0.0001 0.0001 - 0.0000

vB - 0.2988 0.3007 0.2999 - 0.3000

uC -0.2146 -0.0603 -0.0602 -0.0601 -0.2100 -0.0600

vC 0.2540 0.2515 0.2506 0.2501 0.2500 0.2500

yy
G1

1.7646 1.6860 1.8216 1.8201 1.6842 1.8164

yy
G2

1.6171 1.5731 1.6063 1.6050 1.5714 1.6034

yy
G3

1.3183 1.2715 1.2458 1.2451 1.2727 1.2474

Fixed-grip 

yy
G4

1.2568 1.1836 1.0988 1.0976 1.1874 1.1011
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Weak Patch Test: Q4 

Figure 7 shows a non-homogeneous “beam” with exponentially 

graded modulus subjected to applied load at the right end. The mesh 

discretization consists of 4 x 2, 8 x 4, and 16 x 8 patches of 4-noded 

isoparametric quadrilateral elements undistorted or distorted 

according to the geometrical distortion parameter “d ”. The applied 

loading corresponds to yy(x,10) = 0E1e
x for fixed grip, yy(x,10)= 

1.0 for tension, and yy(x,10)= –x+1 for the bending case, where 0

=1.0, E1=1.0, and  = log(4)/2. This stress distribution was 

obtained by applying nodal forces along the right edge of the finite 

element mesh. The displacement boundary condition is prescribed 

such that uy = 0 in the region 0 2x  along y = 0 line and, in 

addition, ux = 0 for the node in the middle of the left hand side (see 

Figure 7). 
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Figure 7. Weak patch test with M x N elements (4 x 2,8 x 4,16 x 8) for 4-node  isoparametric quadrilaterals (Q4). The meshes are distorted according to the 
geometric distortion parameter “d”. The equivalent nodal loads are shown at the right-hand-side of the corresponding meshes. 
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The following data are used for the finite element analysis: 

quadratureGauss2 x 2stress,plane

0.3,,0.11 vE
 (32) 

Table 2 compares the FEM results for 4 x 2, 8 x 4, and 16 x 8 

undistorted (d = 0) meshes of the graded Q4 element with the exact 

solutions. The nodal displacements are calculated at nodes A, B, and 

C, and stresses are computed at the 2 x 2 Gaussian integration points 

as specified in Figure 7. Notice that, for all loading cases, mesh 

refinement is needed for acquiring a desired accuracy and it 

increases the accuracy of FEM results. The accuracy of each 

individual mesh is better for fixed-grip loading than tension and 

bending loading cases due to the difference in the nature of 

boundary conditions. The distorted mesh ( 0d ) gives worse 

results than undistorted meshes (d = 0), and only the case d = 0 is 

investigated in this example. Distorted meshes ( 0d ) are 

considered in later in this paper.  

Table 2. A weak patch test using 4 x 2, 8 x 4, and 16 x 8  meshes of undistorted (d = 0) Q4 graded elements (see Figure 7).  The displacements are u = ux

and  = uy. Generalized isoparametric formulation (GIF) is used for sampling material properties.  The numeric precision is O(10
–4

).

Displacement 4-node Exact Loading

Case & Stress 4 ×  2 8 ×  4 1 6 ×  8 4 ×  2 8 ×  4 1 6 ×  8 

uA - 0.1499 0.1502 0.1500

vA - 2.4999 2.5001 2.5000

uB -0.0003 -0.0001 0.0000 0.0000

vB 2.5001 2.4999 2.5000 2.5000

uC - -0.1501 -0.1500 -0.1500

vC - 2.5000 2.5000 2.5000

yy
G1

2.4227 3.0760 3.4981 2.3154 3.0434 3.4889

Fixed-grip 

yy
G2

3.5774 3.7524 3.8655 3.4550 3.7174 3.8562

uA - 0.9984 1.1110 1.1585

vA - 1.6649 1.7424 1.7720

uB 0.6042 0.8999 1.0189 1.0650

vB 1.2184 1.3049 1.3349 1.3460

uC - 0.8331 0.9512 0.9970

vC - 0.9449 0.9273 0.9200

yy
G1

1.0977 1.0830 0.9607 1.0799 1.0103 0.9866

Tension 

yy
G2

1.1820 0.9783 0.8617 0.9315 0.8684 0.9008

uA - 1.3696 1.5501 1.6215

vA - 0.7760 0.8779 0.9183

uB 0.9062 1.3401 1.5158 1.5854

vB 0.1609 0.2399 0.2716 0.2841

uC - 1.3427 1.5180 1.5874

vC - -0.2960 -0.3347 -0.3500

yy
G1

0.0313 -0.4829 -0.9659 0.0149 -0.5893 -1.0245

Bending 

yy
G2

-0.6119 -1.0996 -1.3688 -0.9898 -1.2642 -1.4149

Weak Patch Test: Q8 and Q9 

Figure 8 shows a nonhomogeneous “beam” with exponentially 

graded modulus subjected to applied load at the right end. The mesh 

discretization consists of 2 x 1, 4 x 2, and 8 x 4 patches of 8-node 

(Q8) Serendipity (not shown) or 9-node (Q9) Lagrangian (shown) 

quadrilateral elements. The mesh is distorted according to the 

geometrical distortion parameter “d”.

