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Abstract. We consider the cubic nonlinear Schrödinger (NLS) equation set on a two di-
mensional box of size L with periodic boundary conditions. By taking the large box limit
L→∞ in the weakly nonlinear regime (characterized by smallness in the critical space), we
derive a new equation set on R2 that approximates the dynamics of the frequency modes.
This nonlinear equation turns out to be Hamiltonian and enjoys interesting symmetries, such
as its invariance under Fourier transform, as well as several families of explicit solutions. A
large part of this work is devoted to a rigorous approximation result that allows to project
the long-time dynamics of the limit equation into that of the cubic NLS equation on a box
of finite size.
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1. Introduction

The long-time behavior of nonlinear dispersive equations on compact domains is a subject
that is remarkably rich yet very poorly understood. This complexity arises since dispersion
does not translate into decay, neither at the linear nor at the nonlinear level, in contrast
to the case of non-compact domains like Rd. As a consequence, one loses all asymptotic
stability results around equilibrium solutions (like the zero solution); such results are often
the starting point in the study of asymptotic behavior in that setting. In fact, these equilibria
are not expected to be stable in the long run, and completely out-of-equilibrium dynamics is
anticipated.

The purpose of the present work is to uncover new, and structured or coherent, aspects of
this out-of-equilibrium behavior. Such coherent dynamics are best seen in frequency space
and will be revealed in the large-volume limit and weakly nonlinear regime. The latter is
determined by how the size of the data compares to that of the box, a factor that plays a key
role in determining the limiting system as we argue below.

1.1. Presentation of the equation. Our model equation will be the 2D cubic nonlinear
Schrödinger equation given by{

−i∂tv + ∆v = ±|v|2v
v(0, x) = v0(x) x ∈ T2

L = [0, L]× [0, L].
(NLS)

where v = v(t, x) is a complex-valued field, t ∈ R represents time, and the spatial domain
is taken to be the box T2

L of size L with periodic boundary conditions1. Recall that this
equation conserves mass and the Hamiltonian given respectively by:

M [v(t)]
def
=

ˆ
T2
L

|v(t, x)|2 dx and H[v(t)]
def
=

1

2

ˆ
T2
L

|∇v(t, x)|2 dx±1

4

ˆ
T2
L

|v(t, x)|4 dx. (1.1)

1Since the equation respects the parity of the initial data, the periodic boundary condition include both
Dirichlet and Neumann conditions corresponding respectively to odd and even solutions.
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The sign of the non-linearity (+ for defocusing equation and − for focusing equation) will
not play a central part in the analysis; this is partly due to the fact that we focus on the
long-time behavior of small initial data, i.e. ones that are close to the zero equilibrium v = 0
in the scale-invariant topology (namely L2(T2

L)).
The size of the data is measured in comparison to the size L of the box, and their relation-

ship will be a defining factor for various regimes of long-time behavior. Consequently, it will
be both convenient and more transparent to adopt the ansatz v(t, x) = εu(t, x), where ε > 0.
The field u satisfies {

−i∂tu+ ∆u = ±ε2|u|2u
u(0, x) = u0(x).

(NLSε)

When working with (NLSε), it makes most sense to consider that ‖u0‖L2 ∼ 1, since the ε
parameter already accounts for the size of the data.

1.2. Cubic NLS on T2 vs. R2. Before starting our analysis, let us review known results on
the large-time behavior of solutions to (NLS) on R2 and T2 (of course, it would be equivalent,
but less convenient, to discuss (NLSε)) .

The equation is mass-critical in the sense that the scaling symmetry given by v 7→ vλ
def
=

λv(λ2t, λx) leaves both the equation and the mass invariant2. This leads to global well-
posedness in Hs(R2) for all s ≥ 0 and small mass ([13] or see [57] for a textbook treatment).
This restriction on the mass can be removed completely in the defocusing case and relaxed
in the focusing case up to the mass of the ground state [41, 19, 20]. More importantly, the
asymptotic behavior near the zero equilibrium is completely understood in this Euclidean
setting: any small mass solution scatters to a linear solution as t→ ±∞. This means that if
v0 ∈ Hs(R2) for some s ≥ 0, there exists ϕ±∞ ∈ Hs(R2) such that

‖v(t)− e−it∆R2ϕ±∞‖Hs(R2) → 0 as t→ ±∞.
Moreover, one has the following asymptotic stability statement which is a direct consequence
of the small data theory: If v0 ∈ Hs(R2) for some s ≥ 0 is sufficiently small, then

‖v(t)− e−it∆v0‖Hs(R2) = O(‖v0‖3Hs) for all t ∈ R. (1.2)

On T2, local well-posedness was proved by Bourgain [5] for data in Hs, with s > 0. This
leads when combined with (1.1) to global well-posedness for data with finite energy (and small
mass in the focusing case). We remark that since we will be only interested in the dynamics
of small solutions of (NLS) with finite energy, or equivalently solutions of (NLSε) with ε� 1,
all solutions exist globally and conserve mass and energy. It is also worth pointing out that
local well-posedness in the scale-invariant norm L2 remains an open question on T2 due to the
failure of the scale-invariant L4

t,x Strichartz estimate (see (3.1)). Rather surprisingly, although
we will only be interested in sufficiently regular solutions that exist globally by elementary
arguments, this endpoint Strichartz estimate and the sharp constants associated to it will
play a central role in our analysis (see Section 3).

When it comes to long-time behavior of (NLS) on T2, we observe a number of phenomena
rather than the single-scenario situation of the Euclidean setting. Indeed, the expectation is
that (NLS) is a non-integrable infinite dimensional Hamiltonian system, and as a consequence

2On the torus, scaling is not a perfectly honest symmetry: vλ is a solution of (NLS) on T2
λ−1 rather than

T2. Nevertheless, this symmetry keeps the mass M [u] invariant, which extends the crucial notion of criticality
to the compact setting.
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it should sustain, just as in the finite dimensional case, orbits exhibiting strikingly different
asymptotic behaviors. Known results include KAM tori and quasi-periodic solutions [24, 54,
7, 21] and heteroclinic and unbounded Sobolev orbits (see [16, 29, 28] for partial results in
this direction). In particular, no long-time stability result anywhere close to (1.2) can hold
for general data. For instance, one of the byproducts of the constructions in this paper is a
whole regime of initial data violating (1.2) at time scales of roughly ‖v0‖−2

L2 .

1.3. The weakly nonlinear large-box limit. Equation (NLSε) has a particularly trans-

parent form in Fourier space: Denoting by Z2
L

def
= L−1Z2 and expanding

v(t, x) = L−2
∑
K∈Z2

L

aK(t)e2πiK·x, where aK(t) =

ˆ
T2
L

v(t, x)e−2πiK·x dx

one obtains that aK(t) solves the infinite dimensional system of ODE:

−i∂taK(t)− 4π2|K|2aK(t) = ± ε
2

L4

∑
(K1,K2,K3)∈S(K)

aK1(t)aK2(t)aK3(t)

where S(K) = {(K1,K2,K3) ∈ Z2
L : K1 − K2 + K3 = K}. Obviously, the linear flow

evolves much faster than the non-linear one, which makes it convenient to pass to the so-

called “interaction representation picture” by defining ãK(t) = e−4π2i|K|2taK(t). The equation
satisfied by ãK(t) is:

−i∂tãK(t) = ± ε
2

L4

∑
S(K)

ãK1(t)ãK2(t)ãK3(t)e4π2iΩt (1.3)

where Ω
def
= |K1|2 − |K2|2 + |K3|2 − |K|2. This equation describes how the frequency mode

aK is excited by other modes through the nonlinear interactions included in S(K).
Our aim is now to consider the weakly nonlinear (ε → 0) large-box (L → ∞) limit, while

keeping a balance between ε and L. We elaborate on this below.

• The weakly nonlinear limit ε→ 0 enables to restrict the above sum
∑
S(K) to resonant

interactions, which correspond to those (K1,K2,K3) ∈ S(K) such that Ω = 0. This
can be achieved by a normal form transformation. Restricting nonlinear interactions
to resonant ones, one obtains the related resonant system

−i∂trK(t) = ± ε
2

L4

∑
R(K)

rK1(t)rK2(t)rK3(t) (1.4)

where R(K) = {(K1,K2,K3) ∈ S(K) : Ω
def
= |K1|2 − |K2|2 + |K3|2 − |K|2 = 0}. This

system is also the first Birkhoff normal form approximation of (1.3) and will play a
central role in our analysis. Its fundamental importance in describing the long-time
behavior of (NLS) has been realized and exploited in previous works ([16, 12, 29, 30]).
• The large box limit L → ∞ is the thermodynamic or infinite volume limit: we are

not concerned too much about the behavior of each single Fourier mode, but rather
by “macroscopic” interactions and variables. This perspective can be compared to
that taken in statistical mechanics to study many-particle systems. Passing to the
large-box limit is also one of the main ingredients of kinetic weak turbulence theory,
which seeks a statistical description of the out-of-equilibrium frequency dynamics of
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equations like (NLSε). Taking the large-box limit, one obtains from (1.4) a simpler
system now set on R2. A very pedestrian explanation is the following: as L goes
to infinity, the lattice Z2

L becomes more and more refined, allowing (in some sense
which will be explained) to consider the right-hand side of (1.4) as a Riemann sum,
approaching a certain integral as L→∞.

• The relative sizes of ε and L: as measured by the quantity (− log ε)
logL are crucial in de-

termining which limiting system best describes the dynamics in the corresponding
range of ε and L. The main focus of this work is the regime where εL � 1. As we
argue below, this is exactly the regime where the resonant dynamics dictated by (1.4)
dominate non-resonant interactions in (1.3).

Taking the large-box limit of (1.4) in a rigorous fashion entails several difficulties due to the
non-linear lattice relation “Ω = 0” defining the resonant manifold R(K). This is the reason
why tools from analytic and geometric number theory will play a crucial role in the analysis,
first at the level of deriving the limit equation and then at the level of proving the needed
uniform estimates on resonant sums like that in (1.4). Without going into the details of the
derivation for now, the offspring of this analysis is a nonlinear integro-differential equation,
now set on R2, given by

−i∂tg(ξ, t) =T (g, g, g)(ξ, t); ξ ∈ R2

T (g, g, g)(ξ, t) =

ˆ 1

−1

ˆ
R2

g(ξ + λz, t)g(ξ + λz + z⊥)g(ξ + z⊥) dλ dz.
(CR)

where we used z⊥ to denote the rotation of z ∈ R2 by the angle of +π/2. The name (CR)
stands for continuous resonant as it corresponds to a continuous limit of (1.4). Morally
speaking, one should think of the frequency modes aK of (1.3) as being approximated by
the trace3 of a rescaled version of g(t, ξ) on the lattice Z2

L. To the best of our knowledge,
equation (CR) is new. Upon analyzing it, one soon realizes that it is somewhat special in the
sense that it enjoys rather unusual properties, symmetries, and even explicit solutions that
we postpone elaborating on till the next section.

How does the new equation inform on the long-time behavior of (NLSε) on a box of finite
size? In other words, can we prove that the nonlinear dynamics of (CR) is a reflection or a
“subset” of the dynamics of (NLSε)? The positive answer to these questions is a major part
of the analysis and is one of the novelties of this work. It is contained in Theorems 2.4 and
2.6, whose precise statements we delay until we have set up all our notations and parameters
in the next section. Roughly speaking, Theorem 2.4 allows to project the dynamics of (CR)
onto that of (NLSε) posed on a box of size L, whereas Theorem 2.6 shows how the dynamics
of (CR) embed into that of (NLS) on the torus T2.

The weakly nonlinear, large-box regime is the usual set up for the theory of weak turbu-
lence, also called wave turbulence. We present this theory briefly in the next section to draw
the similarities and differences with what is done here. Equation (CR) can be viewed as a
deterministic version of the famous Kolmogorov-Zakharov (KZ)4 equation of weak turbulence
theory. The (KZ) equation is widely used in the physics and applied sciences (oceanography

3It is customary in the physics literature not to distinguish between the notation for aK(t) and its “large-
box limit” g(t,K) and denote both by aK(t) with the understanding that K ∈ R2 after the large-box limit is
taken.

4Also called sometime wave-wave kinetic equation.
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and atmospheric sciences) to understand several aspects of the frequency dynamics of equa-
tions like (NLSε). Despite many similarities, the most notable difference between this work
and the vast physics literature on (kinetic) wave turbulence is that our derivation does not
involve any randomization of the data. This has the effect that the limiting equation (CR) is
time-reversible (even Hamiltonian), as opposed to (KZ) (cf. Section 2.5). It should be noted
that the proper and rigorous justification of the Kolmogorov-Zakharov equation is a very
important, and difficult, open question both from the physical and mathematical viewpoint.
We hope that this work is a step forward in this direction.

1.4. Organization of the paper. The paper is organized as follows. We end this introduc-
tion by listing the notation used in the rest of the manuscript. In the next section, we sketch
briefly the derivation of (CR), state the main approximation theorems 2.4 and 2.6 mentioned
above, and summarize the properties of (CR). We also include in that section some heuristic
interpretations of (CR) and elaborate on its relation to weak turbulence theory. In section
3 we prove the crucial trilinear estimates on resonant sums like that in (1.4), which are of
interest in their own right as they are intimately related to some sharp Strichartz estimates
on T2. In Section 4, we prove that the right-hand-side of (1.4) converges in the limit of large
L to the right-hand-side of (CR) up to important rescaling factors and obtain quantitative
estimates on the errors incurred. In Section 5 we give the proof of the approximation theo-
rems. Afterwards, we embark on analyzing equation (CR) in Sections 6-8, starting from its
Hamiltonian properties, symmetries and invariances, explicit solutions, global well-posedness
results, as well as variational properties and characterizations of some of the explicit solutions.

1.5. Notations. The following notations are used. Recall that we denote Z2
L = L−1Z2 and

for any subset Λ of Z2
L, Λ∗ = Λ \ {0}.

1.5.1. Fourier transform. On R2: The Fourier transform of a function f on R2 is denoted Ff
or f̂ , and given by

Ff(ξ) = f̂(ξ) =
1

2π

ˆ
R2

e−ix·ξf(x) dx so that f(x) =
1

2π

ˆ
R2

eix·ξ f̂(ξ) dξ.

The map f 7→ f̂ is an isometry on L2(Rd).

On T2
L: The Fourier transform of a function u on T2

L is the sequence aK = û(K) with K ∈
Z2
L = L−1Z2 given by

aK =

ˆ
T2
L

u(x)e−2πiK.x dx so that u(x) =
1

L2

∑
K∈Z2

L

aK(t)e2πiK.x.

The map u 7→ {aK} is an isometry from L2(T2
L) to `2L defined below.

1.5.2. Function spaces. On Z2
L: We will consider sequences (aK)K∈Z2

L
and use the normalized

counting measure L−2
∑

K∈Z2
L
δK to define `p(Z2

L) norms for p < ∞. Therefore we set for

1 ≤ p < +∞,

‖aK‖`pL
def
=

L−2
∑
K∈Z2

L

|aK |p
1/p

and ‖aK‖`∞L
def
= sup

K∈Z2
L

|aK |, for p = +∞.
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The weighted `pL(Z2
L) spaces will be denoted `p,σL with norms

‖aK‖`p,σL
def
= ‖〈K〉σaK‖`p,L

Of particular importance in the analysis will be the space Xσ
L

def
= `∞,σL with σ ∈ R, the space

associated with the norm

‖aK‖Xσ
L

def
= ‖〈K〉σaK‖`∞L . (1.5)

Notice that with our normalization of the `2,sL (Z2
L) spaces we have that

‖aK‖`2,sL (Z2
L)
. ‖aK‖Xσ

L(Z2
L) whenever σ > s+ 1.

On R2 and T2
L: We use the standard definitions and notations for Lebesgue, weighted Lebesgue

(in their homogeneous and inhomogeneous versions), and Sobolev spaces on R2 and T2
L. For

example, with M standing for either R2 or T2
L we denote the Lp, homogeneous weighted Lp,

inhomogeneous weighted Lp, and Sobolev norms respectively by

‖g‖Lp(M)
def
=

(ˆ
M
|g(x)|p dx

)1/p

‖g‖L̇p,σ(M)

def
= ‖|x|σg(x)‖Lp(M)

‖g‖Lp,σ(M)
def
= ‖〈x〉σg(x)‖Lp(M)

‖g‖Hm(M)
def
= ‖〈∇〉mg(x)‖L2(M),

for p ∈ [1,∞] (with the usual modification for p = ∞), and m,σ ∈ R. Notice that the

Sobolev norm of a function φ ∈ Hs(T2
L) is equivalent to ‖φ̂‖

`2,sL
. The inner product on L2(M)

is denoted by

〈f, g〉 def=

ˆ
M
f(x)g(x) dx.

Finally, because of their particular importance in our analysis, we will denote by Ẋσ =
L̇∞,σ(R2) and Xσ := L∞,σ(R2) with norm

‖g‖Xσ
def
= ‖〈x〉σg‖L∞(R2). (1.6)

Note that for a given function in g ∈ Xσ(R2), we can associate the trace or projection
sequence {gK}K∈Z2

L
∈ Xσ

L(Z2
L) by the formula gK = g(K).

1.5.3. Miscellaneous.

• The counter-clockwise rotation of center 0 and angle π
2 on R2 will be denoted by the

superscript ·⊥.

• The “Japanese brackets” stand for 〈x〉 def=
√

1 + |x|2.

• The normalized Gaussian with L2 mass one reads G(x)
def
= 1√

π
e−
|x|2

2 .

• A . B if A ≤ CB for some implicit, universal constant C. A .δ B means that the
implicit constant C depends on δ.
• A ∼ B if A . B and B . A.
• For any m ∈ R+, we denote by B(m) the box [−m

2 ,
m
2 )× [−m

2 ,
m
2 ) and by B(x,m) the

Euclidean ball with center x and radius m.
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2. Statement of the results

In this section, we present a very formal sketch of the derivation of (CR) from (1.3). This is
done rigorously in the following sections. We then state the main results in this work starting
with the main approximation theorems that allow to compare the dynamics of (CR) and that
of (NLS) along with the crucial estimates involved in proving them. We believe the latter to
be of interest in their own right. Afterwards, we state the properties of the (CR) equation
that are proved in Sections 6-8. Finally we present a heuristic interpretation of (CR) and
elaborate on how it fits in the weak turbulence picture.

2.1. Formal derivation of (CR). Recall that we denoted by v(t, x) the solution of (NLS),

by u(t, x)
def
= ε−1v(t, x) the solution of (NLSε), and by aK(t)

def
= û(t,K) for K ∈ Z2

L. We then

went to the interaction representation picture and defined ãK(t) = aK(t)e−4π2i|K|2t which
satisfies the system (1.3)

−i∂tãK(t) =
ε2

L4

∑
S(K)

ãK1(t)ãK2(t)ãK3(t)e4π2iΩt

with Ω
def
= |K1|2−|K2|2 + |K3|2−|K|2 and S(K) = {(K1,K2,K3) : K1−K2 +K3 = K}. Note

that aK(t) can be directly reconstructed from ãK(t) and vice-versa. Splitting the interactions
on the right-hand-side of the above equation into resonant and non-resonant gives

−i∂tãK(t) =
ε2

L4

∑
R(K)

ãK1(t)ãK2(t)ãK3(t)

︸ ︷︷ ︸
Resonant interactions

+
ε2

L4

∑
S(K)\R(K)

ãK1(t)ãK2(t)ãK3(t)e4π2iΩt

︸ ︷︷ ︸
Non-resonant interactions

where R(K) = {(K1,K2,K3) ∈ S(K) : Ω = 0}. It is well-known that if ε is small enough
resonant interactions have considerably more importance on the dynamics than non-resonant
ones [16, 12, 29]. This is often made precise by resorting to a normal form transformation.
A normal form transformation is an invertible change of variable ãK → cK = U(ãK) that is
sufficiently close to the identity operator and which transforms the equation for ãK into the
following equation for cK(t):

−i∂tcK(t) =
ε2

L4

∑
R(K)

cK1(t)cK2(t)cK3(t) + ε4(quintic term).

Several normal form transformations give the above result, we mention Poincaré-Dulac and
Birkhoff normal forms. We will use the somewhat simpler Poincaré-Dulac normal form, but
leave the details to Section 5 when we prove Theorem 2.4. If ε is small enough (depending
on L and the control we have on relevant norms of {cK}), the resonant sum above dominates
the remainder quintic term and drives the dynamics. It is here that the weak non-linearity

assumption comes into the picture and dictates the range of (− log ε)
logL under consideration.

The upshot of the above discussion is that we can pretend, at least formally, that ãK(t)
satisfies the resonant system (1.4), namely

−i∂tãK(t)“ = ”
ε2

L4

∑
R(K)

ãK1(t)ãK2(t)ãK3(t) (2.1)
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At this step, one can interpret “ = ” as an equality sign with some lower order terms added to
the right-hand-side, but things will get even more formal below. The next step is to take the
large-box limit of the above equation. This is equivalent to changing the above discrete sums
in (2.1) to integrals via a suitable equidistribution analysis. Recall that if u(z) is a sufficiently
regular and decaying function on R2 then

L−2
∑
K∈Z2

L

u(K)→
ˆ
R2

u(z) dz, when L→ +∞.

Of course the sum in (2.1) is much more complicated than a standard Riemann sum, so our
first task is to re-parametrize it in a way that allows us to pass to the large-box limit. For this,
we change variables in R(K) and write Ki = K + Ni for i = 1, 2, 3. The defining relations
of R(K) now translate to N1 +N3 = N2 and |N1|2 + |N3|2 = |N2|2. As a result, we have by
Pythagoras’s theorem that

R(K) = {(K +N1,K +N2 +N3,K +N3), N1 ·N3 = 0, (N1, N3) ∈ Z2
L}. (2.2)

The degenerate sums when either N1 or N3 is zero disappear in the large-box limit and can
be treated as error terms because they account for much fewer lattice points than the non-
degenerate case when N1, N3 6= 0. This will be very clear when we do the estimates in Section
4, but for now it can be seen from Figure 1 which shows the plots of rectangles in R(K) with
K = (0, 0) on lattices Z2

L with different size of L. Notice how taking L larger and larger
makes the density of rectangles tend to a continuous one.

Figure 1. Representations of the resonant sets R(0, 0) when L increases

As a result, we can again pretend that ãK(t) satisfies the following system:

−i∂tãK(t)“ = ”
ε2

L4

∑
N1,N3∈Z2

L
∗

N1⊥N3

ãK+N1(t)ãK+N1+N3(t)ãK+N3(t). (2.3)

The above sum is still not very amenable to taking a large-box limit, so we further parametrize
it as follows. Write N1 = α

L(p, q) where α ∈ N and p, q ∈ Z are relatively prime in the sense
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that g.c.d.(|p|, |q|) = 15. Since N3 ⊥ N1, then it has to be of the form β
L(−q, p) = β

L(p, q)⊥ for

some β ∈ Z∗. Lattice points in Z2
L of the form (p,q)

L are special and are called visible lattice
points.

