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The weak substitution method – An application of the mortar method for patch

coupling in NURBS-based isogeometric analysis

W. Dornisch∗, G. Vitucci, S. Klinkel

Lehrstuhl für Baustatik und Baudynamik, RWTH Aachen, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany

Abstract

In this contribution a mortar-type method for the coupling of non-conforming NURBS surface patches is proposed.

The connection of non-conforming patches with shared degrees of freedom requires mutual refinement, which prop-

agates throughout the whole patch due to the tensor-product structure of NURBS surfaces. Thus, methods to handle

non-conforming meshes are essential in NURBS-based isogeometric analysis. The main objective of this work is to

provide a simple and efficient way to couple the individual patches of complex geometrical models without altering

the variational formulation. The deformations of the interface control points of adjacent patches are interrelated with

a master-slave relation. This relation is established numerically using the weak form of the equality of mutual defor-

mations along the interface. With the help of this relation the interface degrees of freedom of the slave patch can be

condensated out of the system. A natural connection of the patches is attained without additional terms in the weak

form. The proposed method is also applicable for nonlinear computations without further measures. Linear and ge-

ometrical nonlinear examples show the high accuracy and robustness of the new method. A comparison to reference

results and to computations with the Lagrange multiplier method is given.

Keywords: Nonlinear isogeometric analysis, NURBS, Domain decomposition, Weak substitution method,

Multi-patch connection, Mortar methods

1. Introduction

Isogeometric analysis was introduced in 2005 by Hughes et al. [1]. The main paradigm is to use the geometry

description and the basis functions of the design model also for the analysis. Thus, the geometry is represented

exactly on element level. Furthermore, the usage of one common geometry model simplifies the realization of an

integrated design and analysis work flow. Several different geometry descriptions are subject of current research in

isogeometric analysis. NURBS [1, 2, 3], T-splines [4] and subdivision surfaces [5] are the most common ones. Akin

to the prevalence of NURBS surfaces in industrial design, currently NURBS have the biggest share in isogeometric

research. However, NURBS surfaces have two prominent drawbacks which impede the use of NURBS elements for

isogeometric analysis:

• Complex geometries usually consist of several patches, which are not connected to each other in the geometry

model. The discretization of adjacent patches is generally non-conforming.

• The tensor-product structure of NURBS surfaces precludes local refinement. Refinement always propagates

throughout the entire patch.
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The combination of these two issues requires methods to handle non-conforming patches in order to establish an

efficient mechanical response analysis framework for the computation of complex NURBS surface models.

Domain decomposition methods decompose the domain of a given problem into subdomains, of which the parame-

trization does not have to match. The situation at hand is an ideal field of application for domain decomposition

methods, where each patch can be regarded as one subdomain. A general overview over domain decomposition

methods is given in [6]. The Penalty method [7], the Lagrange multiplier method [8] and Nitsche’s method [9] were

proposed in the 1970s to enforce Dirichlet boundary conditions in a weak manner. In recent engineering literature,

these methods are used as a basis for domain decomposition techniques. Mortar methods are the prevailing domain

decomposition method in mathematical literature. Basically, two standard types of mortar formulations exist, which

are referred to as the non-conforming positive definite problem and as the saddle point problem based on unconstrained

product spaces in [6]. In all cases a Lagrange multiplier space is used for the matching conditions along the interface.

The mortar method leading to the non-conforming positive definite problem was initially proposed by Bernardi et

al. [10]. The function spaces are constrained to fulfill the matching condition at the interface in a weak manner.

Basically, this means that the basis functions of one side are related to those of the other side in a way, that the

matching condition is fulfilled. The discretization of the interface condition with Lagrange multiplier functions yields

an equation which contains a mass matrix of the basis functions. The inversion of this matrix allows the constrained

basis functions to be computed. The Lagrange multiplier is not contained in the variational formulation, which remains

positive definite. The second mortar approach, which leads to the saddle point problem based on unconstrained

product spaces, was proposed by Ben Belgacem [11]. In this case the interface conditions are not enforced with the

help of constrained function spaces, but directly realized by means of Lagrange multipliers. This approach enhances

the variational formulation by Lagrange multiplier terms to enforce the interface condition in a weak manner. It is

basically equal to engineering formulations basing on the Lagrange multiplier method [8]. The variational formulation

turns into a saddle point problem. Commonly finite element trace spaces are used for the Lagrange multiplier. This

yields non-local basis functions on one side of the interface for the non-conforming positive definite problem, which

is the method of choice in this work. The usage of dual basis spaces for the Lagrange multiplier is proposed by

Wohlmuth in [6, 12]. The biorthogonality of the dual spaces yields local support of the basis function. Thus, this

choice potentially leads to higher numerical efficiency. A method to compute dual basis spaces for polynomials of

arbitary order is presented in [13].

In the framework of isogeometric analysis the following works focus on the domain coupling of NURBS patches.

Hesch and Betsch [14] proposed a finite element mortar method for the domain decomposition of transient large de-

formation problems, and adapted this formulation to isogeometric analysis in [15]. Both formulations use a Lagrange

multiplier field to add the work done by coupling tractions along the interface to the weak form. The Lagrange multi-

plier field is discretized with linear Lagrange basis functions. Mortar integrals are used to establish discrete mesh tying

constraints, which constrain the deformations of adjacent faces to be equal within the time discretization. Brivadis et

al. [16] presented an isogeometric mortar method, where the weak form is enhanced by Lagrange multiplier terms in

order to enforce continuity across the interface. Several choices of Lagrange multiplier spaces are investigated. Basing

on [13], a possibility to construct biorthogonal spaces for the Lagrange multiplier space is sketched, but not followed

further. This choice would entail compact support of the basis functions, which is otherwise not the case. Apostolatos

et al. [17] applied domain decomposition methods basing on the Penalty method, the Lagrange multiplier method, the

augmented Lagrange method and Nitsche’s method to 2D linear elasticity. These four methods are compared with

the help of several benchmark examples. The work of Ruess et al. [18] uses Nitsche’s method in combination with

an immersed boundary method to model complex geometries described by trimmed NURBS. The work of Nguyen at

al. [19] also uses Nitsche’s method for the coupling of domains.

All methods mentioned above have in common that the variational formulation is enriched with additional terms.

Additional variable fields are introduced and thus the formulation gets more complex. Additional matrices have to be

computed. In the case of the Penalty method an empirical parameter has to be determined, which influences the quality

of the fulfillment of the constraints and the impact on the condition of the stiffness matrix. The Lagrange multiplier

method as well as the mortar method according to Ben Belgacem [11] introduce Lagrange parameters as additional

global degrees of freedom. The choice of the function spaces for these parameters influences the results. The condition

of the stiffness matrix usually deteriorates if no appropriate pre-conditioner is applied. Nitsche’s method neither

requires an empirical parameter nor additional degrees of freedom. But the effort for implementation is comparatively

high and the solution costs are higher, as an additional eigenvalue problem has to be solved, see [17].
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The connection of hierarchical B-spline meshes by statical condensation was proposed by Kagan et al. [20], and

extended to NURBS meshes by Cottrell et al. [21]. This approach is limited to hierarchical meshes, which are a

special case of non-conforming meshes. The method can be used for local refinement, but not for the coupling of

arbitrary non-conforming patches. Thus, it is not considered to be a domain decomposition method.

The formulation proposed in this work represents an application of the mortar method as proposed by Bernardi

et al. [10] in the frame of isogeometric analysis. The derivation and notation used within this contribution differs

from [10], but the theoretical background is the same. The main idea was to derive a relation matrix which allows a

connection of patches by statical condensation, akin to [20, 21], but for the general case of non-conforming meshes.

The relation matrix is attained with the help of a discretization of the matching conditions along the interface. The

statical condensation with the derived relation matrix constrains the solutions of the subdomains to be equal along the

interface. The difference to the mortar method proposed by Bernardi et al. [10] is that in our case the global system of

equations is coupled with the help of a statical condensation instead of constraining the basis functions. However, the

basic idea is the same. To the authors’ knowledge, this work is the first application of the mortar method according to

Bernardi et al. [10] in isogeometric analysis. The main features of the proposed formulation are:

(i) The basic aim is to enforce the equality of mutual deformations along the interface of adjacent patches. Basing

on this equality a master-slave relation is derived. With the help of this relation the interface degrees of freedom

of the slave patch can be expressed as a function of the interface degrees of freedom of the master patch. The

slave interface degrees of freedom can be condensated out of the global system of equations. Thus, the domains

are coupled in a natural way. The number of degrees of freedom is reduced.

(ii) The relation matrix is derived numerically. Unlike in [20, 21] the method works for all kinds of non-conforming

patch interfaces. The relation matrix has to be computed once as a preprocess with very little numerical effort.

The method is applicable for nonlinear computations without additional effort for the equilibrium iteration.

(iii) The equality of mutual deformations is enforced in a weak manner. A variational equation is established from

which the master-slave relation matrix can be attained. NURBS basis functions are defined over the whole patch

and their mathematical properties guarantee their linear independence. This implies that the matrix inversion

required for the computation of the relation matrix is well-defined.

