424

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

The Web of Things: A Survey

(Invited Paper)

Deze Zeng, Song Guo, and Zixue Cheng
School of Computer Science and Engineering, The University of Aizu, Japan
Email: {d8112106, sguo, z-cheng} @u-aizu.ac.jp

Abstract—In the vision of the Internet of Things (IoT), an
increasing number of embedded devices of all sorts (e.g.,
sensors, mobile phones, cameras, smart meters, smart cars,
traffic lights, smart home appliances, etc.) are now capable
of communicating and sharing data over the Internet.
Although the concept of using embedded systems to control
devices, tools and appliances has been proposed for almost
decades now, with every new generation, the ever-increasing
capabilities of computation and communication pose new
opportunities, but also new challenges. As IoT becomes an
active research area, different methods from various points
of view have been explored to promote the development
and popularity of IoT. One trend is viewing IoT as Web of
Things (WoT) where the open Web standards are supported
for information sharing and device interoperation. By pene-
trating smart things into existing Web, the conventional web
services are enriched with physical world services. This WoT
vision enables a new way of narrowing the barrier between
virtual and physical worlds. In this paper, we elaborate
the architecture and some key enabling technologies of
WoT. Some pioneer open platforms and prototypes are also
illustrated. The most recent research results are carefully
summarized. Furthermore, many systematic comparisons
are made to provide the insight in the evolution and future
of WoT. Finally, we point out some open challenging issues
that shall be faced and tackled by research community.

Index Terms— Internet of Things, Web of Things, Survey

I. INTRODUCTION

Ubiquitous computing (a.k.a., pervasive computing),
which has been extensively studied for many years, is ex-
periencing radical changes recently as the physical world
devices, e.g., home appliances and industrial machines,
are becoming smart thanks to the progress in computing
technology development. In parallel, the communication
techniques also make much progress recently. Internet
access will very likely become commonly accessible by
those “smart things”, motivating the concept of Internet
of Things (IoT).

IoT is regarded as the next big possibility and challenge
to the Internet. The Internet will be no longer just a
network of computers, but will potentially involve trillions
of smart things with embedded systems. IoT will greatly
increase the size and scope of current Internet, providing
new design opportunities and challenges. Internet with
smart things is generally viewed as a constrained IP
network with limited packet size, high degree of packet
loss, and even intermittent connectivity and characterized
by severe limits on throughput, available power, and par-
ticularly the complexity that can be supported. A variety

Manuscript received February 15, 2011; revised May 15, 2011;
accepted June 15, 2011.

©2011 ACADEMY PUBLISHER
doi:10.4304/jcm.6.6.424-438

of recent research activities have been launched to address
those challenging issues, from the technological to the
social aspects. In particular, a central issue focuses on how
to make a full interoperability of interconnected devices
possible, to provide them with an always higher degree of
smartness by enabling their adaptation and autonomous
behavior while guaranteeing trust, privacy, and security
[1].

Currently, the web has already become the major medi-
um of communication in today’s Internet. On the other
hand, tiny web server technology has been researched
for decades and now various embedded tiny web servers
are available. More specifically, web services have been
proven to be indispensable in creating interoperable ap-
plications on today’s Internet. Smart things with embed-
ded web servers can be abstracted as web services and
seamlessly integrated into the existing web. It is natural
to reuse existing web technologies and standards to unify
the cyber-world and the physical-world. As a result, one
research trend treats 10T as Web of Things (WoT). As
existing web technologies can be reused and adapted to
build new applications and services with participation of
smart things. This yields higher flexibility, customization
and productivity. In brief, different from traditional view
of IoT which gives everyday device an IP address and
makes them interconnected on the Internet, WoT enables
them to speak the same language, so as to communicate
and interoperate freely on the Web.

The WoT vision depicts a view where a collection of
web services that could be discovered, composed and
executed. Thus enriches the scope of traditional web
services by promoting the web from only cyber-world
services to both cyber-world and physical-world services.
Furthermore, WoT actually is an ecosystem of services
not only about adding more services in but more about or-
chestrating various kinds of services in a graceful manner,
making the services more human-centric and intelligent.

Let us use an example to illustrate the concept of
WoT. After the nuclear leakage accident happened at
Fukushima Dai-ichi Nuclear Power Plant on 11 March,
2011 after the devastative tsunami, people have concerned
the radiation level at each places. A Japan Geigermap
has then been developed by integrating Google Map web
service and geiger counter readings. It provides a new
web service which visualizes the crowd-sourced radiation
geiger counter readings across Japan on a Google map.
A snapshot is taken as shown in Fig. 1'.

Thttp://japan.failedrobot.com/

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

Tag: Radiation dose rate

-{'m‘,:‘: 3 days

| Exposure: outdoor

Fukushima Daiichi Nuclear Power Station, Fukushima, Japan

Monitoring data at Fukushima Daiichi Nuclear Power Stations: MP-2. Source
http v tepeo.co jedeniuimonitoringindex-e. htmi

425

=0 == |

Median reading in this area Is approximately
1 29.000 pSv per hour { 254040 000 pSv per year)

358.02469x the average public space geiger reading for Japan (0.081 ySv per hour)®

29.000% the radiation dose you would receive from a chest x-ray {100 pSv)*

Current reading: 29.000 pSv per hour Time: 2011-04-26 14:00:0

2 days 1 day now

HEEE ©2011 ZENRIN - (5750

Figure 1. Snapshot of Geigermap around Fukushima Daiichi Nuclear Power Station, Fukushima, Japan

The Japan Geigermap is only a simple and straightfor-
ward example of WoT about data sharing. The power of
WoT is far more beyond data sharing. The development
of WoT is still at an initial stage, and there are still many
issues to be tackled to fully exploit the potential of WoT.
The inclusion of services from smart things makes WoT
different from the traditional web. For example, the em-
bedded tiny web servers are not as powerful as traditional
ones. The service may not be always available as traction-
al one due to the intermittent connectivity caused by duty
cycle. Furthermore, traditional web protocols might not be
suitable to provide services in the low-power and lossy
networks consisting of resource constrained smart things.
All these problems pose new research challenges and
call for new efficient solutions. Many research activities
have been actively conducted toward the solutions that
fulfill such highlighted technological requirements. The
main object of this survey is to give readers an overview
of WoT, the state of WoT development, the potential of
WoT, and the key issues that remain to be tackled. The
remainder of the paper is organized as follows. In Section
II, we briefly give a glance at the motivation as well as
the basic concept of WoT. In Section III, we introduce the
architecture about WoT including the integration methods
and the web service paradigms. In Section IV, the main
enabling technologies to WoT are presented. In Section V,
some existing open WoT platforms and WoT application
prototypes are introduced. Section VII concludes this
survey work.

©2011 ACADEMY PUBLISHER

II. OVERVIEW OF THE WEB OF THINGS

The communication for smart things has been studied
for decades. Several different technologies and standards
have been proposed in this area. Making the smart things
interconnectable such that bits can be transferred between
devices is only the first step, more works are expected
to make smart things interoperable such that they are
understandable with each other. Interoperability is partic-
ularly essential, and a must, to build system with various
devices, especially those from different manufacturers.
Let us first review some of those major technologies about
the interoperability issue.

Universal Plug and Play (UPnP) is a suite of network-
ing protocols extended from the idea of the original Plug
and Play to a networked system context. It was promoted
by the UPnP forum? mainly for personal networks devices
to discover each other’s presence and further to establish
connections on the network. UPnP is based on established
protocols and standards, such as TCP/IP, UDP, HTTP,
HTTPU (HTTP over UDP), SOAP, WSDL, etc. Currently,
UPnP is the most popular solution for personal network
implementation. However, UPnP has several drawbacks
[2]:

1) There is no authentication protocol proposed for
UPnP. Any devices are allowed to configure the
other devices of the personal network, without any
user control, resulting in a critical security issue
when the smart things are available on the Internet.

Zhttp://www.upnp.org

426

2) UPnP is not strictly standardized as some UPnP
devices are based unstandardized protocols such
as HTTPU, restricting its universal interconnection
somehow.

3) UPnP is inapplicable to some resource-constrained
devices because it normally uses a lot of heavy pro-
tocols (e.g., SOAP, WSDL, etc.) involving complex
processing.

Alternatively, the JXTA technology® is proposed as
a solution for peer-to-peer applications design, enabling
interconnections of heterogeneous devices into a same
network. Later on, a C language based version, JXTA-
C was proposed in order to embed JXTA into resource-
constrained devices [3]. Unfortunately, JXTA protocols
have not been standardized and have not been widely
accepted for embedded devices in industry either.

One trend is integrating the devices into the Web.
It has been found that the web severs can be built in
a size of only a few KBs [2], [4], [5]. It is possible
to integrate the web servers into many devices directly.
Those devices then proactively serve their functionality
over the Web. Using the free, open, flexible, and scalable
Web as the universal platform to integrate smart devices
outperforms all other solutions mentioned earlier in terms
of easiness, flexibility, customization and security. This
idea has attracted much attention from both academia
and industry, especially after the IoT concept emerges
recently.

