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Abstract. A weakly neighborly polyhedral map (w.n.p. map) is a two-dimensional 
cell-complex which decomposes a closed 2-manifold without boundary, such that 
for every two vertices there is a 2-cell containing them. We prove that there are just 
four w.n.p, maps with Euler characteristic -1 and we describe them. 

1. Introduction 

A weakly neighborly polyhedral map (w.n.p. map) is a two-dimensional topological 
cell-complex which decomposes a closed 2-manifold (usually without boundary),  
such that for every two vertices there is a 2-cell containing them. The zero-, one-, 
and two-dimensional cells of  the map are its vertices, edges, and facets, respectively. 

Some aspects of w.n.p, maps of arbitrary genus have been studied in [4], where 
a detailed study of w.n.p, maps on the sphere is also given. (The genus of a 
2-manifold is defined as g = ½(2- X), where X denotes the Euler characteristic of 
the manifold. Thus the projective plane is of  genus ½, and the genus of  the 
2-manifold studied in the present paper  is 1½.) In [5] a complete list of  the five 
w.n.p, maps on the torus is given. In [1] we prove that there are no orientable 
w.n.p, maps of  genus 2. Complete lists of  the nonorientable w.n.p, maps with 
Euler characteristics 1, 0, and - 2  are given in [3] and [2]. 

In the present paper  we investigate the w.n.p, maps with Euler characteristic 
-1  (i.e., g = 1½). We prove the following: 

Theorem. There are precisely four w.n.p, maps with Euler characteristic -1.  They 
are the maps ~,  ~,  ~, and ~ depicted in Fig. 1. 

The proof  of  our theorem is heavily based on some of the results obtained in 
[4]. We also refer the reader to [4] for motivation for the concept of  the w.n.p. 
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map.  We prove  there  that  the  number  of  w.n.p, maps  on  any 2-mani fo ld  N other  
than  the 2-sphere  is finite, and  we give an u p p e r  b o u n d  for  the n u m b e r  of  vertices 
in a w.n.p,  m a p  on  N as a funct ion o f  the  genus  g o f  N. Fo r  g = 1½ this uppe r  
b o u n d  is 11. 

The fo l lowing will  serve as our  s t anda rd  nota t ion .  We assume a po lyhedra l  
(or  w.n.p.)  m a p  M of  genus  g =  1½ with V vert ices v l , . . . ,  vv and  F facets 
f l  . . . .  , fF .  /q- is the n u m b e r  o f  vertices off~ (1 - i -< F ) ,  and  we take  the no ta t ion  
to  be such that  kl >- k2 - "  • • >- kF. The vert ices,  too,  are l abe led  accord ing  to the 
decreas ing  o rde r  o f  valences  (degrees) ,  tha t  is, deg vl -> deg v2 ->" • ' -> deg Vv. Pi 
denotes  the  number  o f  i -gonal  facets o f  the  m a p  M and  (p3,  P4, .  • .) is the p-vector 
o f  M. V~ denotes  the n u m b e r  o f  vertices o f  valence  i and  (V3, I / 4 , . . . )  is the 
v-vector o f  M. N ( f j )  is the  set o f  facets shar ing  a c o m m o n  edge with the  facet f j  
a n d  N(oj)  is the se t  o f  vert ices jo ined  by  an edge to the  vertex vj. 
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The proof  of our theorem is given in Section 2 and consists of two parts. First 
we find a set of  eight candidates for p-vectors (summarized in Table 1) such that 
every w.n.p, map with g = 1½ has its p-vector in this set. The second part consists 
of a detailed investigation of each of the eight candidates. In each of these cases 
we assume that there is some w.n.p, map realizing that "p-vector." In five of the 
eight cases we show that this leads to a contradiction, and in the remaining three 
cases we find all the possible maps. 

In Section 3 we describe how the four maps mentioned in our theorem can 
be obtained from certain w.n.p, maps of  lower genus, by using certain replacement 
transformations. We conclude by describing the symmetry groups of our four 
w.n.p, maps. 