(iv) The variational formulation is not altered. The connection is established by a statical condensation of the slave

interface degrees of freedom. Thus, the method can be used for all kinds of formulations without further inves-

tigations about possible interactions. It is shown that the condition of the stiffness matrix does not deteriorate,

as it is the case for some of the domain decomposition methods mentioned above. Nonlinear and dynamic

problems can be handled without further measures.

The weak substitution method uses a very simple concept and the implementation is straightforward. Its scope is

the connection of patches in nonlinear structural and solid mechanics. All other domain decomposition methods

mentioned are more complex and have wider fields of application, such as contact mechanics.

It is to be remarked, that the presented method aims at enforcing C0-continuity between patches, which suffices

for Reissner–Mindlin shell elements, see [22, 23, 24]. In the proposed form, the method is not able to enforce C1-

continuity between patches, which is required for Kirchhoff–Love shell formulations [25]. The enforcement of the

equality of mutual deformations with a collocation scheme instead of the weak form was tested by the authors and

reported in [26]. No fully satisfying results were attained.

2. Definition of the model problem: 2D plane stress analysis

The proposed domain decomposition methods are derived for a 2D plane stress model problem.

2.1. Domain decomposition

For the computational implementation of our model problem we decompose the domain

Ω = Ω(1) ∪Ω(2) ∪ . . . ∪Ω(np) (1)
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into np subdomains. Without loss of generality we restrict the derivation to the case of two subdomains. The presented

methods are restricted to the non-overlapping case, where

Γc = Ω
(1) ∩Ω(2) (2)

is the interface curve. The domain is decomposed into subdomains in order to allow completely independent dis-

cretizations for adjacent patches, see Fig. 1. We define three cases for the connection of patches:

• conforming meshes. If the NURBS degree and the knots along the interface of two adjacent patches are

equivalent, then the meshes are conforming. The control points along the interface coincide. The two patches

can be coupled by linking the degrees of freedom of every pair of coinciding control points.

• hierarchical meshes. If one knot vector along the interface is completely contained in its adjacent counterpart

and the NURBS degree is equal, then the meshes are hierarchical. This means, that the finer mesh can be

attained from the coarser by knot insertion. An exact relation between the control points on both sides exists

for this case and is given in [20, 21]. The control points on the refined side can be expressed as a function of the

control points on the coarse side. Thus, the control points of the refined side can be removed from the system

and a natural coupling of the patches is attained.

• non-conforming meshes. If the NURBS degree and the knot vector are arbitrary on both sides, then the meshes

are non-conforming. No natural and exact connection is possible.

For the general case of non-conforming meshes two methods to couple adjacent patches are derived in the following.

2.2. Strong form of the problem

X  , u1 1

X , u2 2

(1)0
(1)0

(2)0

(2)

(1)

X x

u

(1)u (2)u

(1)t (2)t

0c c(1)n

(2)n

(2)n

(1)N

b0

t0

0N

(2)N(1)t0 (2)t0

u
0D

Figure 1: Reference and current configuration of the decomposed boundary value problem

An elastic body Ω in a 2D plane stress setting is used as model problem. The domain Ω has the piecewise C1-

continuous boundary Γ = ∂Ω in the current configuration. Respective values in the reference configuration are labeled

with a subscript 0. Thus, the reference and the current unit normal vector N respective n with respect to the boundary

is defined uniquely everywhere, except at kinks with C0-continuity. Dirichlet boundary conditions u = u = 0 are

applied on Γ0D. The derivation is restricted to the homogenous case without loss of generality. Conservative Neumann

boundary conditions t0 = t0 are applied on Γ0N and do not overlap with the Dirichlet conditions, i.e. Γ0D ∩ Γ0N = ∅.
The reference configuration Ω0 is described by particle points X = (x, y) ∈ Ω0. The current configuration of this point

is determined with

x = X + u . (3)
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In order to allow nonlinear computations with large deformations, the strains are described with the Green–Lagrange

strain tensor

E =
1

2

(
FT F − 1

)
in Ω0 (4)

with the deformation gradient F = Grad x = ∂x
∂X

. Here 1 denotes the unity matrix. This results in

E = Ei j ei ⊗ e j

Ei j =
1

2

(
x,i · x, j − X,i · X, j

)
,

(5)

where ei are global Cartesian basis vectors and subscript commas denote derivation with respect to the global direction

Xi. Latin indices range from one to two. Accordingly, the stresses are measured with the 2nd Piola–Kirchhoff stress

tensor S. The stresses are computed using a linear St. Venant–Kirchhoff material model

S = C : E in Ω0 , (6)

where C is the elasticity tensor. Due to the confinement to a 2D plane stress problem the stresses are constant over the

thickness h of the body. Traction forces t at the boundaries are computed with the relation

t = h (σ · n) on Γ (7)

for the current configuration and

t0 = h (P · N) on Γ0 (8)

for the reference configuration. Here the Cauchy stress tensor σ = FST FT / det F and the 1st Piola–Kirchhoff stress

tensor P = FS is used, respectively. With the Neumann and Dirichlet conditions the strong form of the boundary value

problem for the complete domain reads

Div P + b0 = 0 in Ω0 (9a)

t0 = t0 on Γ0N (9b)

u = u on Γ0D , (9c)

where b0 are the body forces acting uponΩ0. The Neumann conditions (9b) are applied on the reference configuration

Γ0N . The domain Ω is decomposed into two subdomains Ω(1) and Ω(2), for which (1) and (2) holds. Boundary

conditions, displacements, stresses and tractions are decomposed akin. If present, the superscript (k) denotes the

domain on which the quantity is defined. The interface Γc is the connection between the two subdomains. It is a

piecewise C1-continuous curve. The boundary value problem (9) is divided along Γc into two independent boundary

value problems. Thus, additional coupling conditions have to be introduced. The equality of mutual displacements

along the interface

u(1) = u(2) on Γ0c (10)

has to be enforced. This constraint transforms the two independent stationary problems into one constrained stationary

problem. The interface tractions have to fulfill

t
(1)

0
+ t

(2)

0
= 0 on Γ0c . (11)

If the boundary value problem (9) is fulfilled inside every domain and the displacement equality (10) holds, then (11)

naturally holds. Thus, the imposition of (11) is not necessary, but may lead to a smoother distribution of stresses in the

context of an isogeometric approximation with NURBS elements. In common C0-continuous finite element formu-

lations the equality of stresses is not enforced between elements. Considering the initial boundary value problem (9)

and the interface conditions (10) and (11), the decomposed boundary value problem reads

Div P + b0 = 0 in Ω0 = Ω
(1)

0
+ Ω

(2)

0
(12a)

t0 = t0 on Γ0N = Γ
(1)

0N
+ Γ

(2)

0N
(12b)

u = u on Γ0D = Γ
(1)

0D
+ Γ

(2)

0D
(12c)

u(1) − u(2) = 0 on Γ0c (12d)

t
(1)

0
+ t

(2)

0
= 0 on Γ0c . (12e)
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2.3. Weak form of the problem

The weak form of the boundary value problem (12) is deduced without consideration of the interface condi-

tions (12d) and (12e). The weak form corresponds to the variation of the potential. For the two patches k with k = 1, 2

it reads

∂Π (u, δu) =

2∑

k=1


∫

Ω
(k)

0

S (u) : δE (δu) dΩ −
∫

Γ
(k)

0N

t0 · δu dΓ −
∫

Ω
(k)

0

b0 · δu dΩ

 = 0 (13)

and fulfills (12a) and (12b). The Dirichlet boundary conditions have to be built into the solution space. The solution

space S is defined to be

S =
{

u ∈
(
H1
(
Ω(1) ∪Ω(2)

))2∣∣∣∣u = 0 on Γ0D

}
(14)

and thus (12c) holds by definition. Finally, a value u ∈ S that fulfills

∂Π (u, δu) = 0 ∀ δu ∈ S (15)

has to be found. The variation of the Green–Lagrange strain tensor is analogously to (5) defined as

δE = δEi j ei ⊗ e j

δEi j =
1

2

(
δx,i · x, j + x,i · δx, j

)
.

(16)

Nonlinear computations with the Newton–Raphson scheme require the linearization of the weak form (13). The

equation

L [δΠ (u, δu)] = δΠ (u, δu) + D δΠ (u, δu) · ∆u = 0 (17)

with

D δΠ (u, δu) · ∆u =

2∑

k=1


∫

Ω
(k)

0

(C : ∆E) : δE + S : ∆δE dΩ

 (18)

has to be solved. Incremental values ∆ (. . .) are attained by replacing δ with ∆. The second variation of the Green–

Lagrange strain tensor reads

∆δE = ∆δEi j ei ⊗ e j

∆δEi j =
1

2

(
δx,i · ∆x, j + ∆x,i · δx, j

)
.

(19)

2.4. Nomenclature for multi-patch NURBS surfaces

Bivariate NURBS surface patches are used to describe the geometry. The number of control points of the patch k

is given by n
(k)
np = n

(k)

1
× n

(k)

2
, where n

(k)
α is the number of control points in the parametric direction α. Analogously, the

degree p
(k)
α in the parametric direction α is defined. The terms degree and order are equivalently used to refer to p

(k)
α .