Definition 2.1. For a given number L > 0, we say that a lattice point z ∈ (Z2
L)∗ is visible

(from 0) if the segment [0, z] does not intersect the lattice Z2
L apart from the endpoints 0 and

z. It is easy to see that a lattice point z ∈ Z2
L
∗

is visible if and only if z = 1
L(p, q) where (p, q)

are co-prime.

As a result, we can again morally pretend that ãK(t) satisfies

−i∂tãK(t)“ = ”
ε2

L4

∑
α∈N,β∈Z∗

∑
J∈Z2

L
∗

J visible

ã(K + αJ, t)ã(K + αJ + βJ⊥, t)ã(K + βJ⊥, t) (2.4)

where J⊥ is the rotation of J by +π
2 . We are now in a better position to take the large-box

limit. The only remaining obstruction is that the sum over J is not a standard equidistribution
sum over all lattice points in Z2

L but only over visible ones. It turns out that visible lattice

points have density ζ(2)−1 = 6
π2 in Z2

L where ζ(2) is the Riemann zeta function evaluated at

2. In other words, if one picks a lattice point at random then with probability ζ(2)−1 this
lattice point is visible. The translation of this statement to equidistribution theory is the fact
that if u(z) is a sufficiently regular and decaying function then

L−2
∑
J∈Z2

L
J visible

u(z) dz → 1

ζ(2)

ˆ
R2

u(z)dz.

The proof of the claim on the density of visible lattice points relies on the Möbius inversion
formula (see for example [31]). We briefly repeat it in Section 4.2 as it serves as a prototype
for the argument needed to replace the more complicated trilinear sum (over J visible) in
(2.4) by an integral over R2 and obtain good estimates on the discrepancy error (see Lemma
4.1).

Now that we know how to replace sums over visible lattice points by integrals, we are ready
to pass to the large-box limit, at least formally. Pretending that {ã(K, t)}K∈Z2

L
is the trace

of a sufficiently smooth and decaying function {ã(ξ, t)}ξ∈R2 and replacing the sums in (2.4)
by integrals, one obtains after a somewhat tedious calculation (performed in Section 4 with
the needed error estimates) that ã(K, t) satisfies the equation:

−i∂tã(K, t)““ = ””
4ε2 logL

ζ(2)L2

ˆ 1

−1

ˆ
R2

ã(K + z)ã(K + z + λz⊥)ã(K + λz⊥) dz dλ, (2.5)

where we used the notation ““ = ”” to emphasize the heuristic nature of this last analysis.
Reparameterizing time gives the equation

−i∂tã(K, t)““ = ””

ˆ 1

−1

ˆ
R2

ã(K + z)ã(K + z + λz⊥)ã(K + λz⊥) dz dλ,

which is exactly (CR)! Making sense of the above formal argument is not a straightforward
task and several technical difficulties have to be overcome before any sort of rigorous statement
can be made in this direction. We elaborate on some of them below.

5Here we use the convention that if p (resp. q) is zero, then p and q are relatively prime if and only if
q = ±1 (resp. p = ±1).
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2.2. Uniform bounds and approximation theorems. The ultimate aim here is to under-
stand and prove in what sense and to what extent do the long-time dynamics of (CR) inform
on that of (1.3). Some answers are provided by Theorem 2.4, which pertains to (NLSε) on
the box of size L, and Theorem 2.6 which pertains to the (NLS) on the torus T2 (or L = 1).

2.2.1. Uniform bounds on resonant sums. A crucial part in the proof of the above-mentioned
theorems is obtaining sharp bounds on resonant sums like that appearing on the right-hand-
side of (2.1). More concretely, let us define the normalized trilinear operator

TL(e, f, g)(K)
def
=

ζ(2)

2L2 logL

∑
R(K)

eK1fK2gK3 , (2.6)

acting on sequences e = {eK}, f = {fK} and g = {gK} on Z2
L. The normalization of TL was

chosen merely for notational convenience so that the following sharp bounds appear uniform
in L. Estimates on such operators are intimately connected to periodic Strichartz estimates
and are in fact equivalent to the L2

x → L4
t,x estimate if one is bent on working in L2−based

spaces (see Section 3). Notice that since we are essentially passing to the L→∞ limit, sharp
estimates are indespensible and even a logarithmic loss in L cannot be tolerated. We will
see that estimates with very small loss (Lε for any ε) can be somewhat easily proved from
the existing literature on periodic Strichartz estimates (see [5, 8] and Section 3.3), but they
turn out to be almost completely useless by themselves to prove the approximation results.
Unfortunately, the sharp version of the Strichartz estimate we need is open and is widely
considered to be a very difficult problem at the intersection of harmonic analysis and number
theory [6, 42]. Our way around this dilemma is to work with norms that are not L2−based,
namely spaces Xσ

L(Z2
L) defined in (1.5), and prove the sharp Stichartz-type estimate in these

norms, which turns out to be more tractable than the L2−based Strichartz estimate. The
argument here relies on quite delicate estimates on lattices and the end result is the following
theorem proved in Section 3

Theorem 2.2. Let σ > 2 and {aK}, {bK}, and {cK} be three sequences in Xσ
L. The following

estimate holds uniformly in L:

‖TL(aK , bK , cK)‖Xσ
L
. ‖aK‖Xσ

L
‖bK‖Xσ

L
‖cK‖Xσ

L
. (2.7)

Moreover, the dependance in L in this estimate is sharp.

The true meaning of the last statement will become clear below where we show that the
operator TL is not only uniformly bounded in Xσ

L, but also converges as L→∞ to a non-zero
entity when it acts on sequences that are traces of sufficiently smooth and decaying functions.
It is worth mentioning that as a corollary to Theorem 2.2, we obtain what seems to be the
first L4

t,x Strichartz-type estimate on T2 with the sharp L2-critical scaling (See Corollary 3.2).

2.2.2. Discrete to continuous convergence. Let us first define the trilinear operator T acting
on complex valued functions f, g, h : R2 → C as follows

if ξ ∈ R2, T (f, g, h)(ξ)
def
=

ˆ 1

−1

ˆ
R2

f(ξ + x)g(ξ + x+ λx⊥)h(ξ + λx⊥) dx dλ. (2.8)

The crucial observation is that, as L→∞, TL converges to T in a sense made precise by the
following theorem:
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Theorem 2.3 (Discrete to continuous approximation in Xσ). Let σ > 2 and suppose that
g : R2 → C satisfies the following bounds:

‖g‖Xσ+1(R2) + ‖∇g‖Xσ+1(R2) ≤ B. (2.9)

The following estimate holds for L > 1

‖T (g, g, g)(K)− TL(g, g, g)(K)‖Xσ
L(Z2

L) .
B3

logL
. (2.10)

This theorem is proved in Section 4. As it stands, estimate (2.10) is sharp in terms of
the decay of (logL)−1, however it might be possible to isolate the terms that decay as such,
move them to the left-hand-side and obtain better convergence rates. For the purposes of
this paper, (2.10) is more than enough.

2.2.3. Approximation theorems. We are finally ready to state our approximation theorems.
We would like to start with a solution g(t, ξ) of (CR) defined on an arbitrarily long time
interval [0,M ] and construct a solution of (NLSε) whose dynamics in Fourier space is ap-
proximated by that of g(t, ξ). The fact that M is chosen arbitrarily allows to carry “any”
nonlinear dynamic of the limit equation (CR) and project it into that of (1.3). However,
our heuristic calculation in Subsection 2.1 (precisely equation (2.5)) indicates that the two
equations do not evolve with the same time scales. In fact, since the time-scale of (CR) is
normalized to 1, the “clock” of (1.3) is much slower and its time-scale can be read from (2.5)

to be T∗ = ζ(2)L2

4ε2 logL
. As a result, we should actually expect to approximate the evolution of

(1.3) with that of the rescaled function g( t
T ∗ , ξ) for 0 ≤ t ≤ MT ∗ where g(t, ξ) solves (CR)

on [0,M ]. This is the content of the following theorem.

Theorem 2.4. Fix σ > 2 and 0 < γ < 1. Suppose that g(t, ξ) is a solution of (CR) over
a time interval [0,M ] with initial data g0 = g(t = 0) such that g0,∇g0 ∈ Xσ+1(R2). By
Theorem 2.8 below, (CR) is globally well-posed for such initial data. Denote

B
def
= sup

t∈[0,M ]
‖g(t)‖Xσ+1(R2) + ‖∇g(t)‖Xσ+1(R2).

There exists c = c(γ) such that if L > 1 and ε < cL−1−γB−1, the solution ãK(t) of (1.3) with

initial data ãK(0)
def
= g0(K) satisfies the following estimate:

‖ãK(t)− g(
t

T ∗
,K)‖Xσ

L(Z2
L) .

B

(logL)1−γ with T ∗
def
=

ζ(2)L2

2ε2 logL
, (2.11)

for all 0 ≤ t ≤ T ∗min
(
M, γ log logL

cB2

)
.

In particular, if L is chosen so that L ≥ exp exp(cγ−1MB2), then (2.11) holds for all
t ∈ [0,MT ∗] (the full domain of definition of g( t

T ∗ ).

Note that by the approximation interval in (2.11) corresponds for the limiting equation

(CR) to the interval
[
0,min

(
M, γ log logL

cB2

)]
, which means that if L is large enough, one can

project the full dynamics of g(t) over the interval [0,M ] into that of (NLSε).

Remark 2.5. How optimal is the condition on L and ε in the statement of the theorem? This
question leads to distinguishing several natural regimes in the weakly nonlinear, large-box limit
for (NLS):
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• If ε2L → ∞, it is natural to expect that the nonlinear dynamics will be effectively
described (upon appropriate rescaling) by (NLS) on R2. Indeed, for data of size one,
localized around B(0, 1) in space and frequency, the nonlinear time-scale6 is of order
ε−2 while the wave travels at a speed O(1). Thus, it takes a time L before the wave
can tell the difference between R2 and T2

L. Therefore, if 1
ε2
� L, the effective limiting

equation is (NLS) on R2.
• The regime described in the above theorem is essentially εL→ 0. It seems optimal for

the type of result we prove: indeed, the nonlinear time scale is 1
ε2

, and the necessary

time to average over non-resonant interactions is L2 (which also corresponds to the
period of the linear Schrödinger equation). If L2 � 1

ε2
, non-resonant interactions are

averaged out before the nonlinear time-scale is reached, and only the resonant ones
contribute to the dynamics. This numerology will become even more transparent once
we perform the normal form analysis in the proof of Theorem 2.4.
• There remains the regime 1

L < ε < 1√
L

. What should be expected there is not very

clear, but it seems likely that not only exactly resonant interactions should play a
significant role.

It is easy by a scaling argument to translate the above theorem into a result for (NLS)
on T2 in the weakly non-linear, high frequency regime. Here, one can interpret (CR) as an
equation for the frequency envelopes of (NLS). Starting with solutions of (CR), we will be
constructing solutions of (NLS) having size ∼ 1 in some Sobolev space Hs(T2) with s > 1,
and describing the dynamics in that space as well. The parameter ε which is comparable to
size of the initial data in L2(T2) will be used to normalize the data under consideration in
Hs(T2).

Theorem 2.6. Fix s > 1 and 0 < γ < 1. Suppose that g(t, ξ) is a solution of (CR) over a
time interval [0,M ] with initial data g0(ξ) = g(0, ξ) such that g0,∇g0 ∈ Xσ(R2) with σ > s+2.
Recall that (CR) is globally well-posed for such initial data by Theorem 2.8. Denote by

B
def
= sup

t∈[0,M ]
‖g(t)‖Xσ(R2) + ‖∇g‖Xσ(R2).

Let N > 1 + CB
2
s−1 and v(t) be the solution to the cubic NLS equation

−i∂tv + ∆v = µ|v|2v, v(0, x) = v0(x), µ = ±1, x ∈ T2, (2.12)

where the Fourier transform of the initial data is given by

v̂0(k) =
1

N s+1
g0(

k

N
) ∀ k ∈ Z2, (2.13)

(consequently ‖v(0)‖Hs(T2) ∼ ‖〈ξ〉sg0‖L2(R2) ∼ 1 uniformly in N). Then the following estimate
holds:

‖v̂(k, t)− e4π2i|k|2tN−1−sµg(
t

TN
,
k

N
)‖`2,s(2πZ2) .s

B

(logN)1−γ , with TN =
ζ(2)N2s

2 logN
(2.14)

for all 0 ≤ t ≤ TN min
(
M, γ log logN

cB2

)
.

6Prior to this time-scale, the solution behaves linearly, and thus remains almost constant in the interaction-
representation picture (i.e. constant linear profile).



14 E. FAOU, P. GERMAIN, AND Z. HANI

In particular, if N ≥ exp exp(cγ−1MB2), then (2.14) holds for all t ∈ [0,MTN ] (the full
domain of definition of g( t

TN
).

The condition on s > 1 is the translation of the condition ε < L−1−γ in Theorem 2.4.
Notice that as we increase N , v0 carries more and more refined information about g0 and the
approximation becomes better and better. The Sobolev norm of v(t) is uniformly comparable
to ‖〈ξ〉sg( t

TN
, ξ)‖L2(R2) for all 0 ≤ t ≤ TNM . As in Theorem 2.4, the approximation interval

is long enough to carry all the nonlinear behavior of g(t) on the interval [0,M ] of interest.
This shows that we can find solutions to the (NLS) equation (2.12) in Hs(T2) over very large
times (both in the focusing and defocusing case) with rather interesting nonlinear behaviors
inherited from (CR). Note, however, that these solutions are small in Hr(T2) for r < s
(Their L2 norm is ∼ N−s � 1 which guarantees global existence), and large in Hr(T2) for
r > s. The only “non-trivial” dynamics described in the limit of large N (i.e. uniformly in
N) happens in Hs(T2).

A striking application of this corollary happens when the data is taken to be any of the
explicit solutions of (CR) that will be discussed below. The simplest of which is when we

take g0 = G(x) = 1√
π
e−

1
2
|x|2 . We will see that the solution g(t, x) is given explicitely by

g(t, x) = eiω0tG(x) for some non-zero constant ω0. In this case, B is uniformly bounded by a
universal constant independent of M . The previous corollary can be interpreted as a stability
result saying that the solution of the (NLS) equation (2.12) starting with the initial value
(2.13) (which is close to a gaussian with small variance in the x-space) remains close in Hs

over long times to the function

vN (t, x) =
∑
k∈Z2

e2πik·xei(4π
2|k|2t+CN t) 1

N s+1
G(

k

N
), (2.15)

where the phase shift CN = ω0T
−1
N is very small (of order N−2s), but its effect is felt for times

t ≥ TN . In other words, the function v(t, x) behaves like a solution that is almost periodic
in time, and is of size one in Hs. Note that in particular at times t ∈ (2π)−1Z the solution
(2.15) focuses again to a Gaussian (up to unimodular factor), while for the other times, the
solution is not concentrated anymore in the x-space. This is observed numerically as well.
The nonlinear effect is only exhibited via the modulation factor eiCN t with CN = ω0T

−1
N .

Since ω0 6= 0, this gives an explicit example of a dynamic of the cubic NLS equation on T2

that violates (1.2) at the tractable time scales.
Let us conclude by mentioning that this result can be compared with the long-time Sobolev

stability of plane wave solutions7 of (NLS) in [22], but note that the construction is radically
different: Plane waves in the defocusing case are of order 1 in Hs for all Hs, s ≥ 0, and their
stability comes from the creation of generically non-resonant frequencies around the orbit of
the plane wave. The same game could be played with the other explicit solutions of g in
Section 6.

2.3. Analysis of equation (CR). It turns out that equation (CR) has a surprisingly rich
structure in terms of its Hamiltonian nature, symmetries, explicit solutions, and global well-
posedness properties. We describe them in this section.

7These are the solutions of the form Aei(2πn·x+4π2|n|2t±|A|2t).
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2.3.1. Hamiltonian structure. Equation (CR) is Hamiltonian: it derives from the Hamiltonian
functional

H(f) =
1

4

ˆ 1

−1

ˆ
R2

ˆ
R2

f(x+ z)f(λx⊥ + z)f(x+ λx⊥ + z) f(z) dx dz dλ (2.16)

with the symplectic form on L2(R2) given by

ω(f, g) = Im

ˆ
R2

f(x)g(x) dx.

A small computation performed in Section 6 reveals that the Hamiltonian functional can also
be written

H(f) =
π

2

ˆ
R

ˆ
R2

|eit∆R2 f̂ |4 dx dt. (2.17)

Thus H(f) is simply a multiple of the L4
t,x Strichartz norm on R2! While H(f) can be easily

seen, from (2.16) and Cauchy-Schwartz, to be bounded on L2(R2) in the sense that

H(f) . ‖f‖4L2(R2) (2.18)

this estimate is nothing but the L4
t,x-Strichartz estimate on R2 ([56, 61]). The Hamiltonian

structure of (CR) is examined in detail in Section 6, let us mention here a few striking facts.
In all what follows suppose that g(t) is a solution of (CR).

• Conserved quantities. The coercive conserved quantities are H(g),
´
|g|2,

´
|∇g|2 and´

|xg|2.
• Group Symmetries. The equation (CR) enjoys a large group of symmetries, including

in particular g(x) 7→ g(x + x0), g(x) 7→ g(x)eixξ0 , g 7→ eiλx
2
g, g 7→ eiλ∆g for any

x0, ξ0 ∈ R2 and λ ∈ R.
• Invariance under the Fourier transform. The Fourier transform ĝ(t) = FR2g(t) is also

a solution of (CR)!
• Invariance of the Eigenspaces of the harmonic oscillator. Recall that the harmonic os-

cillator−∆+|x|2 admits a discrete orthonormal basis of L2(R2) formed of eigenvectors.
Each eigenspace {Ek}k∈N is finite dimensional of dimension k. The flow of (CR) leaves
each of the eigenspaces of the harmonic oscillator operator −∆ + |x|2 invariant, i.e. if
g0 ∈ Ek for some k, then g(t) ∈ Ek for all t ∈ R.
• Gaussians are stationary solutions. By the previous point, the ground state of −∆ +

|x|2 is invariant. It is given by Re−
x2

2 . Thus, a stationary solution of (CR) is given

by e−
x2

2
+iω0t for a constant ω0.

• Other stationary solutions. We mention here eiCt

|x| , for a suitable constant C. This so-

lution corresponds exactly to the Raleigh-Jeans solution of the Kolmogorov-Zakharov
equation (cf. Section 2.5). Other explicit solutions are given in Section 6.

The rich structure of symmetries of (CR) is somewhat reminiscent of the Szegö equation
studied by Gérard and Grellier [26, 25, 27] on T and Pocovnicu [52, 53] on R. It turns out
that the Szegö equation is completely integrable; however the question of whether one can
show that (CR) is completely integrable or not is very interesting and open with remarkable
consequences on the long-time behavior of (NLS).
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2.3.2. Analytic properties. The first step is to describe boundedness properties of T . Recall
that

Ẋ1(R2)
def
= {f(x) | |x|f(x) ∈ L∞(R2)} (2.19)

Proposition 2.7. The trilinear operator T is bounded from (L2)3 to L2, and from (Ẋ1)3 to

Ẋ1.

This statement easily gives obvious local well-posedness results in L2 and Ẋ1; combining
it with the conservation laws of (CR) as well as its invariance with respect to the Fourier
transform, one obtains the following global well-posedness theorem.

Theorem 2.8. • The equation (CR) is locally well-posed in Ẋ1(R2), and globally well-
posed in L2(R2).
• (CR) is globally well-posed in Hs(R2) and L2,s(R2) for any s ≥ 0.
• (CR) is globally well-posed in Xσ(R2) for any σ > 2. Moreover, if ∇g(0) ∈ Xσ, then
g,∇g ∈ Cloc(R;Xσ).

Further well-posedness results are mentioned in Theorem 7.5. Next, we observe that the
trilinear operator T has a remarkable weak boundedness property, reminiscent of the div-curl
lemma [48, 60]:

Theorem 2.9. Assume that {fn}n∈N, {gn}n∈N and {hn}n∈N are sequences converging weakly
in L2 to f , g and h respectively. Then the sequence {T (fn, gn, hn)}n∈N converges weakly in
L2 to T (f, g, h).

This implies a weak compactness result for solutions of (CR).

Theorem 2.10. Given a sequence {fn}n∈N of solutions of (CR), uniformly bounded in the
space L∞([0, T ], L2) for some T > 0, there exists a solution f of (CR) towards which a
subsequence of {fn}n∈N converges in the weak-* topology of L∞([0, T ], L2) .

Theorems 2.7–2.10 are proved, along with other results, in section 7.

2.3.3. Variational properties. The last of the properties of (CR) that we mention here relates
to the variational characterization of the Gaussian family of explicit solutions in relation to
the Hamiltonian functionH(f). The theorem below is not new given the realization thatH(f)
can be equivalently written as (2.17) and the study of extremizers of Strichartz estimates in
[23, 34]. Still, we chose to give a full proof in order to keep the paper as self-contained as
possible. It relies on the heat flow monotonicity following ideas in [11, 4, 2].

Theorem 2.11. For a fixed mass ‖f‖L2 = M , (2.18) is only saturated by Gaussians with mass
M , up to the finite group of symmetries of H. Furthermore, the optimal implicit constant in
the (2.18) is π

8 .

Using in addition the profile decomposition for the L4 Strichartz norm [47] gives compact-
ness of maximizing sequences and the L2−orbital stability of the Gaussian family.

This last result and Theorem 2.11 are proved in section 8.

2.4. Physical-space interpretation. Here we try to give a heuristic explanation why the
limiting equation (CR) is natural; this could play a role in the dynamics beyond the regime
ε < L−1 mentioned above.
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Let us first approach the equation in Fourier space. The previous arguments can then be
recast as follows. For L finite, the (discrete) resonant system derives from the Hamiltonian
HL(f) = 1

4〈TL(f, f, f) , f〉. We saw that TL → T as L → ∞, therefore HL converges to

H = 1
4〈T (f, f, f) , f〉, and the equation deriving from H is (CR).

It is perhaps physically more illuminating to examine the convergence to (CR) in physical
space. There are then two key elements to be taken into account.

(1) The flow of the linear Schrödinger equation is periodic on T2
L with period T = L2 (the

situation is actually more complicated: the period is actually shorter depending on the
considered frequency, and this is ultimately responsible for the ζ(2) factor appearing
in our derivation. We will however gloss over this additional difficulty).

(2) Let S be the scattering operator for (NLS) on R2 (This is the operator that maps the

profile at t = −∞ to the profile at t = +∞), and denote by S̃ = FSF−1 its Fourier

space incarnation. Under appropriate assumptions, and for a real constant C, S̃ can
be expanded around 0 as

S̃f = f + CiT (f, f, f) + higher order terms in f (2.20)

as can be seen by a small computation from Duhamel’s formula.

