
The existence of freely available data assimilation software is permitting the general  

NWP community to perform research and development in the same framework as used  

in a significant number of operational implementations.

T
 he merging of meteorological observations and  

 short-range weather forecasts, via the process  

 of data assimilation, to provide the initial con-

ditions for NWP is an increasingly popular area of 

interdisciplinary research. The end-to-end process 

is highly complex. Measurements from a wide range 

of remote sensing and in situ observing platforms, 

each with unique error characteristics, require 

thinning, bias correction, and the application of 

complex quality control procedures before they can 

be assimilated. In most modern data assimilation 

algorithms, short-range (typically 1–6 h) forecasts, 

with their own equally complex systematic and ran-

dom errors, propagate previous observations to the 

present, thereby filling in the gaps where no current 

observations exist and providing a meteorologically 

valid “background field” as a basis for the analysis. 

The data assimilation procedure produces an analysis 

through the invocation of fundamental statistical 

concepts (e.g., Bayes rule relates the statistics of 

the analysis to the input background “prior” and 

observations), meteorological understanding (e.g., 

dynamical balance, physical parameterizations), 

numerical methods (e.g., minimization algorithms), 

and modern software engineering techniques (e.g., 

shared/distributed memory parallelism). Daley (1991) 

and Kalnay (2003) provide comprehensive overviews 

of the data assimilation challenge.

Modern operational data assimilation systems 

ingest millions of observations and must produce 

the analysis (with a similar number of degrees of 

freedom) in a time slot of between 5 and 60 min, 

within a few hours of the observations being taken. 

Improved NWP models, novel data assimilation 

algorithms, and new observing types emerge con-

tinuously to provide better analyses and subsequent 

forecasts. However, experience over the past few 

decades indicates that the impact of all these efforts 

on NWP skill has been incremental, with average 

forecast improvements on the order of a few percent 

per year (e.g., Simmons and Hollingsworth 2002). 

Historical trends are not always a good indicator of 
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future performance, but the implication is that there 

are no short cuts to the complex, resource-intensive 

process outlined above if one wishes to retain a 

world-class data assimilation system. Consequently, 

the development of state-of-the-art systems has been 

confined to large development teams within opera-

tional weather centers (e.g., Parrish and Derber 1992; 

Rabier et al. 2000; Rawlins et al. 2007). External 

community influence has been generally confined 

to publishing longer-term data assimilation research 

using toy model systems, and short-term collabora-

tions to assist testing relatively simple tweaks to 

current systems.

In the past decade, a new paradigm for collaborative 

community data assimilation research has emerged. 

An upsurge in interest in data assimilation in universi-

ties, federal agencies, and the private sector, combined 

with the ability to freely exchange algorithms and 

data over the Internet, have led to the development 

and use of freely available operational quality com-

munity data assimilation tools. Two recent examples 

include the Community Radiative Transfer Model 

(CRTM; Han et al. 2006) and the National Center for 

Atmospheric Research’s (NCAR’s) ensemble-based 

Data Assimilation Research Testbed (Anderson 

et al. 2009). This article provides an overview of a 

third community tool: the Weather Research and 

Forecasting (WRF) model’s Community Variational/

Ensemble Data Assimilation System (WRFDA), de-

veloped for and widely used by the Weather Research 

and Forecasting (Skamarock et al. 2008) model’s 

international data assimilation research/operational 

community.

COMMUNITY DATA ASSIMILATION 

FOR WRF: THE WRFDA DEVELOPMENT 

STORY. The multiagency WRF model effort has 

had a significant data assimilation component from 

its earliest days. Initial discussions between major 

partners [NCAR, National Oceanic and Atmo-

spheric Administration (NOAA), the U.S. Air Force 

Weather Agency (AFWA), Oklahoma University, and 

the U.S. Naval Research Laboratory] in 1999–2001 

resulted in a set of generic requirements for a uni-

fied community data assimilation system: accuracy, 

robustness, computational efficiency, portability, 

flexibility, support, documentation, and ease of use. 

A major challenge for community NWP is to satisfy 

the diverse requirements of the member agencies. For 

example, robustness and efficiency are highest prior-

ity for operations, but arguably less so for academia. 

In contrast, portability, support, and flexibility are 

vital if the wider research community is to use the 

operational system to research observation impacts, 

advanced data assimilation algorithms, etc. The WRF 

data assimilation working group, set up to assess 

the possibility of developing a common framework, 

initially tasked each partner to define its “essential” 

and “desirable” scientific and technical capabilities. 