A control point B
(k)

i j
is defined by its two physical coordinates xi jk and yi jk, which are assembled into the vector X(i, j,k),

and its weight factor wi jk. Besides the set of n
(k)
np control points

B
(k)

i j
=
[
xi jk, yi jk,wi jk

]T
=

[
X(i, j,k)

wi jk

]
i = 1, . . . , n

(k)

1
j = 1, . . . , n

(k)

2
, (20)

the two open knot vectors

Ξ(k)
α =

{
ξα1 , ξ

α
2 , · · · , ξ

α

n
(k)
α +p

(k)
α +1

}
α = 1, 2 , (21)

are required to define the patch k. The bijective function

f (i, j, k) = I (22)
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specifies the node index I of the control point B
(k)

i j
for the isogeometric implementation. The vector

I(k) =
{
f (i, j, k) ∈ N

∣∣∣ i = 1, . . . , n
(k)

1
; j = 1, . . . , n

(k)

2

}
(23)

contains the node indices of all control points of patch k. With the help of (22) a physical point X on the domain Ω0

is interpolated with

Xh
(
ξ1, ξ2, k

)
=

n
(k)
en∑

I=1

NI

(
ξ1, ξ2, k

)
XI (24)

using the NURBS basis functions NI . The number of basis functions having influence on an arbitrary element is

specified by n
(k)
en =

(
p

(k)

1
+ 1
) (

p
(k)

2
+ 1
)
. The NURBS basis functions NI are determined by

NI

(
ξ1, ξ2, k

)
=

N
p

(k)

1

i

(
ξ1
)

N
p

(k)

2

j

(
ξ2
)

wi jk

∑n
(k)

1

i=1

∑n
(k)

2

j=1
N

p
(k)

1

i

(
ξ1
)

N
p

(k)

2

j

(
ξ2
)

wi jk

(25)

using the B-spline basis functions N
p

(k)

1

i
and N

p
(k)

2

j
. For more details about the computation of the basis functions and

its derivatives we refer to [2, 3].

2.5. Discrete form of the uncoupled problem

The uncoupled model problem expressed by the linearization of the weak form (17) is discretized with NURBS

basis functions. The reference and the current configuration are interpolated with

Xh =

n
(k)
en∑

I=1

NIXI xh =

n
(k)
en∑

I=1

NIxI (26)

using the basis functions NI defined in (25) and discrete values XI and xI . The superscript h identifies interpolated

values. The derivatives of (26) read

Xh
,α =

n
(k)
en∑

I=1

NI,αXI xh
,α =

n
(k)
en∑

I=1

NI,αxI , (27)

where NI,α are the derivatives of the basis functions with respect to global Cartesian coordinates. Greek indices range

from 1 to 2 if not specified differently. The variations of xh and xh
,α are interpolated akin with

δxh =

n
(k)
en∑

I=1

NIδuI δxh
,α =

n
(k)
en∑

I=1

NI,αδuI . (28)

The interpolation of the variation of the strains in Voigt notation thus reads

δEh =



δEh
11

δEh
22

2δEh
12

 =
n

(k)
en∑

I=1

BIδuI =

n
(k)
en∑

I=1



NI,1xhT
,1

NI,2xhT
,2

NI,1xhT
,2
+ NI,2xhT

,1

 δuI , (29)

where the matrices BI establish a relation between nodal deformations and strains. Incremental and virtual nodal

deformations of every patch k are assembled in the vectors

∆ũ(k) =

[
∆uT

1 ,∆uT
2 , . . . ,∆uT

n
(k)
np

]T
(30)

7



respectively δũ(k) following the same scheme. The patch wise approximation of (17)

L [δΠ (u, δu)] =

np⋃

k=1

δũ(k)T
(
K(k)∆ũ(k) − f(k)

)
= 0 (31)

with

K(k) =

n
(k)

el⋃

e=1

n
(k)
en∑

I=1

n
(k)
en∑

K=1

Ke
IK f(k) =

n
(k)

el⋃

e=1

n
(k)
en∑

I=1

fe
I (32)

results in an uncoupled system of equations

[
K(1) 0

0 K(2)

] [
∆ũ(1)

∆ũ(2)

]
=

[
f(1)

f(2)

]
. (33)

The solution space for ∆ũ(k) in (33) has to be a subspace of S defined in (14). Using Voigt notation for the strains E,

the stresses S and the material matrix C, the element stiffness matrices are computed by

Ke
IK =

∫

Ωe
0

(
BT

I CBK +GIK

)
dΩ , (34)

where GIK denotes the initial stress stiffness matrix

GIK = 1
(
S 11NI,1NK,1 + S 22NI,2NK,2 + S 12 (NI,1NK,2 + NI,2NK,1

))
. (35)

Here 1 denotes the 2 × 2 unity matrix. The element load vector reads

fe
I = f

e,ext
I
−
∫

Ωe
0

BT
I S dΩ , (36)

where the external load vector f
e,ext
I

is defined by the second and third term in (13).

3. Techniques for domain coupling/decomposition

The weak form derived in Sec. 2.3 describes the uncoupled boundary value problem constituted by (12a)-(12c).

Two methods to enforce the additional equations (12d) and (12e) are presented in the following. The Lagrange

multiplier method is a standard method for domain coupling and thus only briefly summarized. The implementation

serves as a benchmark method. The weak substitution method proposed in Sec. 3.2 is a new concept to connect

non-conforming patches.

3.1. Lagrange multiplier method

The Lagrange multiplier method is a widespread computational strategy to solve equations with constraints. The

constraint is defined by a constraint function fLM . The constraint function is multiplied with an unknown variable

field λ and integrated over the interface Γ0c. This product is added to the potential Π. The variation of the enhanced

potential has to be zero. By adding the additional terms to the potential the stationary problem is transformed into a

saddle point problem.

3.1.1. Variational formulation for domain coupling

The equality of mutual deformations (12d) along the interface Γ0c is used as constraint function fLM = u(1) − u(2)

and thus

Π+LM = η

∫

Γ0c

λ ·
(
u(1) − u(2)

)
dΓ (37)

is the additional term for the potential. The multiplicative constant η scales the Lagrange multiplier terms and thus

allows to control the condition of the global stiffness matrix. The variation of (37) results in two additional terms

8



introducing the additional variables λ ∈ L and their variations δλ ∈ L into (13). The space L is defined by L =(
L2 (Γc)

)2
. The restriction u ∈ T , where

T =
{
u ∈ S

∣∣∣∣
(
u(1) − u(2)|Γc

)
∈ L
}

(38)

is a subset of S, precludes infinite values for the integral in (37). The complete weak form of the coupled problem

using the Lagrange multiplier method reads

∂ΠLM (u, δu, λ, δλ) =

2∑

k=1


∫

Ω
(k)

0

S : δE dΩ −
∫

Γ
(k)

0N

t0 · δu dΓ −
∫

Ω
(k)

0

b0 · δu dΩ



+ η

∫

Γ0c

λ ·
(
δu(1) − δu(2)

)
dΓ + η

∫

Γ0c

δλ ·
(
u(1) − u(2)

)
dΓ .

(39)

Finally, values u ∈ T and λ ∈ L that fulfill

∂ΠLM (u, δu, λ, δλ) = 0 ∀ δu ∈ T , δλ ∈ L (40)

have to be found. The variational formulation (40) constitutes a saddle point problem with the solution space V =
T × L. Thus, the inf-sup conditions [8] have to be fulfilled. For more details see [17]. The linearization

L [δΠ (u, δu, λ, δλ)] = δΠ (u, δu, λ, δλ)

+ D δΠ (u, δu, λ, δλ) · ∆u + D δΠ (u, δu, λ, δλ) · ∆λ = 0
(41)

of the weak form (39) is required for nonlinear computations. The terms in (41) are given by

D δΠ (u, δu, λ, δλ) · ∆u =

2∑

k=1


∫

Ω
(k)

0

(C : ∆E) : δE + S : ∆δE dΩ



+ η

∫

Γ0c

δλ ·
(
∆u(1) − ∆u(2)

)
dΓ

(42)

and

D δΠ (u, δu, λ, δλ) · ∆λ = η
∫

Γ0c

∆λ ·
(
δu(1) − δu(2)

)
dΓ . (43)

3.1.2. Isogeometric discretization

A Lagrange multiplier field has to be defined for the discretization. In every patch only one row of control points

has influence along the interface Γ0c. The quantity of these control points is

n
(k)

Γ
= #X̃(k)

c with X̃(k)
c =

{
B

(k)

i j

∣∣∣∣NI , 0 |
Γ

(k)

0c

; I ∈ I(k)
}

(44)

for every patch k. The number of Lagrange multipliers is determined by nΓ = min (n
(1)

Γ
, n

(2)

Γ
). The degree and the knot

vector in interface direction of the patch with n
(k)

Γ
= nΓ are used for the definition of the Lagrange multiplier field. Its

interpolation is akin to (26)

λ
h =

nΓ∑

I=1

NλI λI (45)

using nΓ nodal Lagrange multipliers λI and the associated NURBS basis functions Nλ
I
. The incremental Lagrange

multipliers are assembled in the vector

∆λ̃
(k)
=
[
∆λT

1 ,∆λ
T
2 , . . . ,∆λ

T
nΓ

]T
. (46)
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They are the additional degrees of freedom in the system. The virtual Lagrange multipliers δ̃λ
(k)

are gathered akin.