Let v(t) be a solution of (NLS) (with ε = 1)and let f(t,K) := e−it|K|
2
v̂(t,K) be the Fourier

transform of its linear profile. We can now explain why (CR) comes out as a natural limiting
system governing the dynamics of f . Suppose that at the initial time t = 0, the data f(0,K)
is small and localized (so that all (NLS) solutions considered are global). Since L is very large,
the corresponding solution v(t) of (NLS) on T2

L will initially evolve like a solution of (NLS)
on R2: it will scatter, and be well-approximated by the linear flow; thus for t sufficiently large
the linear profile will keep a nearly constant value given in Fourier space by f

(
T
2

)
... until

the period T when the linear flow will focus v again. The nonlinear interaction will then
come into play, and since L is very large it will essentially amount to applying the scattering

operator S̃. Thus, essentially, f
(

3T
2

)
' S̃f

(
T
2

)
. The same reasoning gives for any integer n

that f
(
T
2 + nT

)
' S̃f

(
T
2 + (n− 1)T

)
. Using in addition the smallness of f and (2.20), this

yields

f

(
T

2
+ nT

)
− f

(
T

2
+ (n− 1)T

)
' CiT (f, f, f)

(
T

2
+ (n− 1)T

)
,

which, rescaling time, can be approximated by (CR).

2.5. Relation to weak turbulence. Weak turbulence, also known as wave turbulence, seeks
a statistical description8 of the out-of-equilibrium dynamics of equations ranging from (NLSε)
to water waves or Vlasov-Maxwell. The fundamental equations of weak turbulence theory,
sometimes called the Kolmogorov-Zakharov equations, appeared early on in the past century
[51, 32, 33]; however the theory was most invigorated after the work of Zakharov in the 60s
[62, 63], who sought to parallel Kolmogorov’s theory of hydrodynamic turbulence.

The paradigm of kinetic weak turbulence can be briefly summarized as follows. We refer
the reader to the classical works of Zakharov, L’vov and Falkovich [64] and Nazarenko [49], as
well as to Spohn [55] for more precise information. Roughly speaking, one starts with initial

data aK(0) =
√
JK(ω)φK(ω) where JK(ω) ≥ 0 and φK(ω) ∈ S1 are random variables such

8More precisely, this refers to kinetic wave turbulence, as opposed to more recent theories like discrete or
mesoscopic wave turbulence.
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that EφkφL = δJ=K : this is the random phase approximation. Then, one tries to write down
an equation for the wave spectrum nK(t) = E|aK |2 = EJK . The equation of nK(t) is obtained
in three steps: 1) Performing a sequence of statistical and time averages9, 2) taking the large-
box limit L→∞ thus making nK(t) a field on R2, and 3) taking the weak non-linearity limit
ε → 0 which has the effect of restricting to the resonant manifold in the obtained equation.
The latter is called the Kolmogorov-Zakharov equation and, for (NLSε), it often appears in
the physics literature in the following form [64, 49]:

∂tnK(t) = ε4
˚

n(K1)n(K2)n(K3)n(K)

(
1

n(K1)
− 1

n(K2)
+

1

n(K3)
− 1

n(K)

)
δ(K1 −K2 +K3 −K) δ(|K1|2 − |K2|2 + |K3|2 − |K|2)dK1 dK2 dK3.

(KZ)

The derivation of this equation is very formal in the physics literature and a rigorous
justification seems to be a difficult open question of great importance both in physics and
mathematics (see however Lukkarinen and Spohn [44] for first steps in this direction). The
importance of the (KZ) equation is mostly due to the existence of four explicit power-type
stationary solutions which are a manifestation of the equilibrium and out-of-equilibrium fre-
quency dynamics of (NLSε). Two of the those solutions can be easily seen by inspecting
(KZ): namely the thermodynamic equilibrium solution nK(t) = 1 and the Raleigh-Jeans solu-
tion nK(t) = |K|−2. The other two solutions are the interesting ones from the point of view
of out-of-equilibrium dynamics and correspond to the constant flux of energy through scales
(backward and forward cascade spectra). Nonetheless, such constant-flux solutions can only
be sustained by adding external sources and sinks of energy to the system (say at very high
and low frequencies).

There are strong similarities between weak turbulence theory and the ideas followed in
the present paper: indeed, we follow the steps 2) and 3) in the above paradigm. Formal
similarities are more obvious if we write (CR) in the form

−i∂tfK(t) =

˚
f(K1)f(K2)f(K3)δ(K1−K2+K3−K) δ(|K1|2−|K2|2+|K3|2−|K|2)dK1 dK2 dK3

(in the above, we think of K,K1,K2,K3 as continuous variables). Also notice that the exact
solution eiCt|K|−1 of (CR) plays the role of the Raleigh-Jeans solution n(K) = |K|−2 of (KZ).

The central difference is that, while we do perform the large-box and small non-linearity
limit, no randomness, or averaging over statistical ensembles, is used in the present paper.
As a result, the equation (CR) is Hamiltonian, time reversible, and exhibits no trend to
equilibrium. This should be contrasted with (KZ), which is not Hamiltonian, and for which
a version of the H-theorem applies. Another important difference is in terms of time-scales.
It is obvious that the time scale of (KZ) is O(ε−4) (called the kinetic time-scale, as opposed
to the dynamic time-scale ε−2); whereas the time scale in our case (see (2.5)) was roughly

T ∗ = L2

ε2 logL
which is � ε−4 in the regime we are in. Clearly, an equation like (NLSε)

undergoes a lot of nonlinear dynamics prior to the kinetic time scale ε−4. (KZ) seems too
course to sense those intermediate time-scales, which (CR) seems to capture.

9This step is particularly far from being rigorous due to the assumption of “preservation of chaos” i.e.
preservation of the random phase approximation which is usually made in the physics literature.
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Finally, we remark that it has been recognized in the wave turbulence community that some
aspects of the turbulent dynamics are not captured by (KZ) especially starting with the highly-
influential works of Majda, Mclaughlin, and Tabak [46, 10]. Several theories were formulated
to address these and other concerns [65, 39, 38, 50] and new regimes of wave turbulence
emerged like mesoscopic and discrete wave turbulence [39, 38, 50, 66, 45] in order to account
for some finite-size effects that are not captured by the kinetic description mentioned above.
We refer the reader to Nazarenko’s modern textbook treatment in [49] for more details and
references. A particularly relevant theory for our work stands out, namely that of discrete
wave turbulence (see for example [36, 17, 59, 37, 18, 38, 39, 40]) in which one retains the
Hamiltonian nature of the equations and emphasizes the importance of the “discrete” exactly
resonant interactions on the dynamics, the same perspective and regime we adopt here. It is
conceivable that the (CR) equation provides a good model for this framework.

3. Proof of Theorem 2.2: uniform boundedness of the TL
The purpose of this section is to prove Theorem 2.2 which is of interest in its own right. It

gives a uniform bound on the operators TL on the spaces Xσ(Z2
L).

3.1. Sharp Strichartz and multilinear estimates. Estimates on resonant sums such as
(2.7) are directly related to the endpoint10 Strichartz estimates on T2 given by

‖eit∆T2PNφ‖L4
t,x([0,1]×T2) ≤ C(N)‖φ‖L2(T2), (3.1)

where PN denotes frequency projection onto frequencies . N . To see the relation, one simply
notices that:

‖eit∆T2PNφ‖4L4
t,x([0,(2π)−1]×T2) =

ˆ (2π)−1

0

ˆ
T2

∣∣∣∣∣∣
∑
n∈Z2

φ̂(n)ei(2πn·x+4π2|n|2t)

∣∣∣∣∣∣
4

dxdt

=
∑

(k1,k2,k3,k4)

ˆ (2π)−1

0

ˆ
T2

ei2π(k1−k2+k3−k4)·x+4π2i(|k1|2−|k2|2+|k3|2−|k|2)tφ̂(k1)φ̂(k2)φ̂(k3)φ̂(k) dx dt

=
∑
k∈Z2

∑
R(k)

φ̂(k1)φ̂(k2)φ̂(k3)φ̂(k) =

〈∑
R(k)

φ̂(k1)φ̂(k2)φ̂(k3) , φ̂(k)

〉
`2×`2

.

Bourgain initiated the systematic study of such estimates and proved in [5] that the optimal
C(N) is .ε N ε for any positive ε. More precisely, using the divisor bound on integral domains
and a counting argument, he shows that

C(N) . exp(
logN

log logN
) .ε N

ε. (3.2)

A lower bound on C(N) is implicit in Bourgain’s work [5, 6] (but can be found explicitly in
[42]), and is given by

C(N) & (logN)1/4.

This is in sharp contrast with the analogous situation when T2 is replaced by R2 in which case
C(N) is bounded uniformly in N . The analogue of Theorem 2.2 with Xσ

L replaced by `2,σL is

10We call this estimate endpoint because p = 4 is the smallest Lpt,x exponent in (3.1) where one might hope

for an upper bound on C(N) in (3.1) independent of N . This is indeed the case on R2 where p = 4 is also the
minimum exponent where any estimate of the form (3.1) can hold due to Knapp’s counter-example.
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effectively equivalent (see proof of Corollary 3.2 below) to proving that (logN)1/4 is also an
upper bound (up to a constant factor) for the optimal C(N). Indeed, based on Theorem 2.2
and Corollary 3.2 below, we conjecture the following

Conjecture 3.1. For all N sufficiently large and φ ∈ L2(T2), it holds that:

‖eit∆T2PNφ‖L4
t,x([0,1]×T2) . (logN)1/4‖φ̂ ‖`2(Z2). (3.3)

While this particular estimate remains open and is widely expected to be quite difficult, it
is equivalent to (2.7) with Xσ replaced by the L2−based weighted spaces `2,sL (the factor of
L2 in the definition (2.6) of the operator TL is acquired once one rescales the estimate to the
torus T2

L and the factor of logL is the effect of the constant C(N) raised to the forth power).
In short, the normalization factor in the definition (2.6) of the operator TL in the estimate
(2.7) corresponds exactly to the sharp constant of this Strichartz estimate.

Nonetheless, Theorem 2.2 implies the following alternative to (3.3):

Corollary 3.2. For N sufficiently large and φ a function on T2, the following estimate holds:

‖eit∆T2PNφ‖L4
t,x([0,1]×T2) . (logN)1/4N1/2‖φ̂ ‖3/4`∞ ‖φ̂ ‖

1/4
`1

(3.4)

Moreover, this estimate is sharp in its dependence on N .

The interest of (3.4) as opposed to other variants of (3.3) (like the one obtained from
Bourgain’s bound (3.2) for C(N)) is that it is scales exactly like the conjectured optimal
estimate (3.3)11. A quick way to see this is to notice that (3.4) would follow from (3.3) using

the following scale-invariant estimates ‖P̂Nφ‖`2 . N1/2‖φ̂‖`4 . N1/2‖φ̂‖1/4
`1
‖φ̂‖3/4`∞ . This

scale-invariance turns out to be crucial for our purposes. In fact, the analysis in Section 5
vitally requires us to know the sharp dependence on L in Theorem 2.2 to extent that any
less refined analysis that slightly misses the right dependence (namely L2 logL appearing in
our normalization of TL in (2.6)), such as that given in Proposition 3.9 (which yields the
dependence L2+ε for any ε), is completely useless.

Proof of Corollary 3.2. Without loss of generality, we assume that φ̂ is supported in the ball
B(0, 2N). As we noticed before,

‖eit∆T2PNφ‖4L4
t,x([0,(2π)−1]×T2) =

ˆ (2π)−1

0

ˆ
T2

∣∣∣∣∣∣
∑
n∈Z2

φ̂(n)ei2π(n·x+2π|n|2t)

∣∣∣∣∣∣
4

dx dt

=
∑
k∈Z2

∑
R(k)

φ̂(k1)φ̂(k2)φ̂(k3)φ̂(k) =
∑
K∈Z2

N

∑
R(K)

aK1aK2aK3aK

where aK = φ̂(NK) for any K ∈ Z2
N . Corollary 3.2 now follows by applying Theorem

2.2 to the sequence {aK} and noting that since it is supported in B(0, 2) we have that

‖aK‖Xσ
N
∼ ‖φ̂‖`∞ and

∑
K〈K〉−σaK ∼

∑
K aK = ‖φ̂‖`1 . The claim of sharpness follows

either from the same example as that in [42] or by simply noticing it as a consequence to
Theorem 2.3 proved in the next section. �

We now proceed with the proof of Theorem 2.2. The sharpness of the estimate follows by
the same argument just given above.

11In the sense that it translates into an estimate on T2
L of the same form with `p replaced by `pL and N

replaced by LN .
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3.2. Proof of Theorem 2.2. Without loss of generality, we assume that ‖aK‖Xσ
L

= ‖bK‖Xσ
L

=

‖cK‖Xσ
L

= 1. We first parameterize R(K) as in (2.2) and write∑
R(K)

aK1bK2cK3 =
∑

N1,N3∈Z2
L

N1·N3=0

aK+N1bK+N1+N3cK+N3

=aK
∑
N∈Z2

L

bNcN + cK
∑
N∈Z2

L

aNbN − aKbKcK +
∑

N1,N3∈(Z2
L)∗

N1·N3=0

aK+N1bK+N1+N3cK+N3 .

The estimate on the first three terms above is a triviality, so we only focus on proving that∥∥∥∥∥∥∥∥
∑

N1,N3∈(Z2
L)∗

N1·N3=0

aK+N1bK+N1+N3cK+N3

∥∥∥∥∥∥∥∥
Xσ
L

. L2 logL.

Now using the parametrization (2.4) of the set {N1, N3 ∈ Z2
L
∗

: N1 · N3 = 0}, we write the
above sum as∑

N1,N3∈(Z2
L)∗

N1.N3=0

aK+N1bK+N1+N3cK+N3 =
∑
α≥1
β∈Z∗

∑
J∈Z2

L visible

aK+αJbK+αJ+βJ⊥cK+βJ⊥ .

Next we split the sum in α and β into four pieces {1 ≤ α ≤ β}, {1 ≤ α ≤ −β}, {1 ≤ β ≤ α}
and {1 ≤ −β ≤ α}. Using the symmetries in the above sum (like J ↔ −J , J ↔ J⊥), it is
sufficient to prove the estimate for the first piece, namely:∥∥∥∥∥∥

∑
1≤α≤β

∑
J∈Z2

L visible

aK+αJbK+αJ+βJ⊥cK+βJ⊥

∥∥∥∥∥∥
Xσ
L

. L2 logL.

This is equivalent to showing that for any σ > 2 and any K ∈ Z2
L

〈K〉σ
∑

1≤α≤β

∑
J∈Z2

L visible

〈K + αJ〉−σ〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . L2 logL. (3.5)

Recall the notation B(m) = [−m
2 ,

m
2 )2. If γ ∈ N, then any N ∈ Z2

L can be written as

rγ + γQγ for some rγ ∈ B(γ/L) ∩ Z2
L and Qγ ∈ Z2

L. This allows to write for any α, β of the
sum (3.5)

K = rα + αQα; K = rβ + βQ⊥β . (3.6)

Note that we have |rα| ≤ α√
2L

and |rβ| ≤ β√
2L

. The proof of (3.5) turns out to be particularly

sensitive to two values of J that we treat independently, namely J = −Qα and J = −Qβ. So

we denote by S
def
= {−Qα,−Qβ}, and we split the sum in J into two pieces∑

J∈Z2 visible

=
∑

J /∈S visible

+
∑

J∈S visible
.

and treat each case independently. We start with the first case.
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Case 1: Contribution of the J /∈ S Here we prove that

〈K〉σ
∑

1≤α≤β

∑
J∈Z2

L\S visible

〈K + αJ〉−σ〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . L2 logL. (3.7)

We further split the analysis into two cases: |K| ≤ 100 and |K| ≥ 100.

Subcase 1(a): |K| ≤ 100. Here we only need to show that∑
1≤α≤β

∑
J∈Z2

L\S
visible

〈K + αJ〉−σ〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . L2 logL. (3.8)

This follows from the estimate∑
1≤α≤β

∑
J∈Z2

L\S
visible

〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . L2 logL,

which is proved in Lemma 3.5. To prove Lemma 3.5, we need the following elementary
inequality, which we isolate in a lemma since we will use it often:

Lemma 3.3. Let 0 ≤ α ≤ β be non-negative integers with β positive, and σ > 2. Let r ∈ R2

be such that |r| ≤ 3
4

√
α2+β2

L . Then the following estimate holds:

∑
J∈(Z2

L)∗

〈r + αJ + βJ⊥〉−σ . min(
L2

β2
,
Lσ

βσ
) =


L2

β2 if β ≤ L,
Lσ

βσ if β ≥ L.
(3.9)

Proof. In the sum (3.9), J runs in (Z2
L)∗ and can be written j/L for some j ∈ Z2. Now we

have |r+ αJ + βJ⊥| ≥
√
α2 + β2|J | − |r| ≥ 1

4L

√
α2 + β2|j| ≥ β

4L |j|. Hence the previous sum
can always be estimated by

∑
j∈(Z2)∗

〈
β|j|
4L

〉−σ
.


Lσ

βσ

(∑
j∈(Z2)∗

1
|j|σ
)
. Lσ

βσ if β ≥ L,
L2

β2 + Lσ

βσ

(∑
j∈(Z2)∗

|j|≥Lβ−1

1
|j|σ
)
. L2

β2 if β ≤ L,

as σ > 2. �

Remark 3.4. Note that when β ≤ L, the previous estimate by L2/β2 is still valid when the
sum (3.9) is taken over all the point of lattice, including the origin J = (0, 0).

Now (3.8) follows from the following lemma.

Lemma 3.5. For L ≥ 5 and any K ∈ Z2
L, there holds∑

1≤α≤β

∑
J∈Z2

L\S
visible

〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . L2 logL. (3.10)

Proof of Lemma 3.5. Since J 6= −Qβ, then by Lemma 3.3 with α = 0, we have that∑
J∈Z2

L\S visible

〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . min(
L2

β2
,
Lσ

βσ
)
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from which we deduce that the sum in (3.10) can be estimated up to a constant by∑
1≤α≤β
β≤L

L2

β2
+
∑

1≤α≤β
β≥L

Lσ

βσ
≤ L2

∑
1≤β≤L

1

β
+ L

∑
β≥L

(L
β

)σ−1
. L2 logL+ L2,

from which we easily deduce the result.

Remark 3.6. Notice from the previous equation that if we restrict the sum in (3.8) to β ≥ L,
then we can estimate it by L2 rather than L2 logL.

Subcase 1(b): |K| ≥ 100. We start by noting that we can restrict the sum in J to the case

|K + αJ | ≤ |K|100 . In fact, if |K + αJ | ≥ |K|100 , then estimate (3.5) follows directly from Lemma
3.5 above.

The restriction |K + αJ | ≤ |K|100 has several implications that we enumerate below:

(1) First we notice that |αJ | ≥ 99
100 |K| and consequently |βJ⊥| ≥ 99

100 |K| since β ≥ α.
(2) From the orthogonality relation

|K|2 + |K + αJ + βJ⊥|2 = |K + αJ |2 + |K + βJ⊥|2

we conclude that |K + βJ⊥| ≥ 99
100 |K|. Consequently, we also have that

|K + αJ + βJ⊥| ≥ |βJ⊥| − |K + αJ | ≥ 98

100
|K|.

(3) Since |K+αJ | ≤ 1
100 |K|, then αJ ∈ B(−K, |K|100) and hence βJ⊥ ∈ B(−β

αK
⊥, β

100α |K|).
So K + βJ⊥ ∈ B(K − β

αK
⊥, β

100α |K|). But |K − β
αK
⊥| ≥ β

α |K|, so we finally deduce
that in fact we have:

|K + βJ⊥| ≥ 99

100

β

α
|K|.

As a consequence of this analysis, (3.5) follows once we show that∑
1≤α≤β

∑
J∈Z2

L\S
J visible

〈K + αJ〉−σ〈K + βJ⊥〉−σ . L2 logL. (3.11)

For this we use the third point above to estimate as follows:∑
1≤α≤β

∑
J∈Z2

L\S
J visible

〈K + αJ〉−σ〈K + βJ⊥〉−σ

.
∑

1≤α≤β

 ∑
J∈Z2

L\S
J visible

〈K + αJ〉−2σ


1/2


∑
J∈Z2

L\S
|K+βJ⊥|≥ 99

100
β
α
|K|

〈K + βJ⊥〉−2σ


1/2

.
∑

1≤α≤β

L

α


∑

J∈Z2
L\S

|K+βJ⊥|≥ 99
100

β
α
|K|

〈K + βJ⊥〉−2σ


1/2

, (3.12)
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by Lemma 3.3 and the fact that J 6= −Qα. The estimate on the term in parentheses above
should be handled with some extra care. Recalling that K = rβ + βQ⊥β with |rβ| ≤ β√

2L
and

J 6= −Qβ, we have∑
J∈Z2

L\S
|K+βJ⊥|≥ 99

100
β
α
|K|

〈K + βJ⊥〉−2σ ≤
∑

J∈(Z2
L)∗

|rβ+βJ⊥|≥ 99
100

β
α
|K|

〈rβ + βJ⊥〉−2σ .
∑

J∈(Z2
L)∗

|βJ⊥|≥ 99
200

β
α
|K|

|βJ |−2σ

since |βJ | = |βJ⊥| ≥ 1
2 |r + βJ⊥|. As a consequence, we get that:∑

J∈Z2
L\S

|K+βJ⊥|≥ 99
100

β
α
|K|

〈K + βJ⊥〉−2σ . β−2σ
∑

J∈Z2
L\{0}

|J⊥|≥ 99
200α

|K|

|J |−2σ

.

{
L2σβ−2σ if α ≥ 100L|K|,
L2β−2σ( |K|α )−2σ+2 if α ≤ 100L|K|.

Going back to (3.12), we get that∑
1≤α≤β

∑
J∈Z2

L\S
J visible

〈K + αJ〉−σ〈K + βJ⊥〉−σ .
∑

1≤α≤β
α≤100L|K|

L2ασ−2

βσ|K|σ−1
+

∑
100L|K|≤α≤β

Lσ+1

αβσ

.
∑

1≤α≤100L|K|

L2

α|K|σ−1
+

∑
100L|K|≤α

Lσ+1

ασ
.
L2 log(L|K|)
|K|σ−1

. L2 logL.

which finishes the proof of this case.

Remark 3.7. Repeating this last estimate with the additional restriction that β ≥ L we get
the improved bound∑

1≤α≤β
β≥L

∑
J∈Z2

L\S
Jvisible

〈K + αJ〉−σ〈K + βJ⊥〉−σ .
∑

1≤α≤β
α≤100L|K| ; β≥L

L2ασ−2

βσ|K|σ−1
+

∑
100L|K|≤α≤β

Lσ+1

αβσ

.
∑

1≤α≤100L|K|

L2ασ−2

max(α,L)σ−1|K|σ−1
+

∑
100L|K|≤α

Lσ+1

ασ
. L2 log |K|

|K|σ−1
. L2.

This, along with Remark 3.6, shows that if we restrict the β sum in (3.7) to β ≥ L, we
also have the better estimate

〈K〉σ
∑

1≤α≤β
β≥L

∑
J∈Z2

L\S
visible

〈K + αJ〉−σ〈K + αJ + βJ⊥〉−σ〈K + βJ⊥〉−σ . L2. (3.13)

This will be useful for us later.

Case 2: Contribution of J ∈ S. We now deal with the case when J is equal to one of the

forbidden values in S
def
= {−Qα,−Qβ}. Recall that since J is visible, we only consider the

cases when Qα, Qβ 6= 0. We start with the simpler case J = −Qα 6= 0.