The applied loading corresponds to yy(x,10)= 0E1e
x for fixed 

grip, yy(x,10)= 1.0 for tension, and yy(x,10)= –x+1 for bending 

where 0=1.0, E1=1.0, and = log(4)/2. This stress distribution was 

obtained by applying nodal forces along the right edge of the finite 

element mesh. The displacement boundary condition is prescribed 

such that uy = 0 in the region 0 2x  along y = 0 line and, in 

addition, ux = 0 for the node in the middle of the left hand side (see 

Figure 8). 
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Figure 8. Weak patch test with M x N elements (2 x 1, 4 x 2, 8 x 4) for 8-node (not shown) and 9-node (shown) isoparametric quadrilaterals. The meshes 
are distorted according to the geometric distortion parameter “d”. The equivalent nodal loads are shown at the right-hand-side of the corresponding 
meshes.

The following data were used for the finite element analysis: 

squadratureGauss3 x 3and2 x 2stress,plane

0.3,,0.11 vE
 (33) 

Tables 3, 4, and 5 compare the FEM results for the 2 x 1, 4 x 2,  

and 8 x 4 meshes, respectively. The exact solutions include stresses 

obtained by Erdogan and Wu (1997), and displacements derived by 

the authors. The nodal displacements are calculated at node A and 

stresses are computed at the 2 x 2 and 3 x 3 Gaussian integration 

points as specified in Figure 8. 
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For fixed grip loading case, in general 3 x 3 Gauss quadrature 

for Q8 and Q9 elements gives better results than 2 x 2 quadrature for 

Q8 element, and the accuracy increases with mesh refinement. For 

tension and bending loading cases, 2 x 2 and 3 x 3 Gauss 

quadratures for Q8 and 3 x 3 Gauss quadrature for Q9 elements give 

worse results than for those fixed grip loading; however, the 

accuracy is improved with mesh refinement. Tables 3 to 5 show that 

both Q8 and Q9 graded elements behave relatively well with 

distorted meshes. In general, the effect of the distortion as measured 

by the parameter d, is reduced with mesh refinement. For the tension 

case, we observe that a mesh with 16 x 8 elements, although not 

presented here, leads to the exact results for Q8 elements with both 

2 x 2 and 3 x 3 integration rules within O(10–4) accuracy. For Q9 

elements, the results for the tension case converge for the 8 x 4 

mesh (cf. Table 5). 

Table 3. A weak patch test with 2 x 1 graded Q8 and Q9 elements (see Figure 8). The displacements are u = ux and  = uy. Generalized isoparametric 
formulation (GIF) is used for sampling material properties. The numeric precision is O(10

–4
).

Loading Displacements 8-node 9-node Exact 
Distortion 

Case & Stresses 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA 0.0155 -0.0003 -0.0003 0 

vA 5.0051 4.9998 4.9998 5

yy
G1

1.3006 1.1380 1.1618 1.3403 1.1691

yy
G2

3.0326 1.9999 1.9999 2.9843 2.0 

Fixed-grip 

yy
G3

- 3.4618 3.4618 - 3.4215

uA 4.7532 4.4318 4.4281 4.2600 

vA 2.7463 2.7179 2.7158 2.6920 

yy
G1

0.9999 0.9301 0.9300 0.9853 0.9388

yy
G2

0.9999 1.0871 1.0863 1.0195 1.0767

Tension 

yy
G3 - 0.9302 0.9300 - 0.9380

uA 6.8655 6.4051 6.3947 6.019 

vA 0.6337 0.5946 0.5888 0.5682 

yy
G1

0.5773 0.5842 0.5840 0.5449 0.5923

yy
G2

-0.5773 0.2376 0.2357-0.5350 0.2272

d=0 

Bending 

yy
G3 - -0.9645 -0.9650 - -0.9557

uA -0.0105 -0.0002 -0.0003 0 

vA 4.9935 4.9998 4.9998 5

yy
G1

1.2997 1.1380 1.1380 1.3403 1.1691

yy
G2

3.0333 1.9999 1.9999 2.9843 2.0 

Fixed-grip 

yy
G3

- 3.4618 3.4618 - 3.4215

uA 4.7532 4.4074 4.4466 4.2600 

vA 2.7463 2.7144 2.7170 2.6920 

yy
G1

0.9999 0.9376 0.9471 0.9853 0.9388

yy
G2

0.9999 1.0898 1.0890 1.0195 1.0767

Tension 

yy
G3 - 0.9195 0.9227 - 0.9380

uA 6.8655 6.3496 6.4261 6.019 

vA 0.6337 0.5870 0.5898 0.5682 

yy
G1

0.5773 0.5940 0.6099 0.5449 0.5923

yy
G2

-0.5773 0.2413 0.2404-0.5350 0.2272

d=1 

Bending 

yy
G3

- -0.9779 -0.9758 - -0.9557
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Table 4. A weak patch test with 4 x 2 graded Q8 and Q9 elements (see Figure 8). The displacements are u = ux and  = uy. Generalized isoparametric 
formulation (GIF) is used for sampling material properties. The numeric precision is O(10

–4
).

