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ABSTRACT

Aims. We discuss the linear theory of the Weibel instability in a relativistic plasma driven by ultra-relativistic beams, describing the
physics of the generation of magnetic fields in the ultra-relativistic shocks associated with Gamma Ray Bursts (GRBs). We perform a
detailed analysis of the linear dispersion relation for the benefit of non-linear calculations that we discuss in the companion paper.
Methods. We use a covariant approach, where the linear response of the beam-plasma system is determined from the polarization
tensor. This tensor relates the four-current density to the four-potential of the electromagnetic field. Showing that two approaches,
one based on a fluid model and one on a kinetic description that uses a waterbag distribution for the phase-space density of the beam
particles, yield essentially the same result, we compare our results to those obtained by other approaches. We mainly consider the
symmetric case of two counterstreaming (but otherwise identical) beams.
Results. We show that the effect of an asymmetry in the beam densities is small for typical parameters, and briefly discuss the effect
of an ambient magnetic field. The dispersion relation of the Weibel instability driven by ultra-relativistic beams is rather insensitive to
the model used to describe the plasma. The properties of the instability, such as the growth rate and the range of unstable wavelengths,
are governed by only two parameters: the ratio of the plasma frequency squared of the beam and hot background plasma, and a “Mach
number”, which is essentially the ratio of the beam momentum and the momentum associated with thermal velocity (∼sound speed)
in the beam plasma. We also show that, at least for the parameters associated with the ultra-relativistic shocks in GRBs, the influence
of the magnetic field is small, and the results for an unmagnetized plasma can be used.
Conclusions.

Key words. magnetic fields – instabilities – shock waves – gamma rays: bursts

1. Introduction

The Weibel instability is an electromagnetic instability of low-
frequency perturbations in a plasma where one (or more) of
the particle species has an anisotropic momentum distribu-
tion. In its original form, as discussed by Weibel (1959), this
anisotropy is caused by different values of the kinetic tem-
perature of the particles in two mutually orthogonal direc-
tions. More recent astrophysical applications – see for instance
Gruzinov & Waxman (1999), Gruzinov (2001), Medvedev &
Loeb (1999), and Frederiksen et al. (2004) – have concentrated
on the anisotropy caused by the presence of bulk plasma motions
in the form of beams in a (thermal) background plasma.

In relativistic shocks, which propagate into a cold medium
with bulk speed Vsh ∼ c, this version of the instability could be
important as the collisionless relaxation mechanism in the “tran-
sition layer” where the shock-heated and incoming (unshocked)
plasma mix. As this instability has its most rapid growth in the
low-frequency regime, so that |ω| � kc with k = 2π/λ the wave
number, it generates an electromagnetic field (δE, δB) that is
dominated by the magnetic component: |δB| � |δE|.

Generation of magnetic fields is a necessary ingredient in
those models that explain the prompt gamma rays, and the broad-
band afterglow emission from GRBs as (Lorentz-boosted) syn-
chrotron radiation. These synchrotron models must assume that
the magnetic field is strong in the sense that the ratio of magnetic
to internal energy is B2/8πe ≈ 0.01−0.1. Here B the magnetic
field strength with corresponding energy density eB = B2/8π,

and e is the internal energy density of the radiating plasma.
Details of the arguments leading to this estimate can be found in
the reviews by Piran (2000, 2004) and Mészáros (2002, 2006),
and in the references therein.

The compression of pre-existing interstellar (or circumstel-
lar) magnetic fields by a relativistic shock leads to an insuffi-
cient field strength, with εB � 1. In fact, without additional field
amplification one finds that the pre- and post-shock values of
εB ≡ B2/8πe are of similar magnitude, see Eq. (4) below. For an
exterior shock, propagating into a cold astrophysical plasma with
proper mass density ρ, the upstream energy density is dominated
by the rest-energy density of the hadrons: e � ρc2. Therefore, the
pre-shock value of the equipartition parameter εB1 is small:

εB1 ≈ B2
1/8πρ1c2 =

(
V2

A/2c2
)
1
� 1. (1)

Here, VA = B/
√

4π ρ is the (non-relativistic) Alfvén velocity,
and we use the subscript 1 (2) to denote the pre-shock (post-
shock) values of physical quantities.