Subcase 2(a): J = −Qα. We will show that for any K ∈ Z2
L, it holds that

〈K〉σ
∑

1≤α≤β
〈K − αQα〉−σ〈K − αQα − βQ⊥α 〉−σ〈K − βQ⊥α 〉−σ . L2. (3.14)



WEAKLY NONLINEAR LARGE BOX LIMIT FOR 2D NLS 25

We start with some elementary observations.

(1) Recall that K = rα + αQα. Since Qα 6= 0, the α has to be less than 2L|K|, since
otherwise rα = K and Qα = 0.

(2) We have that K+αJ = rα,K+βJ⊥ = rα+αQα−βQ⊥α , and K+αJ+βJ⊥ = rα−βQ⊥α .
(3) Notice that since α ≤ β, then |K + βJ⊥| ≥ β|Qα| − α√

2L
& β|Qα|. Similarly, |K +

αJ + βJ⊥| & β|Qα|.
(4) Finally, notice that since Qα 6= 0 and K = rα + αQα with |rα| ≤ α√

2L
≤ 1√

2
α|Qα|,

then |Qα| ∼ |K|α .

As a result, |K + βJ⊥|, |K + αJ + βJ⊥| & β
α |K| and estimate (3.5) would be satisfied for

J = −Qα once we prove that∑
1≤α≤β
α≤2L|K|

〈rα〉−σ〈
β

α
|K|〉−2σ . L2〈K〉−σ. (3.15)

Now we have∑
1≤α≤β
α≤2L|K|

〈rα〉−σ〈
β

α
|K|〉−2σ .

∑
1≤α≤β

〈β
α
|K|〉−2σ

.

 ∑
1≤α≤β≤α|K|−1

α≤2L|K|

1

+ |K|−2σ

 ∑
1≤α≤β

β≥α|K|−1,α≤2L|K|

α2σ

β2σ

 ,
where the first sum is zero if |K| > 1. A direct computation now gives the result.

Subcase 2(b): J = −Qβ. Here the analysis is more delicate and relies heavily on the fact that

if J = −Qβ, then Qβ is a visible lattice point. We will show that

〈K〉σ
∑

1≤α≤β
〈K − αQβ〉−σ〈K − αQβ − βQ⊥β 〉−σ〈K − βQ⊥β 〉−σ . L2 (3.16)

As before, we start with some useful observations:

(1) Recall that K = rβ + βQ⊥β . Since Qβ 6= 0, then β ≤ 2L|K|. Also, since |rβ| ≤ 1√
2

β
L ≤

1√
2
β|Qβ|, then |Qβ| ∼ |K|β .

(2) Since Q⊥β is visible, then β = g.c.d(LK−Lrβ) (For m = (m1,m2) ∈ (Z2)∗, we use the

notation g.c.d(m) to denote the greatest common divisor of the |m1| and |m2|).
(3) With J = −Qβ, we have that K + βJ⊥ = rβ,K + αJ = rβ − αQβ + βQ⊥β , K + αJ +

βJ⊥ = rβ − αQβ.
(4) Due to the orthogonality relation,

|K|2 + |rβ − αQβ|2 = |rβ|2 + |rβ − αQβ + βQ⊥β |2,

we have that either |rβ| ≥ |K|/
√

2 or |rβ − αQβ + βQ⊥β | ≥ |K|/
√

2. But |rβ − αQβ +

βQ⊥β | ≥ (
√

2− 1)|rβ| (since |rβ| ≤ β√
2L
≤ 1√

2
β|Q⊥β | ≤

1√
2
| − αQβ + βQ⊥β |). Therefore,

we always have that

|rβ − αQβ + βQ⊥β | ≥
|K|
100

.
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As a consequence of Observation 4, we will be done once we show that∑
1≤α≤β≤2L|K|

〈rβ〉−σ〈rβ − αQβ〉−σ . L2 (3.17)

(5) Next we reduce (3.17) to the case when β ≥ 200L. Indeed,∑
1≤α≤β≤200L

〈rβ〉−σ〈rβ − αQβ〉−σ ≤
∑

1≤α≤β≤200L

1 . L2.

Since the complementary range of β is non-empty only when |K| ≥ 100 (from ob-
servation (1) above), we are now reduced to proving that for any |K| ≥ 100, we
have ∑

1≤α≤β
200L≤β≤2L|K|

〈rβ〉−σ〈rβ − αQβ〉−σ . L2 (3.18)

(6) Finally, we can also assume that |rβ| ≤ |K|/100 and |rβ − αQβ| ≤ |K|/100, since
otherwise, one can trivially estimate the left-hand-side of (3.18) by

|K|−σ
∑

1≤α≤β
200L≤β≤2L|K|

1 . L2|K|2−σ . L2.

We start by estimating the sum in α in (3.18) by

∑
1≤α≤β

〈rβ − αQβ〉−σ . min

β,∑
α≥0

〈αQβ〉−σ
 . {min(β, |Qβ|−1), if |Qβ| ≤ 1

1 if |Qβ| ≥ 1.

As a result, we have that∑
1≤α≤β

200L≤β≤2L|K|

〈rβ〉−σ〈rβ − αQβ〉−σ .
∑

200L≤β≤2L|K|
|Qβ |≤1

〈rβ〉−σ min(β, |Qβ|−1) +
∑

200L≤β≤2L|K|
|Qβ |≥1

〈rβ〉−σ

(3.19)

The second sum above is easy to estimate: as β ranges over [200L, 2L|K|], rβ varies in the

ball B(0, |K|100) (see Observation 6 above). Moreover, for each r ∈ B(0, |K|100), there is at most
one β for which r = rβ (in fact, β = g.c.d(LK−Lr) by Observation 2. As a result, the second
sum on the right-hand-side of (3.19) can be estimated by:∑

r∈B(0,
|K|
100

)

〈r〉−σ . L2.

Therefore, we will be done once we show that∑
200L≤β≤2L|K|
|Qβ |≤1

〈rβ〉−σ min(β, |Qβ|−1) . L2. (3.20)

Recall from Observation 1 above, that |Qβ| ∼ |K|
β , which means, since |K| ≥ 100, that

min(β, |Qβ|−1) = |Qβ|−1 ∼ β
|K| . Again, we change variables here from β to rβ due to the
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one-to-one correspondence between β and r (β = g.c.d(LK − Lrβ) since Qβ is visible). Con-
sequently the left-hand side of (3.20) is estimated by

|K|−1
∑

100L≤β≤2L|K|
|Qβ |≤1

〈rβ〉−σβ . |K|−1
∑
|r|≤ |K|

100
L≤g.c.d(LK−Lr)≤2L|K|

〈r〉−σg.c.d(LK − Lr).

Let k = LK ∈ Z2, and m = Lr ∈ Z2, then the above sum is equal to

L

|k|
∑
|m|≤ |k|

100
L≤g.c.d(k−m)≤2|k|

〈m
L
〉−σg.c.d(k −m) =

L

|k|
∑

n∈Z2,|k−n|≤ |k|
100

L≤g.c.d(n)≤2|k|

〈k − n
L
〉−σg.c.d(n)

.
L

|k|

2|k|∑
j=L

j


∑

n∈Z2,|k−n|≤ |k|
100

g.c.d(n)=j

〈k − n
L
〉−σ


We claim that the term in parentheses is bounded by L2

j2
. Assuming this claim, we get that

L

|k|
∑
|m|≤ |k|

100
L≤g.c.d(k−m)≤2|k|

〈m
L
〉−σg.c.d(k −m) .

L

|k|

2|k|∑
j=L

j(
L2

j2
) . L2 log(|k|/L)

|k|/L
= L2 log |K|

|K|
. L2

since |K| ≥ 1. To prove the above-mentioned claim we notice that if g.c.d(n) = j, then n is
an element of the lattice jZ2, and hence

∑
n∈B(k,

|k|
100

)

g.c.d(n)=j

〈k − n
L
〉−σ ∼

log2(
|k|
L

)∑
l=0

2−σl
∑

n∈B(k,2lL)
g.c.d(n)=j

1 .

log2( k
L

)∑
l=0

2−σl
22lL2

j2
.
L2

j2
,

since σ > 2. This finishes the proof of Theorem 2.2.
�

Remark 3.8. Combining Remark 3.7 with estimates (3.14) and (3.16), we obtain that re-
stricting the β sum to β ≥ L, one obtains the better estimate∥∥∥∥∥∥∥∥

∑
1≤α≤β
β≥L

∑
J∈Z2

L
visible

aK+αJ bK+αJ+βJ⊥ cK+βJ⊥

∥∥∥∥∥∥∥∥
Xσ
L

. L2‖aK‖Xσ
L
‖bK‖Xσ

L
‖cK‖Xσ

L
. (3.21)

This will be useful in the following section.
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3.3. Estimates on non-resonant level sets. In order to effectively bound non-resonant
interactions in Section 5, we will need estimates on trilinear sums taken over non-resonant
tuples (K1,K2,K3) ∈ S(K) that belong to some fixed non-resonant level set of the function
Ω = |K1|2 − |K2|2 + |K3|2 − |K|2, i.e. tuples (K1,K2,K3) belonging to sets of the form

Rµ(K)
def
= {(K1,K2,K3) ∈ (Z2

L)3 : K1−K2 +K3 = K, and |K1|2−|K2|2 + |K3|2−|K|2 = µ},
(3.22)

for µ ∈ R. In contrast to the resonant sums (corresponding to µ = 0) treated above, finding
the sharpest dependence on L in the estimates on these sums is not as crucial. The following
proposition is sufficient for our purposes.

Proposition 3.9. Let L ≥ 1 and suppose that |µ| ≤ L10, then for any ε > 0 and any σ > 2,
the following estimate holds∥∥∥∥∥∥

∑
Rµ(K)

aK1bK2cK3

∥∥∥∥∥∥
Xσ
L

.σ,ε L
2+ε‖aK‖Xσ

L
‖bK‖Xσ

L
‖cK‖Xσ

L
. (3.23)

The proof of this lemma depends on lattice counting arguments similar to those used by
Bourgain to prove periodic Strichartz estimates [5, 8]. In particular, we rely on the following
lemma, whose proof is implicit in the above cited works.

Lemma 3.10. Let C(R) denote the circle in R2 centered at a ∈ Z2 of radius R. For any
ε > 0, the number of integer lattice points on the circle and inside a box of size L is bounded
by CεL

ε independent of a and R.

Proof. We split into two cases:

Case 1: R ≤ L10. In this case, we use the upper bound on the number of lattice points
on the circle C(R). If z is such a lattice point, then (m,n) = z − a ∈ Z2 and (m,n) ∈ Z2

satisfies R2 = m2 +n2 = (m+ in)(m− in). Therefore m+ in is a divisor of R2 in the integral

domain Z + iZ, which is bounded by CεR
ε

100 for any ε > 0 (see for instance [31, 58]), which
is sufficient in this case.

Case 2: R ≥ L10. Here we will use an idea that goes back to Jarnick [35] relying on the fact
that the area of any triangle in R2 with vertices in the lattice Z2 is lower bounded by 1/2

(being 1/2 of the cross product of two adjacent edges). We will show that the if L � R1/3,
then there cannot be more than two lattice points on the circle C(R) inside a box of size L.

To see this, suppose that A,B,C are three such lattice points with θ
def
= ÂC < π and B being

on the arc between A and C. Then

1

2
≤ Area of triangle ABC ≤ Area of the outer cap between segment and the arc described by AC.

As θ is the angle of the sector described by AC, a simple calculation shows that the area of

this cap is R2

2 (θ − sin θ) . R2θ3 if θ is small enough. But θ . LR−1, and hence we get that

1

2
. L3R−1.

This gives the needed contradiction if R� L1/3. �
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Proof of Proposition 3.9. Due to the symmetry between K1 and K3, we may assume without
any loss of generality that |K1| ≥ |K3|. We split the analysis into two cases:

Case 1: |K1| ≥ |K|100 or |K| ≤ 100. In this case, (3.23) reduces to showing that

sup
K∈Z2

L

∑
Rµ(K)

〈K2〉−σ〈K3〉−σ .ε L2+ε. (3.24)

Now we change variable and define Ni = Ki−K (i = 1, 2, 3) so that the new variables satisfy
the relations:

N1 +N3 = N2 2(N3 −N2) ·N3 = |N1|2 + |N3|2 − |N2|2 = µ.

As a result, we have that∑
Rµ(K)

〈K2〉−σ〈K3〉−σ =
∑

N2∈Z2
L

〈K +N2〉−σ
∞∑
l=0

2−σl
∑

N3∈Z2
L∩B(−K,2l)

2(N3−N2)·N3=µ

1 (3.25)

Let n3 = LN3, n2 = LN2,m = L2µ
2 ∈ Z (otherwise there is nothing to prove). Then we have

that
(n3 − n2) · n3 = m⇔ |2n3 − n2|2 = 4m+ |n2|2,

which means that for a fixed n2, 2n3 belongs to the circle centered at n2 of radius
√

4m+ |n2|2.
Now in the last sum in (3.25), for a given l ∈ N, we have that n3 = LN3 belongs to balls of
size L2l. Using Lemma 3.10, we have that for any n2, l ≥ 0, and ε > 0,∑

N3∈Z2
L∩B(−K,2l)

2(N3−N2)·N3=µ

1 .ε (2lL)ε.

Consequently, we have that∑
Rµ(K)

〈K2〉−σ〈K3〉−σ .ε Lε
∑

N2∈Z2
L

〈K +N2〉−σ
∞∑
l=0

2−σl2ε` . L2+ε,

which is (3.24).

Case 2: |K1| < |K|
100 and |K| > 100. This case is non-empty only when µ < 0 due to the

relation
|K1|2 + |K3|2 = |K|2 + |K2|2 + µ. (3.26)

From the relationK2 = K1−K3−K and recalling that |K3| ≤ |K1|, we deduce that |K2| ≥ |K|50 ,
and as a result, we are reduced to showing that

sup
K∈Z2

L

∑
Rµ(K)

〈K1〉−σ〈K3〉−σ .ε L2+ε (3.27)

Now we change variable and define Ni = Ki − K (i = 1, 2, 3) so that the new variables
satisfy the relations:

N1 +N3 = N2 − 2N1 ·N3 = |N1|2 + |N3|2 − |N2|2 = µ.

Note that since |K3| ≤ |K1| ≤ |K|100 , we have that |N1| ∼ |K| ∼ |N3|. Now we write, N1 = αJ

where α ∈ N and J is visible and denote by m
def
= L2 µ

2 ∈ Z (otherwise there is nothing to
prove). But if 2N1 ·N3 = −µ, we must have that α divides m.
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The fact that N3 satisfies the relation J · N3 = m
L2α

shows that K + N3 ranges over a
one-dimensional lattice of spacing |J |: Indeed, if we denote n3 = LN3 and j = LJ , then

the equation j · n3 = m
2 has a general solution of the form n3 = n

(0)
3 + βj⊥ with β ∈ Z and

n
(0)
3 being any particular solution of the equation j · n(0)

3 = m
2 (see [31] for the elementary

argument). Consequently, for any fixed α, J , we have that∑
N3·J= m

L2α

〈K +N3〉−σ .
∑
β∈Z
〈βJ⊥〉−σ . max(1, |J |−1).

As a result, if we write as in the previous section K = rα + αQα, with rα ∈ B(α/L) ∩ Z2
L

and Qα ∈ Z2
L (see (3.6)), then we can estimate∑

Rµ(K)

〈K1〉−σ〈K3〉−σ ≤
∑
α|m

∑
J∈Z2

L
J visible

〈K + αJ〉−σ
∑

N3·J= m
L2α

〈K +N3〉−σ

.
∑
α|m

∑
J∈Z2

L\{−Qα}
J visible

〈rα + α(J +Qα)〉−σ
∑

N3·J= m
L2α

〈K +N3〉−σ

+
∑
α|m

〈rα〉−σ
∑

N3·Qα= −m
L2α

〈rα + αQα +N3〉−σ

.
∑
α|m

∑
J∈Z2

L\{−Qα}
J visible

〈rα + α(J +Qα)〉−σ max(1, |J |−1)

+
∑
α|m

max(1, |Qα|−1).

For the first sum above we recall that |J | = |N1|
α ∼

|K|
α and use Lemma 3.3, as for the second

sum we simply estimate |Qα|−1 ≤ L and use that the bound on the number of divisors [31, 58]

of m given by Cε|m|ε/100 .ε Lε, as |m| = L2 |µ|
2 . L12 by assumption on µ. As a result, we

get that

∑
Rµ(K)

〈K1〉−σ〈K3〉−σ .

∑
α|m

L2

α2
max(

α

|K|
, 1)

+ L1+ε . L2+ε,

which is (3.27). This finishes the proof of the proposition. �

4. Proof of Theorem 2.3: convergence of TL to T

The aim of this section is to prove Theorem 2.3. We first give the proof by assuming the
co-prime equidistribution Lemma 4.1. In a second part, we prove this lemma.

4.1. Proof of Theorem 2.3. We will use the following expression for TL (see (2.6) and
(2.2)):

TL(g, g, g)(K) =
1

G

∑
K1·K2=0

g(K +K1)ḡ(K +K1 +K2)g(K +K2) with G
def
=

2L2 logL

ζ(2)
.

Without loss of generality we assume that B = 1 in the statement of Theorem 2.3.
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Step 1: decomposition of TL. Start by writing

1

G

∑
K1·K2=0

g(K +K1)ḡ(K +K1 +K2)g(K +K2)

=
1

G

∑
K1·K2=0
K1,K2 6=0

g(K +K1)ḡ(K +K1 +K2)g(K +K2) +
2

G

(∑
K′

|g(K ′)|2
)
g(K)− 1

G
|g(K)|2g(K)

= I1 + I2 + I3.

The terms I2 and I3 can be easily bounded by L2

G ‖g‖
2
`2L
‖g‖`∞L and G−1‖g‖3`∞L respectively.

As for the main term I1, we parameterize the sum over {k1, k2 ∈ Z2 \ {0} : k1 · k2 = 0} as
k1 = α(p, q), k2 = β(−q, p) with α, β, p, q ∈ Z such that α ≥ 1, β 6= 0 and g.c.d(|p|, |q|) = 1
(see Definition 2.1). We then write it as:

I1 =
1

G

∑
α≥1,
β∈Z∗

∑
g.c.d(p,q)=1

g(K +
α

L
(p, q))ḡ(K +

α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p))

=
1

G

∑
α≥1,
β≥1

∑
g.c.d(p,q)=1

g(K +
α

L
(p, q))ḡ(K +

α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p)) (4.1)

+
1

G

∑
α≥1,
β≥1

∑
g.c.d(p,q)=1

g(K − α

L
(p, q))ḡ(K − α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p)), (4.2)

where we used the symmetry (p, q)→ −(p, q). Now we write:

(4.1) =
1

G

∑
1≤α≤β

∑
g.c.d(p,q)=1

+
1

G

∑
1≤β≤α

∑
g.c.d(p,q)=1

− 1

G

∑
1≤α=β

∑
(p,q)=1

=
1

G

∑
1≤α≤β

∑
g.c.d(p,q)=1

g(K +
α

L
(p, q))ḡ(K +

α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p))

+
∑

1≤β≤α

∑
g.c.d(p′,q′)=1

g(K +
α

L
(−q′, p′))ḡ(K +

α

L
(−q′, p′)− β

L
(p′, q′))g(K − β

L
(p′, q′))

− 1

G

∑
K′∈(Z2

L)∗

g(K +K ′)ḡ(K +K ′ +K ′⊥)g(K +K ′⊥)

=
1

G

∑
1≤α≤β

∑
g.c.d(p,q)=1

g(K +
α

L
(p, q))ḡ(K +

α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p))

+
∑

1≤α≤β

∑
g.c.d(p,q)=1

g(K − α

L
(p, q))ḡ(K − α

L
(p, q) +

β

L
(−q′, p′))g(K +

β

L
(−q, p))

− 1

G

∑
K′∈(Z2

L)∗

g(K +K ′)ḡ(K +K ′ +K ′⊥)g(K +K ′⊥)
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(recall that the superscript ⊥ the rotation in R2 by π/2 in the counter-clockwise direction).
Arguing similarly

(4.2) =
1

G

∑
1≤α≤β

∑
(p,q)=1

(· · · ) +
1

G

∑
1≤β≤α

∑
(p,q)=1

(· · · )− 1

G

∑
1≤α=β

∑
(p,q)=1

(· · · )

=
1

G

∑
1≤α≤β

∑
(p,q)=1

g(K − α

L
(p, q))ḡ(K − α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p))

+
∑

1≤α≤β

∑
(p,q)=1

g(K +
α

L
(p, q))ḡ(K +

α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p))

− 1

G

∑
K′∈(Z2

L)∗

g(K +K ′)ḡ(K +K ′ +K ′⊥)g(K +K ′⊥).

As a result,

I1 =
2

G

∑
1≤α≤β

∑
(p,q)=1

g(K +
α

L
(p, q))ḡ(K +

α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p))

+
2

G

∑
1≤α≤β

∑
(p,q)=1

g(K − α

L
(p, q))ḡ(K − α

L
(p, q) +

β

L
(−q, p))g(K +

β

L
(−q, p)) (4.3)

− 2

G

∑
K′∈(Z2

L)∗

g(K +K ′)ḡ(K +K ′ +K ′⊥)g(K +K ′⊥)

= II1 + II2 + II3. (4.4)

Notice that the sum in II3 is a sum over squares with vertex at K. Using the relation

|K|2 + |K +K ′ +K ′⊥|2 = |K +K ′|2 + |K +K ′⊥|2

one notices that either |K + K ′| or |K + K ′⊥| is larger than |K|/2. This allows to estimate
II3(K) as follows:

II3(K) . G−1〈K〉−σ
∑

K′∈(Z2
L)∗

〈K +K ′ +K ′⊥〉−σ . 〈K〉−σL
2

G
.

which means that II3 has an acceptable contribution in Xσ, namely

‖II3(K)‖Xσ .
L2

G
.

We will perform the analysis only on II1 since that for II2 is exactly the same except for
the signature of α.

Step 2: restricting the range of β. Before performing the analysis on II1, recall that we call

points z of Z2 visible if z = (p, q) with g.c.d(|p|, |q|) = 1 (see Definition 2.1). Consequently,
we can write II1 as:

II1
def
=

2

G

∑
1≤α≤β

∑
J∈Z2 visible

g(K +
α

L
J)ḡ(K +

α

L
J +

β

L
J⊥)g(K +

β

L
J⊥). (4.5)

We split II1 into a sum over β < L and another over β ≥ L to get:

II1 = III1 + III2 (4.6)
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where

III1 =
2

G

∑
1≤α≤β
β<L

∑
J∈Z2 visible

g(K +
α

L
J)ḡ(K +

α

L
J +

β

L
J⊥)g(K +

β

L
J⊥) (4.7)

and

III2 =
2

G

∑
1≤α≤β
β≥L

∑
J∈Z2 visible

g(K +
α

L
J)ḡ(K +

α

L
J +

β

L
J⊥)g(K +

β

L
J⊥). (4.8)

Remark 3.8 says exactly that

‖III2‖Xσ .
L2

G
, (4.9)

which means that the contribution of III2 is an acceptable error.