Displacements 8-node 9-node Exact 
Distortion 

Loading 

Case & Stresses 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA 0.0053 0.0051 0.0051 0.0

vA 2.5065 2.5066 2.5066 2.5

yy
G1

2.3135 2.1620 2.1620 2.3154 2.1625

yy
G2

3.4676 2.8335 2.8335 3.4549 2.8284

Fixed-grip 

yy
G3

- 3.7103 3.7103 - 3.6993

uA 1.0723 1.0676 1.0676 1.0653 

vA 1.3478 1.3468 1.3468 1.3461 

yy
G1

1.0769 1.0789 1.0789 1.0799 1.0812

yy
G2

0.9297 1.0407 1.0406 0.9315 1.0408

Tension

yy
G3

- 0.8731 0.8731 - 0.8730

uA 1.5927 1.5857 1.5857 1.5854 

vA 0.2863 0.2846 0.2846 0.2841 

yy
G1

0.0151 0.1221 0.1222 0.0149 0.1221

yy
G2

-0.9957 -0.3954 -0.3955 -0.9898 -0.3960

d=0

Bending 

yy
G3

- -1.2465 -1.2465 - -1.2449

uA -0.0051 -0.0051 -0.0051 0.0 

vA 2.5065 2.5066 2.5066 2.5

yy
G1

2.3136 2.1621 2.1621 2.3154 2.1625

yy
G2

3.4676 2.8335 2.8335 3.4549 2.8284

Fixed-grip 

yy
G3

- 3.7103 3.7103 - 3.6993

uA 1.0722 1.0676 1.0676 1.0653 

vA 1.3476 1.3468 1.3468 1.3461 

yy
G1

1.0768 1.0806 1.0789 1.0799 1.0812

yy
G2

0.9297 1.0408 1.0406 0.9315 1.0408

Tension

yy
G3

- 0.8710 0.8731 - 0.8730

uA 1.5923 1.5856 1.5857 1.5854 

vA 0.2855 0.2846 0.2846 0.2841 

yy
G1 0.0151 0.1248 0.1222 0.0149 0.1221

yy
G2

-0.9957 -0.3952 -0.3955 -0.9898 -0.3960

d=1

Bending 

yy
G3

- -1.2497 -1.2465 - -1.2449
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Table 5. A weak patch test with 8 x 4 graded Q8 and Q9 elements (see Figure 8). The displacements are u = ux and  = uy. Generalized isoparametric 
formulation (GIF) is used for sampling material properties. The numeric precision is O(10

–4
).

Displacements 8-node 9-node Exact 
Distortion 

Loading 

Case & Stresses 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA -0.0002 0.0 0.0 0.0 

