The WebComfort Framework:
an Extensible Platform for the Development of Web Applications

Jodo de Sousa Saraiva, Alberto Rodrigues da Silva
INESC-ID & SIQuant,
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
joao.saraiva@inesc-id.pt, alberto.silva@acm.org

Abstract

Content Management Systems (CMSs) are critical soft-
ware platforms for the success of organizational web sites
and intranets. Although most current CMS systems al-
low their extension through the addition of modules/compo-
nents, such modules are usually relatively static, allowing
only the configuration of certain parameters that constrain
some aspects of their presentation.

This paper presents the architecture of WebComfort,
a dynamic component-based CMS platform which allows
users to manage and operate complex web applications in
a dynamic and integrated fashion. The major technical de-
tails of this system are described in this paper, such as mod-
ules, toolkits, the data repository access, and the WebCom-
fort APL.

Keywords: WebComfort, CMS, web-application, archi-
tecture, component-based, extensibility.

1 Introduction

The worldwide expansion of the Internet in the last few
years has led to the appearance of many web-oriented CMS
(Content Management Systems) [5, 18, 22, 3, 23, 17] and
ECM (Enterprise Content Management) [15, 2, 19, 12, 13,
16] platforms with the objective of facilitating the manage-
ment and publication of digital contents.

CMS systems can be used as support platforms for web
applications to be used in the dynamic management of web-
sites and their contents. These systems present several com-
mon aspects, such as: extensibility and modularity, inde-
pendence between content and its presentation, support for
several types of contents, and support for access manage-
ment and user control. However, there are other function-
alities or technical requirements that are addressed by few
CMS systems, such as true multi-language support, dy-

namic management of layout and visual appearance, con-
tent export, or support for workflow definition and execu-
tion. On the other hand, ECM systems are typically ori-
ented towards using Internet-based technologies to capture,
manage, store, preserve, and deliver content and documents
in the context of organizational processes [2]. Nevertheless,
these two content-management areas are not disjoint [15];
in fact, it is not unusual to find a CMS system acting as a
repository for an enterprise’s documents and contents.

WebComfort [27] is a Web Content and Application
management framework that allows the management and
operation of web applications, as well as the visualization
of contents, through an intuitive web-based front-end. Al-
though WebComfort is currently classified as a CMS sys-
tem, our current research goal is to make it evolve to a stage
where it can effectively bridge the gap between CMS and
ECM systems, as well as provide support for complex real-
world web applications. Based on external research in this
area (such as [15, 16]) and on our own previous experiences,
we have identified some issues that we believe are essential
to addressing this goal, such as: (1) component-based archi-
tecture; (2) workflow specification; (3) navigation and Ul
specification; and (4) deployment. In this paper, we present
our proposal for addressing the first issue.

This paper is structured in six main sections. Section
1 introduces the context of CMS and ECM systems, and
presents the structure of the paper. Section 2 introduces
the WebComfort platform’s high-level architecture. Sec-
tion 3 presents WebComfort’s extensibility features. Sec-
tion 4 discusses some architectural decisions taken during
the development of this project. Section 5 presents related
work that we consider relevant to this project. Section 6
concludes this paper, and presents some future work.

2 WebComfort platform

WebComfort [4, 5, 27] is a Web Content and Application
management framework, promoted by SIQuant [21] and

implemented using Microsoft’s ASP.NET 2.0 technology
[24], that allows, in a dynamic and integrated fashion, the
management and operation of web applications. WebCom-
fort provides mechanisms for content management (struc-
tured or not) through generic Web clients (e.g., Internet Ex-
plorer, Mozilla Firefox). It also allows access from mobile
devices (e.g., mobile phone or PDA), albeit in a more lim-
ited fashion. Figure 1 shows a screenshot of a WebComfort
portal.

P e e e
ortal ae A

Figure 1. An example of a WebComfort portal
(extracted from [8]).