In the best possible case, where the pre-shock magnetic field
is tangential to the shock surface with strength Bt, the shock
jump conditions (in particular mass conservation and magnetic
flux conservation) imply that the pre- and post shock magnetic
fields are related by

Bt1

ρ1
=

Bt2

ρ2
· (2)
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Since the upstream magnetic field is dynamically unimpor-
tant (Eq. (1)), one can apply the approximate hydrodynamic
jump conditions of Blandford & McKee (1976). For an ultra-

relativistic shock with γsh = 1/
√

1 − V2
sh/c

2 � 1, propagat-
ing into a cold medium with mass density ρ1 and pressure
P1 � ρ1c2, the relativistically hot post-shock gas has a proper
mass density ρ2, pressure P2, and a thermal energy density e2
given by

ρ2

ρ1
= 2
√

2 γsh, e2 = 3P2 = 2γ2
shρ1c2. (3)

Relations (2) and (3) imply that the post-shock ratio of magnetic
and thermal energy densities is

εB2 ≡
B2

t2

8πe2
≈ B2

t1

2πρ1c2
≈ 4εB1 � 1. (4)

This shows that the pre- and post shock values have similar mag-
nitudes. Clearly an additional mechanism is needed to generate
a post-shock magnetic field with εB2 ∼ 0.01−0.1.

This paper is concerned with the linear stage of the Weibel
instability, where the electromagnetic field amplitudes grow ex-
ponentially, |δE|, |δB| ∝ exp(σ̃t), with σ̃ = Im(ω) the growth
rate. Starting from first principles, we present a detailed analy-
sis of the dispersion relation that determines the growth rate σ̃,
both in a fluid description of the plasma and in a kinetic wa-
terbag description. These results are important for the analy-
sis of the non-linear stage of the relativistic Weibel instability,
which is sensitive to the dispersion properties of the plasma; see
the companion paper (Achterberg et al. 2007) for details. From
the dispersion relation we derive expressions for the growth
rate σ̃ using various approximations: non-relativistic and ultra-
relativistic; with and without a background magnetic field. The
aim is to determine the basic parameters that characterize the
solution.

In Sect. 2 we introduce the covariant formalism employed
here and the general form of the plasma response. In Sect. 3
we derive the linear dispersion relation for the beam-driven
Weibel instability from two points of view: a fully relativistic
fluid plasma version and a kinetic version, both for two coun-
terstreaming beams. In the latter case we employ a mathemat-
ically convenient model for the momentum distribution of the
beam particles: the waterbag distribution. In Sect. 4 we consider
the case of cold relativistic beams and the non-relativistic limit,
showing that our results agree with those available for these two
cases in the literature. In Sect. 5 we discuss the Weibel insta-
bility driven by two symmetric, counterstreaming beams. There
we show that the fluid and kinetic results are closely related
and are characterized by only two parameters: the ratio of effec-
tive plasma frequencies of beams and background plasma and
an effective Mach number of the beam plasma. In Sect. 6 we
consider the ultra-relativistic limit where the beam velocity Vb
is close to c and the beam Lorentz factor satisfies γb � 1. In
Sect. 7 we consider the effect of anomalous dispersion that oc-
curs when the background plasma is relativistically hot, and in
Sect. 8 we discuss the magnetized Weibel instability for beams
that are aligned with an ambient magnetic field. There we show
that, in the ultra-relativistic case, the influence of this magnetic
field is small for typical parameters. In Sect. 9 we briefly dis-
cuss the asymmetric case, where the instability is driven by rel-
ativistic beams of unequal density. Conclusions are presented in
Sect. 10. The Appendices A through D contain the necessary
mathematical details.

2. Covariant formulation of plasma dispersion

Anticipating our application to relativistic shocks, we use a fully
relativistic (covariant) formulation that is valid in any (conve-
niently chosen) reference frame. This has the advantage that we
can decompose the dispersion tensor of the plasma into normal
modes based on a set of polarization vectors, postponing con-
siderations of the choice of a specific reference frame as long
as possible (see below). Co- and contravariant vector and ten-
sor components are related in the usual fashion, e.g. J̃µ = ηµν J̃ν

and αµν = ηµσ ασν, with ηµν = ηµν ≡ diag(1, −1, −1, −1)
the Minkowski metric tensor of flat space-time, which satisfies
η
µ
ν = δ

µ
ν.

The covariant description employed here (and by others, see
the references below) expresses the linear electromagnetic re-
sponse of the plasma in terms of the wave four-current J̃µ(k) =
(ρ̃, J̃(k)) and the wave four-potential Ãµ(k) = (Φ̃(k), Ã(k)) in
the Fourier domain through a tensorial relation of the form (e.g.
Melrose 2001)

4πJ̃µ(k) = αµν(k) Ãν(k). (5)

The polarization tensor αµν (k) contains all information about the
plasma response. Here, and in what follows, we employ a tilde
(∼) to denote the four-potential and four-current density in the
Fourier domain (see definition A.3 in Appendix A), which de-
pend on the wavenumber four-vector kµ = (ω/c , k). Greek in-
dices are used to denote the components of four-vectors.