The web browsers have been available on almost any
platform, from computers to PDAs, smart phones, and
tablets, and become the de facto standard user interface
to a variety of applications. The Web-enabled applications
can be accessed from any location provided there is an
Internet connection. Applied to embedded systems, web
technologies can offer platform-independent interfaces
such that the end-users do not need to install specific soft-
wares and drivers for different devices. Also, developers
do not have to tediously develop different softwares and
drivers targeting different platforms for one thing. The
Web provides a one-for-all solution. An overview of of
WoT vision is shown in Fig. 2.

Furthermore, although devices become programmable,
providing great opportunities to create more innovative
and powerful applications, development, especially com-
position, of applications that run on top of those physical
devices is still a cumbersome process as it requires exten-
sive expert knowledge (e.g. specific APIs in a specific pro-
gramming language) about all different physical devices.
This more or less constrains development of smart things
based services. Fortunately, existing web technologies
(e.g. mashup), which previously targeted for cyber-world
web services can be reused for application development
with the participation of physical smart things provided
that they can be abstracted as web services. By reusing
existing web technologies, the expenses for additional
infrastructure and overall implementation time can be

3http://java.sun.com/othertech/jxta/

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

minimized. These technologies can promote the progress
of IoT significantly.

III. WEB-ORIENTED ARCHITECTURE

A general architecture of WoT is illustrated in Fig. 2.
Reusing existing web architecture as the basic platform,
some smart things act as web servers and directly provide
web services on the web. WoT has a flat architecture,
compared to the traditional server-client architecture. Two
issues need consideration in such an architecture: how to
integrate the physical things to the web and how to make
the physical things provide composable and interoperable
web services.

A. Integrating Smart Things to the Web

As shown in Fig. 2, there are two optional methods to
integrate things to the Web: direct integration and indi-
rection indirection [6]. For example, the home appliances
in the figure can be viewed as directly integration while
the RFIDs are indirectly integrated through a RFID reader
with an embedded server. Usually a system may not solely
rely on a single method, but may use both methods as a
hybrid way.

1) Direct integration: To directly integrate things to
the Web, it is first required that all the things must be
addressable, i.e. everything must have an IP address,
or must be IP-enabled when connected to the Internet.
WoT also requires connectivity and interoperability at the
application layer. Web server shall be embedded such that
things can understand each other through the web lan-
guage specified by web standards. With the development
in both communication and computation technologies, it
is likely that more devices will become IP-enabled and
can be embedded with web server. Those devices can be
directly integrated into the Web and abstracted as web
services. Thus, they can directly communicate with people
from any terminal with a standard web browser. Other
devices can also interoperate with them through standard
web operations, e.g. GET and POST.

Many pioneer solutions have been provided to directly
integrate smart things to the Web. Guinard et al. [6]
present a prototype directly integrating IP-enabled Sun
SPOT with web server. Each device in their prototype
offers its functionality through a web API. Akribopoulos
et al. [7] introduce an architecture where all the small
programmable objects are integrated through web services
where the Sun SPOT applications and sensor data are
uniformly exposed through web services. They avoid
employment of additional gateways by using TCP/IP
protocol in the devices directly. Also a prototype is imple-
mented using Sun SPOT. Ostermaier et al. [8] present a
prototype using programmable low-power WiFi modules
for connecting things directly to the web. They leverage
the ubiquity of IEEE 802.11 access points and the inter-
operability of the HTTP protocol. Using a loosely coupled
approach, they enable seamless association of sensors,
actuators, and everyday objects with each other and with
the Web. All those works demonstrate convincingly that

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

427

World Wide Web

Figure 2. Overview of Web of Things

it is possible to integrate smart things directly into the
Web now.

2) Indirect integration: However, not all devices can
be powerful enough to be embedded with web server.
Some devices are with too limited resource to allow web
server embedded, such as RFID tags. On the other hand,
sometimes there is no need to directly integrate all the
smart things (e.g. sensor nodes in a sensor network) into
the Web in the consideration of cost, energy and security.
For both cases, a different pattern, indirect integration, can
be adopted. In this pattern, an intermediate proxy locates
between the smart things and the Web. The proxy is usu-
ally called smart gateway. To the smart things (inward),
the smart gateway communicate with the smart things
(e.g. reading from RFIDs) and therefore shall understand
the proprietary protocols of the smart things; to the Web
(outward), it abstracts the proprietary protocols or native
APIs of smart things and offer uniform accessible web
APIs over the Web.

Several prototypes with smart gateways to directly inte-
grate smart things into the Web have been published in the
literature. Hwang et al. [9] design a smart sensor gateway
for sensing data aggregation and sensor network man-
agement. To enable using the web browser to efficiently
query and manage the sensor network, the sensor gateway
is embedded with a web server supporting HTTP1.1
protocol. The authors also implemented Java applet for
dynamic and efficient data exchange. Trifa et al. [10]
implement smart gateway for web-based interaction and
management of embedded devices. The gateway enable
accessing to sensor networks through a lightweight web
service interface. In [11], the authors build an EPC Net-
work prototype by using virtualization, cloud computing
and web technologies. In their prototype, the RFID reader
behaves like a smart gateway which locates between the
cloud server and RFID tags.

©2011 ACADEMY PUBLISHER

B. Web service paradigms

As we are able to integrate different smart things with
various capabilities intto the Web, the next logical step
we shall consider is how to abstract those devices into
reusable web services other than simple static or dynamic
web pages. Web services are defined by the World Wide
Web Consortium (W3C) as a software system designed to
support interoperable machine-to-machine (M2M) com-
munications over a network. As W3C states, there are two
major paradigms of web services: REST-compliant Web
services and arbitrary Web services [12]. The primary
purpose of the service is to manipulate web resources
using a uniform set of “stateless” operations in the former
one while using an arbitrary set of operations in the latter
one. Both paradigms can be adopted by smart things or
smart gateways.

1) WS-* Architecture: 1t is usually referred as WS-*
for Web Services that use Simple Object Access Protocol
(SOAP) messages with an Extensible Markup Language
(XML) payload and a HTTP-based transport protocol to
provide remote procedure-calls (RPCs) between clients
and servers. It has been popular in traditional enterprises
and widely used in enterprise machine-to-machine (M2M)
systems. The key technologies of WS-* are SOAP, Web
Service Description Language (WSDL), Universal De-
scription Discovery and Integration(UDDI) and Business
Process Execution Language (BPEL).

SOAP [13] is an XML-based protocol to let applications
exchange information over HTTP. A SOAP interface is
typically designed with a single URL that implements sev-
eral RPCs methods, which define a message architecture
and format, hence providing a rudimentary processing
protocol. The top-level XML element of SOAP message is
called envelop, which includes two XML elements: head-
er and body. The header specifies routing and Quality of
Service (QoS) configuration while the body contains the

428
Service
Registery
/ Ty 2
~ W Service
,f S, - Provider
o
s
=
/
/ -z Fomposition
/ _ -~ SOAP_ e, BpE|
- e e description -)WSDL UDDI o discovery
- payload L SOAP
Service ransport || HTTP
Requester

Figure 3. WS-* workflow and Protocol Stack

payload of the message indicating the interoperations.

WSDL [14] is an XML-based language describing Web
services as a collection of communication end points
that can exchange messages. In other words, a WSDL
document describes a Web service’s interface and pro-
vides users with a point of contact. The SOAP messages
and sequences are abstractly described by WSDL. A
WSDL port type contains an abstract set of operations
supported by endpoints. The WSDL binding links the set
of abstract operations with concrete protocol and data
format specification for a particular port type. WSDL
describes service interface, which are independent of the
service implementation endpoint and how the services are
implemented.

UDDI [15] is a platform-independent, XML-based reg-
istry framework for describing and discovering worldwide
Web services. It can be viewed as a directory of WSDL-
described web services. Web services can be registered
and located in the directory. It can be requested using
SOAP messages to provide access to WSDL documents,
which describe the protocol bindings and message formats
required to interact with the web services listed in its
directory.

BPEL [16] defines a notation for specifying process
behavior based on interactions of Web services. Web ser-
vice interactions can be described in two ways: executable
processes and abstract processes. Both can be modeled
by BPEL. Executable processes model actual behavior of
a participant as interactions while abstract processes de-
scribe observable behavior and/or process template. BPEL
extends the WS-* interaction model to enable business
transactions. BPEL defines an interoperable composition
model that enable the extension of automated process
integration both within and between businesses.

Fig. 3 shows the WS-* workflow as well as the protocol
stack. Let us first look at the protocol stack. One may first
notice that HTTP performs as transport protocol at the
lowest level. Above that, SOAP handles the interaction
between services. WSDL and UDDI concern the descrip-

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

tion and discovery of services at the next higher level.
BPEL actually deals with the composition of services at
the highest level. Now we look at how these technologies
work in a WS-* workflow. Suppose all the available
services have registered in the Service Registry. Service
Requestor sends a service lookup request described by
WSDL to Service Registry. If a suitable candidate ser-
vice is found, its description is returned to the Service
Requestor. Then Service Requester and Service Provider
establish connectivity and communicate with each other
using SOAP according to the description.