A subset of essential features [conventional observa-

tions, three-dimensional variational data assimilation 

(3DVAR) algorithm, portable, supported, and with 

good documentation] was agreed as the initial basic 

requirement. A review of the available codes was then 

undertaken to assess which (if any) of the available 

systems could provide a suitable starting point, 

resulting in an agreement to base the initial WRF 

data assimilation system on the community fifth-

generation Pennsylvania State University–National 

Center for Atmospheric Research Mesoscale Model 

(MM5) 3DVAR system (Barker et al. 2003). Practical 

issues rather than scientific merit dominated this 

choice; that is, MM5 3DVAR’s relative flexibility, ease 

of use, dedicated WRF resources to further develop 

the system, and available support. The MM5 3DVAR 

system also had the advantage of being built directly 

within the WRF software framework, thus providing 

a direct interface to other components of the WRF 

modeling system (see Fig. 1).

The first version of the WRF 3DVAR was distributed 

to developers in June 2003, with upgraded versions 

released to the general community in WRF version 

2.0 (May 2004) and version 3.0 (Skamarock et al. 

2008). In 2004, the inclusion of a four-dimensional 

variational data assimilation (4DVAR; Huang et al. 

2009) capability resulted in a change of name to 

WRF-VAR. Similarly, in 2008 the release of a hybrid 
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variational–ensemble algorithm (see 

below) led to a second renaming to 

WRFDA.

Support for the WRFDA commu-

nity is provided through scientific/

technical documentation, a user’s 

guide, an online tutorial, and test 

datasets (available at www.mmm 

.ucar.edu/wrf/users/wrfda). A mod-

est level of helpdesk support (25% 

of one scientist) is also available 

(wrfhelp@ucar.edu). A component 

of the WRF tutorial held yearly in 

Boulder, Colorado, is devoted to 

WRFDA. Additional user-requested 

WRFDA tutorials have also been 

held in numerous countries, including Taiwan, India, 

Vietnam, South Korea, and China.

WRFDA OBSERVATIONAL CAPABILITIES. 

The WRFDA system can ingest a wide variety of 

observation types, in addition to the standard con-

ventional observation types (surface, rawinsonde, 

aircraft, wind profiler, and atmospheric motion 

vectors). An overview of WRFDA’s radar radial 

velocity and reflectivity assimilation capabilities is 

given in Xiao et al. (2008a), including results from 

the Korean Meteorological Administration’s (KMA’s) 

operational mesoscale WRF configuration. The sig-

nificant potential of observations derived from GPS 

radio occultation measurements is investigated in 

Cucurull et al. (2004, 2006), and positive signals using 

the GPS-derived zenith total delay have been found by 

Guo et al. (2005) and Faccani and Ferretti (2005a,b). 

Powers (2007) found significant benefit assimilating 

both high-resolution Antarctic surface data and 

Moderate Resolution Imaging Spectroradiometer 

(MODIS)-derived atmospheric motion vectors in the 

Antarctic Mesoscale Prediction System (AMPS).

Satellite radiance data assimilation. Over the past two 

decades, most leading NWP centers have moved 

from the assimilation of derived temperature/

humidity retrievals to the direct assimilation of raw 

satellite radiances (i.e., brightness temperatures; e.g., 

McNally et al. 2000). Direct radiance assimilation 

requires a forward radiative transfer model (RTM), 

which creates model-simulated satellite brightness 

temperatures from input NWP model atmospheric 

temperature and moisture profiles and surface 

parameters. Variational radiance data assimilation 

additionally requires the tangent linear and adjoint 

versions of the RTM. An RTM within WRFDA 

must be accurate yet fast enough to be utilized in 

operational NWP assimilation. The WRFDA system 

is unique in that it interfaces to the two most widely 

used fast RTMs: Radiative Transfer for Television 

and Infrared Observation Satellite (TOVS; RTTOV) 

developed and maintained by the European Organi-

sation for the Exploitation of Meteorological Satellites 

(EUMETSAT), and the U.S. Joint Center for Satellite 

Data Assimilation (JCSDA) CRTM (Han et al. 2006). 

A f lexible interface to both RTTOV and CRTM 

ensures that WRFDA users can assimilate radiance 

data from all sensors that can be simulated by either 

RTM, provided that corresponding data interface and 

quality control have been implemented.