The first and foremost WebComfort concept is the Web-
Comfort Application, which can be defined for multiple lan-
guages and contains a variable number of 7abs (also called
Dynamic Pages).

Tabs are ASP.NET pages that follow a predetermined
structure through Master Pages [1]. Tabs can be organized
in a hierarchical manner, and are dynamic because they
contain Modules, which can be considered “component-
based information presentation units” that can present sev-
eral types of contents (such as HTML, images, or docu-
ments); modules are implemented as typical ASP.NET user
controls, although they must subclass one of the classes pro-
vided by WebComfort. Currently, WebComfort provides
several modules to address typical web site functionali-
ties, such as Announcements, Events, Contacts, Links, Hit
Counter, Image, Documents, HTML Document, XML Doc-
ument, or Site Tree/Menu. Specific modules for electronic
commerce, project management, multimedia, and GIS (Ge-
ographic Information Systems) are also available.

A WebComfort Application can also be associated with
multiple Roles, because of WebComfort’s flexible role-
based mechanism for implementing its authorization and
security policy. This mechanism has two main types of role,
applicable to both tabs and modules: (1) viewing access,
which determines whether the tab/module can be viewed

by anyone (public tab/module) or only be specific roles; and
(2) management access, which determines which roles can
edit the properties and contents of the tab/module.

A WebComfort Application also contains a number of
Visual Themes, which can be considered as “augmented
ASP.NET themes” [11] and consist of: (1) one ASPNET
Master Page, which determines the graphical layout of a tab
— including Module placement — by using Content Place-
Holders; and (2) a collection of files (such as Skin and CSS
files) that determine the graphical look of a tab. Each tab
can have a specific theme applied (depending on what the
tab’s owner configures), which allows the use of different
looks and layouts within the same application.

An important characteristic of WebComfort is the sep-
aration between content and presentation. Although each
module has a single data model, it can provide multiple
ways of presenting (and interacting with) the contents of its
data model, through its flexible Module Layout mechanism.
Besides containing a variable number of module layouts, a
module can also contain a variable number of Module Sup-
port Pages, which can be used for the various tasks required
by the module (e.g., a page to edit a certain type of content).

Finally, tabs and modules can also be associated with
workflows, which allow the specification of behavior for the
various life-cycle stages of the managed contents, such as
creation, editing, validation, publication, and eventual elim-
ination.

Figure 2 presents an overview of these basic concepts of
the WebComfort platform.

Role * WebComfort Language
Application
Visual Theme Tab (Dynamic Workflow
P
; age) 04
0.1
.
Module "
1
Module Layout Content Maodule
Support Page

Figure 2. The basic concepts of WebComfort.

The WebComfort platform is considered a framework
because of the features it offers for extension, such as: (1)
allowing the easy installation of new module types to man-

zMaster files
Master Page

=AML files
Toolkit
Configuration

17,-1

«C35 files
CSS File B

ﬂ

. XML files
«3Kin files
Skin File B

Visual Theme Language

DBAccess Provider WebComfort API Extender

WebComfort Framework

Figure 3. An overview of WebComfort’s architecture features.

age and display information; (2) allowing the configuration
of various behavioral aspects of the platform itself; and (3)
providing an extensive API that allows module developers
to create module logic that can be tightly integrated with
the platform, and can even react to events that occur in the
platform (e.g., module creation or installation). In addition
to this API, WebComfort also introduces and supports the
concept of toolkit, allowing developers to create “’installable
module packages” that can be installed by the platform it-
self, without requiring particular intervention from the user.

Besides these mechanisms, WebComfort also provides
other features, such as: (1) Language Packs [4]; and (2)
Workflow Definitions. Language Packs are XML files that
provide text to use in WebComfort’s user-interface; al-
though we could use .NET’s Resource Localization [24]
mechanism to achieve this, these Language Packs have
the advantage of not requiring any recompilation of the
satellite assemblies whenever a change to a string is re-
quired. Finally, Workflow Definitions allow the applica-
tion’s manager to specify alternative behavior for a mod-
ule; for example, although the HTML module does not sup-
port the traditional “submit-review—approve/reject—submit
revision—approve—publish” workflow, the module’s man-
ager could specify (through the WebComfort interface) that
the module should follow this workflow (assuming that the
workflow definition was configured in the application).