The use of WS-* for smart things dates back many
years ago. A Service-Oriented Device Architecture (SO-
DA) [17] is proposed to integrate a wide range of
physical devices into distributed IT enterprise systems.
In SODA, all the sensors and actuators are exposed as
abstract business Web services to the programmers. A
bus adapter locates in the boundary between the cyber-
world and physical world realms and talks to proprietary
and standard device interfaces but presents an uniform
Service-Oriented Architecture (SOA) services. Pintus et
al. [18], [19] also propose a SOA framework where smart
things are described using WSDL standard and logical
connections between smart things are modeled as web
services orchestrations using the BPEL language. The
SOA approach for networks with embedded systems can
be also found from many other projects, such as SIRENA
[20] and SOCRADES [21], [22].

2) RESTful Architecture: REpresentational State
Transfer [23], [24], which was first coined by Roy
Fileding in his PhD thesis [25], is considered as the “true
architecture of the Web”. The basic concept of REST
is that everything is modeled “resource”, or particularly
HTTP resources, with a Universal Resource Identifier
(URI). The REST architectural style is based on the
following four principles [26]:

« Resource identification through URI. All the re-
sources exposed by RESTful web services are iden-
tified by URIs. Through URI, the clients can identify
their interaction targets. A global addressing space is
provided for service and resource discovery.

o Uniform interface. RESTful services treat the HTTP
as an application protocol instead of a transport
protocol in WS-*. Therefore, the term REST is often
used in conjunction with HTTP and the RESTful
resources can be manipulated using HTTP verbs such
as PUT, GET, POST and DELETE. PUT creates
a new resource while DELETE deletes it. GET
retrieves the current state of a resource in some
representation while POST updates a resource with
new state.

o Self-descriptive messages. Resources are decoupled
from their representations such that it is free to
use a variety of data formats to describe themselves
provided that the appropriate representation formats
are agreed and understandable by endpoints. For
example, the data can be in any common-used for-
mats such as HTML, XML, plain text, PDF, and

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

429

TABLE 1. HTTP RPC Application HTTP
COMPARISON BETWEEN WS*- AND REST
TCP UDP Transport UDP
% TPv6
_— ¥VS— : iESlT ' 1 IPv4 | IPv6 | ICMP | Network ToWPAN adapiaton
i 1jansp0rt protoco pplication protoco. Ethernet MAC Data Link 80'5.;5.4 80@:(5:.6
Complexity | High Low
Q < Ethernet PHY Physical 802.15.4 802.15.6
Stateless No Yes Y PHY PHY
MaShuP No Yes IP Protocol Stack B6LoWPAN Protocol Stack
Coupling Tight Loosely
Flexibility Low High
Security Built-in Self-defined

JPEG. Metadata about the resource can be used to
control caching, detect transmission errors, negotiate
the representation format, and perform authentication
or access control between endpoints.

o Stateless operations. Every interaction with a re-
source itself is stateless. However, stateful interac-
tions can be realized through hyperlinks. The state
of a resource can be explicitly transferred by URI
rewriting, cookies, and hidden form fields. The states
can be also embedded in a response message for
stateful interactions.

Notice that although REST is initially described in the
context of HTTP, it is not limited to that protocol. REST-
ful architectures can be based on any other application
layer protocols if they can provide a rich and uniform
vocabulary for applications to transfer meaningful repre-
sentational states. By this way, the potential of existing
well-defined network protocols can be reexploited without
additional efforts.

To our best knowledge, the RESTful architecture is
preferred for WoT mainly for its two features. One is
its low complexity and the other is its loose-coupling
stateless interactions. The two features enable web servers
in the RESTful architecture to be embedded into resource-
constrained devices (e.g. Resource-oriented architecture
[6]) and also enable easy composition (i.e. mashup) of
web services. For example, according to [26], REST is the
architecture of choice for tactical, ad hoc integration over
the Web (i.e., mashup). The previous work on integrating
sensor networks to the Internet, [27], [28], has shown
that the lightweight aspect of REST makes it an ideal
candidate for resource-constrained embedded devices to
offer services to the world. To support this opinion, the
feasibility of using RESTful web services is demonstrated
in [29] with an evaluation of performance and power
consumption in an IP-based multi-hop low-power sensor
network. More innovative work [6], [11], [29]-[32] ap-
plies REST to smart things to abstract them into RESTful
web resources mainly under the consideration of both
complexity and mashability.

3) Comparison of WS*- and REST: We compare some
characteristics of the two different web service paradigms
as summarized in Table I.

As analyzed, REST is a more desirable web service
paradigm for WoT. However, as indicated in [33], such
a resource-oriented approach should not be universally
considered as the miracle solution for every problem. In
particular, scenarios with very specific requirements, such

©2011 ACADEMY PUBLISHER

Figure 4. IP and 6LoWPAN protocol stacks

as high performance real-time communications, might
benefit from tightly coupled systems based on different
system architectures. While at the same time, for example,
once interfaces are quickly created in a target program-
ming language, they can be exposed via WSDL and are
consumed just easily if the same WSDL is used by the
consumer. Therefore, whether WS-* paradigm or REST
paradigm shall be adopted by WoT is still a contradictory
issue and we think that the two paradigms will coexist
under considerations such as device capabilities and ap-
plication requirements.

IV. ENABLING TECHNOLOGIES

In this section, we systematically describe and ana-
lyze the enabling technologies, including standardization
activities as well as existing Web service technologies,
which are directly related, or indirectly related but quite
important, to WoT.

A. 6LoWPAN

To enable embedded web server on devices, the devices
must be addressable, or IP-enabled at first. According to
the IP for Smart Objects (IPSO) Alliance, an increasing
number of embedded devices will support IP protocol.
Many physical objects in the future may be directly
connected to the Internet. This trend poses new opportu-
nities for pervasive computing and the Internet. However,
new challenges are also introduced. As the things are of
different sorts, such as sensors, healthcare devices, RFID
tags/readers, and home appliances, the protocol stack
should be adaptable to devices with different and limited
capabilities, i.e. low memory and low computability.

Responding to the increasing interest of connecting
those resource constrained devices to the Internet, the
IETF has proposed standards that enable IPv6-based
networks. The IETF work group has launched a project
called 6LoWPAN, which is an acronym of IPv6 over
Low power Wireless Personal Area Networks. It defines
encapsulation and header compression mechanisms that
allow IPv6 packets to be sent to and received between re-
source constrained devices usually by adopting low-power
radio communication protocols such as IEEE 802.15.4,
802.15.6 or power line communication.

Fig. 4 shows the IPv6 protocol stack with 6LoWPAN
in comparison with a typical IP protocol stack. We notice
that 6LoWPAN inserts an adaptation layer between the
data link layer and the IP layer. The IP communication is

430

provided above the adaptation layer. The necessity of the
adaptation layer is mainly because one IP packet may not
fit within one layer 2 frame , e.g. 802.15.4 MAC frame.

The adaptation layer is the main component of 6Low-
PAN as it enable IPv6 packets to fit into IEEE 802.15.4
frame payload. It has the following functions.

o Header compression. TCP/IP headers are too large
to the data link layer protocol, e.g. IEEE 802.15.4,
for most devices. For example, IPv6 header has 40
bytes. Without header compression, it is impossible
to transmit any payload effectively by a data link
layer protocol such as IEEE 802.15.4, which has a
maximum packet size of only 128 bytes. By header
compression, the header overhead is much reduced.
In the best case, the compressed 6LowPAN/UDP
header for local unicast communication can be com-
pressed to only 6 bytes while traditional IPv6/UPD
header requires 48 bytes.

o Packet fragmentation and reassembling. The data
link layer supports packets in small size. For exam-
ple, IEEE 802.15.4 supports Maximum Transmission
Unit (MTU) in size of only 128 bytes while IPv6
packet can be as large as 1280 bytes. This mismatch
has to be handled by fragmentation and reassembling
in the adaptation layer.

o Edge routing. To connect personal area networks
to the Internet, edge routers, which locate on the
edge between personal area networks (PANs) and
the Internet, play an essential role as they route IP
packets into the PAN devices from outside and vice
versa. While at the same time, the edge routers also
have management features such as distribution of
IPv6 prefix and neighbor discovery.

Compared to traditional IP stack, the network layer is
limited to IPv6 because IPv4 has reached its exhaustion
recently. When a large number of, maybe in trillions,
devices need IP addresses, IPv6 is able to make all devices
addressable at the IP layer. Although both TCP and UDP
are supported, the most common transport protocol used
by 6LoWPAN is UDP. The Web can be viewed as the
most popular application protocol. Web applications today
mainly depend on payloads of HTML, XML, or SOAP
carried over HTTP and TCP. The payload can be in size
from hundreds of bytes to several KBs, which is too
large for use on some 6LoWPAN nodes. Furthermore,
the Web applications over 6LoWPAN shall make use of
UDP for performance, efficiency and complexity reasons.
Therefore, the Web applications over 6LoWPAN shall be
fault tolerant due to the unreliability of UDP.