The WRFDA system directly ingests radiances in 

the National Centers for Environmental Prediction 

(NCEP) Binary Universal Form for the Representa-

tion of Meteorological Data (BUFR) format. Thus, 

WRFDA can directly assimilate both NOAA/AFWA 

near-real-time operational feeds (ftp://ftp.ncep.noaa 

.gov/pub/data/nccf/com/gfs/prod/), as well as his-

torical data (http://nomads.ncdc.noaa.gov/). Table 1 

provides a list of radiance data sources that have been 

successfully assimilated in the latest WRFDA 

version 3.3 release (March 2011). The 20 instruments 

from eight platforms include both microwave [e.g., 

Advanced Microwave Sounding Unit (AMSU)-A, 

AMSU-B, and Microwave Humidity Sounder (MHS)] 

and infrared [e.g., High Resolution Infrared Radiation 

Sounder (HIRS) and Atmospheric Infrared Sounder 

(AIRS)] sensors. Only instruments on board polar 

platforms are currently supported; future work will 

add sensors on board geostationary platforms [e.g., 

Geostationary Operational Environmental Satellite 

(GOES)] to the list. A flexible program design allows 

WRFDA users to add additional instruments for 

their own research, with relatively small development 

FIG. 1. The basic WRF modeling system, including WRF-VAR 

(WRFDA), from Skamarock et al. (2008).
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effort. The following observation screening and 

quality control is an essential component of the data 

assimilation process and is included within WRFDA: 

domain check, gross error check, data thinning, data 

splitting into discrete time slots, bias correction, and 

the objective tuning of observation errors (Desroziers 

and Ivanov 2001).

Satellite radiance measurements and RTMs are 

prone to systematic errors (i.e., biases) that must be 

corrected before radiances can be assimilated. Biases 

typically vary with platform, instrument, channel, 

scan angle, and atmospheric conditions. Estimation 

of bias via off line linear regression (i.e., modeling 

biases in past data as a weighted combination of bias 

predictors, e.g., scan angle and thickness) has been 

used successfully for many years 

in operational NWP (e.g., Harris 

and Kelly 2001). However, biases 

can change rapidly so they should 

ideally be estimated adaptively as 

part of the assimilation algorithm. 

This is achieved in WRFDA via a 

variational bias correction algorithm, 

which updates the bias coefficients 

within the linear regression as a 

part of the variational minimization 

(Dee 2005; Auligné et al. 2007). The 

evolving nature of the radiance bias 

is illustrated in Fig. 2a for a selection 

of radiance channels for the AMSU-

A microwave instrument aboard 

Meteorological Operation (MetOp)-2. 

Observation minus background 

forecast (O − B) differences are taken 

from a 20-month period within a 

continuously cycling Arctic regional 

reana lysis appl icat ion of 

WRFDA. In this example, the 

bias corrections are estimated 

offline [variationally, but only 

minimizing the bias coef-

ficients using the European 

Centre for Medium-Range 

Weather Forecasts (ECMWF) 

Re-Analysis (ERA)-Interim 

as a reference fields]. Results 

show that the bias correction 

clearly differs for each channel, 

and exhibits a clear monthly to 

seasonal dependence. The cor-

responding random compo-

nent of the observation minus 

forecast differences is shown 

in Fig. 2b. The introduction of the bias correction in 

May 2007 reduces the standard deviation of the O − B 

difference over the first few months as the system 

spins up. Monitoring of the evolving O − B statistics 

is standard practice within operational NWP. The 

inclusion of an adaptive bias correction algorithm 

helps to automate this process, thus reducing the 

human effort required to monitor observation quality. 

As an example, the progressive failure of AMSU-A 

channel 7 from October 2008 onward (the blue curve 

in Fig. 2b) is also picked up by the adaptive bias cor-

rection algorithm, leading to its eventual rejection 

from the data assimilation system.

Radiance data assimilation in WRFDA has been 

applied in numerous applications to date to study 

TABLE 1. Satellite radiance platforms/instruments used in WRFDA 

version 3.3. Blank cells indicate instruments that are either not 

present on the particular platform or failed early after launch. EOS = 

Earth Observing System; DMSP = Defense Meteorological Satellite 

Program; SSMIS = Special Sensor Microwave Imager/Sounder.