For the reader's convenience, we quote some of the results proved in [4] which 
will be used here, with their reference numbers. Those results are adapted here 
for g = 11. They are as follows: ( Ix ]  denotes the least integer - x ,  and If  c~fi[ 
denotes the number of  vertices common to the facets f , f~) .  

The following hold for every polyhedral map with g = 1½: 

F 

2 V + 2 =  ~ (k , -2 ) ,  (1) 
i = 1  

/q-----3 for every 1--< i-< F, (2) 

l + d e g v  I V 

Y. (deg v , -3 )2+  
i = 2 i =  2 + d e g  v 1 

(deg v,-2)2-- < ( F - d e g  v , ) ( F - d e g  v, - 1). (16) 

The following hold for every w.n.p, map with g = 1½: 

F 

V 2 - 7 V - 6  = ~ ( k , - 2 ) ( k , - 3 ) ,  (6) 
f = l  

If, n f j l = 2  

kl > ½ V -  1, (7) 

k~- ~. (ki-2)=(kj-2)(V-kj+2) forevery  1-<j-<F, (10) 

k,>-(ki-2)(V-kj+2) for every 1-<j-<F, (12) 

k1+1 

Y. k,>_(k,-2)(V-k,+2), (13) 
i = 2  

k l + l  F 

( k , - 3 )2+  ~ (k,-2)2<-(V-k,)(V-k,-1), 
t = 2  i=kt+2 

(deg v i -3 )~+  E (deg vi-2) 2 
v~eN(v l) vt#vtEN(v j) 

-< ( F  - d e g  v j ) ( F - d e g  vj - 1), for every 

kl -< max{6, ½( V+ 1)}. 

l<_j--  < V. 

(15) 

(17) 

(20) 
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6 + ~  ( 6 -  i)Pi = 2 Y. (i - 3 )  V~ 
i i 

for every polyhedral map  with g = 1½. (25) 

I.emma 1. I f  v is a vertex o f  valence l in a w.n.p, map M and the l facets  o f  M 
. l 

incident to v have ~ ,  k i2 , . . .  , ki~ vertices, then ~=1 k~, = V + 21 -1 .  

L e m m a  2., I f  M is a polyhedral map and f is a face t  o f  M with l vertices 
vi~, vi2 . . . .  vi,, then Y.~=t deg vi, <- F + 2 1 - 1 .  

2.  P r o o f  

Let M be a w.n.p, map of genus 1½ with V vertices. By adding diagonals, if 
necessary, M gives rise to a polyhedral triangulated map  of the same genus 1½ 
and with the same number  V of  vertices. Using Euler 's equation, a direct 
computation yields V--- 8. Using more sophisticated methods, Ringel [7] proved 
that a polyhedral triangulation of the 2-manifold of  genus 1½ must have at least 
nine vertices, hence V-> 9. From [4, Theorem 8] we get for V the upper  bound 11. 

Since 9 -  < V-< 11, (7) and (20) yield that the possible values for ks are just 5 
and 6, and for V = 9 also k~ = 4. With those restrictions on V and ki it is easy 
to find all the candidates for p-vectors which are not in direct contradiction to 
(1), (2), and (6) (cf. [5, Section 2]). There are altogether 21 such p-vectors; 13 
of these fail to satisfy (13). The remaining eight candidates for p-vectors are not 
in direct contradiction to any of the equalities and inequalities mentioned above, 
and are summarized in Table 1. We will now examine them one by one to show 
that only three of  them (nos. 1, 2, and 5) are realizable. We start with the 
nonrealizable cases. 

In the process of  examining a "p-vector"  p we often draw the w.n.p, map  M 
which is supposed to realize p, or a fragment of  it. M is drawn as a planar map 
with identification on the boundary edges and vertices. As each vertex must "see"  

Table 1. The candidates for p-vectors of the nonorientable 
w.n.p, maps with Euler characteristic -1. 