With the additional matrices

Q(k) =
⋃

Γ0c

nΓ∑

I=1

n
(k)
en∑

K=1

∫

Γe
0c

1ηNλI NK dΓ (47)

and the additional entries for the residuum vector

R(k) =
⋃

Γ0c

n
(k)
en∑

I=1

∫

Γe
0c

ηNIλ
h dΓ (48)

the discretization of (41) reads



K(1) 0 Q(1)

0 K(2) −Q(2)

Q(1)T −Q(2)T

0





∆ũ(1)

∆ũ(2)

∆λ̃

 =



f(1) − R(1)

f(2) + R(2)

0

 . (49)

3.2. Weak substitution method

A completely different approach for the coupling of patches is pursued for the derivation of the weak substitution

method. The variational formulation is not altered. The connection is attained by establishing a relation between the

degrees of freedom of adjacent edges. The deformations of one patch – the slave patch – are expressed as a function

of the other patch – the master patch. For hierarchic knot vectors an analytical relation exists, see [20]. A relation

for the general case is derived in the following. With the help of this relation the edge degrees of freedom of the

slave patch can be removed from the global system of equations. Thus, the equality of mutual deformations (12d)

holds and the patches are naturally connected. The system of equations of the uncoupled problem (33) is coupled by

shared degrees of freedom without any further effort. The equality of mutual interface stresses (12e) is not enforced

strongly. Akin to the standard procedure for the connection of conforming patches with shared degrees of freedom,

C0-continuity for the deformations at the interface is attained. Higher continuity is not required. The nature of the

proposed method allows to use the method for all kinds of nonlinearities and more sophisticated element types, e.g.

shells, without further measures.

3.2.1. Mathematical derivation of the relation

The domain Ω is decomposed into two subdomains Ω(1) and Ω(2) with the interface Γc. The tractions at both sides

of the interface must be opposite with an equal absolute value to fulfill Newton’s third law. Thus, every interface

traction distribution

tc (X) = P(1) (X) · N(1) (X) = −P(2) (X) · N(2) (X) ∀X ∈ Γ0c (50)

along the interface Γ0c describes the traction distribution along the interface for both patches. This is depicted in

Fig. 2. The interface traction tc is not an external load, only a virtual internal one. Thus, the work acted by tc on the

body Ω must be identically zero for all tc ∈ L, where L will be defined in (55). This requirement is expressed by

∫

Γ
(1)

0c

tc · u(1) dΓ −
∫

Γ
(2)

0c

tc · u(2) dΓ = 0 ∀ tc ∈ L (51)

with u ∈ T . Due to its virtual character, tc can be regarded as a test function. Thus, (51) constitutes the weak form of

the interface condition (12d). The vectors in (51) are interpolated with

u(k) =

n
(k)

Γ∑

I=1

N
(k)

I
u

(k)

I
tc =

nΓ∑

I=1

N
(t)

I
tI (52)

using NURBS basis functions. The number of control points having influence along the interface n
(k)

Γ
is defined

by (44), whereas nΓ will be defined later on. At this point a classification of the patches in master and slave is

necessary. The superscript (ma) denotes the master patch, while (sl) denotes the slave patch. A general criterion for

10
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Figure 2: Interface tractions on a infinitesimal small line element.

the classification is not provided at this point. The two possible choices are examined in the numerical examples in

Sec. 4. Computations with the weak substitution method using the criterion

n
(sl)

Γ
= max

(
n

(1)

Γ
, n

(2)

Γ

)
n

(ma)

Γ
= min

(
n

(1)

Γ
, n

(2)

Γ

)
(53)

are denoted by WSMa, the opposite choice

n
(sl)

Γ
= min

(
n

(1)

Γ
, n

(2)

Γ

)
n

(ma)

Γ
= max

(
n

(1)

Γ
, n

(2)

Γ

)
(54)

by WSMb. The number of nodal values for the virtual traction force tc has to be equal to the number of interface

control points in the slave patch, i.e. nΓ = n
(sl)

Γ
. The function space for the virtual traction force tc ∈ L is stated more

precisely as

L =
(
L2
(
Γ(sl)

c

))2
. (55)

The choice tc ∈ L simply uses the NURBS parametrization of the slave patch along the interface for the virtual traction

force. Thus, each basis function N
(t)

I
of the virtual traction force is equal to the basis function N

(sl)

I
of the slave patch

for I = 1, . . . , n
(sl)

Γ
. The influence of the proposed connection method on the mechanical response analysis depends

on the choice of the function space L. The choice made within this work yields non-local support of the interface

basis functions on the slave side. The implementation is simplified, as N
(t)

I
= N

(sl)

I
for I = 1, . . . , n

(sl)

Γ
holds. In [12]

the usage of dual basis functions is proposed in order to recover local support of basis functions. In [13] dual basis

functions for Lagrange polynomials of arbitrary order are proposed. An example of dual basis functions for B-splines

is given in [16]. The idea of using dual basis functions for the discretization of tc in (51) seems to be promising, but

this approach is not followed further in this work.

The interpolated form of (51) reads

nΓ∑

I=1

n
(sl)

Γ∑

K=1

tT
I


∫

Γ
(sl)

0c

N
(t)

I
N

(sl)

K
dΓ

u
(sl)

K
=

nΓ∑

I=1

n
(ma)

Γ∑

K=1

tT
I


∫

Γ
(ma)

0c

N
(t)

I
N

(ma)

K
dΓ

u
(ma)

K
. (56)
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Rewritten to matrix form using

t̃ =
[
tT
1 , t

T
2 , . . . , t

T
nΓ

]T
ũ(k)

c =

[
u

(k)T

1
,u

(k)T

2
, . . . ,u

(k)T

n
(k)

Γ

]T
(57)

and the mortar matrices

D(k) =
[
D

(k)

IK
1
]

I=1,...,nΓ ; K=1,...,n
(k)

Γ

D
(k)

IK
=

∫

Γ
(k)

0c

N
(t)

I
N

(k)

K
dΓ , (58)

the interpolated form (56) reads

t̃ D(sl)ũ(sl)
c = t̃ D(ma)ũ(ma)

c . (59)

The index c for the vector of the nodal deformations ũ
(k)
c denotes that it contains the deformations of all interface

control points. The traction vector t̃ acts as a test function. It can be dropped and thus the final equation

D(sl)ũ(sl)
c = D(ma)ũ(ma)

c (60)

between the deformations in the master and in the slave patch is established. The mortar matrix D(sl) is always square

as nΓ = n
(sl)

Γ
holds. The NURBS basis functions are linear independent, see [3]. The nΓ columns of the matrix D(sl)

contain a product of the NURBS basis functions. Thus, the nΓ columns are linear independent which implies that

rank D(sl) = nΓ · ndim (61)

holds, where ndim is the dimension of the problem under consideration. Following [27], a well-defined inverse of the

matrix D(sl) exists. Thus, the final relation between the edge degrees of freedom of the master and the slave patch

reads

ũ(sl)
c =

(
D(sl)
)−1

D(ma) ũ(ma)
c = T ũ(ma)

c . (62)

It holds accordingly for the location vectors X̃(k), the variations δũ(k) and the increments ∆ũ(k).

3.2.2. Computation of the mortar matrices

The computation of the mortar matrices (58) requires several projections. The integrals are evaluated in the

parametric space of the master patch for D(ma) and in the parametric space of the slave patch for D(sl). In the case of

the matrix D(ma), the integral

D
(ma)

IK
=

∫

Γ
(ma)

0c

N
(t)

I
N

(ma)

K
dΓ (63)

contains the basis functions N
(ma)

K
defined on Γ

(ma)

0c
, and the basis functions N

(t)

I
defined on Γ

(sl)

0c
. Integration is per-

formed in the parametric space of the master patch, which is spanned up by the two knot vectors Ξ
(ma)

1
⊗ Ξ(ma)

2
. Every

interface integration point

(
ξ1ma, ξ

2
ma

)
=
{(
ξ1, ξ2

)
∈ Ξ(ma)

1
⊗ Ξ(ma)

2

∣∣∣∣ Xh(ξ1, ξ2,ma) ∈ Γ(ma)

0c

}
(64)

in the parametric space of the master patch has to be projected onto the parametric space of the slave domain in order

to evaluate the basis function N
(t)

I
. The parametric spaces are not connected. Thus, the projection has to be performed

in the physical space. For every interface point
(
ξ1ma, ξ

2
ma

)
the physical location X(ma) = Xh(ξ1ma, ξ

2
ma,ma) has to be

computed. The corresponding physical point X(sl) on the slave patch has to be computed by a closest point projection,

see [3]. The parameters
(
ξ1

sl
, ξ2

sl

)
of X(sl) in the parametric space of the slave patch have to be determined with the help

of the point inversion algorithm given in [3]. Thus, the interface point which corresponds to
(
ξ1ma, ξ

2
ma

)
is defined by

(
ξ1sl, ξ

2
sl

)
=
{(
ξ1, ξ2

)
∈ Ξ(sl)

1
⊗ Ξ(sl)

2

∣∣∣∣ Xh(ξ1, ξ2, sl) = X(ma) , Xh(ξ1, ξ2, sl) ∈ Γ(sl)

0c

}
(65)

in the slave parametric space, where the equality Xh(ξ1, ξ2, sl) = X(ma) is fulfilled up to numerical precision for

watertight geometries. The equality can be replaced by a minimization of the distance Xh(ξ1, ξ2, sl) − X(ma) in case of

12



Figure 3: Required projections for the computation of the mortar integrals.

non-watertight geometries. The algorithmic treatment is the same in both cases; the closest point projection algorithm

is used. The projections described above are sketched in Fig. 3. The computation of the matrix D(sl) does not require

any projection for the formulation at hand, as the function space of the virtual traction force is chosen to be equal to

the slave patch.