Figure 3 overviews these features in the context of We-
bComfort’s component architecture, which are discussed in
the following section.

3 WebComfort extensible features

The WebComfort platform features a component-based
architecture. Although Modules are the most relevant
and obvious example of this fact, developers and/or web-
application administrators can use additional components
(such as Extenders) to customize several aspects of Web-
Comfort’s behavior and visualization. This section presents
some relevant components and aspects of the architecture,
namely: (1) modules; (2) toolkits; (3) extenders; (4) data
repository access; (5) module actions; and (6) the WebCom-
fort API. For a more thorough description of other Web-
Comfort features, such as Language Packs, we recommend
the reading of [28].

3.1 Modules

A module provides mechanisms to manage and layout a
certain kind of content. For example, the Standard Toolkit’s
modules allow the management and visualization of typical
Web contents, such as images, text, links, or even structured
information such as a list of contacts, a discussion forum, or
an interactive chat.

A module is always an instance of a specific Module Def-
inition; the WebComfort “module definition”/“module” are
conceptually similar to the traditional ‘“class”/“instance”,
respectively. A module definition defines the characteris-
tics that are common to all modules of that type, such as the
information necessary to determine the classes that handle
content copy/import/export.

However, module definitions also contain other compo-
nents, called Module Layouts: a module layout defines how
the module presents its contents. Thus, a module is not a
programmatic construct that presents a specific kind of con-
tent in a certain way, but rather a concrete entity (because
it can be created, configured, and removed) that establishes
a mapping between the contents themselves (obtained from
a database, for example) and a certain way of presenting
those contents (the module layout). Figure 4 presents the
relationships between module definitions and modules.

+defauliLayout
Content Type Module Definition 1 Module Layout
f’r 1.7
1 * - 7
f?\ /\ .- +contains
i i s 0.1
subset +specifiedLayout

Content

Figure 4. The relations between Module Defi-
nitions and Modules.

Each module can select one of the layouts that are con-
tained within its module definition as its “selected layout”.
Similarly, each module definition must designate one of its
module as the “default layout™: this layout will be used
when a module that instantiates that module definition does
not specify the layout to be used.

Of course, from this discussion, when a developer cre-
ates a new user-control representing a module, the devel-
oper is not creating the module per-se, but rather a module
layout. Nevertheless, for simplicity reasons, in this text we
use the term “module” to refer to the module layout that is
the current default of the corresponding module definition,
unless explicitly stated otherwise.

WebComfort also provides a number of C#/.NET at-
tributes that can be applied to the source code of module
layouts (and other programmatic entities, such as helper
classes and/or methods), specifying various aspects such
as: (1) the “module definition unique identifier”, a string
(typically a GUID) that uniquely identifies the module def-
inition; (2) methods that handle the copy/import/export of
module contents; and (3) the module layouts already de-
fined by the developer.

To quickly install a module definition, the portal admin-
istrator needs only to enter the “module definition unique
identifier” in the module definition installation page, and all
the information contained in these attributes will be auto-
matically detected and used to configure the module defini-
tion. Of course, the administrator is free to alter any of the
information that is automatically detected by the platform,

or even reset the information to its defaults (the detected
values) in the event of some mistake during editing. Listing
1 presents two examples of the usage of these attributes: a
module layout, and a class and method that handle the ex-
port of that same module’s contents.