Case no. V P3 P4 P5 P6 

1 9 8 6 
2 9 11 3 1 
3 10 4 6 2 
4 10 7 3 3 
5 10 10 4 
6 10 6 6 
7 11 1 4 5 
8 11 4 1 6 
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all the other V - 1  vertices, the V - 1  vertices which see a certain vertex must 
be distinct. We use the labels 0, 1 , . . . ,  V -  1 to indicate such a set of  V distinct 
vertices, and the labels a, b , . . .  to indicate vertices that must be identified with 
some vertices in the set {0, 1 , . . . ,  V -  1}. A broken line segment indicates a line 
segment which either exists, i.e., is an edge in M, or does not exist, i.e., is a 
diagonal o f  some facet in M. 

We also use here the following notation. Aabc means that it happens twice that 
b is adjacent to both vertices a and c on the boundary of the configuration, and 
hence it is already completely surrounded by facets (see [1, Fig. 3(c)])--usually 
too few of  them. Bah means that the edge ab belongs to two facets (and therefore, 
if on the boundary of  the configuration, it must appear  twice). Ca denotes that 
the facets which contain the vertex a either do not close to a disc, or they form 
a disc which is too small in the sense that it does not contain all the vertices of  
the map. Dab indicates that ab is a diagonal in some facet (and usually an edge 
or a diagonal in another facet as well, which means a contradiction) and Eab 
simply means that ab is (or must be) an edge. 

Case no. 3. Here V =  10, P3 = 4, P4 = 6, P5 = 2. I f  there is such a map M, then (12) 
with kj = 5 implies that each pentagon shares an edge with the other pentagon 
and four quadrangles. Therefore, the two pentagons share an edge ab. Lemma 
1 implies that V3 = 0, as there are no 3 facets with a total of  15 vertices. It follows 
that each of  the vertices a, b is incident to at least two pentagons and two 
quadrangles. But this violates Lemma 1 for any valence of  a, b, and case no. 3 
is therefore not realizable. 

Case no 4. Here V=  10, p3=7,  p 4 = P s = 3 .  Assume there is such a map M. Then 
(12) with k~ = 5 implies that each pentagon is adjacent to the other two pentagons 
and to at least two quadrangles, hence to at most one triangle. Lemma 1 implies 
that if there is a 3-valent vertex in M, then the three pentagons meet at that 
vertex. Thus, V3-~ 1. 

Assume V3 = 1. Then the configuration of the three pentagons is as depicted 
in Fig. 2(a). Each of the vertices 1, 4, 7 must see all the other vertices of  M, and 
is therefore adjacent either to three triangles or to a quadrangle and a triangle. 
Since/73 = 7, at least one of these three vertices is adjacent to a quadrangle. Thus, 
by the symmetry, we may assume that 67 is an edge of a quadrangle. As each 
pentagon is adjacent to at most one triangle, we get that the configuration depicted 
in Fig. 2(a) is a part o f  the map  M, and four triangles of M are missing here. 
Clearly {a, b} = {2, 3}, {c, d} = {8, 9}, and {e,f} = {5, 6}. 

I f  a = 2, then b = 3, D26~  e = 5, f = 6, and D 5 9 ~  c = 8, d = 9. Considering the 
neighborhood of 3, we see that two of the four missing triangles must be 356 
and 359, but  then the neighborhood of 6 is not a disc. 

Hence a = 3 ,  b = 2 ;  E 3 s ~ c = 9 ,  d = 8 ;  E59=~e=6, f = 5 .  But now the three 
facets incident to the vertex 2 already form a disc, without 2 seeing the vertices 
5, 8, 9. Thus I/3 = 1 is impossible. 

Therefore, 1/3 = 0. The three pentagons do not meet at a vertex. Hence there 
are six vertices each of  which is incident to two pentagons and either to three 
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triangles or to a quadrangle and a triangle. The configuration of the three 
pentagons and the fact that the elements of  M form a complex causes all these 
triangles and quadrangles to be distinct from each other. On the other hand, they 
cannot be distinct as their total number exceeds P3 +P4 = 10. 

Case no. 4 is therefore not realizable. 