B-spline basis function of degree p can be integrated exactly within a knot span using Gauss integration with p+1

integration points. In order to ensure an accurate integration of D(sl), Gauss integration has to be performed within

every interface knot span of the slave patch. The computation of (63) requires that each knot value of the slave patch

along the interface is projected onto the parametric space of the master patch. These projected knot values together

with the knot values of the master patch define the integration spans Γe for (63). Thus, the integration of (63) can be

accurately performed by

D
(ma)

IK
=
∑

e

∫

Γe

N
(t)

I
(ξ1sl, ξ

2
sl) N

(ma)

K
(ξ1ma, ξ

2
ma) dΓ . (66)

3.2.3. Isogeometric discretization

The equality of mutual deformations (12d) is enforced in an interpolated sense with the help of the relation matrix

T defined in (62). The system (33) is coupled by replacing the interface degrees of freedom of the slave patch with

the interface degrees of freedom of the master patch. Thus, the coupling of the patches is achieved by a substitution,

where the substitution rule is attained by a weak form of the displacement continuity condition (12d). The substitution

requires a split of the assembled deformation vectors ũ(k) into the interface deformation vector

ũ(k)
c =

{
u

(k)

I

∣∣∣NI , 0 |
Γ

(k)
c

; I ∈ I(k)
}
, (67)

which contains the deformations of all interface control points, and the domain deformation vector

ũ
(k)

d
=
{
u

(k)

I

∣∣∣NI = 0 |
Γ

(k)
c

; I ∈ I(k)
}
. (68)

The split

ũ(k) =

[
ũ

(k)

d

ũ
(k)
c

]
(69)

is equally performed for δũ(k) and ∆ũ(k) as well as for the load vector f(k). Within the assembly of the stiffness matrix

the split defined in (69) has to be considered. Thus, the patch wise defined stiffness matrix

K(k) =

[
K

(k)

dd
K

(k)

dc

K
(k)

cd
K

(k)
cc

]
(70)

13



is decomposed into four submatrices. The connected system of equations finally reads



K
(ma)

dd
K

(ma)

dc
0

K
(ma)

cd
K

(ma)
cc + TT K

(sl)
cc T TT K

(sl)

cd

0 K
(sl)

dc
T K

(sl)

dd





∆ũ
(ma)

d

∆ũ
(ma)
c

∆ũ
(sl)

d

 =



f
(ma)

d

f
(ma)
c

f
(sl)

d

 . (71)

The substitution eliminates all degrees of freedom assigned to the interface control points of the slave patch. Thus,

the number of degrees of freedom is always reduced, which is not the case for the Lagrange multiplier method. The

number of degrees of freedom depends on the classification of the patches to be master or slave.

4. Numerical examples

The accuracy and robustness of the proposed weak substitution method for the connection of NURBS surface

patches is tested with the help of three numerical examples. The beam under pure tension yields a constant state

of stress with known analytical solution. A discretization with one linear element already entails the exact solution.

Thus, all encountered errors are due to the discretization with two patches with curved interface. This example

is used to quantify the impact of the connection methods on the global convergence behavior and to compare the

presented methods. The quarter of an annulus subject to tip shear force is a bending example with a known analytical

solution. The geometry is curved and the load is applied as shear force. This example tests the performance of the

connection methods for bending states. The elastic plate with hole is a standard benchmark for in-plane stress analysis

with a complex but known analytical solution. Two different interfaces are considered, assessing both straight and

curved patch intersection. In the linear case, the nature of the employed examples allows error norms to be used to

compare the numerical results of the connection methods with analytical results. For this sake the L2-norm, denoted

by ‖•‖0,Ω, is used. The L2-error norm ‖S−Sh‖0,Ω allows quantifying the impact of the connection methods on the stress

distribution throughout the whole domain. Analytical solutions are not available for nonlinear computations. Thus,

results are compared to precise computations with conforming meshes. Computations with the Lagrange multiplier

method, which is presented in Sec. 3.1, are denoted by LM in the legend. Computations with the weak substitution

method are labeled with WSMa or WSMb, depending on which patch is chosen to be the master patch, see Sec. 3.2.3.

Computations of conforming meshes, which are connected by shared degrees of freedom, are labeled by DC. All

integrals are evaluated numerically using Gauss integration with

ngp =
(
max
(
p(k)
α

)
+ 1
)ndim

, α = 1, 2 , k = 1, 2 (72)

integration points, where ndim is the dimension of the concerned integral.

4.1. Beam with curved interface under pure tension

This example yields a constant state of stress. An analytical solution can be found easily, as well as computations

with one linear element entail the correct solution of the problem. The geometry is modeled with two NURBS patches

in order to study the influence of the presented connection methods. The interface is described by a NURBS curve of

which the details are given in Tab. 1. This discretization does not yield the exact solution for the coarsest mesh due to

the rational character of the NURBS basis functions. The employed Gauss integration scheme is not able to integrate

rational functions exactly. A higher number of integration points reduces the errors for computations with the coarsest

mesh to machine precision. Here the number of integration points is chosen according to (72). The convergence rates

of h-refinement studies can be compared between computations with conforming and non-conforming meshes. The

influence of the connection methods is clearly visible with the help of this example. The geometry and the boundary

conditions are given in Fig. 4, where q = 10. The wall thickness is t = 1. A Young’s modulus of E = 100 and a

Poisson ratio of ν = 0.3 are used. Computations are performed with linear and nonlinear kinematics. The initial mesh

for conforming computations consists of 10 × 2 elements per patch, where the coarsest mesh is subdivided into ten

elements in the first parametric direction and two elements in the second parametric direction. For non-conforming

computations patch 2 is discretized with 10 × 3 elements, whereas patch 1 is not altered. The initial elements are

equally subdivided in both parametric directions. Studies are performed with NURBS basis functions of degree p = 3

and p = 4, where the degree is elevated using k-refinement.
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Figure 4: Beam under pure tension: Problem geometry, boundary conditions, coarsest mesh (red lines) and control point net (blue dashed lines).
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(b) Nonlinear computations

Figure 5: Beam under pure tension: L2-error norm of the Dirichlet interface condition.

The results of linear and nonlinear computations given in Figs. 5a-7a respectively Figs. 5b-7b are very similar. The

graphs start to level off at an order of 10−12 and thus this value is used as a lower bound for the diagrams. The L2-error

norms of the mutual deformations along the interface are given in Fig. 5. The variant of the weak substitution method,

where the patch which has more interface control points is chosen as master patch, is denoted by WSMb. This scheme

and the Lagrange multiplier method, denoted by LM, entail quite similar results. The error of the mutual deformations

of the WSMa scheme, which classifies the patch with less interface control points as master patch, is several orders of

magnitude smaller. The error of conforming discretizations connected by shared degrees of freedom is in the order of

10−14, reflecting numerical accuracy, and thus not displayed here. The L2-error norms of the mutual tractions along

the interface are given in Fig. 6. Due to the C0-continuity along the interface, the conforming discretizations (denoted

by conf.) also yield a Neumann interface error. This error decreases exponentially with a leveling off at approximately

10−11. The results for the non-conforming discretizations decrease at a similar slope, but with a larger error and some

smaller oscillations. The WSMa scheme yields better results than the LM method and the WSMb scheme. The

L2-error norm ‖S − Sh‖0,Ω, where S are the exact stresses and Sh the results of the computations, assesses the stress

distribution throughout the whole domain. The impact of the connection methods on the global solution can clearly

Table 1: Control points and knot vector of the unrefined NURBS connection line with degree p = 3.

Control point Coordinates (x , y , w)

1 (5 , 0 , 1)

2 (5.5 , 0.3 , 1.2)

3 (5.7 , 0.6 , 1.5)

4 (5 , 1 , 1)

knot vector: Ξ = [0, 0, 0, 0, 1.75, 1.75, 1.75, 1.75]
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Figure 6: Beam under pure tension: L2-error norm of the Neumann interface condition.
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Figure 7: Beam under pure tension: L2-error norm of the stress distribution throughout the whole domain.

be seen. The error of linear and nonlinear computations is plotted in Fig. 7. The graphs of conforming computations

show exponential convergence behavior. The errors entailed by the WSMa scheme are about one order of magnitude

higher than for the conforming case. The error norms of the LM method and the WSMb scheme coincide. The error of

the two latter connection methods clearly has a severe impact on the global solution, as the error level is considerably

higher than for conforming computations. However, it is to be noted, that all errors in this example are entailed by

the connection. In more complex states of stress, the impact of the connection methods on the global solution is

considerably lower, see the following examples.