3.2 Toolkits

From a simplistic perspective, a Toolkit can be consid-
ered as an integrated collection of modules that provide spe-
cific functionalities. However, from a more technical per-
spective, a toolkit can be better defined as “an installable
set of modules (i.e., a set of module definitions and cor-
responding module layouts) and accompanying resources
(e.g., images, Language Packs) that can be installed by the
WebComfort platform without particular user-interaction”,
such as manual addition of module definitions or manual
editing of the “web.config” configuration file [24].

Listing 1. Examples of the usage of the at-
tributes defined by WebComfort.

[WebComfortModuleDefinition ("A4CAB2D5-076B-42b1-9321-4
E22FF5COE3E")]

[ModuleLayout ("Image", "Modules/StandardToolkit/Image/
ImageModule.ascx", TargetPlatformSupport.Default,
TargetPlatformSupport .No)]

public partial class ImageModule :
WebComfortBaseModuleDesktopLayout {

protected override void OnLoad (EventArgs e) {
base.OnLoad(e); // Makes some platform-related
security checks

// Take appropriate actions here
}
}

[WebComfortModuleDefinition ("A4CAB2D5-076B-42b1-9321-4
E22FF5COE3E")]
public static class ImageExport {
[ModuleCopy]
public static void ModuleCopy (int sourceModuleId, int
destinationModuleId) {
// Copy the contents of the source module into the
destination module

Any toolkit must contain a configuration file that spec-
ifies how the platform should handle the various steps of
toolkit installation and removal (e.g., the module definitions
and module layouts to add, the resources to copy, the Lan-
guage Packs to install). This configuration file also spec-
ifies the Extenders or Data Access providers (explained in
the next subsections) to add to the platform.

3.3 Extenders

WebComfort Extenders allow to add functionality to the
web application, without replacing the functionality that is
already provided by the platform. An Extender consists

of a class which inherits from WebComfortExtender
and overrides the methods corresponding to the events (e.g.,
“user registered”, “toolkit installed”) that the developer
wishes to add functionality to.

Extenders are added to WebComfort by using the
Provider pattern [10], allowing portal administrators to dy-
namically add or remove extenders by simply editing the
“web.config” file, without requiring any changes to code.

An example of this mechanism is the WebComfort Sand-
box [26], in which users can test the platform to see if it suits
their needs. The Sandbox consists of a typical WebComfort
installation with an extender (the Sandbox Extender) that
addresses the “user registered” event: when a user registers
with the Sandbox, the platform itself creates the user entry
and triggers the “user registered” event on all the available
extenders. The Sandbox Extender then creates a tab for the
newly-registered user and some HTML modules that pro-
vide an initial explanation of how to manage WebComfort.

3.4 Data repository access

One of the main issues during WebComfort’s develop-
ment was access to its data repository: although WebCom-
fort itself initially supported only SQL Server, there were
also versions of WebComfort that had been migrated to Or-
acle. This easily led to a maintenance nightmare, because
the code-bases for these versions were not the same, and
so changes to one of the code-bases should also be in-
serted into the other code-base, or we would have some
versions in which some already-solved bugs would still be
present. However, the access to WebComfort data could not
be done in a single code-base; even if we used ADO.NET
technology to abstract ourselves from data-source details
(such as the different SQL flavors used in today’s available
databases), there are still data-sources that are not supported
by this technology.

So, instead of having several code-bases for WebCom-
fort (one for each supported data repository type), we have
separated the application logic and the data access logic into
separate layers, so that data repository access would follow
a component-based approach, still based on the Provider
pattern [10]. The WebComfort platform only defines an
abstract class that must be inherited by all WebComfort
data access providers; this abstract class itself only pro-
vides references for a number of interfaces (e.g., ITabsDB,
IModulesDB), which must also be implemented by the
data access provider and provide a number of methods that
are invoked by the platform. This approach allows us to add
WebComfort support to other data repository types, such as
a file-based repository or a relational database (e.g., Ora-
cle, MySQL, MS SQL Server, PostgreSQL), with relatively
small effort. Figure 5 illustrates WebComfort’s data access
architecture, with an example of a concrete implementation

for SQL Server (methods are not represented for figure sim-
plicity).