Case  no 6. Here V = 10, P3 = P4 = 6, P6 = 1. Inequality (12) (with j = 1, i.e., kj = 6) 
implies that the hexagon shares an edge with each of  the six quadrangles, and 
the map M, if exists, must be as depicted in Fig. 2(b). Clearly, {a, b} = {6, 7} (as 
a, b, 8, 9 see the vertex 3), hence {c, d} = {8, 9} and similarly (e,f} = {8, 9}. Now 
the edge 89 appears three t imes--a contradiction. 

Case  no 7. Here V= 11, pa = 1, p4=4,  ps=5 .  Inequality (12) implies that each 
pentagon is adjacent to all the other four pentagons and to a quadrangle. This 
implies the existence of at least three triangles (A, B, C in Fig. 2(c)), contradicting 
P3 = 1. 

Case  no 8. Here V= 11, p3=4,  p4 = 1, ps=6 .  Inequality (12) implies that each 
pentagon is adjacent either to four pentagons and a quadrangle or to five 
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pentagons. As p4 = 1, P5 = 6, there is at least one pentagon adjacent to the five 
other pentagons. As in the previous case, this implies the existence of at least 
five distinct triangles, contradicting p3 "= 4. 

Next we turn to the three realizable cases. 

Case no 1. Here V = 9, P3 = 8, P4 = 6. Let M be such a map. Lemma 1 implies 
that V3 = 0 and that 

(*) for each 0-< i -< 4, a vertex of  valence 4 + i belongs to 4 -  i quadrangles 
and 2i triangles. 

Also, (10) implies that 

(**) every quadrangle in M is adjacent to at least two quadrangles. 

We carry out our investigation in three steps. In steps I and II we show that 
V8 = V5 =0.  We already know that V3=0. Clearly Y.~ V~ =9,  and (25) implies that 

~ (i - 3) V~ = 21. Solving the set of  these equations we see that there are just three 
solutions: 

(a) V4=3, V6=6, VT=0, 

(b) V4=4, V6=3, V7=2, 

(c) V4=5, V6=0, V7=4. 

Now (b) and (c) are in direct contradiction to (16), and we are left with just one 
possibility, namely, V4 = 3, V6 = 6. Finally, in step I I I  we show that this v-vector 
is indeed realizable in a unique way. 

Step I. V8 = 0 
(*) for i = 4 together with P3 = 8 implies that V8 -< 1. I f  there is in M an 8-valent 

vertex x, then it is joined to all the other vertices and is incident to all the triangles 
in M. Thus each of the other eight vertices is incident to just two triangles, and 
is therefore (by (*)) of  valence 5. Hence V5 = 8, V8 = 1. But this contradicts (17), 
v: being the vertex x. Thus V8 = 0. 

Step II. V5 = 0 
Assume Vs>0. A 5-valent vertex in M is either of  type 1, depicted in Fig. 

3(a), namely, the two triangles incident to the 5-valent vertex 0 share a common 
edge, or of  type 2, depicted in Fig. 3(b), namely, these two triangles are not 
adjacent. 

Assume there is in M a 5-valent vertex 0 of  type 1, and let its neighboring 
vertices be labeled as in Fig. 3(a). Figure 3(c) depicts a larger fragment of  the 
map M. Here the dotted lines are edges or diagonals, k is omitted if d l  or h7 
are diagonals, and k a n d j  are omitted if d l  and h7 are diagonals. 

Note -that the pair o f  facets adjacent to edge 17 (or the facet with 17 as 
diagonal) occurs twice in the figure. Clearly {a, b, c, d} = {4, 5, 6, 7}, d ~ 7 and 
{e , f , g ,h}={1 ,2 ,3 ,  4}, h a l .  
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I f  7 e {b, c) and  1 ~ {f, g}, we get  a con t rad ic t ion  since {a, b, c, d} c~ {e,f, g, h} = 
{4} and  the two ne ighbors  o f  1 (resp. 7) on the  b o u n d a r y  o f  the figure have to 
coinc ide .  The  cases with e = 1 are  symmet r ic  to  the  cases  with a = 7; therefore ,  
we assume f rom now on,  wi thout  loss o f  general i ty ,  that  a = 7. 