B. CoAP

In 2010, the IETF established a new working group
focusing on Constrained RESTful Environment (CoRE).
CoRE is characterized by its additional constraints com-
pared to traditional IP networks. To handle those differ-
ences and tackle various challenging issues, the CoRE
working group is working on a framework for applications

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

HTTP Reqikes L core
Transaction
TCP UDP
IP IP

Figure 5. HTTP and CoAP protocol stacks

intended to run on the constrained networks. The frame-
work is designed for applications such as smart energy,
home appliance, industry automation, as well as other
M2M applications that deal with manipulation of vari-
ous resources on constrained networks, e.g. monitoring,
control and management of resources. As a main part of
the framework, Constrained Application Protocol(CoAP)
is defined by the CoRE working group.

CoAP can be viewed as a complementary to HTTP as
HTTP targets for traditional IP networks such as ethernet
while CoAP targets for resource constrained networks
such as wireless sensor networks. However, the CoAP
protocol can also operate over traditional IP networks.
CoAP could be viewed as a compression or redesign
of HTTP by taking power, memory and computation
constraints into account. Just like HTTP which is designed
as transfer protocol for traditional web media content,
CoAP is redesigned as a transfer protocol for devices
to realize interoperations. The CoAP and HTTP protocol
stacks are illustrated in Fig. 5.

The CoAP has the following main features:

o COAP uses a two-layer approach*. Transaction layer
is used to deal with UDP and the asynchronous
interactions. There are four types of message defined
at this layer: Confirmable(CON, the message re-
quires acknowledgement), Non-Confirmable (NON,
the message does not requrie acknowledgement),
Acknowledgement(ACK, it is an acknowledgement
to CON), and Reset(RST, the message indicates that
a Confirmable message was received, but some con-
text is missing to properly process it). The Req/Res
layer is responsible for the transmission of requests
and responses for the resource manipulation and
interoperation. CoAP supports four request methods:
GET, PUT, POST and DELETE, which are answered
by a subset of HTTP compatible response codes (e.g.
200 = OK).

o CoAP is based on UDP while HTTP is based on
TCP. This is because the high overhead introduced
by TCP mechanism such as flow control which is not
suitable to resource constrained devices and LLNs.
However, CoAP also provides an optional reliable
transmission even without the support of TCP. Recall
that the CON message will be retransmitted if ACK
is not received when a predetermined retransmission
timer times out. The exponential back-off mechanism

“http://tools.ietf.org/html/draft-ietf-core-coap-03

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

TABLE II.
COMPARISON BETWEEN COAP AND HTTP [34]
Bytes per-transaction Power Lifetime
CoAP 154 0.744 mW | 151 days
HTTP 1451 1.333 mW | 84 days

is used in retransmissions to avoid congestion. Fur-
thermore, the use of UDP also introduces another
benefit that enables best-effort multicast of CoAP
while TCP-based HTTP does not support multicast.

o CoAP is designed to lower the header overhead and
parsing complexity in order to be applied to resource
constrained devices. CoAP uses a short fixed-length
compact binary header of only 4 bytes followed by
a compact binary option. A typical request has a
total header overhead of about 10-20 bytes. A small
header overhead avoids the frequent fragmentations.
The authors in [34] make a comparison between
CoAP and HTTP in terms of average transaction
size in bytes, power consumption, and the expected
battery lifetime, as shown in Table II. Obviously,
traditional HTTP transaction is 10 times bigger than
a CoAP transaction. The bigger transaction also
results in intensive computation and communication,
and consequently higher power consumption, which
further shortens the battery lifetime.

o CoAP supports asynchronous transaction, which is
a key requirement for M2M applications. When a
request can not be responded immediately, the server
first acknowledges the reception of the message
and sends the response back in an off-line fashion,
without risking the client to repeatedly retransmit the
request.

o CoAP supports URI and built-in resource discovery.
URI is an important feature of the web architecture
as the resources must be identified and addressable
so as to be searchable and accessible. Resource
discovery is common on web. CoAP defines a built-
in resource discovery format which allows both
discovering and advertising the resources offered by
a device.

e CoAP supports a built-in subscribe/notify push mod-
el for an end-point to notify another end-point about
a resource of interest. In M2M application, it is
inefficient for a client to poll whether a resource
has changed or not in a pull model. Instead, CoAP
provides a built-in push model where a subscription
interface is provided for client to request a response
whenever a resource changes. This push is accom-
plished by the device with the resource of interest by
sending the response message with the latest change
to the subscriber.

For the more detailed specification of CoAP, one
may refer to [35]. Although CoAP is still working in
progress, some famous embedded operating systems, Tiny
0S> and Contiki®, have already released their CoAP

Shttp://www.tinyos.net/
Shttp://www.sics.se/contiki/

©2011 ACADEMY PUBLISHER

431

implementations. In addition, there are two open source
implementations not specially designed for WSNs: one
called libcoap’ implemented in C language and the other
called CoAPy® in Python language. A Firefox extension
called Copper® that handles CoAP is also released.

C. Embedded Web Server

For the aforementioned integration of smart things into
the Web, either directly or indirectly, embedded web
server is indispensable. With embedded web servers, data
can be transmitted between the smart things with standard
web language. Traditional web servers are mainly de-
signed for high-end computers such as workstations with
plentiful CPU and memory resources. For most resource-
constrained devices, the embedded web server must be
small in footprint and of low complexity in processing
while providing web server functionalities as many as
possible, e.g. SSL. The different requirements make the
traditional web servers unapplicable. Actually, pioneer
work has focused on this topic for many years, even
before the emergence of the IoT or WoT concept.

In [36], the authors declare that many embedded In-
ternet devices (EID) will use HTTP instead of providing
a user interface through a local front panel. They design
a web server for EID which doest not require file sys-
tem and doest not incur the memory and performance
overhead either. Furthermore, the solution also provides
interoperability between devices. Agranat in [4] shows
that devices with a few KB of RAM and EEPROM are
able to handle an embedded Web server because efficient
TCP/IP implementation adds as little as 48K ROM and
16K RAM extra memory requirements. Can Filibeli et
al. [37] design and implement an embedded web server-
based home appliance network prototype system where
Ethernut-based web servers are embedded into home
appliances. With the help of embedded microcontrollers,
the home appliances can be controlled and managed via
web pages using regular web browsers. Ethernut'® is an
open source hardware and software project for building
tiny embedded ethernet devices. It adopts an open source
implementation of a real time operating system called
Nut/OS and a TCP/IP protocol suite named Nut/Net. It
has small footprint, standard C libraries and cooperative
multithreading. Priyantha et. al [38] present an approach
of implementing the web server on sensor nodes using
only 15.8KB ROM and less than KB RAM . Duquennoy
et al. [2], [39] propose cross-layer approaches to design
efficient tiny embedded web servers and implement a
prototype, named Smews, which is in size of 7KB and
requires only 200 bytes volatile memory. It has been
demonstrated that smart cards can be also embedded with
web servers. A card with Java-based web server, called
serverWebcard [40], is implemented with a TCP/IP stack

7http://sourceforge.net/projects/libcoap/
8http://coapy.sourceforge.net/
9https://addons.mozilla.org/en-US/firefox/addon/copper-270430/
10http://www.ethernut.de/

432

and a minimal set of HTTP1.0 functions. OMA(Open Mo-
bile Alliance) specifies Smart Card Web Server (SCWS)
standard to allow web servers to be used within smart
cards such that network operators’ services can be provid-
ed through web browser [41]. More importantly, SCWS
is portable across any handsets with browsers.

There are much more work than those mentioned
above, which implement lightweight embedded web
servers with different features in different programming
languages. Further efforts are on more powerful embed-
ded web servers but with little resource requirement.
It can be expected that the embedded servers will be
common in future embedded devices.

D. Service Composition Development

With the emergence of IoT, huge numbers of embed-
ded devices with various functions will be connected to
the Internet. Although the connectivity allows devices
to provide some specified services on the Internet, it
is not the ultimate goal. To fully explore the potential
of those devices, they shall be able to cooperate with
each other. However, there is a tight coupling among the
devices, the services provided as well as the development
methods. It is not easy to integrate devices from different
manufacturers. While, up to date, new applications in this
field are mainly produced by designers and engineers,
we claim that even users could invent new applications
unforeseen by technical experts with simple and effective
composition rules and easy-to-use building blocks.