vA 2.4999 2.5 2.5 2.5 

yy
G1

3.0434 2.9411 2.9411 3.0434 2.9411

yy
G2

3.7176 3.3635 3.3635 3.7174 3.3635

Fixed-grip 

yy
G3

- 3.8467 3.8467 - 3.8467

uA 1.0655 1.0653 1.0653 1.0653 

vA 1.3462 1.3461 1.3461 1.3461 

yy
G1

1.0102 1.0258 1.0258 1.0103 1.0258

yy
G2

0.8681 0.9511 0.9511 0.8684 0.9511

Tension 

yy
G3 - 0.8338 0.8338 - 0.8338

uA 1.5859 1.5855 1.5855 1.5854 

vA 0.2841 0.2841 0.2841 0.2841 

yy
G1

-0.5895 -0.4960 -0.4960 -0.5893 -0.4960

yy
G2

-1.2647 -0.8977 -0.8977 -1.2643 -0.8976

d=0 

Bending 

yy
G3 - -1.4046 -1.4046 - -1.4043

uA -0.0002 0.0 0.0 0.0 

vA 2.4999 2.5 2.5 2.5 

yy
G1

3.0434 2.9411 2.9411 3.0434 2.9411

yy
G2

3.7176 3.3635 3.3635 3.7174 3.3635

Fixed-grip 

yy
G3

- 3.8467 3.8467 - 3.8467

uA 1.0655 1.0653 1.0653 1.0653 

vA 1.3461 1.3461 1.3461 1.3461 

yy
G1

1.0102 1.0261 1.0258 1.0103 1.0258

yy
G2

0.8681 0.9511 0.9511 0.8684 0.9511

Tension 

yy
G3 - 0.8335 0.8338 - 0.8338

uA 1.5859 1.5855 1.5855 1.5854 

vA 0.2841 0.2841 0.2841 0.2841 

yy
G1

-0.5896 -0.4956 -0.4960 -0.5893 -0.4960

yy
G2

-1.2648 -0.8977 -0.8977 -1.2643 -0.8976

d=1 

Bending 

yy
G3

- -1.4051 -1.4046 - -1.4043

“Higher-Order” Weak Patch Test 

Figure 9 compares the ratio of numerical ( yu ) and 

analytical ( (exact)) displacements versus Poisson's ratio ( v ) for the 

bending loading case (see Fig. 2(d)). Both regular (d = 0) and 

distorted (d = 1) meshes discretized with Q4, Q8 and Q9 elements 

are considered using a patch of 4 x 2 elements. The nodal 

displacements are evaluated at location B in Fig. 7, or location A in 

Fig. 8. Figure 9 shows that both Q8 and Q9 elements converge to 

the exact solutions independent of the Poisson's ratio, rule of Gauss 

quadrature, and distortion, while the regular and distorted Q4 

elements give significantly inaccurate results. The behavior of Q4 

elements can be improved with an incompatible element such as the 

Q6 and the reader is referred to references (Wilson et al., 1973; 

Taylor et al., 1976; Cook et al., 2002). 
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Figure 9. Mesh with 4 x 2 elements for Q4, Q8, and Q9 elements. The bullet in the insert denotes the point where the displacements are calculated; 
regular mesh (d = 0) and distorted mesh (d = 1).

Axisymmetric Problems 

Consider the axisymmetric problem of a hollow circular 

cylinder or disk with the inner radius (a = 1) and the outer radius   

(b = 2) subjected to uniform pressure on the inner surface. Patches 

of 4 x 4 and 8 x 8 isoparametric elements are considered here. 

Figure 10 shows 4-node (Q4) quadrilateral elements and Figure 11 

illustrates 8-node (Q8) Serendipity or 9-node (Q9) Lagrangian 

elements for different distortion factors d (d = 0 or d = 0.1). The 

applied loading corresponds to rr(1,z)= 1.0 along 0 1z where 

“z” denotes the vertical axis from which the inner (a) and outer (b) 

radii are defined in Figures 10 and 11 (see also Figure 4). This stress 

distribution was obtained by applying nodal forces along the left 

edge of the finite element mesh. The displacement boundary 

condition is prescribed such that uz = 0 for the nodes on the top and 

bottom edges (see Figs. 10 and 11). 

Element

2 x 2 Gauss
Sampling points
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Figure 10. A weak patch test with 4 x 4 and 8 x 8 elements for 4-node 
isoparametric quadrilaterals for axisymmetric problem. 
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Figure 11. A weak patch test with 4 x 4 and 8 x 8 elements for 8-node (not 
shown) and 9-node (shown) isoparametric quadrilaterals for axisymmetric 
problem. 

Young's modulus is an exponential function of r as given by Eq. 

(16), in which n is the nonhomogeneity parameter. The Poisson's 

ratio is assumed constant. The direct Gaussian formulation is used 

for these axisymmetric problems. The following data are used for 

the FEM analyses: 

squadratureGauss3 x 3and2 x 2stress,plane

0.3,,0.02,,0.11 vnE
 (34) 

Tables 6, 7 ( 0v ) and 8 ( 0v ) compare the FEM results 

with the exact solutions provided by Horgan and Chan (1999). The 

nodal displacements are calculated at nodes A, B, and C, and 

stresses are computed at the 2 x 2 or 3 x 3 Gaussian integration 

points as specified in Figs. 10 and 11. 
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Table 6. A weak patch test with 4 x 4 quadrilateral elements for axisymmetric case (u = ur , = 0)- see Figures 10 and 11. Direct Gaussian integration 
method is used for sampling material properties. The numeric precision is O(10

–4
). 

Displacements 4-node 8-node 9-node Exact 
Distortion 

& Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA 0.7091 0.7152 0.7152 0.7152 0.7152

uB 0.6457 0.6491 0.6491 0.6491 0.6491

uC 0.6213 0.6237 0.6237 0.6237 0.6237

rr
G1 -0.4307 -0.5624 -0.5778 -0.5778 -0.5625 -0.5907
G1 0.9064 0.9066 0.9009 0.9009 0.9073 0.9004

rr
G2 -0.5314 -0.4137 -0.4999 -0.4999 -0.4137 -0.4848
G2 0.9538 0.9530 0.9280 0.9280 0.9526 0.9279

rr
G3 - - -0.3795 -0.3795 - -0.3908

d=0 

G3 - - 0.9621 0.9621 - 0.9624

uA 0.7091 0.7083 0.7080 0.7160 0.7152 

uB 0.6457 0.6471 0.6470 0.6497 0.6491 

uC 0.6213 0.6239 0.6239 0.6244 0.6237 

rr
G1 -0.5010 -0.6327 -0.6528 -0.6450 -0.6258 -0.6542
G1 0.8913 0.8046 0.7966 0.8889 0.8936 0.8890

rr
G2 -0.6006 -0.4942 -0.5787 -0.5744 -0.4928 -0.5608
G2 0.9239 0.8266 0.8080 0.9065 0.9254 0.9070

rr
G3 - - -0.4701 -0.4706 - -0.4767

d=0.1 

G3 - - 0.8248 0.9294 - 0.9304

Table 7. A weak patch test with 8 x 8 quadrilateral elements for axisymmetric case (u = ur,  = 0)- see Figures 10 and 11. Direct Gaussian integration 
method is used for sampling material properties. The numeric precision is O(10

–4
). 