WebComfort_DBAccess

DBAccessProvider

J Ji

«interfaces zinterfaces
ITabsDB IModulesDB

i 2 L

«realizes

N

«interfaces
IUsersDB

arealizes wredlizes

SQLServer_DBAccess

SQL ServerDBAccessProvider

]

TabsDB ModulesDB

UsersDB

Figure 5. The WebComfort Data Access archi-
tecture.

Additionally, WebComfort allows the usage of this data
access provider mechanism by toolkits: all data access
providers must specify both the data-source type that is tar-
geted (e.g., SQL Server, PostgreSQL) and the “function”
that they address (e.g., Platform, Standard Toolkit). Thus,
any toolkit can use this mechanism as a framework to pro-
vide functionality that is available for a wide number of
data-sources.

3.5 Module actions

Module actions allow developers to specify a set of
operations that are allowed in the context of a certain
module. These Actions are simple classes that inherit from
WebComfortBaseModuleDesktopLayout.Action
and override some of the available methods. These methods
control all aspects of the action, such as the conditions
necessary to display or enable the action, what to do when
the user invokes the action (client-side, through Javascript,
or server-side), or even how the action should be rendered
in the browser (e.g., as a simple text string, or as an image
button).

The example presented in Listing 2 presents a simplified
example of such an Action (in this case, an action to redirect
to a printer-friendly page defined by the module), specifying
both a condition that must be verified in order for the action
to be presented to the user (in the IsAvailable property)
and the instructions to execute on the server when the action
is invoked by the user (in the ProcessC1ick method).

11
12

Listing 2. Example of a WebComfort module
Action.

public class PrintAction : WebComfort.API.
WebComfortBaseModuleDesktopLayout.Action {
public PrintAction(string description, string
actionUrl, WebComfortBaseModuleDesktopLayout
control)
: base ("Print", description, "Print", "7/images/
print.gif", actionUrl, control) ({}

public override bool IsActionAvailable {
get { return base.IsActionAvailable && Control.
ModuleConfiguration.AllowPrinting; }

}

public override void ProcessClick () {
Control.SaveAndRedirect (string.Format (" {0} ?ModuleID
={2}", ActionUrl, Control.Moduleld));

Actions are then added to the module itself by overriding
the module’s GetModuleHeaderActionList and/or
GetModuleFooterActionList, which return a list of
actions that should be displayed in the module’s header or
footer, respectively. Note that it is possible for different
module layouts to present different sets of actions. Figure 6
presents a screenshot of some actions that can be displayed
in the header area of an HTML module.

~WebComfort.org ¢V dadad %

Figure 6. Screenshot of some actions in the
module header.

3.6 The WebComfort API

Finally, WebComfort makes available an API, which in-
cludes the Extenders and data access providers already pre-
sented, as well as a large number of classes and methods
that allow modules and toolKkits to interact with the platform
and take advantage of its concepts.

This API exists because, from our previous experiences,
we concluded that creating a module/application on top of
a framework that does not provide a rich-enough interface
with which applications can interact, often leads to the exis-
tence of two applications: the base platform and the devel-
oped application itself. This situation carries some disad-
vantages: (1) the developed application is usually required
to have code which is already present in the base platform;
(2) to access the information defined by the framework’s
concepts (e.g., user information, list of existing tabs), the
application must often use “hacks”, such as directly access-
ing a specific database; and (3) the need to enter data in the
application which has already been inserted in the frame-
work (e.g., a user’s address).

T

© % o w

10
11

The simple example presented in Listing 3 illustrates the
usage of the API in the context of a WebComfort module
(more specifically, the module accesses the ‘“Languages”
and “Module Settings” facilities of the platform, through
the LanguagesAPT and ModuleSettingsAPT classes
respectively).