Fortunately, as we have known, web servers are pos-
sible to be embedded into devices such that they can
provide web services on the Internet. Even for those
which can not directly provide, a smart gateway can act as
a proxy to provide web service. Imagine we have several
different devices such as temperature sensor, humidity
sensor, GPS device as well as some healthcare devices
(e.g. EKG sensor). We want to build a healthcare system
which can monitor and record the health condition of
patients as well as environment information (e.g. temper-
ature, humidity, position) of the patient. Traditionally, the
developer shall understand all the native APIs provided by
each device and write programs to integrate information
provided by those devices. This requires extensive time
and technical expertise. In WoT, all the things are abstract-
ed as web resources, which are addressable, searchable
and accessible on the Web. The developer can use uniform
web standard to integrate all the abstracted web resources
needed as well as existing virtual web service (e.g. Google
Map) together to create a mashup. Mashups are new web
application/service created by composing various original
web services from disparate, or even competing providers.
Mashup can be viewed as a key feature of Web 2.0 or one
of the main differences to Webl1.0. In Web2.0, There are
plentiful web service available such as Twitter, Facebook,
Flickr, Linkedin, eBay, Yahoo Maps, and so on. Most
provide APIs to allow developers to create more new
services based on their basic services. This has become a
major web application development trend. For example, a

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

web service, called Wikipediavision'!, is created by using

Google Map APIs and Wikipedia APIs to timely show the
places where anonymous edits to Wikipedia are happen-
ing on Google Map. However, different from traditional
Web2.0 mashup, mashups in WoT include not only virtual
web services but also physical web services provided by
things. Some researchers call this Web3.0 mashup and
argue that we are going to enter a Web3.0 era. As more
web-enabled things will be abstracted as web services and
published on the Web, together with the popularity and
progress of virtual world web services, more fruitful and
powerful composite Web3.0 services can be envisioned
in the future. We believe that Web3.0 mashup will be the
main technical engine to make progress for both WoT and
IoT.

In [6], Guinard et al. apply REST principles to em-
bedded devices and present two representative Web3.0
mashup styles, physical-virtual mashups and physical-
physical mashups.

1) Physical-Virtual Mashup: As indicated by its name,
this mashup consists of web services from both the phys-
ical world and the virtual world. Although the embedded
devices can provide some web services to answer HTTP
queries from users such as checking the state of the
devices or changing the state of the devices, it might
not always be sufficient to satisfy the user’s requirement.
For example, suppose some sensor nodes are distributed
over the city to monitor the temperature of different
spots. It is desirable that the values can be displayed
in a visual way (e.g. on a map) such that people can
easily get the information about any specified spot. Under
such requirement, the developer can mashup virtual map
service and physical sensor web service to create a
temperature monitoring web application which displays
temperatures of different places on the map. Any services,
either physical or virtual, are able to be mashuped if they
follow the same standard (e.g. REST) and provide an
uniform interface to communicate with.

Many mashup products or prototypes have been de-
veloped including both virtual and physical services.
The WoT example shown in Section I can be viewed
as a classical physical-virtual mashup. Guinard et al.
[6] implement an application, called EnergyVisualizer,
which offers a GUI on the Web to monitor the power
consumption and to control different home appliances.
EnergyVisualizer is built by using the self-defined REST-
ful Plogg API and Google Web Toolkit APIs. The mashup
calls the Ploggs Smart Gateway at a constant interval by
issuing a GET HTTP request to the Ploggs and feeds
the response in an interoperable data in JSON format
to the corresponding graphs. Furthermore, they also put
switch buttons on the web page, where by clicking
a button the corresponding appliance can be turn on
or off. In the cloud computing industry, the providers,
e.g. Amazon Web Services, Google’s Google Apps, and
Salesforce.com’s Force.com., use web interface or API
to allow users to provision and scale physical servers,

htp://www.lkozma.net/wpv/index.html

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

storage, networking, load balancing and security in real
time and in multiple data centers. The systems generally
use SOAP, WSDL, and other nonproprietary XML-based
web service protocols.

2) Physical-Physical Mashup: As what the term indi-
cates, the mashup consists of web services only from the
physical world. In this kind of mashup, the original web
services are all provided by smart things, either directly
or indirectly. It enable devices with various functionali-
ties from different manufacturers or even competitors to
cooperate with each other (e.g. a humidity sensor from
one vendor controlling a sprinkler system from another).
The developers do not require expert knowledge about the
programming methods and tools about each device as they
also have been abstracted as web resources. A uniform
and interposable web API can be used to communicate
with all of them.

Guinard et al. [6] demonstrate how physical-world
services can be combined together using mashup tech-
nologies. They implement an Ambient Meter on a Sun
SPOT which polls a predetermined URL using GET
method to get the energy consumption of all the devices
in a room from a smart gateway. All the devices com-
municate with HTTP-based requests and responses. They
find that it would be much time consuming if the smart
gateways, the Ploggs and the Sun SPOTs only offer their
native APIs. Using the same concept as [6], Kamilaris et
al. [42] develop an energy-aware/cost-aware smart home
platform. Besides integrating the services to provide the
energy consumption about the home appliances, they
further integrate the smart grid web services to provide the
real-time tariff. The composite service allows residents to
save energy as well as money by defining rules through
the Web.

V. OPEN PLATFORMS AND PROTOTYPES

In this section, we list some open platforms and pto-
totypes that have been implemented and presented in the
literatures. Most of those platforms have been available on
the Internet and accessible by web browsers. Web service
APIs are also provided such that users can use them to
create more innovative applications or services.

SenseWeb [43], [44] is developed at Microsoft Re-
search. It offers a platform mainly targeting for partic-
ipatory sensing. A sensor gateway is used by sensors as
a uniform interface to share sensory data. SOAP-based
APIs are used to allow developing sensing applications
with shared sensing resources. For example, SensorMap
[45] is one such application. It mashes up sensor data from
SenseWeb on a geographical map interface. In particular,
it enable selective sensor queries and data visualization.
Also the access and management of sensors are conducted
in an authentical way. Nath et al. [45] point out that to
realize the full potential of a portal like SensorMap, it
should be easily extensible and mashed up with other
applications and services. They are currently working
on a set of modulars and composable APIs to facilitate
mashing up SensorMap with other services.

©2011 ACADEMY PUBLISHER

433

SensorBase'? [46] implemented in the Center for Em-
bedded Networked Sensing (CENS) at UCLA uses a
relational database table as its data abstraction and SQL-
centric APIs. It is a web application that not only provides
the user with the functionality of a traditional database
management system, but also runs under the notion of a
Web 2.0 data experience with a responsive user interface
design and RSS data feed techniques.

Sensorpedia'® [47] is a web-based application devel-
oped at Oak Ridge National Laboratory, enabling people
to share, find, and use sensor data online. It provides
users a Google Maps interface where users can search and
explore published sensor data. Sensorpedia applies several
design principles common to many popular Web2.0 sites.
The Sensorpedia APIs allow accepting and publishing
data by established standards such as the Atom Syndica-
tion Format. The APIs also support rapid development of
customized third-party applications to meet specific user
requirements.

Sensor.Network [48], [49] implemented by Gupta et
al. in Sun Microsystems is a Web-based infrastructure for
storing, sharing, searching, visualizing and analyzing data
from heterogeneous devices. Interactions amongst devices
or with end users are through an open REST-base API.
They also propose a category-based search mechanism
and security mechanisms for authentication, authorization
and confidentiality.

Pachube '# is a venture capital funded data brokerage
platform for IoT, managing millions of data points per
day from thousands of individuals, organizations and
companies around the world. Pachube provides APIs
entirely based on HTTP requests, and conforms to the
design principles of REST. The “physical-to-virtual” APIs
provided by Pachube enable quick and easy develop-
ment of applications that add value to networked objects
and environments. The WoT example, Japan Geigermap,
shown in Section I is built by Pachube service and Google
Maps service.

Vazquez et al. [50] propose Flexco, which is a flexi-
ble architecture for implementing monitoring applications
based on wireless sensor networks. They propose a three-
layer architecture (i.e. Sensors and Actuators Layer, Co-
ordination Layer and Supervision Layers), which enables
intelligence distribution and decision at different levels.
On its top Supervision layer, a web interface is proposed
for end users to access and manage the sensor data.

TinyREST architecture is proposed in [27], where the
authors implement a prototype using MICAz motes. Espe-
cially, they introduce a new HTTP method, SUBSCRIBE,
which enables clients to register their interests to spe-
cific sensors/actuators services with various personalized
parameters depending on each client’s needs. Also, a
multithreaded light-weight HTTP-2-TinyREST gateway is
provided between clients and sensors/actuators.

The pico-REST (pREST) [30] is an access protocol

2http://sensorbase.org/
Bhttp://www.sensorpedia.com/
4http://www.pachube.com/

434

proposed by Drytkiewicz et al. with the goal of bringing
the Web simplicity and a holistic view on data and
services to pervasive systems. In a REST style, pREST
emphasizes abstraction of data and services as resources.
A particular concern is to provide the functionality in
the absence of proxy nodes or infrastructure services like
directory servers.

The EnergieVisible [6], [51] software can be used to
easily monitor the power consumption of devices con-
nected to Bluetooth-enabled smart plugs (Ploggs). The
software retrieves all Ploggs in the environment through
a smart gateway using REST APIs and exposes their
functionalities (i.e. power consumption data and an on/off
switch) via a visualized web page.