Displacements 4-node 8-node 9-node Exact 
Distortion 

& Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA 0.7136 0.7152 0.7152 0.7152 0.7152

uB 0.6482 0.6491 0.6491 0.6491 0.6491

uC 0.6230 0.6237 0.6237 0.6236 0.6237

rr
G1 -0.4009 -0.4581 -0.4677 -0.4677 -0.4581 -0.4704
G1 0.9366 0.9366 0.9325 0.9325 0.9366 0.9325

rr
G2 -0.4432 -0.3891 -0.4261 -0.4261 -0.3891 -0.4229
G2 0.9631 0.9630 0.9494 0.9494 0.9630 0.9494

rr
G3 - - -0.3754 -0.3754 - -0.3779

d=0 

G3 - - 0.9679 0.9679 - 0.9679

uA 0.7136 0.7152 0.7152 0.7152 0.7152 

uB 0.6482 0.6490 0.6490 0.6490 0.6491 

uC 0.6230 0.6236 0.6236 0.6236 0.6237 

rr
G1 -0.4829 -0.5374 -0.5483 -0.5482 -0.5374 -0.5504
G1 0.9121 0.9129 0.9096 0.9096 0.9129 0.9096

rr
G2 -0.5265 -0.4757 -0.5108 -0.5108 -0.4757 -0.5082
G2 0.9301 0.9307 0.9208 0.9208 0.9307 0.9208

rr
G3 - - -0.4661 -0.4662 - -0.4679

d=0.1 

G3 - - 0.9333 0.9333 - 0.9333
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Table 8. A weak patch test with 8 x 8 quadrilateral elements for axisymmetric case (u = ur,  = 0.3)- see Figures 10 and 11. Direct Gaussian integration 
method is used for sampling material properties. The numeric precision is O(10

–4
). 

Displacements 4-node 8-node 9-node Exact 
Distortion 

& Stresses 2 ×  2 2 ×  2 3 ×  3 3 ×  3 2 ×  2 3 ×  3 

uA 0.8378 0.8403 0.8403 0.8404 0.8403

uB 0.7338 0.7354 0.7354 0.7355 0.7354

uC 0.6775 0.6788 0.6787 0.6788 0.6788

rr
G1 -0.3991 -0.4734 -0.4827 -0.4812 -0.4734 -0.4859
G1 0.9569 0.9356 0.9300 0.9316 0.9356 0.9289

rr
G2 -0.4727 -0.4034 -0.4417 -0.4398 -0.4034 -0.4378
G2 0.9531 0.9746 0.9537 0.9556 0.9746 0.9549

rr
G3 - - -0.3890 -0.3867 - -0.3920

d=0.0 

G3 - - 0.9823 0.9844 - 0.9814

uA 0.8380 0.8403 0.8403 0.8402 0.8403 

uB 0.7350 0.7354 0.7354 0.7353 0.7354 

uC 0.6789 0.6788 0.6787 0.6786 0.6788 

rr
G1 -0.4797 -0.5521 -0.5619 -0.5637 -0.5531 -0.5662
G1 0.9176 0.8967 0.8914 0.8906 0.8959 0.8898

rr
G2 -0.5524 -0.4890 -0.5244 -0.5271 -0.4912 -0.5239
G2 0.9066 0.9286 0.9111 0.9088 0.9262 0.9098

rr
G3 - - -0.4777 -0.4813 - -0.4835

d=0.1 

G3 - - 0.9345 0.9308 - 0.9302

A comparison of the results of Tables 6 and 7 indicate that the  4 

x 4 discretization of Figs. 10(a) and 11(a) are too coarse to achieve 

an accurate solution for this problem. For 0.0v  and  8 x 8  mesh 

(Table 7 and Fig. 10(b)), the 2 x 2 Gauss quadrature for the Q8 

gives exact results for all stresses regardless of distortion. Also, the 

3 x 3 Gauss quadrature of the Q8 and Q9 elements produces exact 

results for hoop stresses regardless of distortion, but leads to slightly 

incorrect results for the radial stress rr (see Table 7 and Figs. 10(b) 

and 11(b)). For 0.3v  and 8 x 8  mesh (Table 8 and Figs. 10(b) 

and 11(b)), the 2 x 2 Gauss quadrature of the Q8 gives exact results 

for all stresses only for the d = 0 case. The 3 x 3 Gauss quadrature 

of the Q8 and Q9 elements produces slightly incorrect results for all 

stresses. The behavior of the 2 x 2 and 3 x 3 Gauss quadratures on 

the radial stresses is consistent with the previous observation about 

the stress for the tension loading applied parallel to the material 

gradation (Kim and Paulino, 2002a). 