Listing 3. Examples of the usage of the Web-
Comfort API.

protected override void OnLoad (EventArgs e) {
base.OnLoad (e) ;

int languageId = LanguagesAPI.GetModuleLanguageType (
ReferenceModulelId) ;
if (languageId != LanguagesAPI.TYPE_SINGLE_LANGUAGE) {
languageId = LanguagesAPI.GetCurrentLanguage () ;
}

Dictionary<string, string> settings =
ModuleSettingsAPI.GetModuleSettings (
ReferenceModulelId, languageld);

// Do something with the settings

4 Discussion

Most of the aspects presented have the objective of pro-
moting the decoupling of WebComfort’s various functional-
ities, in order to make WebComfort a true component-based
platform with as few dependencies between components as
possible. Examples of this decoupling are the “module def-
inition unique identifier”, the module layout mechanism,
and the data access provider. Paramount to some of these
aspects was the usage of the Provider pattern [10], which
is a mix of the Abstract Factory, Strategy and Singleton
patterns [9]; this pattern allows the runtime configuration
of an ASPNET web application by simply changing the
“web.config” file [24] to specify which component (i.e., a
provider) should be used to provide the application’s be-
havior.

The usage of the “module definition unique identifier”
and the attributes provided by WebComfort brings the
added advantage of removing the dependencies between the
code and the module definition itself. A good example of
this fact is the connection between the module definition
and the classes and methods that handle the copy/import/-
export of a module’s content: the module definition does
not need to specify the namespaces and names of the classes
and methods that handle these operations, because these are
obtained at runtime (by using .NET’s reflection mechanism)
through the attributes provided by WebComfort (as shown,
for example, in Listing 1).

As for module layouts, the greatest advantage of this
mechanism is that it allows modules to truly separate the

content itself from the way it is presented: if an adminis-
trator decides that a module’s contents should be displayed
in a different way, all the administrator has to do is select
a different module layout for that module, without requir-
ing the instantiation of a different module and subsequent
migration of contents between modules.

WebComfort’s greatest advantage over previous versions
(and even most other CMS systems available) is perhaps
its new data access layer. Because of WebComfort’s usage
of data access providers to decouple the application logic
from database-specific details (e.g., SQL-flavors, the usage
of ADO.NET or a specific database adapter), WebComfort
is now available in SQL Server as well as PostgreSQL, and
we are satisfied with the results, as the effort to support Post-
greSQL took only two days to complete.

These aspects have been validated in some real-world ap-
plications. Of these, we highlight “Portal e-Arte” [8], which
is a portal designed to support the Portuguese artist commu-
nity (see Figure 1); this portal is built as a web application
based on the WebComfort platform, and makes use of most
of the aspects presented in the previous section.

Finally, and from our experiences in developing web
applications over WebComfort, we believe that its current
status makes it adequate for supporting relatively-complex
web applications. WebComfort features a component-based
architecture, and its API facilitates the task of deploying
new modules and/or toolkits onto the platform. Neverthe-
less, development of WebComfort modules is still a manual
task, and we plan to improve this issue through an MDE-
based approach [20].

5 Related Work

Although WebComfort component-based architecture
provides some degree of flexibility that cannot be easily
found in other CMS systems, there are a few CMS systems
that address some of the issues presented in this paper. In
this section, we present the CMS systems that we consider
most relevant in this area.

DotNetNuke [6] is an open-source CMS system written
in Visual Basic.NET, powered by ASP.NET 2.0 and Mi-
crosoft SQL Server. DotNetNuke also uses the Provider
pattern in various areas, such as authentication and database
access, and it has a wide variety of modules for various pur-
poses. However, it does not provide concepts such as toolk-
its (although modules can also be installed through the web
interface) or extenders (which means that modules cannot
take appropriate action when platform events take place). It
also does not provide the concept of module layout.