Table III summarizes and compares some work men-
tioned above from different aspects. The work whose
features are unknown is not listed in the table.

VI. OPEN ISSUES

To fully explore the potential of WoT, many challenging
issues still need to be tackled. In this section, we review
some open issues.

A. Heterogeneity and Scalability

Although WoT is a good approach to handle the het-
erogeneity problem, some minor heterogeneity problems
of devices and requirements still exist.

The popularity of WoT requires a tremendously huge
number of devices to be integrated to the existing Web.
These devices are diverse in terms of data communication
methods and capabilities (e.g., protocol stack, data-rate,
reliability, etc.), computational and storage power, energy
availability, adaptability, mobility, etc. The heterogeneity
at the device level seriously challenges to the popularity of
WoT. WoT is the concept of standardizing communication
channel at the application layer. Without the interopera-
tion support from lower layers, WoT is just a castle in the
air. This issue is still under investigation, but it is hard to
find a one-fit-all solution as new devices may appear in
the future.

On the other hand, consumers of data are heteroge-
neous: someone might ask for realtime information while
some others might need archived data streams from the
past. Their needs vary in terms of data quality, spatial res-
olution, and sampling rates. Further, different applications
might implement disparate data processing or filtering.
WoT shall be open to support these various applications
whose characteristics and requirements may be extremely
diverse, in terms of bandwidth, latency, reliability, etc.
These heterogeneity traits of the overall system make the
design of a unifying framework and the communication
protocols a very challenging task, especially with devices
with vastly different levels of capabilities.

In addition, management of WoT becomes very dif-
ficult in a large distributed environment, and solutions
to dominate the complexity need to be found. Without a
careful management mechanism design, it might result in
an inevitable performance degradation. The power of WoT

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

comes from the growth of participant number of devices.
A management mechanism shall be able to distinguish
both the functionalities and the capabilities of devices.
Otherwise, it can not specify or allocate appropriate
devices and services for user application requirements.
It is nontrivial to manage growing number of devices
in a graceful manner, especially when the devices are
heterogeneous in functionalities and capabilities. On the
other hand, the resource-constrained devices, although are
able to be embedded with web servers, are still limited
to handle large number of requests. Unlike a stand-alone
system, one device is shared by a small number of appli-
cations. In WoT, it is hard to say how many application
requests need to be handled by a device, especially when
it provides public services. To keep the resource usage
scalable and to avoid unnecessary denied accesses to some
applications, it is essential to design mechanisms that can
coordinate the smart things under the consideration of
both their capabilities and user application requirements.
Also, it is possible to improve the scalability by more
advanced embedded web server techniques.

B. Security and Privacy

Openness and sharing are always contradictory to secu-
rity and privacy. One practical consideration in enabling
widespread adoption of WoT arises in ensuring security
of shared resources against misuse, protecting the privacy
of users who share parts of their data, and providing esti-
mates of reliability or verifiability of web service against
malicious intervention or inadvertent errors. Although the
security and privacy have been extensively studied for
decades and some techniques have become mature, not
all existing technologies can be directly applied to smart
things in WoT. The problem is exacerbated by introducing
large-scale, distributed, heterogeneous and low-capability
smart things.

For security, the CoRE working group has been ex-
ploring approaches to security bootstrapping that are
realistic under the given constraints and requirements
of the network. To ensure that any two nodes can join
together, all nodes must implement at least one universal
bootstrapping method. Security can be achieved using
either session security or object security. Cipher suite
will also be redesigned so as to be implemented with
a minimal requirement. In [52], the author presents an
analysis of security threats to the 6LoWPAN adaptation
layer from the point of view of IP packet fragmentation
attacks and proposes a protection mechanism against such
attacks using time stamp and nonce options that are added
to the fragmentation packets at the 6LoWPAN adaptation
layer.

Allowing the information available on the Web poses
a perceived privacy threat. The approach to use existing
authentication service from third parties has been ad-
vocated. For example, Sensorpedia [46] relies on open
data portability standards such as OData'>, oEmbed'®,

Bhttp://www.odata.org/
16http://www.oembed.com/

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

TABLE III.

A BRIEF COMPARISON OF EXISTING OPEN PLATFORMS AND PROTOTYPES (PART OF THE TABLE REFERS TO [49])

435

[Sensor.Network [SensorBase | Pachube [SenseWeb [TinyREST [pREST | EnergieVisible |
Integration Hybrid Hybrid Hybrid Hybrid Indirect Direct Indirect
Web service paradigms RESTful WS-* RESTful WS-* REST REST REST
Data formats XML, JSON XML, JSON JSON Text Unknown XML JSON
Architecture Centralized Centralized Centralized | Centralized | Distributed | Distributed Distributed
Interoperability No No No No Yes Yes Yes

OpenID!7, and OAuth'® to ensure current and future
interoperability with other web-based software applica-
tions. Some web service might be shared within restricted
groups only. For example, home appliance web service
shall be only accessible to family members. Following
the idea of leveraging existing social structure on online
social networks (OSNs, e.g. Twitter, Faceook, Linkedin,
etc.) and their APIs to define the access privilege of smart
things, Guinard et al. implement a prototype, called Social
Access Controller(SAC), which is an authentication proxy
between users and smart things. OSN-based methods can
handle the access control between people and things but
are unable to deal with the access control between things.
Universal but distributed access control mechanism is
expected to enable interoperation between things while
preserving the privacy of the owners.

C. Search and Discovery

Both people and things may need to discover the
existence, functionality and information of their desired
web services. For example, things require identities of
smart things and web services within their environment
in order to negotiate about shared goals to create a new
mashup according to some requirement. Search engine is
essential to WoT. Generally, as indicated in [53], there
are two fundamental approaches to construct a search
engine for WoT. In the push approach, sensor outputs
are proactively pushed to a search engine, which uses the
data to resolve queries reactively. However, this method
lacks of scalability in the smart things-based crowd-
sourcing environment. It can be only applied to a system
with limited number of devices. Alternatively, in the pull
approach, only upon receiving a user query, the search
engine forwards it to the sensors to pull the relevant data.
This method is scalable but challenged by the accuracy
and timeliness. Here, we focus on the latter one.

The increasing penetration of Web with smart things
leads to more crowd-sourcing than ever before. A large
amount of information and physical world web services
of various sorts become available on the Web. Although
more services may be beneficial and convenient to people,
it becomes a nightmare to the search engine of WoT.
The search engine is already not an easy issue in Web2.0
crowd-sourcing with a mass of web contents created ev-
eryday, not to mention Web3.0 crowd-sourcing introduced
by trillion of smart things.

http://openid.net/
8http://www.oauth.net/

©2011 ACADEMY PUBLISHER

Furthermore, a key service for WoT will be the search
engine that allows to search a physical-world service with
certain properties. The traditional Web is dominated by
static or slowly changing contents that are manually typed
in by humans. The contents in WoT are rapidly changing
because they are automatically produced by smart things.
Thus, a search engine for WoT shall support searching
rapidly changing content. This is a key challenge because
existing search engines are based on the assumption that
most web contents change slowly such that it is sufficient
for the search engine to update an index at a low frequen-
cy. This is clearly impossible for the WoT where the states
of many physical world devices changes are at frequency
of minutes or even seconds. On the other hand, some Web
content or service is significant only during a specified
duration. In addition, future mashup shall be created
dynamically on-demand according to the context. The
source web services may need to be searched and obtained
dynamically and in realtime. This issue becomes more
challenging due to the dynamics of WoT, introduced by
its features such as mobility and intermittent connectivity
of smart things. The search engine for WoT shall support
real-time search of information and real-time discovery
of web services.

There has been some pioneer work on this issue. Oster-
maier et al. [53] show how the existing web infrastructure
can be leveraged to support publishing of sensor and
entity data. They implement a prototype of real-time
search engine, called Dyser, which enables finding the
real-world devices that exhibit a certain state at the time of
the query. In [54], the authors survey and clarify relevant
existing approaches (e.g. Snoogle [55], Microsearch [56],
MAX [57], etc.) according to query type, language, scope,
accuracy and so on. Mayer et al. [58] present DiscoWoT, a
semantic discovery service for Web-enabled smart things.
DiscoWoT is based on the application with multiple
discovery strategies to a representation of web resource,
where arbitrary users can create and update the strategies
at runtime using DiscoWoT’s RESTful interface.

D. Ambient Intelligence

The ultimate goal of IoT or WoT is to build an e-
cosystem that can provide user-oriented and environment-
aware services. In other words, the web services shall be
sensitive and responsive to the presence of people and
the condition of environment. Ambient Intelligence(Aml)
has been much addressed on stand-alone systems, such as
wireless sensor and actuator networks. The sensor capable
of recognizing simple emergency situation may fire an

436

alarm and the actuator can take an action accordingly.
When it comes to Aml in WoT, new opportunities and
challenges are exposed. The community effect of the web
services available on a larger-scale Web shall be further
addressed. One may easily find different public services
on the Web and build private web services using standard
web-enabled devices in personal area network. The chal-
lenges first come from the heterogeneity and availability
of smart things that provide web services. Unlike stand-
alone systems where the devices are predetermined and
configured according to the application requirement, some
Aml applications in WoT may need to discover the
required web services first. The QoS, even the existence,
of the web service is unknown. Furthermore, this situation
is exacerbated by the unexpected user requirements and
environment (e.g. time, location, etc.).