l f e  = 1, then  b = 6, f =  2 hence  4 e  {c, d} c~ {g, h}. 4 = d = h is imposs ib le  since 
8 sees d and  h. Wi thou t  loss o f  genera l i ty  ( symmetry! )  we may  assume e = 4 ,  
thus  d = 5. I f  g = 3, h = 4, we get the  con t rad ic t ion  A234 (note  tha t  f 7  = 27 is an 
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edge). Thus g = 4, h = 3. Regarding parts of  the stars of  3 and 5, which are already 
determined, yields Fig. 3(d). (cl = 41 cannot be diagonal, since this would imply 
/956, while E56.) This implies that either the triangles 256 and 258 or the quadrangle 
2658 are in M. By symmetry ((35)(26)(17)) we get that either 632 and 638 or 
6238 are in M. Combining the two we see, by considering the diagonals of  these 
two quadrangles, that none of these quadrangles is possible. Thus we get the 
four triangles. Together with the triangles 018,078, 127 (since 26 is not a diagonal), 
167 and 146 (since 56 is not a diagonal) we have more than eight triangles in M, 
which is a contradiction. 

Thus e ~ 1. Therefore f =  1 or g = 1, and the two neighbors o f f  (resp. g) on 
the boundary of Fig. 3(c) coincide with b and 2. Since {a, b, c, d} n {e, f, g, h} = {4}, 
we get b = 4. Thus {c, d} = {5, 6}. c = 5, d = 6 is impossible (since we would get 
A456 if b l  is an edge, otherwise the diagonal 57 would occur twice). Thus c = 6, 
d = 5. Furthermore cl and bl  are edges (since E45, E67). Regarding the part of  
the star of  5 which is already determined, we get that either the two triangles 
258, 254 or the quadrangle 2854 are in M. In particular, 24 is an edge and hence 
a l  is also an edge. 

I f  the triangles 258, 254 are in M (which implies i=2 ) ,  then d l  is not a 
diagonal (otherwise the quadrangle 1 cd8 is adjacent to three triangles, in contra- 
diction with (**)) and the map M contains more than eight triangles (namely, 
258, 254, 158, 156, 164, 147, 127, 108,078), a contradiction. Hence the quadrangle 
2854 is in M and therefore i = 4. 

Recall that 1 e {f, g}. I f  g = 1, then (as {h, f} = {2, 4}) -h'= 2, f =  4, e = 3, and j 
and k have to be canceled. Regarding the star of' 3 we see that the quadrangle 
2368 must be in M. But now the edge 28 appears three times (namely, in 2368, 
287, and 2854), a contradiction. Therefore f =  1. Thus h =3.  e7, 17, and g7 are 
edges, since 16 and 24 are edges and 13 is a diagonal. Also, as g e {2, 4}, E28 and 
D48 , we get that h7 is an edge. Now d l  must be a diagonal (otherwise we have 
more than eight triangles), hence k has to be omitted and j = 2. But now hi8 
(=  238) is a triangle in M, yielding a total of  nine triangles in M, a contradiction. 

Thus we conclude that M does not contain any 5-valent vertex of  type 1. 
I f  M contains a 5-valent vertex 0 of  type 2, let the neighborhood of  0 be 

labeled as depicted in Fig. 3(b). By (**), the quadrangle 0213 is adjacent to at 
least two quadrangles, and we are led to the larger fragment of  M shown in Fig. 
3(e). Now, by (*), the valence of  the vertex 1 is either 4 or 5. I f  it is 5, then the 
vertex 1 is of  type 1, which, as shown above, cannot exist in M. Hence the valence 
of 1 is 4, and we may add an additional quadrangle incident to the vertex 1, 
yielding a fragment of  M which contains two triangles and all six distinct 
quadrangles. It follows that all the facets of  M incident to 2 or 3 that are not in 
this fragment are triangles. Thus, 2 and 3 are of  valence 6, and Fig. 3(f) therefore 
depicts the entire map M. 