Drupal [7] is an open-source CMS system built in PHP,
supporting Apache, IIS, MySQL and PostgreSQL technolo-
gies. Like other CMS systems of its kind, it features a wide
variety of Modules that provide several different function-

alities, as well as a role-based permission system. However,
Drupal is more oriented towards the management and vi-
sualization of contents themselves (through modules) than
towards customization of the platform itself: Drupal does
not provide ways for the developer or administrator to over-
ride/extend certain aspects of the platform functionality
(without changing its source code). Drupal also provides
the concept of action, in a fashion similar to WebComfort’s
own module actions.

Joomla! [14] is another open-source CMS system built
over PHP and MySQL. It also features a wide variety of
Modules that provide several different functionalities, as
well as a role-based permission system. However, unlike
Drupal, Joomla! was built to also support extensions at the
core level, allowing administrators to add base functionali-
ties (such as multi-language or indexing support) by adding
plugins to Joomla!, without requiring recompilation of the
platform.

Finally, Typo3 [25] is another open-source CMS sys-
tem built in PHP, supporting Apache, IIS, MySQL, Post-
greSQL, Oracle, and Microsoft SQL Server technologies.
Management is performed via a back-end interface, instead
of a front-end, although both interfaces are web-based.
Typo3 was built to easily support extensions at its core level
(through the Typo3 Extension API), allowing administra-
tors to add functionalities (such as modules, application
logic, or third-party applications) to Typo3 installations.

6 Conclusions

The recent expansion of the Internet has originated many
CMS and ECM systems that aim to facilitate the manage-
ment and publication of digital contents. These platforms,
which tend to be modular, extensible and versatile, can be
used as support web applications for the dynamic manage-
ment of websites and respective contents. Nevertheless,
there are still functionalities that are only addressed by a
small number of these systems, such as workflows or true
multi-language support.

WebComfort is a Web Content and Application frame-
work that allows the management and operation of web ap-
plications in a dynamic and integrated fashion. It provides
mechanisms for content management, through generic Web
clients such as Internet Explorer or Mozilla Firefox.

In addition to content management, WebComfort also
allows developers and administrators to customize several
aspects (such as presentation, layout or behavior) of plat-
form. This paper presented and discussed some features
of WebComfort’s component-based architecture, namely:
(1) modules; (2) toolkits; (3) extenders; (4) data reposi-
tory access; (5) module actions; and (6) the WebComfort
API. These features have already been used and validated in
some toolkits and applications, and there are currently sev-

eral toolkits being produced to address various areas, such
as social network analysis, geographic information systems,
eCommerce, or document management.

As for future work, we plan to create an MDE-based ap-
proach that allows developers to create complex web appli-
cations in a quick and efficient manner; this approach will
also be able to take advantage of WebComfort’s current ex-
tensibility mechanisms.

Also, we intend to add more extensibility and configu-
ration points to the platform. One of our priorities is to
add a configurable authentication mechanism (based on the
Provider pattern) that allows us to obtain users and roles
from a variety of sources (e.g., an LDAP server), similar to
the mechanism that is already present in DotNetNuke. An-
other aspect that we would also like to address in the future
is the specification of role-based permissions for use-cases,
in both the WebComfort platform and any modules/toolk-
its; the current mechanism only allows the specification of
viewing and editing permissions which is sometimes not
enough for modules of a more complex nature. We also
plan to introduce the concept of “toolkit version”: although
WebComfort supports dependencies between toolkits (i.e.,
if toolkit A depends on toolkit B, then toolkit A cannot be
installed if toolkit B is not installed, and toolkit B cannot be
uninstalled if toolkit A is installed), toolkits are expected to
evolve over time, and WebComfort should be able to sup-
port that evolution.

References

[1] ASP.NET Master Pages Overview. Retrieved Monday 17t
March, 2008 from http://msdn2.microsoft.com/
en-us/library/wtxbf3hh.aspx.

[2] Association for Information and Image Management. Re-
trieved Thursday 20" March, 2008 from http://www.
aiim.orgqg.