Recall that mashup technology is a key enabling tech-
nology of WoT. It can be expected that the mashups
will be dominant in WoT. Another challenge of Aml in
WoT is that the mashup shall intelligently adapt to user
requirements and runtime environment. In other words,
it shall be context-aware. In such a condition, dynamic
mashup could be a good option. Other than developing
static mashup by integrating existing web services togeth-
er, rules about how to mashup services should be defined
such that the basic web services are dynamically added
or deleted on-demand. The whole mashup processes are
transparent to the users and without human intervention.
For example, to build a healthcare system for the elderly
requires some private services to monitor and record
their health conditions and some public services to know
the environment information (e.g. temperature, humidity,
light, traffic, etc.) about the places where they locate.
The public services to be integrated shall be dynamically
chosen according to their positions. In an emergency con-
dition, some services shall be automatically activated and
integrated, e.g., the control service for automatic syringe
might be activated and responded accurately according
to the health condition and the environment parameters
known from the other services.

Aml of WoT is far more powerful and sophisticated
than those examples. To fully explore the potential of
smart things, more innovative solutions are expected to
be proposed. Those solutions shall be able to orchestrate
all available web services in a graceful manner and enable
more intelligent user-oriented services. Some existing
artificial intelligent concepts and technologies, such as
Collective intelligence [59] and Semantic web services
[60], may deserve revisiting in the hope of finding new
efficient solutions feasible to smart things on the Web.

VII. CONCLUSION

IoT is the next big possibility and challenge of the
Internet. It does not merely concern the connectivity of
smart things, but more about the interaction or interop-
eration between things and between things and people.
This requires that all the smart things can speak the same
language to communicate freely with each other. It has

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

been considered as a good solution to extend existing
web architecture to this new domain by incorporating
smar things into the Web. The extended Web is called
as WoT in the literature and it has become a major trend
to promote the development of IoT.

In this paper, we first give an overview of WoT, includ-
ing the history and motivation, and the comparison with
previous technologies (e.g., UPnP, JXTA, etc.). It shows
many advantages of WoT over previous technologies.
The key concept of WoT is abstracting everything into
web service. The first issue to consider is to integrate
smart things to the Web by either direct integration or
indirect integration, depending on their capabilities. The
next issue is how to abstract the integrated smart thing
to web services. We introduce and compare two major
web service architectures: WS-* architecture and RESTful
architecture. Some key enabling standards and technolo-
gies (e.g. 6LoWPAN, CoAP, mashup, etc.) related to WoT
are also discussed and examined. As examples for case
study, we compare some pioneer implementation of open
platforms and prototypes for WoT which provide web
service APIs for sensory data sharing and device inter-
operabilities. Since we are still at the preliminary stage
of WoT, many open challenging issues are also briefly
analyzed. We believe that WoT will be indispensable in
people’s future lives and more efforts to tackle those
challenging issues shall be made from both industry and
academia to promote the progress of WoT.

REFERENCES

[1] L. Atzori, A. lera, and G. Morabito, “The Internet of
Things: A survey,” Comput. Netw., vol. 54, pp. 2787-2805,
October 2010.

[2] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “Smews:
Smart and mobile embedded web server,” in Complex,
Intelligent and Software Intensive Systems, 2009. CISIS
’09. International Conference on, march 2009, pp. 571 —
576.

[3] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J.-C.
Hugly, and E. Pouyoul, “Project JXTA-C: enabling a Web
of things,” in System Sciences, 2003. Proceedings of the
36th Annual Hawaii International Conference on, 2003, p.
9 pp.

[4] 1. Agranat, “Engineering web technologies for embedded
applications,” Internet Computing, IEEE, vol. 2, no. 3, pp.
40 —45, may/jun 1998.

[5] T. Lin, H. Zhao, J. Wang, G. Han, and J. Wang, “An
embedded Web server for equipment,” pp. 345 — 350, may
2004.

[6] D. Guinard and V. Trifa, “Towards the Web of Things:
Web Mashups for Embedded Devices,” in Workshop on
Mashups, Enterprise Mashups and Lightweight Composi-
tion on the Web (MEM 2009), in proceedings of WWW
(International World Wide Web Conferences), Madrid, S-
pain, Apr. 2009.

[7] O. Akribopoulos, I. Chatzigiannakis, C. Koninis, and
E. Theodoridis, “A Web Services-oriented Architecture for
Integrating Small Programmable Objects in the Web of
Things,” 2010 Developments in E-systems Engineering, pp.
70-75, 2010.

[8] B. Ostermaier, M. Kovatsch, and S. Santini, “Connecting
things to the web using programmable low-power wifi

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(7]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

modules,” in Proceedings of the 2nd International Work-
shop on the Web of Things (WoT 2011), San Francisco,
CA, USA, June 2011, accepted for publication.

K. il Hwang, J. In, N. Park, and D. seop Eom, “A
design and implementation of wireless sensor gateway for
efficient querying and managing through world wide web,”
Consumer Electronics, IEEE Transactions on, vol. 49,
no. 4, pp. 1090 — 1097, nov. 2003.

V. Trifa, S. Wiel, D. Guinard, and T. Bohnert, “Design
and implementation of a gateway for web-based interaction
and management of embedded devices,” in Proceedings
of the 2nd International Workshop on Sensor Network
Engineering (IWSNE), 2009.

D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud com-
puting, rest and mashups to simplify rfid application de-
velopment and deployment,” in Proceedings of the 2nd
International Workshop on the Web of Things (WoT 2011).
San Fransisco, USA: ACM, June 2011.

W3C Working Group, “Web Services Architecture,”
http://www.w3.org/TR/ws-arch/.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. Nielsen, S. Thatte, and D. Winer,
“Simple object access protocol (SOAP) 1.1,” 2000.

E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, “Web services description language (WSDL)
1.1,” http://www.w3.org/TR/wsdl, 2001.

T. Bellwood, L. Clément, D. Ehnebuske, A. Hately,
M. Hondo, Y. Husband, K. Januszewski, S. Lee, B. M-
cKee, J. Munter, et al., “UDDI Version 3.0,” Published
specification, Oasis, vol. 5, pp. 16-18, 2002.

D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary,
C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland,
et al., “Web services business process execution language
version 2.0,” OASIS Standard, vol. 11, 2007.

S. de Deugd, R. Carroll, K. Kelly, B. Millett, and J. Ricker,
“Soda: Service oriented device architecture,” Pervasive
Computing, IEEE, vol. 5, no. 3, pp. 94 -96, july-sept. 2006.
A. Pintus, D. Carboni, A. Piras, and A. Giordano, “Con-
necting smart things through web services orchestrations,”
in Proceedings of the 10th international conference on
Current trends in web engineering, ser. ICWE’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 431-441.

——, “Connecting smart things through web services
orchestrations,” in Proceedings of the 10th international
conference on Current trends in web engineering, ser.
ICWE’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
431-441.

F. Jammes and H. Smit, “Service-oriented paradigms in
industrial automation,” Industrial Informatics, IEEE Trans-
actions on, vol. 1, no. 1, pp. 62 — 70, feb. 2005.

L. de Souza, P. Spiess, D. Guinard, M. Khler,
S. Karnouskos, and D. Savio, “Socrades: A web service
based shop floor integration infrastructure,” in The Inter-
net of Things, ser. Lecture Notes in Computer Science,
C. Floerkemeier, M. Langheinrich, E. Fleisch, F. Mattern,
and S. Sarma, Eds. Springer Berlin / Heidelberg, 2008,
vol. 4952, pp. 50-67.

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baeck-
er, L. M. S. d. Souza, and V. Trifa, “Soa-based integration
of the internet of things in enterprise services,” in Proceed-
ings of the 2009 IEEE International Conference on Web
Services, ser. ICWS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 968-975.

R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture,” pp. 407—416, 2000.

——, “Principled design of the modern web architecture,”
ACM Trans. Internet Technol., vol. 2, pp. 115-150, May
2002.

R. T. Fielding, “Architectural styles and the design of

©2011 ACADEMY PUBLISHER

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

(34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]
[42]

437

network-based software architectures,” Ph.D. dissertation,
2000, aAI9980887.

C. Pautasso, O. Zimmermann, and F. Leymann, “Restful
web services vs. “big”” web services: making the right
architectural decision,” in Proceeding of the 17th interna-
tional conference on World Wide Web, ser. WWW °08.
New York, NY, USA: ACM, 2008, pp. 805-814.