AMSU-A AMSU-B MHS HIRS AIRS SSMIS

NOAA-15 x x x

NOAA-16 x x x

NOAA-17 x x

NOAA-18 x x x

NOAA-19 x x x

MetOp-2 x x x

EOS-2 (Aqua) x x

DMSP-16 x

FIG. 2. Time series of (a) bias correction and (b) standard deviation 

of observed minus CRTM-calculated brightness temperatures for 

MetOp-2 AMSU-A channels 5–9. Data from a regional 30-km WRFDA 

polar stereographic application centered on the North Pole for the 

20-month period between Apr 2007 and Dec 2008.
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different weather phenomena over various regions 

(e.g., Lu et al. 2010; He et al. 2011). The challenge of 

cloudy radiance assimilation in WRFDA has been 

illustrated by Liu et al. (2009), and will be a focus for 

future developments. Figure 3a shows AIRS channel 

1519 (which is sensitive to upper-tropospheric water 

vapor) radiance observations for the 0600 UTC 

assimilation cycle on 26 August 2005, clearly indi-

cating the presence of cloud/precipitation around 

Hurricane Katrina over Florida. Currently, WRFDA 

calculates only “clear” radiances (i.e., no cloud/

precipitation information is considered in the RTM), 

as illustrated in Fig. 3b for the corresponding bright-

ness temperatures from a 15-km WRF 6-h forecast. 

Therefore, observations “contaminated” by cloud/

precipitation are currently removed as part of the 

quality control procedure. The development of an all-

sky radiance capability is an area of active research.

DATA ASSIMILATION TECHNIQUES 

WITHIN WRFDA. At the heart of WRFDA’s 

core is a variational minimization of a cost function 

designed to optimally blend observations and prior 

NWP forecasts. A variety of alternative variational 

data assimilation techniques are available: 3DVAR 

(Barker et al. 2004), the more computationally inten-

sive 4DVAR (Huang et al. 2009), and a hybrid varia-

tional/ensemble algorithm that combines the benefits 

of the physically based variational approach with the 

statistical, flow-dependent error information provided 

by ensemble forecasts (Wang et al. 2008a,b).

Forecast error covariance estimation. In order to opti-

mize the use of input observational and prior forecast 

data, data assimilation requires accurate estimates of 

observation and forecast error. The WRFDA system 

includes a table of observation errors for each major 

observation type, as used in AFWA applications of 

WRFDA (see below). Default synoptic-scale climato-

logical forecast error statistics are also provided for 

initial setup, testing, and training runs. However, sig-

nificantly enhanced performance is usually obtained 

using forecast error statistics calculated for the specif-

ic domain of interest. The WRFDA’s “gen_be” utility 

estimates domain-specific climatological estimates of 

forecast errors based on input training data, either 

time series of forecast differences (Parrish and Derber 

1992) or perturbations from an ensemble prediction 

system (Skamarock et al. 2008, chapter 9). Figure 4 

illustrates the positive impact of domain-specific fore-

cast errors during a 1-month 3DVAR cycling experi-

ment in the AMPS (Powers et al. 2003). The ~0.5-K 

reduction in temperature T + 24 forecast error is one 

of the most significant improvements made to the 

real-time AMPS configuration since its inception 

FIG. 3. (a) AIRS channel 1519 (sensitive to upper- 

tropospheric water vapor) radiance observations 

for the 0600 UTC assimilation cycle on 26 Aug 2005, 

clearly indicating the presence of cloud/precipitation 

around Hurricane Katrina over Florida. (b) The cor-

responding “clear” (see text) brightness temperatures 

from a 15-km WRF 6-h forecast are shown.

FIG. 4. AMPS domain mean and root-mean-square 

temperature T + 24 forecast error as verified against 

rawinsondes through May 2004. Forecast run from 

3DVAR analyses produced using default background 

errors supplied with the WRFDA download (green 

curves), and forecast skill obtained using climatological 

background errors calculated via gen_be specifically for  

the AMPS configuration (red curves) are indicated.
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(e.g., larger than the impact of any individual obser-

vation type). The production of domain-specific cli-

matological forecast error 

covariances is clearly an 

essentia l component of 

any publication-quality 

research project, especially 

those that attempt to com-

pare WRFDA performance 

with alternative assimila-

tion methods such as the 

ensemble Kalman f ilter 

(e.g., Zhang et al. 2011) for 

which forecast error esti-

mation is more automated 

(but also more expensive).

Like most variational 

data assimilation a lgo-

rithms, gen_be estimates 

multivariate covariances 

that permit observations 

of one variable (e.g., sur-

face pressure) to influence 

the analyses of others (e.g., 

surface wind and tempera-

ture) via statistical regres-

sions. A unique feature 

of WRFDA’s gen_be util-

ity is its ability to model 

forecast error covariances 

using data from a variety of 

models in addition to WRF, 

as demonstrated in Fig. 5 

using KMA global spec-

tral model T213 (~60 km) 

resolution data to train 

the statistical covariances. 