Step 3: discrete to continuous limit in J . We move on to analyzing III1. For this, we define

N
def
= L/β and write the sum:∑
J∈Z2

visible

g(K +
α

L
J)ḡ(K +

α

L
J +

β

L
J⊥)g(K +

β

L
J⊥)

=
∑
J ′∈Z2

N
visible

g(K +
α

β
J ′)ḡ(K +

α

β
J ′ + J ′⊥)g(K + J ′⊥).

The estimate on this sum is contained in the following lemma.

Lemma 4.1 (Co-prime equidistribution lemma). Let σ > 2. For all B > 0, if g : R2 → C
satisfies the following bounds:

‖g‖Xσ+1(R2) + ‖∇g‖Xσ+1(R2) ≤ B,

then for all N > 1, we have

EN
def
=

∥∥∥∥∥∥∥∥
1

N2

∑
J∈Z2

N
J visible

g(K +
α

β
J)ḡ(K +

α

β
J + J⊥)g(K + J⊥)

− 1

ζ(2)

ˆ
R2

g(K +
α

β
z)ḡ(K +

α

β
z + z⊥)g(K + z⊥)dz

∥∥∥∥
Xσ(R2)

. B3 1 + logN

N
.

(4.10)

We leave the proof of this lemma for later in order not to distract the reader. This allows
us to write:

III1 =
2L2

ζ(2)G

∑
1≤α≤β≤L

1

β2

ˆ
R2

g(K +
α

β
x)ḡ(K +

α

β
x+ x⊥)g(K + x⊥) dx+

2L2

G

∑
1≤α≤β≤L

1

β2
EL/β

= IV1 + IV2



34 E. FAOU, P. GERMAIN, AND Z. HANI

with

‖IV2‖Xσ .
L

G

∑
1≤β≤L

(1 + log(L/β)) .
L2

G
.

Step 4: discrete to continuous limit in α. In order to analyze IV1, we view the α sum as a
Riemann sum, which we will replace by the corresponding integral. For each 1 ≤ β ≤ L,
denote:

Dβ
def
=

1

β

∑
1≤α≤β

ˆ
R2

g(K +
α

β
x)ḡ(K +

α

β
x+ x⊥)g(K + x⊥) dx

−
ˆ 1

0

ˆ
R2

g(K + λx)ḡ(K + λx+ x⊥)g(K + x⊥) dx dλ

=
∑

1≤α≤β

ˆ α
β

α−1
β

ˆ
R2

(
g(K +

α

β
x)− g(K + λx)

)
ḡ(K +

α

β
x+ x⊥)g(K + x⊥)dx dλ

+
∑

1≤α≤β

ˆ α
β

α−1
β

ˆ
R2

g(K + λx)

(
ḡ(K +

α

β
x+ x⊥)− ḡ(K + λx+ x⊥)

)
g(K + x⊥)dx dλ.

We only estimate the first term as the second is similar. It can be written∑
1≤α≤β

ˆ α
β

α−1
β

ˆ α/β

λ

ˆ
R2

x · ∇g(K + tx)ḡ(K +
α

β
x+ x⊥)g(K + x⊥)dx dt dλ.

We will show that for each 1 ≤ α ≤ β and each t ∈ [0, 1],∥∥∥∥ˆ
R2

x · ∇g(K + tx)ḡ(K +
α

β
x+ x⊥)g(K + x⊥) dx

∥∥∥∥
Xσ

. 1. (4.11)

To see this we split into two cases: Either |x| ≤ 100|K|, in which case we use the orthogo-
nality relation

|K|2 + |K + tx+ x⊥|2 = |K + tx|2 + |K + x⊥|2

to obtain that either |K + x⊥| ≥ |K|/2 or |K + tx| ≥ |K|/2. In both cases, we have since
|g(x)|+ |∇g(x)| . 〈x〉−σ−1:∣∣∣∣∣

ˆ
|x|≤100|K|

x · ∇g(K + tx)ḡ(K +
α

β
x+ x⊥)g(K + x⊥) dx

∣∣∣∣∣
.

|K|
〈K〉σ+1

ˆ
R2

〈K +
α

β
x+ x⊥〉−σ dx . 〈K〉−σ,

which is (4.11). In the case when |x| ≥ 100|K|, then |K + x⊥| ≥ |K| and |K + α
βx + x⊥| ≥

1
2 |
α
βx+ x⊥| ≥ 1

2 |x|, and hence the estimate (4.11) follows directly.

With (4.11) in hand, Minkowski’s inequality gives

‖Dβ‖Xσ .
1

β
. (4.12)
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Consequently,

IV1 =
2L2

ζ(2)G

∑
1≤β≤L

1

β

ˆ 1

0

ˆ
R2

g(K + λx)ḡ(K + λx+ x⊥)g(K + x⊥) dx dλ

+
2L2

ζ(2)G

∑
1≤β≤L

1

β
Dβ(K)

and hence

IV1 =
2 logD(L)L2

ζ(2)G

ˆ 1

0

ˆ
R2

g(K + λx)ḡ(K + λx+ x⊥)g(K + x⊥) dx dλ+
2L2

ζ(2)G

∑
1≤β≤L

1

β
Dβ(K)

= V1 + V2,

where logD n =
∑n

k=1
1
k , and where V2 can be bounded as explained above by

‖V2‖Xσ .
L2

G
. (4.13)

Finally, using that | logD L− logL| = O(1), the definition of G, and Theorem 2.2, we obtain

V1 =

ˆ 1

0

ˆ
R2

g(K + λx)ḡ(K + λx+ x⊥)g(K + x⊥) dx dλ+OXσ

(
1

logL

)
(with the notation A = B +OXσ(C) if ‖A−B‖Xσ . C).

Step 5: conclusion. Combining all the above, we get that if G = 2 logD(L)L2

ζ(2) then:

II1 =

ˆ 1

0

ˆ
R2

g(K + λz)ḡ(K + λz + z⊥)g(K + z⊥)dz dλ+OXσ

(
1

logL

)
.

The same analysis for II2 gives (recalling that the only difference with the above is the sign
of α)

II2 =

ˆ 1

0

ˆ
R2

g(K − λz)ḡ(K − λz + z⊥)g(K + z⊥)dz dλ+OXσ

(
1

logL

)
=

ˆ 0

−1

ˆ
R2

g(K + λz)ḡ(K + λz + z⊥)g(K + z⊥)dz dλ+OXσ

(
1

logL

)
,

and as a final result we get that:∥∥∥∥∥∥ 1

G

∑
K1·K3=0

g(K +K1)ḡ(K +K1 +K2)g(K +K2)− T (g, g, g)(K)

∥∥∥∥∥∥
Xσ

.
1

logL
, (4.14)

which finishes the proof.

4.2. Proof of the co-prime equidistribution Lemma 4.1. We start by recalling some
elementary number theory.

Step 0: number theoretic preliminaries. For any N > 0, define for any subset P of R2 the
function:

gP (N) = #{z ∈ (Z2
N )∗ ∩ P}.
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Note that for reasonably nice regions P , the area of P is equal to the quantity:

VP = lim
N→+∞

gP (N)

N2
.

Recall that a lattice point z ∈ (Z2
N )∗ is visible (from 0) if the segment [0z] does not intersect

the lattice Z2
N apart from the endpoints 0 and z; equivalently, z = N−1(p, q) where (p, q) are

co-prime (see Definition 2.1). This definition allows one to define the following counter-part
of gP :

fP (N)
def
= #{z ∈ Z2

N ∩ P : z is visible}.
It is a classical result in analytic number theory [31] that

lim
N→+∞

fP (N)

N2
=

VP
ζ(2)

, (4.15)

where ζ(2) = π2

6 is the Riemann zeta function at 2. The generalization of this result from
characteristic functions to more general functions, along with the relevant discrepancy or
error estimates, will be a byproduct of the analysis in this section, and we include it at the
end in Corollary 4.5.

To prove Lemma 4.1, we need to estimate the discrepancy between the equidistribution
sum in (4.10) and the integral in the strong norm Xσ(Z2

L). The proof of (4.15), which is
actually the prototype for our proof, is based on an inversion formula for the multiplicative
Möbius function µ(m) : N→ Z, whose definition we recall first:

µ(k) =


1 if k = 1,

(−1)κ if k = p1p2 . . . pκ and all the primes p1, . . . , pκ are different,

0 if k is not square-free.

(4.16)

Recall that the Möbius function is multiplicative (i.e. µ(ab) = µ(a)µ(b) whenever a and
b are co-prime) and satisfies the following fundamental inversion formula proved by Möbius
[31]:

g(n) =
∑
d|n

f(d)⇒ f(n) =
∑
d|n

µ(
n

d
)g(d),

from which follows:

Lemma 4.2 ([31]). Suppose that f : N → C satisfies, for all x ∈ N,
∑

m,n |f(mnx)| =∑
k d(k)|f(kx)| < ∞, where d(k) is the number of divisors of k. Then for any x ∈ N, there

holds

g(x) =

∞∑
m=1

f(mx)⇔ f(x) =

∞∑
n=1

µ(n)g(nx). (4.17)

The final property of µ(n) that will be needed in the proof is its connection to the Riemann
zeta function defined for Re s > 1 by

ζ(s) =
∑
n∈N

1

ns
.

Applying Lemma 4.2 with f(x) = x−s and g(x) = ζ(s)x−s, one gets that

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.
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Step 1: a new formulation for (4.10). Again we assume without any loss of generality that

B = 1. Given u : R2 → C and such that supN>1N
−2
∑

z∈Z2
N
|u(z)| < ∞, we define the

following two sums:

S(u,N)
def
=

∑
z∈Z2

N
visible

u(z) and D(u,N) =
∑

z∈(Z2
N )∗

u(z). (4.18)

Note that if u ∈ Xκ(R2) for some κ > 2, then for any N > 0, we have that

N−2D(|u|, N) . 1 (4.19)

We will first compare the discrepancy between S(u,N) and D(u,N).
Notice that every z ∈ Z2

N is a visible point for exactly one lattice in the family {Z2
N
m

}m∈N.

As a result, we have ∑
z∈Z2

N

u(z) =

∞∑
m=1

∑
z∈Z2

N
m

visible

u(z)

and hence for all N > 0,

D(u,N) =

∞∑
m=1

S(u,
N

m
).

Consequently, applying Lemma 4.2 to the functions f(y) = D(u, Ny ) and g(y) = S(u, Ny ) at

x = 1 we obtain for all N > 0,

S(u,N) =

∞∑
n=1

µ(n)D(u,
N

n
), (4.20)

provided that
∑

m,n∈N |S(u, Nmn)| < ∞. But this follows from (4.19) as soon as u ∈ Xκ(R2)

with κ > 2, and the fact that S(u, σ) ≤ D(|u|, σ) for any σ > 0.
With these notations, the error term in the estimate (4.10) can be written as follows

EN (K)
def
=

1

N2

∑
z∈Z2

N visible

uK(z)− 1

ζ(2)

ˆ
R2

uK(z)dz =
1

N2
S(uK , N)− 1

ζ(2)

ˆ
R2

uK(z)dz,

where

uK(z) = g(K +
α

β
z)ḡ(K +

α

β
z + z⊥)g(K + z⊥). (4.21)

Now by (4.20)

1

N2
S(uK , N) =

∞∑
n=1

µ(n)

n2

( n2

N2
D(uK ,

N

n
)
)

=
∞∑
n=1

µ(n)

n2

ˆ
R2

uK(z) dz +
∞∑
n=1

µ(n)

n2

(
n2

N2
D(uK ,

N

n
)−

ˆ
R2

uK(z) dz

)

=
1

ζ(2)

ˆ
R2

uK(z) dz +

∞∑
n=1

µ(n)

n2

(
n2

N2
D(uK ,

N

n
)−

ˆ
R2

uK(z) dz

)
.
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As a result, we have that

ρ2S(uK , ρ)− 1

ζ(2)

ˆ
R2

uK(z) dz =

∞∑
n=1

µ(n)

n2

(
n2

N2
D(uK ,

N

n
)−

ˆ
R2

uK(z) dz

)
def
= D1 + D2.

with

D1 =

[N ]∑
n=1

µ(n)

n2

(
n2

N2
D(uK ,

N

n
)−

ˆ
R2

uK(z) dz

)
and

D2 =
∞∑

n=[N ]+1

µ(n)

n2

(
n2

N2
D(uK ,

N

n
)−

ˆ
R2

uK(z) dz

)
.

Step 2: estimates of D1 and D2. The estimate of D1 and D2 relies on Lemma 4.3 below,
whose proof will be given in the next paragraph.

For any given R > 0 and K ∈ R2, there exists a unique r ∈ B( 1
R) and Q ∈ Z2

R such that
K = r +Q. Define

D∗(uK , R)
def
=

∑
M∈(Z2

R)∗\{Q⊥}

uK(M). (4.22)

Note that D∗(uK , R) = D(uK , R) if Q = 0. In particular, if

|K| ≤ 1

2R
=⇒ D∗(uK , R) = D(uK , R). (4.23)

Lemma 4.3. With the previous notations, we have

(1) If R ≤ 1, then

‖R−2D∗(uK , R)−
ˆ
R2

uK(z) dz‖Xσ(R2) . 1. (4.24)

(2) If R ≥ 1, then

‖R−2D(uK , R)−
ˆ
R2

uK(z) dz‖Xσ(R2) .
1

R
. (4.25)

To estimate D1, we use the second part this Lemma (with R = N/n ≥ 1) to get that

‖D1‖Xσ(R2) .
[N ]∑
n=1

1

n2

n

N
.

1 + logN

N

which is acceptable.
To estimate D2, we must isolate from the sum defining D(uK ,

N
n ) the problematic point

Q⊥ (depending on K and R = N
n ) and define D∗(uK ,

N
n ) as in (4.22). Using (4.23) with

R = N/n ≤ 1, we can write

D2 =

∞∑
n=[N ]+1

µ(n)

n2

(
n2

N2
D∗(uK ,

N

n
)−

ˆ
R2

uK(z) dz

)
+

1

N2

2[N |K|]+1∑
n=[N ]+1

µ(n)uK(Q⊥)

def
= D

(1)
2 + D

(2)
2 ,
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The estimate on D
(1)
2 follows from the first part of Lemma 4.3 below, which gives that

‖D(1)
2 ‖Xσ(R2) .

∞∑
n=[N ]+1

1

n2
.

1

N
.

To estimate the contribution of D
(2)
2 , we first note that

uK(Q⊥) = g(r +
α

β
Q⊥ +Q)g(r +

α

β
Q⊥)g(r)

and hence due to the orthogonality relation

|K|2 + |r +
α

β
Q⊥|2 = |r|2 + |r +

α

β
Q⊥ +Q|2

we get that |r+ α
βQ
⊥+Q| ≥ |K|2 or |r| ≥ |K|2 . Using the fact that g ∈ Xσ+1, we can estimate

|D(2)
2 | .

1

N2

2[N |K|]+1∑
n=[N ]+1

〈K〉−σ−1 .
1

N2

N |K|
〈K〉σ+1

.
1

N〈K〉σ
,

and consequently we have that

‖D(2)
2 ‖Xσ(R2) .

1

N
as needed. This finishes the proof of Lemma 4.1, modulo Lemma 4.3 that we now prove.

Step 3: Proof of Lemma 4.3. We start with part (1). In this case R ≤ 1 and we will show
that

‖R−2D∗(uK , R)‖Xσ(R2) + ‖
ˆ
R2

uK(z)‖Xσ(R2) . 1. (4.26)

Recall that we have written K = r + Q with Q ∈ Z2
R and r ∈ B( 1

R), and defined D∗(uK , R)
so that:

1

R2
D∗(uK , R) =

1

R2

∑
M∈(Z2

R)∗\{Q⊥}

g(K +
α

β
M)g(K +

α

β
M +M⊥)g(K +M⊥). (4.27)

The bound on (4.27) follows by splitting into two cases: either |K + α
βM | ≥

|K|
100 or |K +

α
βM | ≤

|K|
100 . The contribution of the first case (|K + α

βM | ≥
|K|
100) to the Xσ norm of (4.27)

can be bounded by

sup
K∈R2

1

R2

∑
M∈Z2

R\{Q⊥}

〈K +
α

β
M +M⊥〉−σ〈K +M⊥〉−σ

. sup
K∈R2

1

R2

∑
M∈Z2

R\{Q⊥}

〈K +M⊥〉−σ . 1,

where we have used Lemma 3.3 (in the case α = 0, β = 1 and L ≤ 1) and the fact that
M 6= Q⊥ in the last step.

In the case when |K + α
βM | ≤

|K|
100 , we can assume that |K| ≥ 100 since otherwise the

same argument as in the case |K + α
βM | >

|K|
100 applies. But |K + α

βM | ≤
K

100 implies that

|M | ≥ |αβM | ≥
99
100 |K| (recall that α ≤ β in (4.21)). This also implies that |K+ α

βM +M⊥| ≥
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|M⊥| − |K + α
βM | ≥

98
100 |K| and consequently we have that the contribution of the second

case to the Xσ norm of (4.27) can be bounded by

sup
K∈R2

1

R2

∑
M∈Z2

R\{Q⊥}

〈K +
α

β
M〉−σ〈K +M⊥〉−σ . sup

K∈R2

1

R2

∑
M∈Z2

R\{Q⊥}

〈K +M⊥〉−σ . 1,

where we used again Lemma 3.3 and the fact that M 6= Q⊥. In conclusion, we have that

‖(4.27)‖Xσ . 1.

As a result,
‖R−2D∗(uK , R)‖Xσ . 1 (4.28)

The estimate on
´
R2 uK(z)dz is similar to (even simpler than) that performed above for the

discrete sum, and in view of (4.21), one gets the bound∥∥∥∥ˆ
R2

uK(z) dz

∥∥∥∥
Xσ

. 1,

which finishes the proof of (4.24).

Now we move on to proving Part (2). Here R ≥ 1. Let BM ( 1
R) denote the box M + [0, 1

R)2.
Then

1

R2
D(uK , R)−

ˆ
R2

uK(z) dz =
∑
M∈Z2

R

ˆ
BM ( 1

R
)
[g(K +

α

β
M)ḡ(K +

α

β
M +M⊥)g(K +M⊥)

− g(K +
α

β
z)ḡ(K +

α

β
z + z⊥)g(K + z⊥)] dz

=
∑
M∈Z2

R

ˆ
BM ( 1

R
)

[
g(K +

α

β
M)− g(K +

α

β
z)

]
ḡ(K +

α

β
M +M⊥)g(K +M⊥)dz (4.29)

+
∑
M∈Z2

R

ˆ
BM ( 1

R
)
g(K +

α

β
z)

[
ḡ(K +

α

β
M +M⊥)− ḡ(K +

α

β
z + z⊥)

]
g(K +M⊥) dz

(4.30)

+
∑
M∈Z2

R

ˆ
BM ( 1

R
)
g(K +

α

β
z)ḡ(K +

α

β
z + z⊥)

[
g(K +M⊥)− g(K + z⊥)

]
dz. (4.31)

We start by bounding (4.29). For this we write

|(4.29)| =∣∣∣∣∣∣
∑
M∈Z2

R

ˆ
BM ( 1

R
)

ˆ 1

0

α

β
(M − z).∇g(K +

α

β
z +

α

β
t(M − z))ḡ(K +

α

β
M +M⊥)g(K +M⊥)dt dz

∣∣∣∣∣∣
≤ 1

R

∑
M∈Z2

R

ˆ
B0( 1

R
)

ˆ 1

0
|∇g|(K +

α

β
M +

α

β
z − α

β
tz)|g|(K +

α

β
M +M⊥)|g|(K +M⊥)dt dz

=
1

R3

 
B0( 1

R
)

ˆ 1

0

∑
M∈Z2

R

|∇g|(K +
α

β
M +

α

β
z − α

β
tz)|g|(K +

α

β
M +M⊥)|g|(K +M⊥)dt dz,
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where we denoted by
ffl
B0( 1

R
) = R2

´
B0( 1

R
). To prove that ‖(4.29)‖ . 1

R , it suffices -given our

bounds on g and ∇g in Xσ- to prove that for any 0 ≤ t ≤ 1 and z ∈ B0( 1
R)

1

R2

∑
M∈Z2

R

〈K +
α

β
M +

α

β
(1− t)z〉−σ〈K +

α

β
M +M⊥〉−σ〈K +M⊥〉−σ . 〈K〉−σ. (4.32)

But this follows by repeating the by-now-familiar argument: If |K| ≤ 200 or if |K+α
βM | ≥

|K|
100 ,

then since (1 − t)z ∈ B0( 1
R), 〈K + α

βM + α
β z −

α
β tz〉 & 〈K〉; and (4.32) follows from Lemma

3.3 (with β = 1 and L ≥ 1) since

1

R2

∑
M∈Z2

R

〈K +M⊥〉−σ . 1.

Otherwise, we have that |K| ≥ 200 and |K + α
βM | ≤

|K|
100 . In this case, (4.32) follows again

from Lemma 3.3 since |K + α
βM +M⊥| & |K| (using the orthogonality relation).

The argument for (4.30) and (4.31) are similar upon using again Lemma (3.3) and the
bounds on g and ∇g. This finishes the proof of Lemma 4.3.

Remark 4.4. A direct consequence of the analysis performed in the previous section is the fol-
lowing co-prime equidistribution result, which we state for functions u satisfying (|u|, |∇u|) ∈
Xσ(R2), but can be extended easily to much larger classes of functions.

Corollary 4.5. Suppose that u : R2 → C satisfies ‖u‖Xσ + ‖∇u‖Xσ ≤ B for σ > 2. Then
for any L ≥ 1, the following discrepancy bound holds:∣∣∣∣∣∣∣∣L

−2
∑
J∈Z2

L
visible

u(J)− 1

ζ(2)

ˆ
R2

u(z) dz

∣∣∣∣∣∣∣∣ . B
1 + logL

L
. (4.33)

5. Proof of Approximation Theorems: convergence of (NLS) to (CR)

The purpose of this section is to prove Theorems 2.4 and 2.6. We will start by adopting a

notationally convenient rescaling. Recall that ãK(t) = e−4π2i|K|2taK(t) satisfies the equation

−i∂tãK(t) =
ε2

L4

∑
S(K)

ãK1(t)ãK2(t)ãK3(t)e4π2iΩt.

where Ω(K,K1,K2,K3) = −|K|2 + |K1|2 − |K2|2 + |K3|2. Set C0 =
ζ(2)

2
, and define the

renormalized profile bK as

bK(t) = ãK(
C0L

2

logL
t) = aK(

C0L
2

logL
t)e
−i 4π2C0L

2

logL
|K|2t

. (5.1)

It will be much more notationally convenient to work with bK(t) instead of aK(t). It satisfies

−i∂tbK =
C0ε

2

L2 logL

∑
S(K)

bK1(t)bK2(t)bK3(t)e
i
4π2C0L

2

logL
Ω(K,K1,K2,K3)t

,
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Recall the definition of the operator TL as

TL(e, f, g)(K)
def
=

C0

L2 logL

∑
R(K)

eK1fK2gK3 ,

for sequences e = {eK}, e = {fK} and g = {gK} on Z2
L. Hence the equation can be written

−i∂tbK = ε2TL(b, b, b)(K)︸ ︷︷ ︸
resonant interactions

+
ε2C0

L2 logL

∑
S(K)\R(K)

bK1(t)bK2(t)bK3(t)e
i
4π2C0L

2

logL
Ωt

︸ ︷︷ ︸
non-resonant interactions

. (5.2)

In sequel, the initial value bK(0) will be the projection of a function g0 : R2 → C, that is
bK(0) = g0(K) for K ∈ Z2

L. With this rescaling, Theorem 2.4 follows once we show that for
any 0 < γ < 1, there exists cγ such that if ε < cγL

−1−γB−1, it holds that

‖bK(t)− g(ε2t,K)‖Xσ
L
.