T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos,
and K. Kim, “TinyREST: A protocol for integrating sensor
networks into the internet,” in Proc. of REALWSN, 2005.
S. Mikeldinen and T. Alakoski, “Fixed-mobile hybrid
mashups: Applying the rest principles to mobile-specific
resources,” in Proceedings of the 2008 international work-
shops on Web Information Systems Engineering, ser. WISE
’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 172—
182.

D. Yazar and A. Dunkels, “Efficient application integration
in IP-based sensor networks,” in Proceedings of the First
ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings, ser. BuildSys '09. New York, NY,
USA: ACM, 2009, pp. 43-48.

W. Drytkiewicz, 1. Radusch, S. Arbanowski, and
R. Popescu-Zeletin, “pREST: a REST-based protocol for
pervasive systems,” in Mobile Ad-hoc and Sensor Systems,
2004 IEEE International Conference on. 1EEE, 2004, pp.
340-348.

E. Wilde, “Putting things to rest,” School of Information,
UC Berkeley. Report 2007-015., Tech. Rep., 2007. [On-
line]. Available: http://escholarship.org/uc/item/1786t1dm
V. Stirbu, “Towards a RESTful Plug and Play Experience
in the Web of Things,” in Proceedings of the 2008 IEEE
International Conference on Semantic Computing. Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 512—
517.

D. Guinard, V. Trifa, F. Mattern, and E. Wilde, From the
Internet of Things to the Web of Things: Resource Oriented
Architecture and Best Practices. Springer, Dec. 2010,
ch. 5.

W. Colitti, K. Steenhaut, and N. De Caro, “Integrating
Wireless Sensor Networks with the Web,” in Extending
the Internet to Low power and Lossy Networks (IP+SN
2011), 2011.

C. B. Z. Shelby, K. Hartke and B. Frank, “Constrained ap-
plication protocol (coap),” http://tools.ietf.org/html/draft-
ietf-core-coap-05, March 2011.

A. Wilson, “The challenge of embedded internet design,”
Real-Time Magazine, pp. 78-80, 1998.

M. Can Filibeli, O. Ozkasap, and M. Reha Civanlar,
“Embedded web server-based home appliance networks,”
J. Netw. Comput. Appl., vol. 30, pp. 499-514, April 2007.
N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao,
“Tiny web services: design and implementation of inter-
operable and evolvable sensor networks,” in Proceedings
of the 6th ACM conference on Embedded network sensor
systems, ser. SenSys '08. New York, NY, USA: ACM,
2008, pp. 253-266.

S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The
Web of Things: Interconnecting Devices with High Usabil-
ity and Performance,” in Embedded Software and Systems,
2009. ICESS ’09. International Conference on, May 2009,
pp- 323 -330.

J. Rees and P. Honeyman, “Webcard: a java card web
server,” in Proceedings of the fourth working conference on
smart card research and advanced applications on Smart
card research and advanced applications. Norwell, MA,
USA: Kluwer Academic Publishers, 2001, pp. 197-207.
O. M. A. Ltd., “Smartcard-web-server,” April 2008.

A. Kamilaris and A. Pitsillides, “Exploiting Demand Re-
sponse in Web-based Energy-aware Smart Homes,” in The

438

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

(561

[57]

(58]

First International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies, 2011.
A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao,
“Senseweb: Browsing the physical world in real time,”
Demo Abstract, ACM/IEEE IPSN0O6, Nashville, TN, 2006.
W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao,
“Senseweb: An infrastructure for shared sensing,” Multi-
media, IEEE, vol. 14, no. 4, pp. 8 —13, oct.-dec. 2007.

S. Nath, J. Liu, and F. Zhao, “Sensormap for wide-area
sensor webs,” Computer, vol. 40, no. 7, pp. 90 93, july
2007.

M. H. Gong Chen, Nathan Yau and D. Estrin, “Sharing
sensor network data,” in CENS Technical Report 71, Tech.
Rep., March 2007.

B. L. Gorman, D. R. Resseguie, and C. Tomkins-Tinch,
“Sensorpedia: Information sharing across incompatible
sensor systems,” in Proceedings of the 2009 International
Symposium on Collaborative Technologies and Systems.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
448-454.

V. Gupta, A. Poursohi, and P. Udupi, “Sensor.Network: An
open data exchange for the web of things,” in Pervasive
Computing and Communications Workshops (PERCOM
Workshops), 2010 8th IEEE International Conference on,
292010-april2 2010, pp. 753 -755.

V. Gupta, P. Udupi, and A. Poursohi, “Early lessons from
building Sensor.Network: an open data exchange for the
web of things,” in Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), 2010 8th IEEE
International Conference on, 29 2010-april 2 2010, pp.
738 —744.

J. Vazquez, A. Almeida, I. Doamo, X. Laiseca, and P. Or-
dufia, “Flexeo: an architecture for integrating Wireless
Sensor Networks into the Internet of Things,” pp. 219—
228, 2009.

D. Guinard, M. Weiss, and V. Trifa, “Are you energy-
efficient? sense it on the web!” in Adjunct Proceedings
of Pervasive 2009 (International Conference on Pervasive
Computing), Nara, Japan, May 2009.

H. Kim, “Protection against packet fragmentation attacks
at 6lowpan adaptation layer,” in Proceedings of the 2008
International Conference on Convergence and Hybrid In-
formation Technology. ~ Washington, DC, USA: IEEE
Computer Society, 2008, pp. 796-801.

B. Ostermaier, K. Romer, F. Mattern, M. Fahrmair, and
W. Kellerer, “A Real-Time Search Engine for the Web
of Things,” in Proceedings of Internet of Things 2010
International Conference (IoT 2010), Tokyo, Japan, Nov.
2010.

K. Romer, B. Ostermaier, F. Mattern, M. Fahrmair, and
W. Kellerer, “Real-time search for real-world entities: A
survey,” Nov. 2010.

H. Wang, C. Tan, and Q. Li, “Snoogle: A search engine for
pervasive environments,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 21, no. 8, pp. 1188 —1202, aug.
2010.

C. C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch:
When search engines meet small devices,” in Proceedings
of the 6th International Conference on Pervasive Com-
puting, ser. Pervasive '08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 93-110.

K.-K. Yap, V. Srinivasan, and M. Motani, “Max: human-
centric search of the physical world,” in Proceedings of
the 3rd international conference on Embedded networked
sensor systems, ser. SenSys '05. New York, NY, USA:
ACM, 2005, pp. 166-179.

S. Mayer and D. Guinard, “An extensible discovery service
for smart things,” in Proceedings of the 2nd International
Workshop on the Web of Things (WoT 2011). San
Fransisco, USA: ACM, June 2011.

©2011 ACADEMY PUBLISHER

JOURNAL OF COMMUNICATIONS, VOL. 6, NO. 6, SEPTEMBER 2011

[59] P. Lévy, Collective intelligence: Mankind’s emerging world
in cyberspace. Perseus Publishing, 1999.

S. Narayanan and S. A. Mcllraith, “Simulation, verification
and automated composition of web services,” in Proceed-
ings of the 1l1th international conference on World Wide
Web, ser. WWW ’02. New York, NY, USA: ACM, 2002,
pp. 77-88.

Deze Zeng is currently a Ph.D. candidate at University of Aizu,
Aizu-Wakamatsu, Japan. He received his BS degree from School
of Computer Science and Technology, Huazhong University of
Science and Technology, China in 2007 and MS degrees from
University of Aizu, Aizu-Wakamatsu, Japan in 2009.

His current research interests are mainly in the areas of
protocol design and performance analysis of wireless networks,
with a special emphasis on MAC protocol design and Delay
Tolerant Networks. His research interests also include Wireless
Sensor Networks, Pervasive Computing and Internet of Things.

[60]

Song Guo received the Ph.D. degree in computer science
from the University of Ottawa, Ottawa, Canada, in 2005. Since
then, he held a position with the Department of Electrical and
Computer Engineering, The University of British Columbia,
Vancouver, BC, Canada, on a Natural Sciences and Engineering
Research Council of Canada (NSERC) Postdoctoral Fellowship.
He is currently an Associate Professor with the School of
Computer Science and Engineering, University of Aizu, Aizu-
Wakamatsu, Japan. His research interests are mainly in the areas
of protocol design and performance analysis for computer and
telecommunication networks, presently focusing on modeling,
analysis, cross-layer optimization, and performance evaluation
of wireless ad hoc and sensor networks for reliable, energy effi-
cient, and cost-effective communications. He is senior member
of IEEE.

Zixue Cheng received the B.Eng. degree from Northeast Heavy
Machinery Institute, Qinhaungdao, China, in 1982, and the
M.S. and Ph.D. degrees in engineering from Tohoku University,
Sendai, Japan, in 1990 and 1993, respectively.

He was an Assistant Professor from 1993 to 1999, an Asso-
ciate Professor from 1999 to 2002, and has been a Full Professor
since 2002 with the University of Aizu, Aizu-Wakamatsu, Japan.
His current interests include distributed algorithms, distance
education, ubiquitous learning, context-aware service plat-forms,
and functional safety for embedded systems.