Convergence Rates 

This example investigates convergence rates of Q4 and Q8 

elements considering an FGM strip under far-field tension loads. 

Figure 12(a) shows geometry and boundary conditions for a strip 

with infinite length under far-field tension, and Figure 12(b) shows a 

plate with finite length under tractions equivalent to the far-field 

tension (see Eqs.(7) and (10)). 

yy

y

x

L
=

W

σ (x)

x

L

W W
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t

Figure 12. Problem definition: (a) plate with infinite length under far-field 
constant tension; (b) plate with finite length under exact distribution of 
tractions that are equivalent to the far-field tension applied to the graded 
strip (L/W = 1). 

The applied load is prescribed on the upper edge with normal 

stress: yy(x) given by Eq.(7) with appropriate constants A and B.

The displacement boundary condition is specified such that uy = 0

along the lower edge, and ux = 0 for the node at the left-bottom 

corner. Young's modulus is an exponential function of x as given by 

Eq.(30). The Poisson's ratio is assumed constant. The following data 

are used for the FEM analyses: 
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 (35) 

The discretization error can be quantified by the error in the 

energy norm ||e|| defined as 

1 2

,
T

FE FEe dD x
 (36) 

where  and FE are the exact and finite element strain fields, D(x)

is the constitutive matrix of FGMs, and   is the domain of the 

problem.

We use mesh subdivision for assessing convergence rates of Q4 

and Q8 elements with the following element discretization along the 

width (W) and length (L), i.e. 10 x 10, 20 x 20, and 40 x 40 

elements. The GIF is used for this study. Figure 13 shows the error 

in the energy norm ||e|| calculated by considering the whole plate 

for E2/E1 = 3,5,7 and 10, and also gives useful information on the 

convergence rate. The notation h denotes the size of the square 

element used. The 8-node (Q8) quadrilateral elements with 3 x 3 

and 2 x 2 Gauss quadrature provide higher accuracy and 

convergence rates than those for 4-node (Q4) quadrilateral elements. 
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g
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0
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||
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2
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1
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Figure 13. Error in the energy norm ||e|| of the problem for E2/E1 = 3, 5, 7, 
and 10. The energy norm is calculated considering all the elements (L/W = 
1.0). 

Stability Considerations 

Two kinds of investigations are made regarding the stability 

analysis. First, basic deformation modes (tension, bending, and 

shear) are studied, and then, an eigenanalysis is performed at the 

element level (eigenvalue test). The latter test can detect zero-

energy deformation modes, lack of invariance (with respect to 

geometrical orientation), and absence of rigid body motion 

capability; and can also provide an estimation of the relative quality 

of competing elements. In these investigations, the graded element 

is compared with the homogeneous element. The direct Gaussian 

formulation is used for this study. 

Single Element Test - Basic Deformation Modes 

The strain energy stored in the Q4 and Q8 elements is compared 

for homogeneous and graded elements considering tension, pure 

shear, and pure bending deformation modes. For the sake of 

reference, Figure 14 shows imposed displacements for different 

deformation modes for homogeneous materials (  = 0), while Figs. 

15 and 16 illustrate the deformations for  = 1.0, 0.5, 1.0. In order 

to represent tension, shear, and pure bending deformation in FGMs 

(  0), the exact solutions to displacements are proportionally 

factored to give  = 0.1 as the single displacement at the node 

indicated in Figures 14 to 16. Note that deformation-equivalent 

loads are different for homogeneous and FGM cases. 

Figure 14 represents well-known and expected results for 

homogeneous materials (  = 0). In Figs. 14 and 16, notice that the 

material gradation  has a significant influence on the deformation 

mode. Figure 15 shows that for the tension case, if  = 0.1 is 

imposed at the left-top corner node, then the deformed shape scales 

with  (cf. the first two cells of the first row) and is significantly 

changed if  changes sign, i.e. reversal of gradation (cf. compare the 

first two cells with the third cell). If  = 0.1 is imposed at the right-

top corner, the deformed shapes are consistent with those just 

described above, i.e. the first and second rows of cells of Figure 15. 

Notice that if  > 0 the reference displacement ( ) is in the weak 

material side, while if  < 0 it is on the strong material side. A 

comparison between the first cell of the first row of Figure 14(a)  (

= 0) and those cells of Figure 15 (  0) indicate that the deformed 

shapes in FGMs can be counter-intuitive as bending-type 

deformation develops for purely applied tension load. 

(a) (b)

(d)(c)

0.1 0.1

0.10.1
0.1 0.1

E ≡ constant 

Figure 14. Imposed displacement vectors for homogeneous materials (  = 
0): (a) tension, (b) pure shear, (c) pure bending for Q4, and (d) bending for 
Q8.