B

(logL)1−γ (5.3)

for all 0 ≤ t ≤ ε−2 min(M,γ log logL
cγB2 ). If we require from the start that L ≥ exp exp γ−1cγMB2,

Theorem 2.4 follows as stated.
Before proving Theorem 2.4, we start with the following elementary lemma:

Lemma 5.1. Let σ > 2. For any sequences {aK}, {bK}, and {cK} in Xσ
L, we have∥∥∥∥∥∥

∑
K1−K2+K3=K

aK1bK2cK3

∥∥∥∥∥∥
Xσ
L

. L4‖aK‖Xσ
L
‖bK‖Xσ

L
‖cK‖Xσ

L
(5.4)

Proof. The proof is straightforward. Without loss of generality, we assume that the sequences
{aK}, {bK}, and {cK} are non-negative. Then we have for K ∈ Z2

L,

〈K〉σ
∑

K1−K2+K3=K

aK1bK2cK3 ≤
∑

K1−K2+K3=K

〈K1〉σaK1bK2cK3 +
∑

K1−K2+K3=K

aK1〈K2〉σbK2cK3

+
∑

K1−K2+K3=K

aK1bK2〈K3〉σcK3 .

We bound the contribution of the first terms; the other being similar.∑
K1−K2+K3=K

〈K1〉σaK1bK2cK2 ≤ ‖aK‖Xσ
L

∑
K2,K3

bK2cK2 ≤L4‖aK‖Xσ‖bK‖`1L‖cK‖`1L

.L4‖aK‖Xσ
L
‖bK‖Xσ

L
‖cK‖Xσ

L
.

�

Proof of Theorem 2.4. Let gε(t, ξ)
def
= g(ε2t, ξ). It satisfies the equation

−i∂tgε(t, ξ) = ε2T (gε, gε, gε)(t, ξ). (5.5)

Note that bK(0) = g0(K) ∈ Xσ+1
L . From (5.2), the sequence {bK} satisfies the equation

− i∂tbK = ε2TL(gε, gε, gε)(K) + ε2 [TL(b, b, b)(K)− TL(gε, gε, gε)(K)]

+
ε2

L2 logL

∑
S(K)\R(K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t
.
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Let wK(t)
def
= bK(t) − g(ε2t,K) for K ∈ Z2

L and t ≤ ε−2M . Then the equation satisfied by
wK is

−i∂twK(t) = ε2 [TL(b, b, b)(K)− TL(gε, gε, gε)(K)] + ε2 [TL(gε, gε, gε)(K)− T (gε, gε, gε)(K)]

+
C0ε

2

L2 logL

∑
S(K)\R(K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t
.

Our first step is an application of a normal form transformation: For this we write

C0ε
2

L2 logL

∑
S(K)\R(K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t
=∂t

 ε2

L2

∑
S(K)\R(K)

1

4π2iL2Ω
bK1bK2bK3e

i
4π2C0L

2Ω
logL

t


− ε2

L2

∑
S(K)\R(K)

1

4π2iL2Ω
∂t
(
bK1bK2bK3

)
e
i
4π2C0L

2Ω
logL

t
.

As a result, if we define the change of coordinates

eK(t)
def
= wK(t)− ε2

L2

∑
S(K)\R(K)

1

4π2L2Ω
bK1(t)bK2(t)bK3(t)e

i
4π2C0L

2Ω
logL

t
,

then the equation satisfied by eK(t) is

−i∂teK(t) =ε2 [TL(b, b, b)(K)− TL(gε, gε, gε)(K)] + ε2 [TL(gε, gε, gε)(K)− T (gε, gε, gε)(K)]

(5.6)

− ε2

L2

∑
S(K)\R(K)

1

4π2iL2Ω
∂t
(
bK1bK2bK3

)
e
i
4π2C0L

2Ω
logL

t
, (5.7)

eK(0) =− ε2

L2

∑
S(K)\R(K)

1

4π2L2Ω
bK1(0)bK2(0)bK3(0) (5.8)

Of course, the advantage of working with eK as opposed to bK is the fact that (5.7) is quintic
in bK .

The proof follows a bootstrap argument. Recall that ‖gε‖Xσ ≤ B for all 0 ≤ t ≤ ε−2M .
We will show that we can find a constant c = cγ , such that if

ε < cγL
−1−γB−1 and sup

t∈[0,T ]
‖bK(t)‖Xσ

L
≤ 2B

for some T ≤ ε−2 min(M, cB−2 log logL), then (5.3) holds on the interval [0, T ]. The result
then follows on the full interval [0, ε−2 min(M, cB−2 log logL)] via a continuity argument.
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We start by proving that our normal form transformation from wK → eK is close to the
identity. Indeed, recalling the definition of (3.22) of the set Rµ for µ ∈ R, we can write

‖wK(t)− eK(t)‖Xσ
L
.
ε2

L2

∥∥∥∥∥∥
∑

m∈Z\{0}

m−1
∑

RmL−2 (K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t

∥∥∥∥∥∥
Xσ
L

≤ ε
2

L2

∥∥∥∥∥∥
∑

0<|m|<L10

m−1
∑

RmL−2 (K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t

∥∥∥∥∥∥
Xσ
L

+
ε2

L2

∥∥∥∥∥∥
∑
|m|≥L10

m−1
∑

RmL−2 (K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t

∥∥∥∥∥∥
Xσ
L

≤ ε
2

L2

∑
0<|m|<L10

|m|−1

∥∥∥∥∥∥
∑

RmL−2 (K)

bK1bK2bK3e
i
4π2C0L

2Ω
logL

t

∥∥∥∥∥∥
Xσ
L

+
ε2

L2
L−10

∥∥∥∥∥∥
∑
S(K)

|bK1 ||bK2 ||bK3 |

∥∥∥∥∥∥
Xσ
L

.γε
2LγB3

for any γ > 0, where we have used the bootstrap assumption that ‖bK‖Xσ
L
≤ 2B, Proposition

3.9 to bound the first sum, and Lemma 5.1 to bound the second sum. As a result,

‖wK(t)− eK(t)‖Xσ .γ ε
2LγB3. (5.9)

We start by estimating the terms on the right-hand-side of (5.6). We start with the first
term:

ε2 ‖TL(b, b, b)(K)− TL(gε, gε, gε)(K)‖Xσ . ε2B2‖wK‖Xσ
L
. ε2B2‖eK‖Xσ

L
+ cγε

4LγB5.

where we used Theorem 2.7 and the trilinearity of TL in the first step. The second term on
the right-hand-side of (5.6) can be estimated using Theorem 2.3, which gives

ε2 ‖TL(gε, gε, gε)(K)− T (gε, gε, gε)(K)‖Xσ .
ε2B3

logL
.

Now notice that (5.7) can be written as:

(5.7) =− ε2

4π2L2

∑
m∈Z\{0}

(im)−1
∑

RmL−2 (K)

(∂tbK1)bK2bK3e
4π2i L

2Ω
logL

t

+ two similar terms.

As a result, we can estimate as before using Proposition 3.9 and Lemma 5.1

‖(5.7)‖Xσ
L
.
ε2

L2

∑
0<|m|<L10

|m|−1

∥∥∥∥∥∥
∑

RmL−2 (K)

∂tbK1bK2bK3e
i
4π2C0L

2Ω
logL

t

∥∥∥∥∥∥
Xσ
L

+
ε2

L2
L−10

∥∥∥∥∥∥
∑
S(K)

|∂tbK1 ||bK2 ||bK3 |

∥∥∥∥∥∥
Xσ
L

.γ
ε2

L2
L2+γ‖∂tbK‖Xσ

L
‖bK‖2Xσ

L
.
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Using once again Lemma 5.1 gives

‖(5.7)‖Xσ
L
.γ ε

4L2+γ‖bK‖5Xσ
L
≤ cγε4L2+γB5.

Collecting all the above estimates, we get that ‖eK‖Xσ
L

satisfies the following differential
inequality:

‖∂teK(t)‖Xσ(Z2
L) ≤ cε2B2‖eK‖Xσ

L
+ c

ε2B3

logL
+ cγε

4L2+γB5 and ‖eK(0)‖Xσ
L
≤ cγε

2LγB3,

for some universal constant c and a constant cγ depending on γ. An application of Gronwall’s
lemma then implies that, if 0 ≤ t ≤ T ≤ ε−2M , we have

‖eK(t)‖Xσ
L
≤ ‖eK(0)‖Xσ

L
ecε

2B2t + (ecε
2B2t − 1)

(
B

logL
+
cγ
c
ε2L2+γB3

)
.

As a consequence, if ε < c′γL
−1−γB−1, then it holds that

‖eK(t)‖Xσ
L
≤ ecε2B2t 2B

logL
.

Using in addition t ≤ T ≤ γ log logL
cε2B2 , we get that

‖eK(t)‖Xσ
L
≤ 2B

(logL)1−γ .

In conclusion, combining the above estimate with (5.9) we get

‖bK − gε‖Xσ
L

= ‖wK‖Xσ
L
≤ ‖eK‖Xσ

L
+ ‖wK − eK‖Xσ

L
≤ B

L2+γ
+

2B

(logL)1−γ .

This completes the bootstrap argument, and the proof. �

Finally, we give the simple proof of how to deduce Corollary 2.6 from the above theorem.

Proof of Corollary 2.6. Shrink γ if needed so that γ ≤ s−1
100 . Define (ãK(t))K∈Z2

L
such that

e−4π2it|k|2 v̂(t, k) = ε
N ã k

N
(N2t) for k ∈ Z. Then ãK(t) satisfies (1.3).

Choose ε = N−s < cγN
−1−γB−1 if N ≥ CB

s−1
2 thanks to our choice γ, and apply Theorem

2.4 for ãK to get for T ∗ = ζ(2)N2

2ε2 logN

‖ãK(t)− g(
t

T ∗
,K)‖Xσ

L(Z2
N ) .

B

(logN)1−γ

for all 0 ≤ t ≤ T ∗min
(
M, γ log logN

cB2

)
. This gives that

‖e−4π2itN2|K|2 v̂(t,NK)− ε

N
g(
N2t

T ∗
,K)‖Xσ

N (Z2
N ) .

εB

N(logN)1−γ

for all 0 ≤ t ≤ N−2T ∗min
(
M, γ log logN

cB2

)
. Letting TN

def
= ζ(2)N2

2ε2 logN
, we get that since σ > s+1

that

‖e−4π2itN2|K|2 v̂(t,NK)− ε

N
g(

t

TN
,K)‖

`2,sN (Z2
N )
.

εB

N(logN)1−γ ,
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for all 0 ≤ t ≤ TN min
(
M, γ log logN

cB2

)
. This translates on Z2 to the estimate

‖e−4π2it|k|2 v̂(t, k)− ε

N
g(

t

TN
,
k

N
)‖`2,s(Z2) .

(εN s)B

(logN)1−γ ,

over the same time interval. Recalling that ε = N−s gives (2.14). �

6. Hamiltonian structure of (CR)

Recall that the (CR) equation is given by

−i∂tg(ξ, t) =T (g, g, g)(ξ, t); ξ ∈ R2

T (g, g, g)(ξ, t) =

ˆ 1

−1

ˆ
R2

g(ξ + λz, t)g(ξ + λz + z⊥)g(ξ + z⊥) dz dλ.
(CR)

By changing variables (formally for now) one can notice that the trilinear operator T (g, g, g)
can be written in several different ways like

T (g, g, g)(ξ, t) =

ˆ 1

−1

ˆ
R2

g(ξ + z)g(ξ + λz⊥ + z)g(ξ + λz⊥, t) dz dλ

=
1

2

ˆ
R

ˆ
R2

g(ξ + λz, t)g(ξ + λz + z⊥)g(ξ + z⊥) dz dλ.

In the latter integral, λ runns over R instead of [−1, 1], as can be seen by a simple change of
integration variables λ→ λ−1.

6.1. The Hamiltonian functional. The equation (CR) derives from the Hamiltonian func-
tional

H(f) =
1

4

ˆ 1

−1

ˆ
R2

ˆ
R2

f(ξ + z)f(ξ + λz⊥)f(ξ + z + λz⊥) f(ξ) dz dξ dλ (6.1)

given the symplectic form

ω(f, g) = Im

ˆ
R2

f(x)g(x) dx. (6.2)

Let us notice right away that the Hamiltonian can be equivalently written

H(f) =
1

8

ˆ
R

ˆ
R2

ˆ
R2

f(ξ + z)f(ξ + λz⊥)f(ξ + z + λz⊥) f(ξ) dz dξ dλ. (6.3)

A remarkable identity is the fact that

H(f) =
π

2

ˆ
Rt×R2

x

∣∣∣eit∆R2 f̂
∣∣∣ dx dt =

π

2
‖eit∆R2 f̂‖4L4

t,x(Rt×R2
x) (6.4)

which can be seen by expanding the right-hand-side as follows. Suppose first that f ∈ S(R2)
(the case of general f ∈ L2 follows by a limiting argument using (2.18) which we prove later).
Then

‖eit∆f̂‖4L4 = ‖|eit∆f̂ |2‖2L2 =
1

4π2
‖e−it|ξ|2f(ξ) ∗ eit|ξ|2f(ξ)‖2L2

=
1

4π2

ˆ
R2

ˆ
R2

ˆ
R2

eit2ξ·αf(η + α)f(η + α+ ξ) f(η)f(η + ξ) dξ dη dα

=
1

4π2

ˆ
R2

ˆ
R2

ˆ
R

ˆ
R
ei2tµ|α|

2
f(η + α)f(η + α+ µα+ λα⊥) f(η)f(η + µα+ λα⊥)|α|2dλ dµ dη dα,
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where we changed in the last line coordinates by ξ = µα+λα⊥. Integrating in time and using
the identity

´
R e

ixydy = 2πδx=0 gives

‖eit∆f̂‖4L4 =
1

4π

ˆ ˆ ˆ
f(η + α)f(η + α+ λα⊥) f(η)f(η + λα⊥)dλ dη dα =

2

π
H(f).

In particular, H(f) is positive definite, i.e. H(f) ≥ 0 and H(f) = 0 if and only if f = 0.

6.2. Symmetries.

Proposition 6.1. The following symmetries leave the Hamiltonian H invariant:

(i) Phase rotation: f 7→ eiθf .
(ii) Translation: f 7→ f( · + x0) for any x0 ∈ R2.

(iii) Modulation: f 7→ eix·ξ0f for any ξ0 ∈ R2.

(iv) Quadratic modulation: f 7→ eiτ |x|
2
f for any τ ∈ R.

(v) Schrödinger group: f 7→ eiτ∆f for any τ ∈ R.
(vi) Rotation: f 7→ f(Rθ · ), for any θ, where Rθ is the rotation of angle θ.
(vii) Scaling f 7→ µf(µ · ) for any µ > 0.

(viii) Fourier transform f 7→ f̂ .

Proof. The points (i), (ii), (iii), (iv), (vi), (vii) follow simply from the formula giving H, in
particular from the fact that the arguments of f in this formula satisfy the relations{

(ξ + z) + (ξ + λz⊥) = (ξ + z + λz⊥) + (ξ) and
|ξ + z|2 + |ξ + λz⊥|2 = |ξ + z + λz⊥|2 + |ξ|2.

The point (v) is a consequence of (iv) and (viii). Thus we are left with proving (viii); this
will be done in Lemma 6.5. �

Since the transformations (i) to (vi) are generated by Hamiltonian flows, and as a result
they give, by Noether’s theorem, conserved quantities for the equation (CR).

Corollary 6.2. The following quantities are conserved by the flow of (CR):

(i) Mass:
´
|f(x)|2 dx.

(ii) Momentum:
´
ξ
∣∣∣f̂(ξ)

∣∣∣2 dξ.

(iii) Position:
´
x|f(x)|2 dx.

(iv) First moment
´
|x|2|f(x)|2 dx.

(v) Kinetic energy:
´
|∇f(x)|2 dx.

(vi) Angular momentum i
´

(x×∇)f(x)f(x) dx.
(vii) Hamiltonian H(f).

The following is essentially a corollary of Theorem 6.1.

Corollary 6.3. The symmetries mentioned in Proposition 6.1 (acting only in the x variable)
leave the set of solutions of (CR) invariant. This is also the case for the transformation

f 7→ λα
(
λ2α−2γt , λγx

)
where λ, α, γ > 0. (6.5)

Remark 6.4 (scaling). It is natural to ask which is the critical space for (CR). Since it enjoys
a family of possible scalings, as noted above, the answer is not as clear as for, say, (NLS).
However, it seems natural to think of L2 as a critical space for data. Indeed,

• The space L2 is critical for (NLS), from which (CR) is derived.
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• It is essentially the largest Sobolev space for which local well-posedness can be proved,
see Section 7.
• Finally, the only scaling above which does not act on the time variable, namely f 7→
λf(λ · ), leaves the norm of L2 invariant.

Lemma 6.5. If f, g, h ∈ L2,

F (T (f, g, h)) = T
(
f̂ , ĝ, ĥ

)
and H(f) = H

(
f̂
)
.

Remark 6.6. Why this Fourier transform symmetry actually holds is somewhat mysterious.
It is reminiscent of the invariance of the cubic nonlinear Schrödinger equation set on R2 by
the pseudo-conformal transformation

u(t, x) 7→ uc(t)
def
=

1

t
ei
|x|2
4t u

(
−1

t
,
x

t

)
.

which can also be written at the level of profiles f = e−it∆R2u and fc = e−it∆R2uc as

f(t) = Ffc(t−1).

Also notice that the well known fact that

as t→∞,
∥∥∥∥eit∆ψ(x)− 1

4πit
ei
|x|2
4t ψ̂

( x
2t

)∥∥∥∥
L2

−→ 0,

if ψ ∈ S(R2), combined with L2 boundedness of H, implies that points (iii) and (vii) of
Proposition 6.1 are equivalent.

Proof. Again we assume that all functions are in Schwartz class S(R2). The case of functions
in L2 follows from a standard limiting argument using Lemma 7.1. The second equality is a
consequence of the first and Plancherel’s theorem:

H(f) =
1

4
〈T (f, f, f) , f〉 =

1

4

〈
FT (f, f, f) , f̂

〉
=

1

4

〈
T
(
f̂ , f̂ , f̂

)
, f̂
〉

= H
(
f̂
)
.

We now prove the first identity: By Fourier inversion and using the identity 1
4π2

´
eix·ξ dx =

δξ=0 we compute

FT (f, g, h)(ξ) =
1

2π

ˆ
R2

ˆ 1

−1

ˆ
R2

e−iz·ξf(x+ z)g(λx⊥ + z)h(x+ λx⊥ + z) dx dλ dz

=
1

16π4

ˆ ˆ 1

−1

ˆ ˆ ˆ ˆ
eiz·(−ξ+α+β−γ)eix·(α−λβ

⊥+λγ⊥−γ)f̂(α)ĝ(β)ĥ(γ) dα dβ dγ dx dλ dz

=

ˆ 1

−1

ˆ
f̂

(
ξ +

1

λ
ξ⊥ − 1

λ
β⊥
)
ĝ(β)ĥ

(
1

λ
ξ⊥ + β − 1

λ
β⊥
)
dβ

dλ

λ2
.

Changing variables to β′ = 1
λ(ξ − β)⊥ and then omitting the primes gives

FT (f, g, h)(ξ) =

ˆ 1

−1

ˆ
f̂(ξ + β)ĝ(ξ + λβ⊥)ĥ(β + λβ⊥ + ξ) dβ dλ,

which is the desired result. �
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6.3. Invariance of eigenspaces of the Harmonic oscillator. Recall that the eigenvalues
of the harmonic oscillator−∆+|x|2 on L2(R2) are given by 2k, k ∈ N. The smallest eigenvalue,

2, has an eigenspace E2 of dimension 1, generated by the Gaussian e−|x|
2/2. The eigenspace

E2k has dimension k, and is generated by Hermite functions.

Proposition 6.7. The eigenspaces Ek, k ∈ 2N + 2, of the harmonic oscillator are invariant
by the flow of (CR).

Proof. Let us introduce some notations: Given a functional F , denote its symplectic gradient
with respect to the symplectic form ω (see (6.2)) by ∇ωF , thus dF(X) = ω(X,∇ωF); denote
further {F ,G} for the Poisson bracket ω(∇ωF ,∇ωG); finally [X,Y ] is the Lie bracket of the
vector fields X and Y . Then the Hamiltonian G is invariant by the Hamiltonian flow induced
by F if and only if {F ,G} = 0. Furthermore, the Hamiltonian flows of F and G commute if
and only if [∇ωF ,∇ωG]. The formula [∇ωF ,∇ωG] = ∇ω{F ,G} = 0 (see [1]) implies that: if
G is invariant by the flow of F , then the flows of F and G commute.

We saw that the transformations eit∆ (the flow associated with the Hamiltonian K1
def
=´

|∇f |2) and eit|x|
2

(the flow of the Hamiltonian K2
def
=

´
|xf |2) both leave H invariant. If

we denote by {·, ·} the Poisson bracket associated with the symplectic form (6.2) this implies
that {H,K1} = 0 and {H,K2} = 0, and hence {H,K1 + K2} = 0. Now, the flow associated

with the Hamiltonian K1 +K2 is the transformation eit(−∆+|x|2). By the preceding paragraph,
this implies that the unitary flow of the harmonic oscillator and the flow of H commute.

Using in addition that phase rotations commute with the flow of H (which we denote here
by U(t)), we get if f ∈ Ek: for any s, t

eis(−∆+|x|2)U(t)f = U(t)eis(−∆+|x|2)f = U(t)eiskf = eiskU(t)f.

The equality eis(−∆+|x|2)U(t)f = eiskU(t)f implies that U(t)f ∈ Ek. �

6.4. Stationary waves. We are concerned here with solutions of the type f = eiωtφ; thus φ
verifies

ωφ = T (φ, φ, φ).

First notice that the boundedness of T on L2 (see Section 7 and (8.2)) implies, after taking
the scalar product of the above with φ, that

0 ≤ ω ≤ π

8
‖φ‖22.

(this is in conformity the scaling of the equation of course). Many stationary solutions can be
uncovered by examining the eigenspaces of the harmonic oscillator which, as we know from
the previous subsection, are invariant by the flow of (CR). We give a few examples:

• The first eigenspace E2 is generated by the Gaussian e−
|x|2

2 ; its stability and the

conservation of the L2 norm imply that for some constant ω0, eiω0te−
|x|2

2 is an exact
solution. In fact, this is equivalent to saying that

T (e−
|x|2

2 , e−
|x|2

2 , e−
|x|2

2 ) = ω0e
− |x|

2

2 , (6.6)

which can also easily be verified explicitly.
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Letting the symmetries of the equation act on this Gaussian, we obtain the family
of stationary waves: for (α, β, x0, v0, γ) ∈ R+ × R× R2 × R2 × C,

γe
−(α

2
+iβ)|x−x0|2+i

(
v0·x+ω0

|γ|2

α2 t

)
.