In the mid-/high latitudes 

there is a very strong cor-

relation (up to 90% in the 

midtroposphere) between 

temperature and surface 

pressure errors and those 

estimates from the non-

divergent wind (actually 

streamfunction) via geo-

strophic balance. In the 

tropics, this correlation 

drops to 0%–20% (as ex-

pected, WRFDA will not 

erroneously apply geo-

strophic increments at low 

latitudes).

Many WRF applications are at convective scale, 

where the usual synoptic-scale balances (e.g., hydrostatic 

FIG. 6. Use of WRFDA within a coupled ensemble prediction system. In the 

forecast step, an ensemble of N WRF forecasts xf

n is integrated forward to 

the next assimilation time window. In the update step, the ensemble mean 

forecast is used as background for WRFDA (3DVAR or 4DVAR), and ensemble 

perturbations (member minus mean) supply estimates of flow-dependent 

forecast errors (dashed blue line). The hybrid method mitigates ensemble 

sampling error by combining both climatological and flow-dependent esti-

mates of forecast error. Observations y° are assimilated simultaneously via 

WRFDA and also are used within an ETKF (Bishop et al. 2001) to update 

the ensemble perturbations ready for the next cycle of ensemble forecasts.

FIG. 5. Normalized correlation between (left) temperature and (right) surface 

pressure errors and values predicted via statistical regression of streamfunc-

tion T + 48–T + 24 forecast differences (after Wu et al. 2002). Values reaching 

0.9 in the extratropical midtroposphere imply that 90% of the temperature/

surface pressure error is predictable from knowledge of the nondivergent 

wind. Forecast data are taken from Aug 2002 and Jan 2004 KMA global model 

output. (right) Correlations for Aug 2002 (red curves) and Jan 2004 (blue 

curves) are indicated, showing little seasonal dependence in the correlation 

for surface pressure errors.
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and geostrophic) are of reduced relevance and interac-

tions between mass, wind, and hydrometeor fields are 

of primary interest. The gen_be algorithm provides a 

test bed to investigate advanced covariance models. For 

example, Michel et al. (2011) found quite different re-

lationships in forecast error between precipitating and 

nonprecipitating areas in a WRF 3-km ensemble. In 

addition, a number of significant relationships between 

hydrometeor and wind errors were found (e.g., the link 

between rain errors and vertical velocity through the 

unbalanced convective-scale divergence field).

Hybrid variational–ensemble data assimilation. NWP 

forecast errors generally depend on the synoptic con-

ditions at a particular time. The WRFDA’s 4DVAR 

capability provides a degree of f low dependence 

through the use of the linear forecast model to evolve 

perturbations through a short time window (Huang 

et al. 2009). However, this comes at a cost; there 

are both computational as well as human resources 

required to maintain a linear forecast model and its 

adjoint. The ensemble Kalman filter (EnKF) is an 

attractive alternative to 4DVAR because it does not 

require a linear/adjoint model 

to provide this flow dependence 

(e.g., Houtekamer and Mitchell 

1998; Hunt et al. 2007; Anderson 

et al. 2009). Instead, the EnKF 

derives error estimates from 

the nonlinear short-range fore-

casts of an ensemble prediction 

system (EPS). Computational 

cost is significantly reduced if 

an operational EPS is already in 

place (e.g., to provide probabilis-

tic NWP products). The EnKF 

update step is computationally 

relatively cheap compared to the 

cost of running the ensemble of 

forecasts. In contrast, the cost 

of 4DVAR is dominated by the 

iterative integration of linear and 

adjoint models within the varia-

tional minimization. The major 

limitation of the EnKF approach 

is sampling error caused by the 

relatively small number of ensem-

ble members (typically 20–100) 

that are affordable for opera-

tional NWP. Hybrid variational–

ensemble data assimilation at-

tempts to combine the benefits of 

ensemble data assimilation (flow 

dependence and flexibility) with those of variational 

systems (simultaneous treatment of observations, 

dynamical/physical constraints, complex qual-

ity control, treatment of nonlinearities via an outer 

loop, etc.). In the hybrid approach, EnKF sampling 

error is ameliorated through the combination of 

flow-dependent (but low rank) ensemble-derived co-

variances and full-rank (but climatological) estimates 

typically used within variational data assimilation 

(Hamill and Snyder 2000; Etherton and Bishop 2004). 