[3] B. Boiko. Content Management Bible. Wiley, December
2001.

[4] J. L. Carmo and A. R. d. Silva. The WebComfort Project.
In Proceedings of the Second International Conference
of Innovative Views of .NET Technologies (IVNET’06).
Sociedade Brasileira de Computagdo and Microsoft,
October 2006. Retrieved Monday 17" March, 2008
from http://isg.inesc-id.pt/alb/static/
papers/2006/jc—ivnet2006-webcomfort .pdf.

[5] J. L. V. d. Carmo. Web Content Management Systems:
Experiences and Evaluations with the WebComfort Frame-
work. Master’s thesis, Instituto Superior Técnico, Portugal,
December 2006.

[6] DotNetNuke. Retrieved Tuesday 18" March, 2008 from
http://www.dotnetnuke.com/.

[7] Drupal CMS. Retrieved Wednesday 19" March, 2008 from
http://drupal.org.

[8] eArte - Portal de Arte e Cultura. Retrieved Tuesday 18"
March, 2008 from http://www.portal-earte.com.

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]
(20]

(21]

(22]

(23]
(24]
[25]

[26]

[27]

(28]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
FPatterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

R. Howard. Provider Model Design Pattern and
Specification, March 2004. Retrieved Tuesday 18"
March, 2008 from http://msdn2.microsoft.com/
en-us/library/ms972319.aspx.

Introducing Themes and Skins in ASPNET
2.0. Retrieved Monday 17" March, 2008 from
http://www.ondotnet.com/pub/a/dotnet/
2004/08/30/themesandskins.html.

T. Jenkins. Enterprise Content Management Technology:
What You Need to Know. Open Text Corporation, October
2004.

T. Jenkins. Enterprise Content Management Solutions:
What You Need to Know. Open Text Corporation, April
2005.

Joomla! CMS. Retrieved Wednesday 19" March, 2008 from
http://www. joomla.org.

U. Kampffmeyer. ECM - Enterprise Content Man-
agement, 2006. Retrieved Thursday 20" March,
2008 from http://www.project—consult.net/
Files/ECM_WhitePaper_kff_ 2006.pdf.

Microsoft. Enterprise Content ~ Management:
Breaking the Barriers to Broad User Adop-
tion. Retrieved Tuesday 3™ June, 2008 from

http://www.microsoftio.com/content/
bpio/prospect_and_demand/ecm_wp2.pdf, June
2006.

OpenSourceCMS. Retrieved Thursday 20" March, 2008
from http://www.opensourcecms.com.

J. Robertson. So, what is a content management system?,
June 2003. Retrieved Thursday 20" March, 2008 from
http://www.steptwo.com.au/papers/kmc_
what/index.html.

A. Rockley. Managing Enterprise Content: A Unified Con-
tent Strategy (VOICES). New Riders Press, October 2002.
D. C. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering. Computer, 39(2):25-31, February 2006.
SIQuant — Engenharia do Territério e Sistemas de
Informag@o. Retrieved Monday 17" March, 2008 from
http://www.siquant.pt.

P. Suh, D. Addey, D. Thiemecke, and J. Ellis. Content Man-
agement Systems (Tools of the Trade). Glasshaus, October
2003.

The CMS Matrix. Retrieved Thursday 20" March, 2008
from http://www.cmsmatrix.org.

The Official Microsoft ASP.NET Site. Retrieved Monday
17" March, 2008 from http://www.asp.net.

Typo3 CMS. Retrieved Thursday 20" March, 2008 from
http://www.typo3.org.

WebComfort SandBox. Retrieved Wednesday 19"
March, 2008 from http://www.webcomfort.org/
sandbox.

WebComfort.org. Retrieved Monday 17" March, 2008 from
http://www.webcomfort.org.

WebComfort.org — Documents. Retrieved Thursday 20™
March, 2008 from http://www.webcomfort.org/
Documentos.