Here {a, b, c} = {4, 5, 6}, {g, h, i} = {6, 7, 8}, {c, d, e,f, g} ={4, 5, 6, 7, 8}. Clearly 
b ~ 5 (as otherwise A456) and similarly h ~ 7. 

Assume a = 5. I f b  = 4, then c = 6, hence e ~t {4, 5, 7} (as E,~, E56, E76); therefore 
e = 8. This implies g ~ {5, 6, 7}, but g ~ 4 too, as there is already an edge 24. Thus 
b = 4 is impossible. Hence b = 6. This implies c = 4 which implies e ~ / .  Obviously 
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e ~  {g, h}. Thus  e ~  {6, 7, 8}, hence e = 5, but  this is not  possible  as 45 is now both 
an edge and  a diagonal .  

Thus a r s 5, and,  because  of  the symmetry ,  also i ~ 7. Therefore,  c = 5 and 
g = 7. N o w  De5 and De7 imply that  e ~ {4, 6, 8}, a contradiction.  

This concludes  step II ,  showing that Vs = 0. 
As a l ready stated,  this leaves us with just  one candidate  for  a v-vector,  namely,  

V 4 : 3  , V6=6.  

Step I I I .  There  is a unique map  M satisfying V4 = 3, V6 = 6. 
Let 8 be  a 4-valent vertex, and take the labeling o f  the ne ighborhood  of  8 to 

be  as depic ted  in Fig. 3(g). L e m m a  2 implies that  there are no three 6-valent 
vertices in the same quadrangle ;  thus we may  assume without loss o f  generali ty 
tha t  the six 6-valent vertices o f  M are 0, 1, 2, 3, 4, 5, while 6, 7, 8 are 4-valent. 
This implies that  the configurat ion of  Fig. 3(h) is a par t  o f  M (possibly the entire 
m a p  M) ,  and {a, b} = {2, 5}. All the facets here, except  for the triangle bcd, touch 
the facet 1780 and are therefore  distinct f rom each other. A priori it is not  clear 
whether  the triangles bcd, ih5 are distinct f rom the other  triangles. 

I f  a = 2, then  b = 5; hence {h, g , f}  = {f, e; d} = {2, 4, 3}. As h # f #  d and  g # e, 
it follows that  the sequence d, e,f ,  g, h contains the consecutive triple 2,4,  3 
(pe rhaps  in reversed order) ,  thus yielding the contradict ion C4. 

Hence  a = 5, b = 2. Clearly {d, e,f} = {3, 4, 5}, {f, g, h} = {2, 3, 4} and  {c, d} c 
{1, 3, 5}. Thus  d e {3, 5} a n d f ~  {3, 4}. Obviously  e ~ 3 (otherwise A435) and g ~ 4 
(otherwise A243). 

Now,  if  d = 5, then e = 4 , f =  3, g = 2, h = 4, and considering the ne ighborhood  
o f  2 we get c = 3. This is indeed a w.n.p, m a p  which satisfies all the requirements ,  
and  is exact ly  the m a p  M depicted in Fig. 1. 

If, on the other  hand,  we take d =3 ,  then e = 5, f = 4 ,  e = 5 o  c a  5 ~ c =  1. 
B35~h ~ 3 ~ h  = 2 ~ g  = 3. In order  to get f rom this the desired w.n.p, map  we 
should cancel  one occurrence of  the tr iangle 123, and add the tr iangle 245. 
However ,  this w.n.p, m a p  is i somorphic  to the previous  one unde r  the permuta t ion  
((04)(13)(78)).  

Case no. 2. Here  V = 9, P3 = 11, P4 = 3, P5 = 1. It follows f rom (10) that  the pentagon  
is adjacent  to each o f  the three quadrangles  (and touches  all the facets o f  the 
map) .  The  three edges o f  adjacency may be consecutive (Fig. 4(a)) or  not  (Fig. 
4(b)) .  