0.1

0.1 0.1 0.1

0.1 0.1

β=1.0 β=0.5 β=−1.0

x

y

E ≡ E(x) 

Figure 15. Imposed displacement vectors to give  = 0.1 at the node 

indicated for tension applied perpendicular to the material gradation ( =

1.0, 0.5, -1.0 and  = 0). 
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Figure 16 illustrates various deformation modes for FGMs  (

0) considering  = 0. The cells in the first row illustrates 

deformation modes under tension loading for E=E(y). Differently 

from the configuration observed in Figure 15, there is no bending 

deformation in the cells of Figure 16(a), independent of the  value. 

This difference is due to the orientation of material gradation in each 

case. Figure 16(b) shows deformed shapes for the pure bending 

loading considering E=E(x) and  =1.0, 0.5, and -1.0. The reference 

deformation is  = 0.1 at the bottom-right corner. It is interesting to 

observe the shift in the middle point of the bottom-edge (cf. solid 

and hollow bullets) as a function of the material gradation parameter 

. The hollow dot represents a point in the homogeneous material, 

which does not move upon bending deformation (cf. Fig. 14(d)) and 

thus indicates the neutral axis location for this configuration. The 

solid dot represents the FGM case and, differently from the 

homogeneous case, the point shifts as a function of the material 

gradation. For example, according to Fig. 16(b)  

0,     0,    0.

0,     0,    0.

x y

x y

u u

u u

Notice that the reference point shifts down for  > 0 and it shifts 

up for < 0. Figure 16(c) shows deformed shapes for pure shear 

loading considering E=E(y) and =1.0, 0.5, and  -1.0. Notice that 

the curvature of the edges that were vertical in the original 

configuration changes when  changes sign. 

β=1.0

0.1

E ≡ E(y) 

0.1 0.1

β=0.5 β=−1.0

x

y

(a)

0.1 0.1

0.14

0.1

β=1.0

0.0520.19

β=0.5 β=−1.0

E ≡ E(x) 

y

x

(b) 

0.1 0.1 0.1

β=1.0 β=0.5 β=−1.0

E ≡ E(y) 

x

y

(c)

Figure 16. Imposed displacement vectors to give  = 0.1 at the point 

indicated for  = 1.0, 0.5, -1.0 and material gradation as shown above (  = 
0). (a) tension; (b) bending; (c) shear. 

Table 9 summarizes the strain-energy values induced by the 

above exactly imposed displacements. Imposed displacements for 

Q4 and Q8 elements are different from the exact imposed 

displacements because of approximating function characteristics of 

elements. In other words, nodal displacements for both elements are 

imposed exactly, but displacements among nodes inside an element 

are interpolated using shape functions. All the results are normalized 

with respect to the strain energy for the homogeneous material       

( = 0). This table shows that the order of integration can have a 

significant impact in the FEM results (cf. 1 x 1 versus 2 x 2 for Q4 

and 2 x 2 versus 3 x 3 for Q8). Thus reduced integration for graded 

elements should be used with great care. Neglecting the reduced 

integration for the Q4, we observe that, for the bending case, the 

strain energy for the FGM (  0) is always lower than or equal to 

that for the homogeneous material ( = 0). The results are functions 

of the material gradation parameter .

Table 9. Strain energy ratio of the FEM results for the FGM with respect to 
the exact solution for the homogeneous material induced by the imposed 

displacements (Case(a): displacement  = 0.1 imposed at the top-left 

corner;  Case(b): displacement  = 0.1 imposed at the top-right corner). 

4-node 8-node 
Case

1 × 1 2× 2 2× 2 3 ×  3 

0 1.000 1.000 1.000 1.000

0.5 1.042 1.085 0.999 1.001

1.0 1.175 1.377 1.003 1.022

Tension

E(y)

-1.0 1.175 1.376 1.003 1.022

0 1.000 1.000 1.000 1.000

0.5 1.041 1.040 0.998 1.000

1.0 1.153 1.444 0.986 1.000

Tension

E(x)

Case (a)
-1.0 1.152 1.144 0.986 1.000

0 1.000 1.000 1.000 1.000

0.5 1.040 1.040 0.999 1.000

1.000 1.153 1.144 0.986 1.000

Tension

E(x)

Case (b)
-1.0 1.154 1.146 0.985 1.000

0 1.000 1.000 1.000 1.000

0.5 1.043 1.085 1.000 1.001

1.0 1.175 1.377 1.003 1.022

Shear 

E(y)

-1.0 1.167 1.372 1.004 1.023

0 0.000 1.501 1.000 1.000

0.5 0.833 1.494 0.968 1.000

1.0 0.303 1.481 0.876 0.997

Bending

E(x)

-1.0 0.289 1.449 0.877 0.992

Spectral Analysis - Eigenvalue Test 

The eigenvalue test is performed for the single element stability 

check. The test can detect zero energy deformation modes (both 

rigid body and spurious modes). The element is not constrained so 

that the element stiffness matrix e  is the complete matrix. Thus 

three independent rigid-body motions exist in the plane, and three of 

the eigenvalues should be zero for a plane element. In addition, 

zero-energy or spurious singular modes also yield zero eigenvalues. 