4.2. Quarter of an annulus subject to tip shear force

The quarter of an annulus is fixed at one end and loaded with a shear force at the other end. This creates a state

of stress which is dominated by in-plane bending. An analytical solution for the stress distribution is given in [17].

Geometry and boundary conditions are given in Fig. 8a. The inner and outer radius of the annular are defined by

rmin = 4 and rmax = 5, respectively. Possible values of the angle θ are 0 ◦ ≤ θ ≤ 90 ◦. The shear load p = 10 has to be
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Figure 8: Quarter of an annulus: Problem geometry, boundary conditions and the two coarsest meshes for j : 2 j + 1 refinement.

Table 2: Control points and knot vector of the unrefined NURBS connection line with degree p = 2.

Control point Coordinates (x , y , w)

1 (2.828427124746190 , 2.828427124746190 , 1)

2 (2.500000000000000 , 3.741657387000000 , 1)

3 (3.535533905932737 , 3.535533905932737 , 1)

knot vector: Ξ = [0, 0, 0, 0.5, 1, 1, 1]

applied according to the analytical solution. Its distribution q(r) is given by

q(r) =
p

N0

r +
r2

min
r2

max

r3
−

r2
min
+ r2

max

r

 (73)

with

N0 = r2
min − r2

max +
(
r2

min + r2
max

)
ln

rmax

rmin

. (74)

The domain is discretized with two NURBS patches with a curved connection line, which is defined in Tab. 2. The

wall thickness is t = 1. A Young’s modulus of E = 105 and a Poisson ratio of ν = 0 are used. Computations

are performed with linear kinematics. The existence of an analytical solution allows the influence of the connection

methods to be assessed with the help of the L2-error norm ‖S − Sh‖0,Ω. Convergence studies are provided for three

different non-conforming discretizations. In the first two discretizations meshes with an element ratio j : 2 j+ 1 along

the interface are used. The coarsest mesh is displayed in Fig. 8b. The number of elements in patch 1 is given by j2,

and by (2 j + 1)2 in patch 2. The factor j ∈ {1, . . . , 25} defines the refinement strategy for h-refinement. The resulting

mesh for j = 2 is given in Fig. 8c. The results in Figs. 9a-11a use an equal degree p = 2 for all parametric directions

in both patches, whereas in Figs. 9b-11b the degrees p
(1)

1
= 4, p

(1)

2
= 3, p

(2)

1
= 5 and p

(2)

2
= 4 are used. The third

discretization uses subdomains with an element ratio j : j along the interface, and j2 elements both in patch 1 and in

patch 2. The resulting mesh for j = 3 is given in Fig. 12a. The orders p
(1)

1
= 4, p

(1)

2
= 4, p

(2)

1
= 6 and p

(2)

2
= 6 are used

in Fig. 12b.

The error of the mutual deformations of the two j : 2 j + 1-refined discretizations is given in Fig. 9. In both

cases the WSMb scheme and the LM method yield very similar results. The graphs of WSMb and LM show small

oscillations in the higher order case in Fig. 9b, but for an increasing number of elements a linear trend is visible. The

WSMa scheme exhibits a smaller error level than the WSMb scheme. However, the slope is equal for all methods in

the fine limit. The traction interface condition is assessed in Fig. 10. All presented methods yield an traction interface

17



10
−8

10
−7

10
−6

10
−5

10
−4

 10  100  1000  10000

L
2
−

er
ro

r 
n

o
rm

 ||
 u

(1
)  −

 u
(2

)  ||
0
,Γ

c

Total number of elements

WSMb

WSMa

LM

(a) p
(1)

1
= 2, p

(1)

2
= 2, p

(2)

1
= 2, p

(2)

2
= 2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

 10  100  1000  10000

L
2
−

er
ro

r 
n

o
rm

 ||
 u

(1
)  −

 u
(2

)  ||
0
,Γ

c

Total number of elements

WSMb

WSMa

LM

(b) p
(1)

1
= 4, p

(1)

2
= 3, p

(2)

1
= 5, p

(2)

2
= 4

Figure 9: Quarter of an annulus: L2-error norm of the Dirichlet interface condition for j : 2 j + 1 refinement.
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Figure 10: Quarter of an annulus: L2-error norm of the Neumann interface condition for j : 2 j + 1 refinement.

error which is about one order of magnitude higher than the traction interface error for computations with conforming

meshes. The results of the LM method and the WSMb scheme are not distinguishable from each other by the eye.

The results of the WSMa scheme are very similar to the WSMb scheme.

The influence of the connection methods on the distribution of the stresses throughout the whole domain is the

crucial point in the assessment of connection techniques. This is examined with the help of the L2-error norm ‖S −
Sh‖0,Ω in Fig. 11. It is important to note, that unlike in the preceding figures, the number of elements within the

respective subdomain is used as abscissa. Thus, the error levels of the non-conforming computations can be compared

to conforming computations of the same degree within this patch. The results of the low order case in Fig. 11a are

explained as follows. In patch 1 the graphs of the error levels of conforming and non-conforming computations with all

three methods overlap very well. Thus, the results in the coarser meshed subdomain Ω(1) are not influenced negatively

by the presented connection methods. Computations with the LM method as well as with the WSMb scheme yield,

beginning from 100 elements, the same error level in patch 2 as conforming computations. Thus, the global stress

distribution is not significantly disturbed by the WSMb scheme and the LM method for this discretization. The

stress error in patch 2 of computations with the WSMa scheme is slightly larger than in the conforming case. Thus,

the WSMa scheme has a negative impact on the global stress distribution. In the higher order case in Fig. 11b no

connection method has a negative impact on the error distribution in subdomain Ω(1), as all graphs overlap very well.
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Figure 11: Quarter of an annulus: L2-error norm of the stress distribution throughout the whole domain for j : 2 j + 1 refinement.

The situation is different in subdomain Ω(2) . The error levels of the WSMb scheme and the WSMa scheme are

similar for coarse discretizations. The WSMb scheme approaches the error level of conforming computations for

finer meshes, but does not reach it. In contrast to that, the error in Ω(2) of the WSMa scheme almost retains the slope

of the graphs for subdomain Ω(1). The results of the WSMb scheme and the LM method coincide very well.

(a) Mesh for j = 3.
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(b) L2-error norm of the stress distribution throughout the whole

domain.

Figure 12: Quarter of an annulus: Two subdomains with fitting number of elements along the interface, but differing orders: p
(1)

1
= 4, p

(1)

2
= 4,

p
(2)

1
= 6, p

(2)

2
= 6.

The influence of the connection methods on the distribution of the stresses throughout the whole domain is inves-

tigated in Fig. 12b for subdomains with fitting number of elements but different orders along the interface. A mesh

of this kind is given in Fig. 12a. The approximative power of the basis functions is lower in patch 1 than in patch 2.

Thus, the results are more precise in patch 2. The results of all connection methods coincide very well with results of

conforming computations in subdomain Ω(1). The situation in subdomain Ω(2) is similar to Fig. 11b. The LM method

and the WSMb scheme overlap perfectly. For coarse meshes the WSMa scheme performs better than the WSMb

scheme, but its slope stays almost constant for mesh refinement. In contrast to that, the peformance of the WSMb

scheme improves beginning from around 100 elements, and the graph is closer to the conforming case.

The results of this numerical example can be summed up as follows. All presented connection methods have
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influence on the global stress distribution in the finer discretized patch (referring to more elements and higher order).

The influence is not significant and decreases with mesh refinement in the case of equal orders in all subdomains. If

the orders of the patches along the interface are not equal, then the approximation power of the higher order cannot

be fully exploited. The accuracy of the WSMb scheme and the LM method is superior to the accuracy of the WSMa

scheme.

4.3. Elastic plate with circular hole
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Figure 13: Elastic plate with circular hole: Problem setup, material properties and chosen subdomains for the two different computed discretization

types. The parametric directions and the coarsest mesh are given.

The elastic plate with hole is a common benchmark in isogeometric analysis. The geometry can be modeled with

a single NURBS patch using control points with coinciding location. For this study the domain is discretized with two

regular NURBS surface patches to test the presented connection methods. The geometry and the boundary conditions

are given in Fig. 13a. An analytical solution is available for an infinite plane with hole loaded with a constant traction

Tx. It is given e.g. in [17], providing the analytical displacements and resulting forces. The application of the

tractions from the exact solution at the free boundaries allows to use the exact solution also for the problem under

consideration. Convergence studies are conducted for two different geometry models. In the first case, displayed

in Fig. 13b, the interface is a straight line. In the second case the interface is curved, see Fig. 13c. The material

parameters – Young’s modulus E and Poisson ratio ν – are provided in Fig. 13b and Fig. 13c for both studies.