In the first case, assume the labeling as in Fig. 4(a).  Since a, b see the vertex 
4, we have  {a, b} = {5, 6}. As {a, b, c, d} = {5, 6, 7, 8}, this implies {c, d} = {7, 8}. 
But we also have {g, h}={7 ,  8} (as g, h see 1), and so we have the edge 78 three 
t imes,  a contradict ion.  

Thus ou r  m a p  M must  be  as depicted in Fig. 4(b). As before  we have 
{a, b} = {5, 6}, {g, h} = {7, 8}, c ~ {7, 8}, d ~ {7, 8} (otherwise 78 appea r s  three 
t imes) ,  hence  d = a. The  symmet ry  o f  the m a p  implies  e = h. Since f ~  {d, e, g}, 
we have f = b, and  by the symmetry  c = g. 

Now,  if  a = 5, then f =  b = 6, h # 8 (otherwise 58 appears  three t imes) hence 
h = e = 7, g = c = 8. This is indeed a w.n.p, m a p  satisfying the requirements ,  the 
m a p  ~ depic ted  in Fig. 1. 
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Fig. 4 

If, on the other hand, we take a = 6, then b = 5. Now there are two possibilities: 
either g = 7, h = 8 and we do indeed get a w.n.p, map as required--but  this map 
is isomorphic to the previous one under (14)(23)(58)(67)--or g = 8, h = 7, and 
we get the w.n.p, map c~ shown in Fig. 1, which is not isomorphic to the previous 
map. Thus case no. 2 has two distinct realizations. 

Case  no. 5. V =  10, P3 = 10, P5 =4.  There are no four facets with a total of  17 
vertices, hence Lemma 1 implies that V4 = 0. Similarly, V6 = I:8 = 0. Thus, (25) 
implies V s + 2 V T + 3 V 9  = 10 and obviously Y. V~ = V3+ Vs+ VT+ I:9 = 10, and these 
yield V3= V7+2Vg. It follows that either Vs= 10 or V3>0. 

I f  V5 = 10, then, by Lemma 1 each vertex of  M is incident to two pentagons 
and three triangles. It follows (as P5 = 4) that each pentagon is adjacent to two 
of the other pentagons and has a unique common vertex with the remaining 
pentagon. Thus each pentagon (see Fig. 5(a)) touches 12 triangles which, as they 
all touch the same pentagon, must be all distinct. But this is impossible, as P3 = 10. 

Thus 1:3 > 0. Let 0 be a 3-valent vertex in M, and let 01, 04, 07 be the edges 
incident to it. Lemma 1 implies that a 3-valent vertex in M is incident to just 
three pentagons. I f  none of  the vertices 1, 4, 7 is incident to a third pentagon, 
then each of these vertices is of  valence 5, and the configuration depicted in Fig. 
5(b) is contained in M. As all ten vertices of  the map M are in the three pentagons 
incident to 0 (see Fig. 5(b)), the fourth pentagon must be incident to two of the 
"free" edges 23, 56, 89 and to one of the remaining two "free" vertices. Thus we 
may assume, without loss of  generality, that the edge 23 belongs to the fourth 
pentagon. But, on the other hand, {a, b} = {2, 3}, so the edge 23 is incident to 
three facets, a contradiction. 

It follows that one of  the vertices 1, 4, 7- -say  I - - i s  incident to three pentagons. 
This leads to Fig. 5(c). (Since {a, b} = {5, 6}, 8 is incident to just one pentagon, 
hence to six triangles.) Here all the facets are distinct, as they all touch the 
pentagon 01987, and therefore this is the entire map M. We have {a, b} = {5, 6}, 
{c, d} = {3, 4}, {i, h} = {2, 3}, and {d, e,f, g, h} = {2, 3, 4, 5, 6}. 
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Assume a = 5. Then b = 6, c # 4 ( D 4 6 ) ~  c = 3 ~ d  = 4. Also b = 6 0  i # 2(D26) =::) 
i = 3. N o w  we have the contradict ion A365. 