The WRFDA hybrid algorithm mirrors that devel-

oped at the Met Office (Barker 1999) by introducing 

f low dependence via additional control variables 

within the minimization. The WRFDA hybrid algo-

rithm requires relatively minor modifications to the 

variational algorithm, and has been shown to beat 

pure variational and ensemble techniques in both 

3DVAR (Wang et al. 2008a,b) and 4DVAR modes 

(Zhang et al. 2011). The coupled hybrid WRFDA–EPS 

algorithm is shown in Fig. 6. A significant benefit 

of this hybrid approach over 3DVAR is illustrated 

in Fig. 7 for a 1-month trial within AFWA’s 15-km 

Caribbean theater (Demirtas et al. 2009).

FIG. 7. Impact of hybrid data assimilation during a 30-day trial (from 

17 Aug to 15 Sep 2007) in AFWA’s Caribbean theater. The T + 48 fore-

cast error verified against radiosondes is shown for (a) u wind, (b) v 

wind, (c) temperature, and (d) specific humidity. Results demonstrate 

that hybrid 3DVAR data assimilation (red curves) significantly reduces 

forecast error relative to pure 3DVAR (blue curves).
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Liu et al. (2008, 2009) 

take the WRFDA hybrid 

concept one stage further 

via the En4DVAR algo-

rithm, which replaces lin-

ear and adjoint models 

within 4DVAR with a time 

series of EPS perturbations. 

The cost of En4DVAR is 

then approximately the 

same as that of 3DVAR, but 

with the advantage over the 

pure EnKF of reduced sam-

pling error through the use 

of hybrid covariances.

The WRFDA system has 

been applied in a variety 

of purely ensemble data 

assimilation studies. Barker 

(20 05) used W R FDA’s 

c ov a r i a nc e  m o d e l i n g 

capabilities to assess the impact of ensemble size 

and covariance localization on the accuracy of 

f low-dependent multivariate forecast errors in the 

AMPS. WRFDA’s climatological covariance model 

has been used to provide meteorologically consis-

tent initial and lateral boundary perturbations for 

EnKF experiments (e.g., Torn et al. 2006; Meng 

and Zhang 2008). The WRFDA algorithm has also 

been used as a preprocessor to provide ensembles of 

model-simulated observations to the EnKF, thus by-

passing the need to develop complex quality control, 

bias correction, and radiance observation operators 

within the EnKF itself (e.g., Schwartz et al. 2012).

A particular focus for WRFDA studies has been 

the improved prediction of tropical cyclone track and 

intensity in mesoscale NWP (Chen et al. 2004, 2007; 

TABLE 2. WRFDA real-time (RT)/operational (O) implementations 2002–10. AFAD = Air Force and Air 

Defense, HWRF = Hurricane WRF, WRFRT = Real-time WRF, NCMRWF = National Center for Medium-

Range Weather Forecasts, BMB = Beijing Meteorological Bureau, SAF = Swedish Air Force.

Application RT/O Grid (km) Start date Notes

CWB (Taiwan) O 135/45/15 May 2002* First implementation of WRF

AFWA (United States) O 45/15 Sep 2002* First operational 3DVAR in  

U.S. Department of Defense

AMPS (NCAR; United States) R 90/30/10 May 2004* First Antarctic mesoscale DA

KMA (South Korea) O 30/10 2005* First direct use of radar winds

AFAD (United Arab Emirates) O 36/12/4 Aug 2006 Most complete system to date

HWRF (NCAR; United States) R 12/4/1.33 Jul 2007 3DVAR only in the 12-km domain

WRFRT (NCAR; United States) R 9/3 Apr 2008 Focus on springtime convection

NCMRWF (India) O 27/9 Oct 2008 Bay of Bengal tropical cyclones

BMB (China) O 27/9/3 Jul 2008 Includes Beijing 2008 Olympics

Yunnan (China) O 30/10 Feb 2009 Focus on ground-based GPS

Jiangsu (China) O 30/10 Oct 2009 Uses NCEP 1b radiances

AirDat (United States) O 36/12 Nov 2009 Tropical Atlantic hurricanes

SAF (Sweden) R 27/9 Nov 2009
European domains  

(see http://metoc.se/wxlinx/wrf/)

* Start date refers to WRFDA implementation with MM5; WRF is adopted later.