For the convergence studies in Secs. 4.3.1-4.3.3 different degrees of NURBS basis function and refinement patterns

are used. The discretization scheme for each convergence study is characterized by a combination of an uppercase

letter defined in Tab. 3 and a number defined in Tab. 4. The parametric directions are given in Fig. 13b and 13c.

For example, the figure caption A1 denotes that the computations are performed with refinement rule A and NURBS

degree rule 1. Applied to the straight interface model, this denotes that the NURBS degree in both patches is 1 along

the interface and 2 in the other parametric direction. The coarsest mesh determined with j = 1 uses one element for

patch 1 and nine elements for patch 2.

Table 3: Refinement patterns for the elastic plate with hole.

Refinement rule Discretization: Subdomain Ω(1) Subdomain Ω(2)
(
n

(1)

1
− p

(1)

1

)
×
(
n

(1)

2
− p

(1)

2

) (
n

(2)

1
− p

(2)

1

)
×
(
n

(2)

2
− p

(2)

2

)

A j × j (2 j + 1) × (2 j + 1)

B 5 j × 10 j 5 j × 10 j

C 5 j × 10 j 5 j × 12 j
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Figure 14: L2-error norm of the Dirichlet interface condition (mutual deformations) along the interface for the elastic plate with hole with straight

interface. Reference values taken from [17].

4.3.1. Two patches with straight connection line: Comparison to reference results

The elastic plate with hole described by two NURBS patches with a straight interface allows a comparison to the

numerical results of Apostolatos et al. [17]. Geometry, boundary conditions, discretization and material parameters

are chosen accordingly to allow a precise comparison. The refinement pattern chosen in [17] of j : 2 j + 1 along

the interface produces highly irregular meshes. Computations are performed with a low degree of NURBS using

discretization scheme A1 and a high degree of NURBS using scheme A2. This is in accordance with the computations

reported in [17]. Results using the Lagrange multiplier method and Nitsche’s method are taken from [17] and denoted

by Ref. LM, respectively Ref. Nitsche in Figs. 14-16. The results of the weak substitution method using the WSMb

scheme and the results from the LM method agree to a precision of 10−10 for the current example. The difference

is not distinguishable by the eye. Thus, in Figs. 14-17 a single data line is used to represent the results of LM and

WSMb. The deformation and stress results of the LM method do not differ for values η ∈
[
1 · 100, 1 · 105

]
. The results

in Figs. 14-17 are computed with η = E = 1 · 105.

The L2-error norm of the mutual displacements of patch 1 and patch 2 along the interface Γc is given in Fig. 14.

In both discretizations the WSMa scheme performs better than the LM/WSMb scheme. This is in accordance to the

behavior observed in Sec. 4.1. The coarsest mesh, which arises for j = 1, is a hierarchical mesh. In this case an

exact substitution relation according to [20, 21] exists. The WSMa scheme reproduces this exact substitution relation

and thus the error norm of the mutual deformations is in the range of the numerical precision. For higher values of j

non-conforming meshes arise, where no exact substitution is possible. Thus, a kink occurs in the graph of the WSMa

scheme in Fig. 14. For the low order NURBS in Fig. 14a the graph of the reference Lagrange multiplier method data

from [17] is between the values for WSMa and LM/WSMb. The deviation between the Ref. LM values and the own

computations with the LM method described in Sec. 3.1 is due to differing parametrizations of the Lagrange multiplier

field. In the high order case in Fig. 14b the Ref. LM and the LM/WSMb curves almost coincide. The reference Nitsche

values exhibit superior behavior in comparison to the Lagrange multiplier methods. Summing up, the deformation

Table 4: Degrees of the NURBS basis functions for the elastic plate with hole.

NURBS degrees rule: p
(1)

1
p

(1)

2
p

(2)

1
p

(2)

2

1 1 2 2 1

2 4 3 4 5

3 4 4 4 4

4 5 5 5 5
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Figure 15: L2-error norm of the Neumann interface condition along the interface for the elastic plate with hole with straight interface. Reference

values taken from [17].

error norm converges with almost the same slope for all connection methods with a very small error level. The error

of the interface tractions is displayed in Fig. 15. All considered connection methods perform comparable. The slopes

and error levels are similar. The Ref. LM values are the most accurate in the low degree NURBS discretization case

in Fig. 15a, whereas the LM/WSMb values are the most accurate in Fig. 15b. It is to be remarked, that the traction

interface error of the WSMb scheme is in all calculations smaller than the error of the WSMa scheme. The numerical

interface tractions are compared to the exact interface tractions in Fig. 16, separately for each side of the interface.

The LM/WSMb scheme outperforms the WSMa scheme in the low degree case in Fig. 16a. The reference Lagrange

multiplier results are more accurate as the own LM computations for fine meshes and have a larger error for coarse

meshes. This is due to the different parametrizations of the Lagrange multiplier field. In the high order case in Fig. 16b

the slope of all methods is approximately the same. The lowest error level is attained with the LM/WSMb scheme

in patch 2, followed by the Ref. LM values in patch 1. This shows the strong dependance of the Lagrange multiplier

method on the parametrization of the Lagrange multiplier field.

The impact of the connection methods on the global solution is assessed with the L2-error norm of the stresses

over the whole domain. Results are given in Fig. 17 for each subdomain Ω(k) and for the complete domain Ω. The

error of computations with the WSMa scheme is slightly higher than of those using the WSMb scheme, respectively

the LM scheme. The WSMa scheme yields a lower convergence rate for patch 2 than the WSMb scheme for the

discretization scheme A2 displayed in Fig. 17b. The slope of the WSMa graph for patch 2 is approximately the same

as for patch 1, despite the higher approximation power in patch 2, which is entailed by the higher order of the basis

functions. The WSMa scheme yields a lower number of degrees of freedom along the interface than WSMb. Thus,

despite the more accurate connection of deformations (see Fig. 14b), the lower number of degrees of freedom along

the interface slightly impairs the global stress convergence behavior as well as the Neumann interface condition (see

Fig. 15b). The WSMb scheme, which uses the set of interface control points with the highest cardinality as master

set, is able to describe the stresses more accurately.

4.3.2. Two patches with curved connection line: linear computations

The behavior of the two presented methods for a complex state of stress at a curved interface is shown with the

help of the elastic plate with hole using two patches with a curved interface. The initial NURBS model is shown in

Fig. 13c including material parameters and the parametric directions. Geometry and boundary conditions are chosen

according to Fig. 13a. The interface curve is specified in Tab. 5. Computations are performed with linear kinematics

and NURBS basis functions of degree p = 4. For this case no reference values exist. A comparison is drawn

between results with the Lagrange multiplier method and the weak substitution method. The discretization scheme

C3 entails a ratio of 10 j : 12 j elements along the interface. This allows a comparison to conforming computations
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Figure 16: L2-error norm of the interface tractions along the interface for the elastic plate with hole with straight interface. Reference values taken

from [17].

with discretization scheme B3 (10 j : 10 j elements along the interface). The multiplicative parameter η = E = 100 is

used for the computations with the LM method.

Table 5: Control points and knot vector of the unrefined NURBS connection line with degree p = 4.

Control point Coordinates (x , y , w)

1 (−1/
√

2 , 1/
√

2 , 1)

2 (−1 , 1 , 1)

3 (−0.9 , 1.8 , 2)

4 (−2.9 , 2.4 , 2)

5 (−3.5 , 3.5 , 1)

6 (−4 , 4 , 1)

knot vector: Ξ = [−5.2686,−5.2686,−5.2686,−5.2686,−5.2686,−2.6343, 0, 0, 0, 0, 0]

Results are given in Fig. 18. The L2-error norm of the Dirichlet interface condition has almost the same slope for

the WSMa and WSMb scheme, see Fig. 18a. The error level of WSMa is slightly lower, akin to the prior examples.

The LM results and the results for the WSMb scheme match very well. The Neumann interface condition in Fig. 18b

reveals a similar picture. The slope of all computations is equal, but here WSMb is slightly more accurate than

WSMa. The higher number of degrees of freedom along the interface entails a more accurate approximation of

stresses for the WSMb scheme, whereas the WSMa scheme constrains the mutual deformations more accurately, see

Sec. 4.3.1. The interface traction error of computations of conforming meshes with direct connection (DC) is around

one order of magnitude lower than in the non-conforming case. In Figs. 18c and 18d the interface tractions of patch

1 respectively patch 2 are compared to the analytical solution. Here all methods perform equally well with very

small differences. The comparison between Fig. 18b and Figs. 18c-18d reveals, that the conforming computations are

superior in comparison to the non-conforming computations in terms of fulfilling the Neumann interface condition,

but not in terms of deviation from the exact solution. The error norm of the stresses over the whole domain is given in

Fig. 18e. All three presented connection methods coincide perfectly. The graph of the computations with conforming

meshes (DC) is not distinguishable by the eye from the non-conforming graphs. Thus, it is to be noted, that the global

solution is not impaired by the usage of non-conforming meshes in combination with the presented patch coupling

methods for this example. The employed element ratio of 10 j : 12 j is a realistic scenario for patches with a common

edge but non-conforming parametrization. As long as the interface conditions are of no further interest, which in

general is the case as the integration points for the global stiffness matrix do not lie on the interface, global results do

not deteriorate by allowing non-conforming meshes.
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Figure 17: L2-error norm of the stress distribution throughout the whole domain for the elastic plate with hole with straight interface.