Hence a = 6, b = 5. I f  c = 4, then d = 3 and we have the contradiction A543, 
hence c = 3 ,  d = 4 .  Similarly, i = 3 ,  h = 2 .  N o w  {e,f, g} = {3, 5, 6}, hence f = 3  
(otherwise edge 56 appears  three times). Finally, D25=~g = 6, e = 5, and we get 
the map ~ depicted in Fig. 1. This is indeed a w.n.p, map  as required. 

This concludes  the investigation o f  case no.  5, and also concludes the p r o o f  
o f  our  theorem. 

3. Alternative Construction 

In  the fol lowing we describe an alternative way  to obtain the four  w.n.p, maps  
o f  genus 1½ (i.e., Euler  characteristics -1 ) .  The advantage  o f  this alternative 
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process is its elegance and simplicity: we obtain the four maps ~t, ~ ,  ~, ~ from 
four known w.n.p, maps A, B, C, D of lower genus by a simple replacement 
operation, which is of  a general nature. Its main disadvantage is that a priori it 
is not clear that this process yields all the w.n.p, maps of  genus 1½. We use here 
two replacement operations (for more general treatment see [3]): 

Replacement by a MiJbius strip. Let 7"1 be the triangulated M6bius strip depicted 
in Fig. 6. Note that T~ is weakly neighborly and has a pentagonal boundary 
a, b , . . . ,  e which contains all five vertices of 7"1. If  M is any w.n.p, map which 
contains a pentagonal facet F, then the removal of F yields a w.n.p, map with 
a pentagonal boundary and the glueing of  T~ to this map done by identification 
of their boundaries yields a new map M1. It is clear that M1 is a w.n.p, map, 
has the same number of  vertices as M, is not orientable, and its genus is greater 
by ½ than that of  M. We say that M1 is obtained from M by replacing the facet 
F of M by the M6bius strip T~. 

Replacement by Csdszdr's toms. Let T2 be the triangulated torus with boundary 
depicted in Fig. 6. 7"2 is obtained from Cs~iszfir's torus (i.e., the map M in [5], 
see also [6]) by removing the star of one of its seven vertices. Thus T2 is a w.n.p. 

e a b 
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e d 

bd T~ 
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b~" 
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bd T 2 
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Fig. 6. M6bius strip with pentagonal boundary and truncated Cs~isz~ir's torus. 
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map on the torus with an hexagonal boundary a, b , . . . ,  f and all its six vertices 
are on the boundary. I f  M is any w.n.p, map which contains an hexagonal facet 
F, then the map M2 obtained from M by replacing the facet F of  M by (truncated) 
Cs~isz~ir's torus T2 is defined in analogy to the previous case. M2 is a w.n.p, map 
with the same number of vertices as M, its genus is greater by 1 than that of M, 
and it preserves the orientability of  M, that is, M2 is orientable if and only if M 
is orientable. 

Obviously, these two replacement operations can be repeatedly applied to the 
same w.n.p, map M as many times as the number of  pentagonal and hexagonal 
facets permits. 

Now Fig. 7 depicts four w.n.p, maps A, B, C, D. A, C, and D are projective 
planes (g =½) with 9, 9, and 10 vertices, respectively (see [3]) and B is a torus 
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Fig. 7 
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(g = 1) with 9 vertices (see [5]). Map M is obtained from map A by replacing 
the hexagon 024351 by Cs~isz~r's torus T2; ~ is obtained from map B by replacing 
the pentagon 34865 by the Mobius strip T~; c¢ is obtained from map C by 
repeatedly applying the Mrbius strip replacement operation at the pentagon 
12785 and at the pentagon 34856, and map ~ is obtained from map D by a 
similar application of the Mobius strip replacement operation at the pentagons 
26783 and 34598. 

Symmetry groups. The symmetry group of map gt is the cyclic group Z6, generated 
by (510243)(687) (the symmetry group of map A is the dihedral group D6, but 
it reduces by the replacement operation, as the symmetry group of the truncated 
Csfiszfir torus is only Z6). Map ~ is asymmetric. Map cg has Z2 generated by 
(14)(23)(58)(67) as its symmetry group and the group of map @ is Z2 x Z2, with 
generators (01)(24)(56)(79) and (29)(38)(47)(56). 
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