FIG. 8. Worldwide AFWA theaters at the time of initial WRFDA implementa-

tion with MM5 in Sep 2002; the first use of a component of WRF in operations, 

and the first 3DVAR system to be implemented by the U.S. Department of 

Defense are shown.
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Gu et al. 2005; Huang et al. 2005; Xiao et al. 2006, 

2007). Xiao et al. (2005) and Xiao and Sun (2007) 

describe applications of WRFDA to the prediction of 

severe weather events in convective-scale NWP. Lee 

et al. (2006) present results of the positive impact of 

an Incremental Analysis Update (IAU; Bloom et al. 

1996) initialization procedure applied to mesoscale 

NWP. Xiao et al. (2008b) demonstrated the use of a 

diagnostic adjoint sensitivity technique to trace back 

Antarctic forecast errors to their origins within the 

initial analysis for an Antarctic severe-weather event. 

A complete publication list, together with tutori-

als, and detailed documentation for the interested 

user are available (www.mmm.ucar.edu/wrf/users 

/wrfda/).

OPER ATIONAL APPLICATIONS OF 

WRFDA. The WRFDA system has from the outset 

been designed with operational implementation in 

mind. Indeed, the bulk of the funding for WRFDA 

development has been provided by operational cen-

ters (see the acknowledgements). A list of known 

real-time/operational implementations to date is 

shown in Table 2. The distinction between real-time 

and operational designations is significant and re-

flects the very high level of robustness required for 

operational status (typically <1% failure rate), as well 

as potentially contractually agreed upon customer 

service–level agreements, etc. The implementation 

of an early version of WRFDA with the MM5 at the 

Taiwanese Central Weather Bureau (CWB) in May 

2002 represented the first use of a component of WRF 

in operations (Barker et al. 2004). Previous BAMS 

articles include details of WRFDA’s application in 

the AMPS (Powers et al. 2003) and at the KMA (Xiao 

et al. 2008a). In this article, we document results from 

two additional WRFDA operational implementations 

that arose in very different ways.

WRFDA in operations at AFWA. The U.S. AFWA has been 

a partner in the WRF effort since its inception, and has 

provided continual guidance and significant support 

in the development of data assimilation and modeling 

facilities that are now freely available to the entire WRF 

community. The September 2002 implementation of 

WRFDA in AFWA operations represented the U.S. 

Department of Defense’s first operational 3DVAR capa-

bility as well as the first implementation of a component 

of WRF in operations in the United States. Worldwide 

AFWA theaters at the time of the 2002 WRFDA imple-

mentation are shown in Fig. 8. Since 2002, AFWA has 

had effectively global coverage at 45-km resolution, 

which has recently been upgrading to 15 km.

FIG. 9. Comparison of WRFDA (triangles) and MVOI 

(squares) root-mean-square forecast error verified 

against rawinsonde observations for the period from 

4 Jun to 10 Jul 2002: analysis (red), T + 12 (green), and 

T + 24 (blue) forecasts in AFWA’s European domain 

are shown. (a) Height and (b) relative humidity are 

also indicated. [From B. Craig, AFWA.]

Sample forecast verification statistics from pre-

operational WRFDA testing in AFWA’s European 

theater during the period from 4 June to 10 July 2002 

are shown in Fig. 9. Results indicate that WRFDA 

significantly and systematically improved the quality 

of MM5 height and humidity forecasts compared to 

the multivariate optimal interpolation (MVOI; see 

Daley 1991) system that it replaced (observations and 

model were identical in the comparison). In addition, 

given that WRFDA is designed to run efficiently 

on massively parallel supercomputers, the runtime 

for AFWA’s data assimilation was reduced from 5 

to less than 1 min. Since initial implementation in 

2002, the WRFDA version used at AFWA has been 

updated to incorporate new capabilities as they be-

come available.

WRFDA in operations in the United Arab Emirates. 

Given the very limited support available at NCAR 

for WRFDA use in the general community, it is vital 

that the system be well documented, easy to use, and 
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robust to a range of applications, computing platforms, 

compilers, etc. A good example of how the community 

has succeeded (with very little support) in setting up a 

sophisticated operational NWP system, including data 

assimilation, is provided by the United Arab Emirates 

WRF system (UAE/WRF), developed as part of the 

United Nations Development Program by the UAE 

Air Force and Air Defense Meteorological Depart-

ment (Ajjaji et al. 2007). The UAE/WRF configuration 

shown in Fig. 10 consists of triple, two-way WRF nests 

with observations assimilated in all three domains by 

cycling WRFDA. Lateral/lower boundary conditions 

for the outer domain are based on 6-hourly, 0.5° data 

available via ftp from NOAA’s Global Forecast System. 

After a series of setup and 

verification tests, the model 

became operational on 15 

August 2006.