The condition number of the stiffness matrix influences the accuracy of direct solvers and the rate of convergence

of iterative solvers, see [28]. It is given in Fig. 18f for all presented connection methods. The condition number

is determined in MATLAB with the function cond(). Both WSM schemes do not deteriorate the stiffness matrix in

comparison to a direct connection using shared degrees of freedom. The condition number entailed by the LM method

depends on the choice of the multiplicative parameter η. The choice η = E increases the condition number about one

order of magnitude in comparison to the direct connection for this example. The global system of equations is solved

with the MATLAB routine mldivide(), which yielded the same numerical results for all examined choices of η.

4.3.3. Two patches with curved connection line: nonlinear computations

This example is used to test the presented connection methods in the nonlinear case for a complex state of stress.

The geometry is given in Fig. 19a. The tractions from the exact solution are replaced by a constant line load q = 10

on the left edge whereas the upper edge is not loaded. The geometry is modeled with a curved interface as displayed

in Fig. 13c. The Young’s modulus is E = 100 and Poisson’s ratio is ν = 0.3 . Computations are performed with

degree p = 4 and p = 5 (NURBS degree rule 3 resp. 4, see Tab. 4). Mesh refinement rule C (see Tab. 3) is used

to produce non-conforming meshes. This allows a comparison to conforming computations using mesh refinement

rule B. Figs. 19b and 19c provide the first two meshes arising from discretization scheme C3. The multiplicative

parameter η = E = 100 is used for the LM computations. In the non-conforming case, the mesh is chosen to be

finer in patch 2 as the gradient of the stresses is anticipated to be larger in this patch. The error level is related to the

total number of elements. Thus, the error level yielded by conforming patches should be slightly higher than in the

non-conforming case. A Newton–Raphson iteration is used to solve the global system of equations. The equilibrium

Table 6: Elastic plate with hole with curved interface: nonlinear computations: Equilibrium path of the nonlinear Newton–Raphson iteration. All

computations are performed for a refinement factor j = 2 and a degree p = 4 in both parametric directions in all subdomains.

Norm of the residuum vector

DC, B3 (conf.) LM, C3 WSMa, C3 WSMb, C3

1.1593E+01 1.1593E+01 1.1593E+01 1.1592E+01

2.4969E+00 4.4199E+00 2.5006E+00 2.5005E+00

1.7423E-01 2.7868E-01 1.7540E-01 1.7539E-01

3.0345E-03 3.7148E-03 3.1076E-03 3.1079E-03

8.0205E-07 8.6037E-07 8.4924E-07 8.4939E-07

1.2441E-12 1.2358E-12 1.5593E-12 1.5259E-12

path of all three connection methods is compared in Tab. 6 to conforming computations. All other discretizations
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Figure 18: Elastic plate with hole with curved interface: linear computations: L2-error norms and condition number for discretization schemes B3

(conforming) and C3 (non-conforming): The degree of the basis functions in both parametric directions is p = 4 for both patches.
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Figure 19: Elastic plate with hole with curved interface: nonlinear computations: Problem setup and meshes for j = 1 and j = 2.

showed similar convergence behavior in the nonlinear iteration. None of the methods has negative influence on the

iteration behavior in all shown examples.

Results of computations with nonlinear kinematics are provided in Fig. 20. The L2-error norms of the Dirichlet

interface condition are given in Fig. 20a. Results of the WSMb scheme and the LM method coincide very well. The

WSMa scheme yields errors approximately one order of magnitude smaller than the WSMb scheme. The L2-error

norms of the Neumann interface condition in Fig. 20b reveal a similar picture. The WSMa scheme yields interface

errors which are in the same range than the interface errors in conforming computations (labeled DC). The errors of

the WSMb scheme have a slightly higher error level, but their slope is akin. They coincide very well with the LM

computations. In the nonlinear case no analytical solution exists. Thus, the energetic norm LE = ‖Sh : Eh‖0,Ω is

used to asses the impact of the connection methods on the global convergence behavior. The value is compared to the

reference value L
re f

E
= 3.896722804022 computed with 150×150 elements of 6th order. The relative error is plotted in

Fig. 20c. The graphs of all presented methods are in very good accordance to the graphs of the respective conforming

computations for both considered orders. The errors of the WSMb scheme and the LM method are slightly lower

than the error of the conforming computations. The finer mesh in patch 2 yields more precise results. The error

of the WSMa scheme is slightly larger than in the conforming case. Thus, the WSMa scheme slightly impaires

the global solution. In addition to the error of the energetic norm, which is a measure for the behavior throughout

the whole domain, discrete deformations uA and uB in the endpoints of the interface are examined in Fig. 21. The

location of the points A and B is sketched in Fig. 19a. Points at the interface are chosen for the convergence study as

the influence of the connection methods has its maximum at the interface. The deformation error is computed with

respect to the reference values uA = 0.342816274990393 and uB = 0.189249831872346, which were attained with

200× 200 elements of 6th order in FEAP using the shell formulation [23]. Alternative computations with a finite shell

element with linear basis functions [29] in FEAP converge against the same value. A mesh of 400 × 400 elements

yielded uFE
A
= 0.342812 and uFE

B
= 0.189085. Finer discretizations were not possible due to a lack of memory. The

deformation error in point A is given in Fig. 21a. The error level of the WSMb scheme and the LM method is lower

than in the conforming case for both displayed degrees. Thus, the finer mesh in patch 2 yields more precise results.

The deformation results are not significantly impaired by these two methods. The error level of the WSMa scheme is

slightly larger than the error level in the conforming case. Thus, the WSMa scheme slightly impairs the deformation

behavior in this point. In point B the situation is different. The error levels of all methods are considerably lower

than in point A, but the behavior of the connection methods cannot be classified as simple as in point A. The kinks

in the graphs are due to a change from overestimated to underestimated results. Conforming computations yield the

lowest error levels. The error levels of the WSMb scheme and the LM method are about one order of magnitude larger

than in the conforming case. The error entailed by the WSMa scheme tends to be larger than the error of the WSMb

scheme. In point B all connection methods affect the deformation results negatively. But the error is very small, and

the influence is locally confined. The error of the energetic norm, which is a measure for the results throughout the

entire domain is not impaired significantly. Summing up, the presented WSMb scheme and the LM method do not
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Figure 20: Elastic plate with hole with curved interface: nonlinear computations: L2-error norms for discretization schemes B3, C3, B4 and C4.

The conforming meshes (B3 and B4) are connected by shared degrees of freedom (DC). The non-conforming meshes (C3 and C4) are computed

with the presented connection methods (WSMa, WSMb and LM).

impair the global solution significantly. The WSMa scheme has a slightly negative impact on the global solution.

5. Conclusion and outlook

The coupling of non-conforming subdomains is an issue especially important in NURBS-based isogeometric

analysis. A new method for the connection of non-conforming NURBS patches, which is based on the mortar method,

has been presented. The derivation of the method is given in detail. Several numerical examples have shown the high

accuracy and robustness of the new method. Two different choices for the master/slave classification have been

investigated. Depending on this choice the results vary slightly. In the most cases the WSMb scheme yields results

superior to the WSMa scheme, especially regarding the influence on the global stress distribution. No final decision

on the best choice is made here. Other choices for the parametrization of the interface tractions might also be a

viable alternative. Future work might find a generally valid choice. To allow a comparison to existing methods for

all numerical examples, a Lagrange multiplier method has been presented and implemented. The proposed weak

substitution method performed as good as the Lagrange multiplier method in all examples. Convergence with mesh

refinement has been shown for all examples. The decisive advantages of the new method are:

• The variational formulation is not altered. The boundary value problem is not turned into a saddle point problem.
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Figure 21: Elastic plate with hole with curved interface: nonlinear computations: Error of deformation at both endpoints of the connection line

for discretization schemes B3, C3, B4 and C4. The conforming meshes (B3 and B4) are connected by shared degrees of freedom (DC). The

non-conforming meshes (C3 and C4) are computed with the presented connection methods (WSMa, WSMb and LM).

Thus, the global stiffness matrix remains positive definite. The number of degrees of freedom is reduced in

comparison to the uncoupled problem.

• The matrices required for the coupling of subdomains need to be calculated only once as a preprocess with very

low numerical effort. The method works for nonlinear computations without further measures. The computed

relation matrix does not change within nonlinear iterations.

• The implementation of the method only requires changes in the assembly process of the global stiffness matrix

and the residual vector. Adaptions on element level are not necessary.

• The numerical results are comparable to computations with the Lagrange multiplier method or Nitsche’s method,

whereas due to their nature, the two latter methods require more numerical and implementational effort.

• The condition of the global stiffness matrix does not deteriorate in comparison to conforming computations.

Summing up, the proposed weak substitution method is a simple and efficient method to couple non-conforming

NURBS patches. An application of the method for curved shell elements seems feasible without further consid-

erations. Future work might be concerned with an extension to intersections of multiple subdomains and to the

three-dimensional case in order to assess the potential of the method for complex geometries.
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