The element is square, and its length and width are 1.0 with the 

origin (x = y = 0) at the left-bottom-corner node. In the element, 

Young's modulus is given by Eq.(30) with E1 =1.0 (normalized), 

and  = 0.0 (homogeneous) and 1.0 (nonhomogeneous material). 

The Poisson's ratio is assumed to be constant, i.e.  = 0.3. 

Figures 17 to 22 illustrate the results of the spectral analysis for 

the Q4, Q8, and Q9 considering =0 (homogeneous material) and 
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=1.0 (FGM). A comparison between the results for homogeneous 

materials and FGMs leads to the following observations: 

As expected, the number of rigid-body modes (three) is the same 

for both homogeneous and graded elements 

0 0 0 0.576923

0.576923 0.769231 0.769231 1.92308

Figure 17. Eigen-analysis for Q4 (2 x 2 Gauss quadrature) with = 0 

(homogeneous material). The numbers indicate the eigenvalues ( i). 
Compare with Figure 18. 

0 0 0 0.879799

0.932199 1.37192 1.38045 3.36442

Figure 18. Eigen-analysis for Q4 (2 x 2 Gauss quadrature) with = 1 

(FGM). The numbers indicate the eigenvalues ( i). Compare with Figure 17. 

0 0 0 0

0.331136 0.331136 0.457182 0.547639

0.769231 1.02564 1.4158 1.4158

2.40108 2.87615 5.75299 5.75299

Figure 19. Eigen-analysis for Q8 (2 x 2 Gauss quadrature) with = 0 

(homogeneous material). The numbers indicate the eigenvalues ( i). 
Compare with Figure 20. 

0 0 0 0

0.574346 0.587969 0.704296 0.843318

1.31823 1.71754 2.23293 2.45912

4.12507 4.70563 10.1332 10.2861

Figure 20. Eigen-analysis for Q8 (2 x 2 Gauss quadrature) with = 1 

(FGM). The numbers indicate the eigenvalues ( i). Compare with Figure 19. 

0 0 0 0.197823

0.292291 0.292291 0.459447 0.67402

0.76744 0.76744 0.93033 1.12821

1.68014 1.68014 2.63367 2.97645

6.60628 6.60628

Figure 21. Eigen-analysis for Q9 (3 x 3 Gauss quadrature) with = 0 

(homogeneous material). The numbers indicate the eigenvalues ( i). 
Compare with Figure 22. 

0 0 0 0.326525

0.459088 0.552241 0.678105 0.865915

0.452487 1.30954 1.71404 1.83463

2.78252 2.90923 4.49741 5.49997

11.2615 11.8956

Figure 22. Eigen-analysis for Q9 (3 x 3 Gauss quadrature) with = 1 

(FGM). The numbers indicate the eigenvalues ( i). Compare with Figure 21. 
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The number of spurious deformation (zero energy) modes is also 

the same for both homogeneous and graded elements, i.e. two 

spurious modes for Q4 with order of quadrature 1, one for Q8 with   

2 x 2 Gauss integration, and three for Q9 with 2 x 2 Gauss 

integration 

Symmetry, as expressed by the deformation modes (eigen-

vectors), is broken for graded elements, i.e. there are no repeated 

eigenmodes or repeated eigenvalues as in the homogeneous 

element. 

The total energy (Ui = i/2, i=1,...,NDOFs) increases for the FGM 

with  > 0 in comparison with that for the homogeneous material. 

Here NDOFs indicates the number of degrees of freedom in the 

element. 

Conclusions 

Once an element passes the patch test with a consistency and a 

stability check, convergence is assured as the size of elements tend 

to zero. The original patch test considers constant strain or stress 

state for conventional homogeneous finite elements. However, for 

nonhomogeneous materials, consistency and stability of graded 

finite elements are verified in the context of the weak patch test. In 

the preceding sections, convergence and convergence rates of the 

Q4, Q8, and Q9 graded elements (for both plane and axisymmetric 

problems) to the exact solutions have been studied under 

subdivision of finite elements.

This study indicates that, in general, 3 x 3 Gauss Quadrature for 

Q8 and Q9 elements shows better performance than 2 x 2 Gauss 

Quadrature for Q8, and that Q4 elements need to be used with care 

due to low convergence rates. Moreover, the stability investigation 

reveals that one should be very careful when using homogeneous 

elements with piecewise constant material properties to model 

nonhomogeneous materials. This paper has shown that the 

deformation modes (and associated strain energy) for graded 

elements (Figure 1(c)) are quite different from those for 

homogeneous elements (Figure 1(d)). Thus poor numerical results 

may be obtained when homogeneous elements are used instead of 

graded elements, especially when relatively coarse meshes are used 

to model FGMs. 
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