• The second eigenspace E4 is generated by x1e
− |x|

2

2 and x2e
− |x|

2

2 . Using the invariance
of E4, conservation of the L2 norm, and of the oddness with respect to x1, we obtain

that x1e
− |x|

2

2
+iω1t is an exact solution. By invariance by rotation, we obtain the family

of stationary solutions

(cos θx1 + sin θx2)e−
|x|2

2
+iω1t,

where ω1 is a constant and θ arbitrary in R (more stationary solutions can then be
obtained by applying the symmetries).

• The third eigenspace E6 is generated by x1x2e
− |x|

2

2 , (2x2
1−1)e−

|x|2
2 and (2x2

2−1)e−
|x|2

2 .
By conservation of the L2 norm, invariance of E6, and invariance of the set of radial
functions, we find new exact solutions of the form

(2|x|2 − 1)e−
|x|2

2
+ω2t

for a constant ω2.

Orbital stability of Gaussians with respect to perturbations in L2,1 ∩ H1 can be easily
established by relying on the conserved quantities

´
|f |2,

´
|xf |2,

´
|∇f |2. This is done in the

following proposition.

Proposition 6.8. Consider data f0 such that ‖f0 − e−
|x|2

2 ‖H1∩L2,1 = δ > 0, and let f(t) be
the corresponding solution of (CR). Then

sup
t

distH1∩L2,1(f(t),S1e−
|x|2

2 ) .
√
δ,

where we denoted S1e−
|x|2

2 for {γe−
|x|2

2 , γ ∈ C and |γ| = 1}.

Proof. Let us denote by Pk, with k ∈ 2N, the projectors on the eigenspaces of −∆ + |x|2.

Notice first that the assumption that ‖f0 − e−
|x|2

2 ‖H1∩L2,1 = δ, implies that∣∣∣∣‖f0‖2L2 − ‖e−
|x|2

2 ‖2L2

∣∣∣∣ . δ
and that ∣∣∣∣〈(−∆ + |x|2)f0 , f0〉 − 〈(−∆ + |x|2)e−

|x|2
2 , e−

|x|2
2 〉
∣∣∣∣ . δ.

Furthermore, these two inequalities remain true if one replaces f0 by f(t), which follows by
using the conserved quantities of the equation. In terms of the spectral projectors Pk, this
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means ∣∣∣∣∣∑
k∈2N

‖Pkf(t)‖2L2 − 4π2

∣∣∣∣∣ . δ∣∣∣∣∣∑
k∈2N

k2‖Pkf(t)‖2L2 − 16π2

∣∣∣∣∣ . δ.
This implies that ∑

k∈2N+2

k2‖Pkf(t)‖2L2 . δ,

which easily implies the desired result. �

Finally, another interesting explicit solution is given by

eiω3t 1

|x|
for a constant ω3.

This follows easily from the identity T ( 1
|x| ,

1
|x| ,

1
|x|) = ω3

|x| , which will be established in Sec-

tion 7. Once again, applying the symmetries of the equation (detailed in Section 6) gives
new solutions. The action of these symmetries is easily described, except for the expression
eis∆ 1

|x| . We refer to the book of Cazenave [14], where it is shown that it is L∞, smooth, and

decaying like 1
|x| for s > 0.

As mentioned before the solution g(t, ξ) = eiω3t|ξ|−1 carries particular significance in terms
of its relation to wave turbulence theory as it corresponds to the Raleigh-Jeans solution
n(ξ) = |ξ|−2 of the (KZ) equation mentioned in Section 2 (recall that n(ξ, t) is related to the
square of the Fourier modes).

7. Analytic properties

The analytic properties of solutions of (CR) reflect essentially those of T . This operator
does not seem to belong to a well-studied class of operators. If one fixes λ and integrates only
over y in the definition (2.8), the operator under consideration belongs to the class studied by
Brascamp and Lieb [9]; however, the integration over λ seems responsible for some important
properties of T , such as Theorem 7.8 below.

The feature of T which differs from the setting of Brascamp and Lieb is that the arguments
of f , g, and h are nonlinear functions of λ and x. A nonlinear Brascamp-Lieb theory is
not available, but a nonlinear analog of the related Loomis-Whitney inequality has been
established by Bennett, Carbery and Wright [3]; we will make use of it.

7.1. Boundedness of T .

Proposition 7.1. For the following spaces X, the trilinear operator T is bounded from X3

to X:

(i) L2.

(ii) L̇∞,1.

(iii) L̇
p,1− 2

p for p ≥ 2.
(iv) L2,σ for any σ ≥ 0.
(v) Hσ for any σ ≥ 0.

(vi) Y σ,p def= {f(x) | eσ|x|2f(x) ∈ Lp} for any σ ≥ 0, p ≥ 2.
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Remark 7.2. Due to (6.4), the statement (i) is equivalent to the classical L4 Strichartz
estimate [61, 56]; the proof we give is very simple, and seems not be found in the literature.

Notice that the three first statements above are at the scaling of the equation; the three
last spaces are subcritical, thus they will give for the equation the possibility to propagate
smoothness, or localization.

Proof. To prove (i), we argue by duality and use the Cauchy-Schwarz inequality to obtain

〈T (f, g, h), F 〉 =

ˆ 1

−1

ˆ ˆ
f(x+ z)g(λx⊥ + z)h(x+ λx⊥ + z)F (z) dx dz dλ

.
ˆ 1

−1

(ˆ ˆ
|f(x+ z)|2|F (z)|2 dx dz

)1/2

(ˆ ˆ
|h(x+ z)|2|g(z)|2 dx dz

)1/2

dλ

. ‖f‖L2‖g‖L2‖h‖L2‖F‖L2 .

To prove (ii), it suffices to establish that

T
(

1

|x|
,

1

|x|
,

1

|x|

)
≤ C

|x|
,

this will be done in Lemma 7.3 below. Indeed, equality holds!
The point (iii) can be obtained from (i) and (ii) and complex interpolation.
To prove (iv), proceed as for (i), using in addition the inequality

for any λ ∈ R, ξ, z in R2,
〈ξ〉σ

〈ξ + z〉σ〈ξ + z + λz⊥〉σ〈ξ + λz⊥ + z〉σ
. 1.

which follows from the relation ξ = (ξ + z)− (ξ + z + λz⊥) + (ξ + λz⊥).
The assertion (v) is a consequence of (iv) and the invariance of T under Fourier transform

proved in Proposition 6.1.
Finally, (vi) follows from the interpolation between the two cases p = 2 and p = ∞. The

endpoint p =∞ follows from (6.6); as for the endpoint p = 2, it can be proved by combining
(i) with the fact that for any λ, x, z,

for any λ ∈ R, x, z in R2,
eσ|z|

2

eσ|x+z|2eσ|λx⊥+z|2eσ|x+λx⊥+z|2 . 1.

�

We now prove the identity that was alluded to earlier.

Lemma 7.3. For some constant C, we have

T
(

1

|x|
,

1

|x|
,

1

|x|

)
=

C

|x|
.

Proof. Denote e1 for the point (1, 0) in R2. By scale invariance, it suffices to show that

T
(

1

|x|
,

1

|x|
,

1

|x|

)
(e1) =

ˆ 1

−1

ˆ
R2

1

|x+ e1|
1

|λx⊥ + e1|
1

|x+ λx⊥ + e1|
dx dλ <∞.

We prove this bound by splitting the integration domain into several regions.
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Where |x| � 1. The contribution of this set is easily seen to be bounded.

Where |x| >> 1 and |λ| >> 1
|x| . The contribution of this set is bounded by

C

ˆ
|x|>>1

ˆ
1
|x|�|λ|�1

1

|x|
1

|λx|
1

|x|
dλ dx .

ˆ
|x|>>1

1

|x|3
log |x| dx <∞.

Where |x| >> 1 and |λ| � 1
|x| . This contributes at most

C

ˆ
|x|>>1

ˆ
|λ|� 1

|x|

1

|x|2
dλ dx .

ˆ
|x|>>1

1

|x|3
dx <∞.

Where |x| >> 1 and |λ| ∼ 1
|x| . This gives at most

C

ˆ
|x|>>1

ˆ
λ∼ 1
|x|

1

|λx⊥ + e1|
1

|x|2
dλ dx =

ˆ
|λ|�1

λ2

ˆ
|x|∼ 1

λ

1

|λx⊥ + e1|
dx dλ.

Changing variable y = λx⊥ + e1, this is less thanˆ
λ�1

ˆ
|y|.1

1

|y|
dy dλ <∞.

Where |x| ∼ 1, |x+ e1| & 1, |λx⊥ + e1| & 1, and |x+ λx⊥ + e1| & 1. This contribution is im-
mediately seen to be finite.

Where |x| ∼ 1 and |λx⊥ + e1| � 1. This region contributes less than

C

ˆ
|λ|∼1

ˆ
|x|∼1,|λx⊥+e1|�1

1

|λx⊥ + e1|
dx dλ .

ˆ
|λ|∼1

ˆ
|y|�1

1

|y|
dy

dλ

λ2
<∞,

were we changed variables in the integral, setting y = λx⊥ + e1.

Where |x| ∼ 1, and |x+ λx⊥ + e1| � 1. By the relation

|e1 + x|2 + |e1 + λx⊥|2 = 1 + |e1 + x+ λx⊥|2

We have that both |x+ e1| and |λx+ e1| & 1 (since |x| ∼ 1), and therefore this contribution
can be bounded by

C

ˆ
|λ|∼1

ˆ
|x+λx⊥+e1|�1

1

|x+ λx⊥ + e1|
dx dλ <∞

by arguments similar to the ones already employed.

We are thus left with the case when |x| ∼ 1 and |x + e1| � 1, which we split into three
cases:

Where |x+ e1| � 1 and |λ| > 4|x+ e1|. The integral over this region can be bounded by

C

ˆ
|x+e1|�1

ˆ
−1<λ<1
|λ|>4|x+e1|

1

|x+ e1|
1

|x+ λx⊥ + e1|
dλ dx .

ˆ
|y|�1

ˆ
−1<λ<1
|λ|>4|y|

1

|y|
1

|y + λ(y − e1)⊥|
dλ dy
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upon changing variable y = x+ e1. Now notice that for fixed λ

|y + λ(y − e1)⊥| ≥
∣∣∣ |y + λy⊥| − λ

∣∣∣ =
∣∣∣√1 + λ2|y| − |λ|

∣∣∣ .
Therefore, the above can be bounded by

. . . .
ˆ
|y|�1

ˆ
−1<λ<1
|λ|>4|y|

1

|y|
1∣∣∣√1 + λ2|y| − |λ|

∣∣∣ dλ dy .
ˆ
|y|�1

ˆ
−1<λ<1
|λ|>4|y|

1

|y|
1

|λ|
dλ dy

.
ˆ
|y|�1

| log |y||
|y|

dy <∞.

Where |x+ e1| � 1 and |λ| < 1
4 |x+ e1|. Proceeding as in the previous case, we see that this

contributes at most

C

ˆ
|y|�1

ˆ
|λ|< 1

4
|y|

1

|y|
1∣∣∣√1 + λ2|y| − |λ|

∣∣∣ dy dλ .
ˆ
|y|�1

ˆ
|λ|< 1

4
|y|

1

|y|2
dy

.
ˆ
|y|�1

dy

|y|
<∞.

Where |x+ e1| � 1 and 1
4 |x+ e1| < |λ| < 4|x+ e1|. For simplicity in the notations, we only

treat the case λ > 0. This region contributes at mostˆ
|y|�1

ˆ
1
4
|y|<λ<4|y|

1

|y|
1

|y + λ(y − e1)⊥|
dλ dy

= 2π

ˆ
|r|�1

ˆ
θ∈S1

ˆ
1
4
<α<4

1

|ω(θ) + α(rω(θ)− e1)⊥|
dα dr dθ,

where we set λ = αr, and parameterized y by y = rω(θ), with ω(θ) =

(
cos θ
sin θ

)
, and

(r, θ) ∈ R+ × S1. Now define

P (α, r, θ) = |ω(θ) + α(rω(θ)− e1)⊥|2 = 1 + α2r2 + α2 − 2α(sin θ + αr cos θ).

The following properties are easily established:

• For fixed α and r, P is minimized at θ0 such that sin θ0 = 1√
1+α2r2

and cos θ0 =

αr√
1+α2r2

. The minimal value of P is then
∣∣∣√1 + α2r2 − α

∣∣∣2
• For |θ − θ0| < 1

10 , ∂2
θP (α, r, θ) & α, thus P (λ, r, θ) &

∣∣∣√1 + α2r2 − α
∣∣∣2 + α(θ − θ0)2.

• For |θ − θ0| > 1
10 , P (α, r, θ) & α+

∣∣∣√1 + α2r2 − α
∣∣∣2.

The above can therefore be bounded by

· · · .
ˆ
|r|�1

ˆ
1
4
<α<4

ˆ
|θ−θ0|< 1

10

1√∣∣∣√1 + α2r2 − α
∣∣∣2 + α(θ − θ0)2

dθ dα dr

+

ˆ
|r|�1

ˆ
1
4
<α<4

ˆ
|θ−θ0|> 1

10

1√
α+ (

√
1 + α2r2 − α)2

dθ dα dr
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The second term on the above right-hand side is immediately seen to be bounded, thus we
focus on the first one, which can be written as

ˆ
|r|�1

ˆ
1
4
<α<4

ˆ
|θ|< 1

10

1√∣∣∣√1 + α2r2 − α
∣∣∣2 + αθ2

dθ dα dr

.
ˆ
|r|�1

ˆ
1
4
<α<4

〈log
∣∣∣√1 + α2r2 − α

∣∣∣〉 dα dr,
(7.1)

where we used the following simple bound for 0 ≤ u ≤ 10:
ˆ
|θ|<1

1√
u+ θ2

dθ =

ˆ
|θ|≤u−1/2

1√
1 + θ2

dθ . 〈log u〉.

Finally we note that the integral (7.1) is finite by the change of variable α 7→ f(α) = α −√
1 + α2r2 which satisfies f ′(α) ∼ 1 in the considered range of α and r. �

The final lemma in this subsection will be useful to prove the well-posedness of (CR) in
the spaces Xσ that were used in the approximation results of Theorems 2.4 and 2.6.

Lemma 7.4. The following tame bound holds: for any functions f , g and h, and σ ≥ 0

‖T (f, g, h)‖Xσ . ‖f‖Xσ‖g‖L2‖h‖L2 + ‖f‖L4‖g‖L4/3‖h‖Xσ (7.2)

Proof. Without loss of generality, we assume that f, g, and h are non-negative. Using the
orthogonality relation

|ξ|2 + |ξ + λz + z⊥|2 = |ξ + λz|2 + |ξ + z⊥|2

we arrive at the conclusion that for any ξ, z ∈ R2 and λ ∈ [−1, 1],

〈ξ〉σ .σ 〈ξ + λz〉σ + 〈ξ + z⊥〉σ.

As a result, we get that

〈ξ〉σT (f, g, h) .σ T (〈 · 〉σf, g, h) + T (f, g, 〈 · 〉σh)

and hence we arrive at

‖T (f, g, h)‖Xσ .σ‖f‖Xσ sup
ξ∈R2

ˆ 1

−1

ˆ
R2

g(ξ + λz + z⊥)h(ξ + z⊥)dz dλ

+ ‖h‖Xσ sup
ξ∈R2

ˆ 1

−1

ˆ
R2

f(ξ + λz)g(ξ + λz + z⊥)dz dλ

.‖f‖Xσ‖g‖L2‖h‖L2 + ‖h‖Xσ

ˆ 1

−1
‖f(ξ + λz)‖L4

z︸ ︷︷ ︸
=|λ|−1/2‖f‖L4

‖g(ξ + λz + z⊥)‖
L

4/3
z︸ ︷︷ ︸

.‖g‖
L4/3

dλ

.‖f‖Xσ‖g‖L2‖h‖L2 + ‖h‖Xσ‖f‖L4‖g‖L4/3 ,

from which (7.2) follows. �
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7.2. Local and global well-posedness for (CR). We consider the Cauchy problem for
(CR):

Theorem 7.5. (i) Local well posedness: For X being any of the spaces given in Propo-
sition 7.1, the Cauchy problem (CR) is locally well-posed in X. That is, for any f0

in X, there exists a time T > 0, and a solution in C∞([0, T ], X), which is unique in
L∞([0, T ], X), and depends continuously on f0 in this topology.

(ii) Global well-posedness: if f0 ∈ L2, the local solution can be prolonged into a global
one. More precisely: there exists a unique solution in C∞([0,∞), L2). For any T , it
is unique in L∞([0, T ], L2), and depends continuously on f0 in this topology.

Furthermore, the mass, kinetic energy, and first moment of f remain constant in
time if they were finite at time 0.

(iii) Propagation of regularity: assume f0 ∈ L2, and let f be the solution given in (ii). If in
addition f0 ∈ Hσ (respectively L2,σ) for σ ≥ 0 then f ∈ C∞([0,∞), Hσ) (respectively
C∞([0,∞), L2,σ).

(iv) The Cauchy problem (CR) is locally well-posed in the space Xσ for any σ > 2. If g0 ∈
H1, the solution can be extended globally in time in Xσ. Moreover, if ∇g(0) ∈ Xσ,
then g,∇g ∈ Cloc(R;Xσ).

Remark 7.6. The restriction σ > 2 for local well-posedness in item (iv) could easily be
improved to σ ≥ 1, but global well-posedness beyond σ > 2 seems very difficult to prove.

Proof. (i) Write (CR) as a fixed point problem:

f(t) = f0 + i

ˆ t

0
T (f, f, f)(s) ds.

Proposition 7.1 immediately gives the a priori estimates{
‖f‖L∞([0,T ],X) . ‖f0‖X + T‖f‖3L∞([0,T ],X)

‖f − g‖L∞([0,T ],X) . ‖f0 − g0‖X + T‖f − g‖L∞([0,T ],X)

(
‖f‖2L∞([0,T ],X) + ‖g‖2L∞([0,T ],X)

)
,

for f and g two solutions of (CR), from which one deduces the local well-posedness statement
by a standard fixed point argument. Notice that T can be chosen depending only on ‖f0‖X
(namely ∼ ‖f0‖−2

X ).

(ii) Combining the above local well-posedness with the conservation laws (Corollary 6.2)
gives the global well-posedness (recall that the local well-posedness time T only depends on
‖u0‖2).

(iii) is classical, so we only say a few words. Using the boundedness of T from L2 ×
L2 × L2 → L2, one notices that the equation is locally well-posed in Hs with the time of
existence depending on the conserved quantity ‖g(t)‖L2 . Consequently, one can iterate the
local existence statement indefinitely to get global existence. The result for weighted spaces
L2,σ follows from the invariance under Fourier transform.

(iv) Local well-posedness in Xσ is a direct consequence of Picard iteration and Lemma
7.4. This gives a time of existence bounded below by C‖g0‖−2

Xσ . Global existence follows from

the same lemma, which gives due to the embeddings H1 ↪→ L4 and L2,1 ↪→ L4/3 and the
conservation of the H1 and L2,1 norms that

‖g(t)‖Xσ ≤ ‖g0‖Xσ + ‖g0‖H1‖〈x〉g0‖L2

ˆ t

0
‖g(s)‖Xσds.
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This yields an a priori bound on ‖g(t)‖Xσ that allows extending the solution globally. Finally,
if ∇g0 ∈ Xσ, then proceeding as above and using that ∇g satisfies

∇g(t, ξ) = ∇g0(ξ) + i

ˆ t

0
(T (∇g, g, g) + T (g,∇g, g) + T (g, g,∇g)) ds, (7.3)

one can obtain local-in-time existence of ∇g ∈ C([0, T ];Xσ). To extend this to a global
statement, one has to show that ‖∇g‖Xσ cannot blow up. This follows once we obtain an a
priori bound for ‖∇g‖Xσ that prohibits its blowup. Using Lemma 7.4 and (7.3), we have

‖∇g(t)‖Xσ .‖∇g0‖Xσ +

ˆ t

0

(
‖∇g(s)‖Xσ‖g(s)‖2L2 + ‖g(s)‖Xσ‖∇g‖L4‖g(s)‖L4/3

+‖g(s)‖Xσ‖∇g‖L2‖g‖L2 + ‖g(s)‖Xσ‖∇g(s)‖L4/3‖g‖L4 + ‖∇g(s)‖Xσ‖g‖L4‖g‖L4/3) ds

.‖∇g0‖Xσ +

ˆ t

0
‖∇g‖Xσ‖g(s)‖2Xσ ds

Since the solution g is bounded in Xσ on any compact time interval of R, we get the needed
a priori bound on ‖∇g‖Xσ to finish the proof. �

7.3. Weak continuity of T on L2. Recall that

T (f, g, h)(ξ) =

ˆ 1

−1

ˆ
R2

f(ξ + x)g(ξ + x+ λx⊥)h(ξ + λx⊥) dx dλ.

We introduce the following notation: Tx∈I
λ∈J

(f, g, h) is defined as T above, but with the inte-

gration domain changed from (x, λ) ∈ R2 × [−1, 1] to (x, λ) ∈ I × (J ∩ [−1, 1]). For instance:

T |x|∼1
|λ|<1/4

(f, g, h)(ξ) =

ˆ
|λ|<1/4

ˆ
|x|∼1

f(ξ + x)g(ξ + x+ λx⊥)h(ξ + λx⊥) dx dλ.

We start by proving more precise estimates on such localized versions of T . Space and
frequency localization operators will be needed; we start by defining them. Pick ψ a smooth
function equal to 1 on B(0, 1), 0 on B(0, 2)c, and set

Q<Mf
def
= ψ

( x
M

)
f , Q>M

def
= f − P<Mf

P<M
def
= F−1ψ

(
ξ

M

)
f̂(ξ) and P>M

def
= f −Q<Mf

Proposition 7.7. (i) If f , g, h belong to L2,∥∥T|λ|<ε(f, g, h)
∥∥
L2(R2)

. ε‖f‖L2(R2)‖g‖L2(R2)‖h‖L2(R2)

(ii) For ε > 0, there exists a constant C(ε) such that if f , g, h belong to L2,∥∥∥∥∥T|x|≥M|λ|>ε
(f, g, h)

∥∥∥∥∥
L∞(R2)

≤ C(ε)M−1‖f‖L2(R2)‖g‖L2(R2)‖h‖L2(R2).

(iii) For ε > 0, R�M , there exists a constant C(ε) such that if f , g, h belong to L2,∥∥T|λ|>ε(Q>Mf, g, h)
∥∥
L∞(B(0,R))

+
∥∥T|λ|>ε(f,Q>Mg, h)

∥∥
L∞(B(0,R))

≤ C(ε)M−1‖f‖L2(R2)‖g‖L2(R2)‖h‖L2(R2)
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Proof. Proof of (i). The proof of (i) follows exactly that of (i) in Proposition 7.1, we do not
repeat it here.