Running WRFDA lo-

cally allows the system to 

ingest local radar and clas-

sified conventional data in 

addition to the wide range 

of observations available 

on the Global Telecommu-

nications System (surface, 

rawinsonde, aircraft, at-

mospheric motion vectors). 

Nonconventional data used 

include radiances, radar re-

flectivities, and GPS refrac-

tivities. Level 1b radiances 

are assimilated through 

WRFDA’s implementation 

of the JCSDA’s CRTM (Han 

et al. 2006). Typical observa-

tion numbers assimilated 

in a single 6-h assimilation window 

via the First Guess at Appropriate 

Time (FGAT; Lee and Barker 2005) 

3DVAR method are given in Table 3. 

Observation errors are tuned and 

radiance biases are corrected. The 

initial analysis is updated via a second 

outer-loop iteration to account for 

nonlinear effects and to improve ob-

servation quality control. Estimates 

of forecast error are computed lo-

cally using WRFDA’s gen_be utility 

to further tune 3DVAR for the UAE/

WRF application.

RETROSPECTIVE OF THE 

WRFDA COMMUNITY DATA ASSIMILA-

TION EFFORT. A decade on from its inception, 

it is instructive to review the successes and failures 

of the WRFDA program. In terms of its initial goal 

to build an advanced, flexible, easy-to-use data as-

similation system that is used in both research and 

operational environments, the WRFDA program 

has succeeded with over 40 publications to date, 

numerous unique features, and a significant number 

of worldwide operational implementations. Several 

hundred scientists have attended the Boulder-based 

WRFDA tutorials to date, with the tutorial also being 

provided at various international locations. With no 

single source of funding, the WRFDA program has 

FIG. 10. Domains of the triple-nested 312-/6-/4-km resolution UAE/

WRF system run operationally by the UAE’s Air Force and Air 

Defense Meteorological Department.

TABLE 3. Number of observations per report type used in the 0000, 0006, 

0012, and 0018 UTC FGAT UAE/WRFDA analyses in the outer domain 

on 15 Jun 2010. METAR = Aviation routine weather report, AIREP = 

Aircraft, GEOAMV = Geostationary Atmospheric Motion Vector,  

SATEM = Satellite temperature retrieval, GPSREF = GPS refractivity.

0000 UTC 0600 UTC 1200 UTC 1800 UTC

SYNOP 2,972 3,312 3,316 3,116

Ship 512 543 500 491

Buoy 483 431 505 520

METAR 1,062 1,246 1,298 1,209

Temp 326 26 295 14

Pilot 114 82 113 53

AIREP 3,822 9,742 10,657 8,009

GEOAMV 368 358 524 4,729

SATEM 1,858 1,633 1,672 1,790

GPSREF 23 17 10 13

Reflectivity 13,112 12,400 24,045 14,002

Thinned radiances* 151,137 271,911 257,090 307,416

*A thinning mesh of 144 km is applied for the radiances in the outer domain.
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relied on synergies and leveraging between a number 

of individual research and development projects to 

build a unified system, with an expanded range of 

capabilities made freely available to all in yearly public 

releases. There is a snowball effect—as the sophistica-

tion of the community system grows, more projects 

and partners see the benefits of getting involved, and 

in turn they provide additional capabilities, resources 

for testing, and new applications that improve the 

system further still.

The community model approach comes with sig-

nificant overhead. Close communications is essential 

to ensure that the evolving needs of each project with-

in scope are given due consideration in the direction 

of the program. The level of effort involved in testing 

and maintaining the system for a wide variety of ap-

plications, platforms (supercomputers, desktops, and 

laptops), operating systems, compilers, visualization 

tools, etc., grows exponentially as the program devel-

ops, and so must be efficiently organized. Reliance on 

development partners outside one’s own organization 

sometimes requires commitment and good planning 

because conflicts naturally arise between internal 

project milestones and community model plans. 

Inevitably, individual projects end and partners’ 

strategies evolve, sometimes to the extent that they 

withdraw from the effort. Despite these challenges, 

the potential for significant further enhancements 

to the WRFDA system are tremendous. The WRF 

community currently stands at over 15,000 users 

worldwide. Even a very conservative estimate that 

only 3% of the users’ efforts lead to new capabilities 

within the community system, this is a nominal 450 

people, larger than any NWP group in the world. 

Given the complexity of modern-day NWP systems, 

the community model paradigm will continue to 

positively influence the development of global NWP 

capabilities for many years to come.
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