Proof of (ii). Observe that T|x|∼1
|λ|>ε

(f, g, h)(0) can be written

T|x|∼1
|λ|>ε

(f, g, h)(0) =

ˆ
|x|∼1

1>|λ|>ε

f(π1(x, λ))g(π2(x, λ))h(π3(x, λ)) dx dλ

with π1(x, λ) = x, π2(x, λ) = x + λx⊥, and π3(x, λ) = λx⊥. This corresponds to the type
of operators analyzed in Bennett, Carbery and Wright [3]. The non-degeneracy condition in
Theorem 2 of this article can be checked, implying the nonlinear Loomis-Whitney inequality∣∣∣∣∣T|x|∼1

|λ|>ε
(f, g, h)(0)

∣∣∣∣∣ ≤ C(ε)‖f‖L2‖g‖L2‖h‖L2 .

Since T|x|∼1
|λ|>ε

(f, g, h)(z) = T|x|∼1
|λ|>ε

(f(z + ·), g(z + ·), h(z + ·))(0), we deduce that

∥∥∥∥∥T|x|∼1
|λ|>ε

(f, g, h)

∥∥∥∥∥
L∞

≤ C(ε)‖f‖L2‖g‖L2‖h‖L2 .

By scaling, ∥∥∥∥∥T|x|∼2k

|λ|>ε
(f, g, h)

∥∥∥∥∥
L∞

≤ C(ε)2−k‖f‖L2‖g‖L2‖h‖L2 .

This gives the desired result since∥∥∥∥∥T|x|>M|λ|>ε
(f, g, h)

∥∥∥∥∥
L∞

≤
∑

2k&M

∥∥∥∥∥T|x|∼2k

|λ|>ε
(f, g, h)

∥∥∥∥∥
L∞

≤ C(ε)M−1‖f‖L2‖g‖L2‖h‖L2 .

Proof of (iii). We only prove that the first term on the left-hand side satisfies the inequality;
the second being similar. Thus we wish to estimate

T|λ|>ε(Q>Mf, g, h)(z) =

ˆ
1>|λ|>ε

ˆ
[Q>Mf ] (x+ z)g(x+ λx⊥ + z)h(λx⊥ + z) dx dλ,

where |z| < R. Since Q>Mf is supported outside of a ball of radius ∼ M and center 0, we
see that only x such that |x + z| & M contribute to the above integral. Since M � R, this
implies |x| &M . But then the estimate follows from (ii). �

These estimates lead to the following theorem.

Theorem 7.8. Suppose that (fn), (gn) and (hn) are three sequences such that

fn ⇀ f gn ⇀ g hn ⇀ h in L2.

(we denote as is customary fn → f for the strong convergence in L2, and fn ⇀ f for the
weak convergence in L2). Then

T (fn, gn, hn) ⇀ T (f, g, h) in L2.
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Remark 7.9. It is tempting to mention here the div-curl lemma [48] [60]: if (un), (vn) are
sequences of functions from R3 to R3, in L2, which are respectively divergence and curl free,
and converge weakly to u and v, then their scalar product un · vn converges to u · v in the
sense of distribution. It was later realized by Coifman, Lions, Meyer, Semmes [15] that this
particular structure also has implications in harmonic analysis. Namely, if u, v belong in L2,
and are respectively divergence and curl free, then their scalar product u · v not only belongs
to L1, but even to the Hardy space H1.

One might wonder whether a similar phenomenon occurs for T : does this operator map
L2 × L2 × L2 to a slightly smaller space than L2?

Proof. First fix sequences fn, gn and hn converging weakly to f , g, h in L2. By the uniform
boundedness principle, the functions fn, gn, hn enjoy uniform bounds in L2. Our aim will be
to show that, for φ in the Schwartz class S,

〈T (fn, gn, hn) , φ〉 → 〈T (f, g, h) , φ〉.

This will give the desired result by boundedness of T on L2, and density of S in L2. Thus we
fix from now on φ ∈ S; all implicit constants are allows to depend on φ.

We will be using three parameters, ε, M and R, whose precise value will be fixed at the
end of the proof, but which satisfy ε� 1, M � R� 1.

Step 1: localization in space. Writing f = Q<Mf
n + Q>Mf

n, and similarly for g and h, we
obtain that T (f, g, h)(x) can be written as the sum

〈T (fn, gn, hn) , φ〉 =〈T (Q>Mf
n, gn, hn) , φ〉 (7.4a)

+ 〈T (Q<Mf
n, gn, Q>Mh

n) , φ〉 (7.4b)

+ 〈T (Q<Mf
n, Q>10Mg

n, Q<Mh
n) , φ〉 (7.4c)

+ 〈T (Q<Mf
n, Q<10Mg

n, Q<Mh
n) , φ〉. (7.4d)

To estimate (7.4a), we first split this term, and then use Proposition 7.7 as well as the fast
decay of φ:

|(7.4a)| ≤
∣∣〈T|λ|<ε(Q>Mfn, gn, hn) , φ〉

∣∣+
∣∣〈T|λ|>ε(Q>Mfn, gn, hn) , Q<Rφ〉

∣∣
+
∣∣〈T|λ|>ε(Q>Mfn, gn, hn) , Q>Rφ〉

∣∣
. ε‖fn‖2‖gn‖2‖hn‖2‖φ‖2 + C(ε)M−1‖fn‖2‖gn‖2‖hn‖2‖φ‖1 + ‖fn‖2‖gn‖2‖hn‖2R−10

. ε+ C(ε)M−1 +R−10.
(7.5)

The next term, (7.4b), can be treated identically to give

|(7.4b)| . ε+ C(ε)M−1 +R−10. (7.6)

Finally, taking advantage of the localization properties of T , (7.4c) can be bounded by

|(7.4c)| = |〈T (Q<Mf
n, Q>10Mg

n, Q<Mh
n) , Q>Rφ〉| . ‖fn‖2‖gn‖2‖hn‖2R−10 . R−10.

We are left with (7.4d) which we will decompose further, in frequency this time.

Step 2: localization in frequency. By Plancherel’s theorem and Lemma 6.5,

4π2(7.4d) = 〈FT (Q<Mf
n, Q<10Mg

n, Q<Mh
n) , φ̂〉 = 〈T (P<M f̂n, P<10M ĝn, P<M ĥn) , φ̂〉.
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Performing the same decomposition as in Step 1, this is equal to

(7.4d) =〈T (Q>MP<M f̂n, P<10M ĝn, P<M ĥn) , φ̂〉 (7.7a)

+ 〈T (Q<MP<M f̂n, P<10M ĝn, Q>MP<M ĥn) , φ̂〉 (7.7b)

+ 〈T (Q<MP<M f̂n, Q>10MP<10M ĝn, Q<MP<M ĥn) , φ̂〉 (7.7c)

+ 〈T (Q<MP<M f̂n, Q<10MP<10M ĝn, Q<MP<M ĥn) , φ̂〉, (7.7d)

and just like in Step 1 we can bound

|(7.7a)|+ |(7.7b)|+ |(7.7c)| . ε+ C(ε)M−1 +R−10.

Step 3: conclusion. Fix η > 0, we want to show that, for n big enough,

|〈T (fn, gn, hn) , φ〉 − 〈T (f, g, h) , φ〉| < η.

First split the above as

4π2 |〈T (fn, gn, hn) , φ〉 − 〈T (f, g, h) , φ〉| (7.8a)

=
∣∣∣〈T (f̂n, ĝn, ĥn) , φ̂〉 − 〈T (f̂ , ĝ, ĥ) , φ̂〉

∣∣∣ (7.8b)

≤
∣∣∣〈T (f̂n, ĝn, ĥn) , φ̂〉 − 〈T (Q<MP<M f̂n, Q<10MP<10M ĝn, Q<MP<M ĥn) , φ̂〉

∣∣∣ (7.8c)

+
∣∣∣〈T (Q<MP<M f̂n, Q<10MP<10M ĝn, Q<MP<M ĥn) , φ̂〉

− T (Q<MP<M f̂ , Q<10MP<10M ĝ, Q<MP<M ĥ) , φ̂〉
∣∣∣ (7.8d)

+
∣∣∣〈T (Q<MP<M f̂ , Q<10MP<10M ĝ, Q<MP<M ĥ) , φ̂〉 − 〈T (f̂ , ĝ, ĥ) , φ̂〉

∣∣∣ (7.8e)

Gathering the estimates of Step 1 and Step 2, we see that

|(7.8c)|+ |(7.8e)| . ε+ C(ε)M−1 +R−10.

The weak convergence of fn, gn and hn to, respectively, f , g and h in L2 implies that, for M
fixed

Q<MP<M f̂n
L2

→ Q<MP<M f̂ , Q<10MP<10M ĝn
L2

→ Q<10MP<10M ĝ , Q<MP<M ĥn
L2

→ Q<MP<M ĥ

as n→∞. Since T is bounded on L2, we deduce that

|(7.8d)| n→∞−→ 0.

To conclude, it suffices to fix ε, M , R such that |(7.8c)|+ |(7.8e)| < 1
2η. Then

limsupn→∞ |〈T (fn, gn, hn) , φ〉 − 〈T (f, g, h) , φ〉| < 1

2
η.

�
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7.4. Weak compactness of solutions in L∞t L
2
x. The preceding theorem on weak continuity

of T on L2 implies easily the following compactness result.

Corollary 7.10. Assume (fn) is a sequence of solutions of (CR) in L∞([0, T ], L2). Then
there exists a subsequence, which we still denote (fn), and a solution f ∈ L∞([0, T ], L2) of
(CR) such that

fn
n→∞−→ f weak-* in L∞([0, T ], L2).

Proof. First notice that (fn) is uniformly bounded in Lip([0, T ], L2). This means that we
may define (fn(t)) for all t ∈ [0, T ] and for each such t, there exists a weak limit f(t) ∈
L∞t ([0, T ];L2) such fn(t) ⇀ f(t) weakly in L2(R2). One can easily verify that fn(t) ⇀ f(t)
weak-* in L∞t ([0, T ];L2) and that f(t) ∈ Lip([0, T ], L2).

It suffices to show now that f solves (*). Set

fnj (t) = fn
(
k

2j

)
and fj(t) = f

(
k

2j

)
where k minimizes

∣∣t− k
2j

∣∣.
We start from

∂tfn = T (fn, fn, fn)

and want to pass to the limit n → ∞ in the sense of distributions. For the linear part, it is
automatic: ∂tfn → ∂tf . Now take φ in the Schwartz class S([0, T ]× R2). Then

|〈T (fn, fn, fn) , φ〉 − 〈T (f, f, f) , φ〉| ≤
∣∣〈T (fn, fn, fn) , φ〉 − 〈T (fnj , f

n
j , f

n
j ) , φ〉

∣∣
+
∣∣〈T (fnj , f

n
j , f

n
j ) , φ〉 − 〈T (fj , fj , fj) , φ〉

∣∣
+ |〈T (fj , fj , fj) , φ〉 − 〈T (f, f, f) , φ〉|
≤
∣∣〈T (fnj , f

n
j , f

n
j ) , φ〉 − 〈T (fj , fj , fj) , φ〉

∣∣+O(2−j),

where we used in the last line the uniform bound on (fn) and f in Lip([0, T ];L2). From this
last inequality, by weak convergence of the fnj to fj in L2, and the weak continuity of T in

L2, we deduce that

limsupn→∞ |〈T (fn, fn, fn) , φ〉 − 〈T (f, f, f) , φ〉| . 2−j

for any j; but this gives the desired result. �

8. Variational properties

We examine here more precisely how the Hamiltonian H and the L2 mass are related. Our
main result is that Gaussians maximize the Hamiltonian for prescribed L2 norm. This implies
dynamical stability of the Gaussians.

The results in this section would follow immediately from the relation H(f) = ‖eit∆f‖44,
and known results on the L4 Strichartz norm, in particular [23, 34, 2]. Still, we chose to
ignore this relation and give full proofs of Proposition 8.1 and Theorem 8.2; they turn out to
be very short and provide a slightly different point of view.

8.1. Positivity of the Hamiltonian.

Proposition 8.1. The Hamiltonian can be written

H(f) =
1

16

ˆ
S1

ˆ
R

ˆ
R

∣∣∣∣ˆ
R
f(uω + sω⊥)f(tω + sω⊥) ds

∣∣∣∣2 du dt dω. (8.1)

In particular, it is non-negative, and zero only if f = 0.
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Proof. The proof of the formula only consists of a change of integration variables in the
formula (6.3). Parametrizing in this formula z by vω, with (v, ω) ∈ R× S1 (at the expense of
an extra factor of 2 in the demominator), and ξ by tω + sω⊥, with (s, t) ∈ R2, it becomes

H(f) =
1

16

ˆ
S1

ˆ
R

ˆ
R

ˆ
R

ˆ
R
f
(

(t+ v)ω + sω⊥
)
f
(
tω + (s+ λv)ω⊥

)
f ((t+ v)ω + (s+ λv)ω⊥) f (tω + sω⊥)|v| dλ ds dt dv dω.

Setting now λ′ = s+ λv, u = t+ v gives

H(f) =
1

16

ˆ
S1

ˆ
R

ˆ
R

ˆ
R

ˆ
R
f
(
uω + sω⊥

)
f
(
tω + λ′ω⊥

)
f (uω + λ′ω⊥) f (tω + sω⊥) ds dλ′ dt du dω,

which is the desired result. It is then a small exercise to see that H vanishes only for the zero
function. �

8.2. Maxima of the Hamiltonian. By Proposition 7.1, H is bounded on L2. In other
words,

0 ≤ H(f) . ‖f‖42.

Our next aim here is to understand for which functions the above inequality is saturated, and
what is the best constant.

Theorem 8.2. For fixed mass ‖f‖2, the Hamiltonian H(f) is maximized if f equals, up to
the symmetries of the equation, ‖f‖2G, where G is the L2−normalized Gaussian G(x) =

1√
π
e−
|x|2

2 . Furthermore, all the maximizers are of the form ‖f‖2G, up to the symmetries of

the equation. Finally, the optimal constant in the bound for H is given by

H(f) ≤ π

8
‖f‖42. (8.2)

Remark 8.3. As noticed earlier, the operator T , or the Hamiltonian H, correspond to a
nonlinear generalization of the class studied by Brascamp and Lieb. Whether Brascamp-
Lieb inequalities are saturated by Gaussians has been studied by many authors, we mention
in particular [43, 11, 4].Our proof relies on the heat flow, following an approach initiated
in [11, 4].

Proof. Step 1: if g ∈ L1, convergence in L1 of

√
t
[
e
t
4

∆g
]

(
√
tx) to

(´
g
)1/2

G(x). Recalling that

the kernel of et∆ is e−
|x|2
4t

4πt , it is easy to see that this statement is true if g is in addition in

C∞0 . The general case g ∈ L1 follows by a density argument.

Step 2: if f ∈ L2, f ≥ 0, H
(√

eτ∆f
)

is increasing with τ . Notice that for f ≥ 0,
√
eτ∆f has

a constant L2−norm. It suffices to treat the case where f is smooth with rapid decay,
the general case follows by an approximation argument using the boundedness of H on L2.
Furthermore, since eτ∆f(x) > 0 for τ > 0, we assume from now on that f is positive, smooth,
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and decays rapidly, which justifies all the manipulations which follow. Recall the formula (8.1)
giving H(f). It can be written as

H(f) =

ˆ
S1

Hω(f)dω with Hω(f) =

ˆ
R

ˆ
R

∣∣∣∣ˆ
s
f(uω + sω⊥)f(tω + sω⊥) ds

∣∣∣∣2 du dt.
We will show that for any ω, d

dτHω(
√
eτ∆f) ≥ 0. Due to the semi-group property of eτ∆,

it suffices to prove it for τ = 0, which we proceed to do. For convenience, we adopt the
Cartesian coordinates given by ω, and denote simply f(u, s) = f(uω + sω⊥). Then

d

dτ
Hω
(√

eτ∆f
)

(τ = 0)

= 2

ˆ ˆ ˆ ˆ √
f(u, σ)

√
f(t, σ)

√
f(t, s)

[
∂2
s + ∂2

u

]
f(u, s)

1√
f(u, s)

ds dσ du dt

def
= I + II.

Since I and II are symmetrical, it suffices to show that II ≥ 0. But integrating by parts
once in u, it can be written

II =

ˆ ˆ ˆ ˆ [
−
√
f(t, σ)

√
f(t, s)√

f(u, σ)
√
f(u, s)

∂uf(u, σ)∂uf(u, s)

+

√
f(t, σ)

√
f(t, s)

√
f(u, σ)

f(u, s)
√
f(u, s)

|∂uf(u, s)|2
]
du dt dσ ds

=

ˆ ˆ ˆ ˆ
1

2

(
∂uf(u, s)

f1/2(u, σ)

f1/2(u, s)
− ∂uf(u, σ)

f1/2(u, s)

f1/2(u, σ)

)2 √
f(t, σ)

√
f(t, s)√

f(u, σ)
√
f(u, s)

du dt dσ ds

≥ 0,
(8.3)

which concludes the proof.

Step 3: Gaussians are maximizers Let f in L2. Then

H(f) ≤ H(|f |)

≤ H
(√

e
t
4

∆|f |2
)

for t ≥ 0, by Step 2

= H

(√
t
[
e
t
4

∆|f |2
]

(
√
t · )

)
by scaling invariance (Proposition 6.1)

t→∞−→ ‖f‖42 H(G) by Step 1 and continuity of H on L2 (Proposition 7.1),

(8.4)

which gives the desired inequality.

Step 4: up to the symmetries, Gaussians are the unique non-negative maximizers. Assume that
g a maximizer with g ≥ 0. We will show that g is a Gaussian, up to the symmetries of the
equation. Applying the heat flow, we might assume without loss of generality that g is posi-

tive and smooth. Then, if it is a maximizer, d
dtH(

√
et∆g) = 0, which, by (8.3), implies (with
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the notations of Step 2) that

∂ug(u, s)

g(u, s)
=
∂ug(u, σ)

g(u, σ)
for any u, s, σ.

Setting h(u, s) = log g(u, s), this becomes

∂uh(u, s) = ∂uh(u, σ), for any u, s, σ.

We can rewrite the above as ∂uh(u, s) = ∂uh(u, s + s0) for any u, s, s0. Taking the Fourier
transform of this identity in u, s and denoting ξ, η for their respective Fourier variables, we
obtain

ξĥ(ξ, η) = ξĥ(ξ, η)eiηs0 for any ξ, η, s0.

From this identity one deduces first that ĥ is localized at (0, 0), and then that it is a linear
combination of Dirac masses δ0, first derivatives of Dirac masses ∂iδ0, and ∆δ0. Thus, h is a
second order polynomial with an isotropic second order part. Coming back to g, and using
that it belongs to L2, it has to be a Gaussian up to symmetries.

Step 5: up to the symmetries, Gaussians are the unique complex-valued maximizers. Assume
that f is a maximizer. So is |f |, which, by the previous step, is a Gaussian. We can thus
assume that f = Geiθ, where θ is real and smooth. By adding a constant factor to θ, we may
also assume that H(f) = H(G) > 0. Using the original formulation of H(f) in (6.1), it is
easy to see that we must then have that for any ξ, z ∈ R2 and λ ∈ [−1, 1]:

θ(ξ + z⊥) + θ(ξ + λz) = θ(ξ) + θ(ξ + z⊥ + λz).

Taking the derivative with respect to λ we get that for any ξ, z ∈ R2, λ ∈ [−1, 1]:

z · ∇θ(ξ + λz) = z · ∇θ(ξ + z⊥ + λz).

which implies that

z · ∇θ(η) = z · ∇θ(η + z⊥) for any η, z ∈ R2.

As a result, for any ω ∈ S1 and with the notation θ(u, s) = θ(uω + sω⊥), it holds that

∂uθ(u, s) = ∂uθ(u, σ), for any u, s, σ.

This identity already appeared in the previous step. Arguing as there, we obtain that θ is a
quadratic polynomial with isotropic second order part, which gives the desired result.

�

8.3. Compactness of minimizing sequences and L2 stability of Gaussians. Let G be
the manifold obtained by letting the symmetries of (CR) act on G:

G =

{
γG

(
x− x0

|γ|

)
eiv0·x+iβ|x|2 , (γ, x0, v0, β) ∈ C× R2 × R2 × R

}
.

Theorem 8.4. Let (fn) be a sequence in L2 such that, for some Q > 0,

‖fn‖2 → Q and H(fn)→ π

8
Q4 as n→∞.

Then
distL2(fn, QG) −→ 0 as n→∞.

Proof. The proof follows by combining Theorem 8.2 with the profile decomposition in [47] via
standard concentration compactness arguments. We omit the details. �
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This theorem has an easy consequence: dynamic stability of Gaussians by the flow of (CR).

Proposition 8.5. Assume that (fn0 ) is a sequence in L2 converging to G. Denote fn(t) for
the solution of (CR) with data fn0 . Then for any time t > 0,

distL2(fn(t), QG) −→ 0 as n→∞.

Appendix A. The case of dimension 1

It is easy and instructive to describe in dimension 1 the weakly nonlinear (ε→ 0), big box
(L→∞) limit of (NLS). We sketch it here and start by considering

−i∂tu+ ∆u = ε2|u|2u set on TL.

First expand u in Fourier series: u = 1
L

∑
K∈Z/L aKe

2πiKx, and set bK(t) = aK(L2t)e−i4π
2tL2K2

.

It solves

−i∂tbK = ε2
∑

K1−K2+K3=K

bK1 b̄K2bK3e
i4π2tL2Ω with Ω = −K2 +K2

1 −K2
2 +K2

3 .

In the above sum, keep only the resonant terms, for which Ω vanishes; the other ones have
less impact on the dynamics due to the weak nonlinearity hypothesis. This gives

−i∂tbK = −ε2|bK |2bK + 2ε2

 ∑
J∈Z/L

|bJ |2


︸ ︷︷ ︸
L‖u‖2

L2(TL)

bK .

Noticing that the L2 norm of the solution is preserved for all times, and changing the depen-

dent variables one last time to cK = bKe
i2tε2L‖u‖22 , we obtain the equation

−i∂tcK = −ε2|cK |2cK .

In the above equation, K ranges over Z/L. As L → ∞, it is clear that the above converges
to the continuous equation

−i∂tg(t, ξ) = −ε2|g(t, ξ)|2g(t, ξ), where (t, ξ) ∈ R2.

Rescaling time gives

i∂tg(t, ξ) = |g(t, ξ)|2g(t, ξ).

The corresponding Cauchy problem for an initial data g(0, ξ) = g0(ξ) is easily solved:

g(t, ξ) = g0(ξ)eit|g0(ξ)|2 . (A.1)

One notices that in this 1D setting, the continuous resonant dynamics are not as interesting as
the 2D case. This is due to the absence of non-trivial cubic resonances in dimension 1. Indeed,
an application of a normal forms transformation indicates that the nonlinear interactions
responsible for any change in the dynamics of “action” variables |û(K)|2 are higher order
(namely quintic). On the other hand, equation (A.1) suggest that the corresponding “angle”
variables tend to become (generically) decorrelated as time increases.

Acknowledgements. The authors would like to thank Benoit Pausader for a discussion
leading to the interpretation in Section 2.4.
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