The dispersion relation for the linear electromagnetic wave
modes in the plasma follows from using (5) in the covariant set
of Maxwell equations, Eq. (A.1) of Appendix A. The result-
ing set of linear relations in the Fourier domain takes the form
Dµν(k) Ãν(k) = 0, with Dµν(k) ≡ (k · k) ηµν − kµkν + αµν(k),
see Appendix B. This leads to three independent physical wave
modes. It is convenient to expand the four-potential of the three
physical degrees of freedom in terms of three mutually orthogo-
nal polarization vectors: Ãµ(k) = Ãi(k) eµi , with i = 1, 2, 3. The
dispersion relation, which is the solution condition for the sys-
tem of equations, then takes the form D(ω, K) = det(Di j) = 0,
where the 3 × 3 matrix Di j is defined in terms of αµν, kµ and
the three polarization vectors eµi of the linear wave modes, see
Appendix B, Eq. (B.11). If one chooses a Lorentz gauge for the
electromagnetic fields, kµÃµ = 0,Di j takes the form:

Di j(k) = (k · k) gi j + αi j(k). (6)

Here we employ the notation A · B ≡ ηµν AµBν for the scalar
product of two four-vectors, and introduce the quantities gi j ≡(
ei · e j

)
, and αi j ≡ eµi αµν eνj. We also adhere to the Einstein sum-

mation convention for double indices.
This covariant formulation of the linear electromagnetic re-

sponse of a plasma is based on the work of Melrose (1973), see
also Melrose (2001) and Dewar (1977), and is very convenient
for this problem. As it is not commonly used, we provide a full
set of definitions together with the necessary mathematical de-
tails in Appendices A and B. Appendix C contains full the ex-
pressions for the components of the dispersion tensor in the dif-
ferent approaches presented below.

2.1. Polarization tensor in the fluid approximation

Many of the properties of the beam-driven Weibel instabil-
ity can be understood from a simple fluid model. Consider a
plasma consisting of several particle species, with charge qs, rest
mass ms and four-velocity Uµs ≡ (γs, γsVs) for each particle
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species s. The proper density of species s is ns, the rest mass
density is ρs = nsms, the thermal energy density is es and the
pressure is Ps. We will use units with c = 1 so that the Lorentz
factor is γs = 1/

√
1 − |Vs|2. However, we will retain c in some

expressions for clarity. For the moment, we will neglect the in-
fluence of an ambient magnetic field, in effect treating an unmag-
netized plasma. The magnetized case will be considered briefly
in Sect. 8.

The calculation of the linear response of each species in-
volves the linearization of the covariant equation of motion for
species s in a charged fluid,

(ρ + e + P)s (Us · ∇) Uµs = hµνs ∇νPs + nsqsF
µνUsν. (7)

Here hµνs ≡ ηµν −Uµs Uνs is the tensor that projects onto the hyper-
plane perpendicular to the four-velocity Uµs . Fµν = ∇µAν −∇νAµ
is the Faraday tensor of the electromagnetic field. Equation of
motion (7) is supplemented by the continuity equation and an
equation of state,

∇µ
(
nsU

µ
s

)
= 0, Ps ∝ nΓs

s . (8)

This procedure leads to a polarization tensor αµν =
∑

s

(
α
µ
ν

)
s
,

where the contribution from species s takes the form (see
Eq. (A.24) in the appendix):

(
α
µ
ν

)
s
= −ω̃2

ps Pµsα
(
δαβ −

C2
s kαkβ

(k · Us)2 − K2
s⊥C2

s

)
P†βsν . (9)

The projection tensor Pµsν ≡ δµν − Uµs kν/(k · Us) and its trans-
pose appear as a result of charge conservation and the invariance
of the current density J̃µ under electromagnetic gauge transfor-
mations (cf. Dewar 1977), see Appendix A for a full discus-
sion. From here onwards Uµs is the unperturbed four-velocity of
species s.

The relativistic plasma frequency ω̃ps and the sound speed
Cs of species s are respectively defined by:

ω̃2
ps ≡

4πn2
s q2

s

(ρ + e + P)s
, C2

s ≡
ΓsPs

(ρ + e + P)s
· (10)

The quantity K2
s⊥ is the absolute value of the length of the space-

like four-vector kµs⊥ ≡ hµνs kµ = kµ − (k · Us)U
µ
s :

K2
s⊥ ≡ −ks⊥ · ks⊥ = (k · Us)2 − k · k. (11)

Choosing the manifestly covariant Lorentz gauge kµÃµ = 0
and using the resulting properties of the three polarization
vectors e1−e3 (see Appendix B, Eqs. (B.6)−(B.8)), it follows
from expression (9) that the contribution of species s to αi j ≡
eµi αµν eνj is

(
αi j

)
s
= −ω̃2

ps

⎧⎪⎪⎪⎨⎪⎪⎪⎩gi j +
(k · k)

(
1 −C2

s

)
UsiUs j

(k · Us)2 − K2
s⊥C2

s

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (12)

where Usi ≡ Us · ei and gi j = ei · e j.

2.2. Polarization tensor in the kinetic description

Although the fluid approach of the previous section is mathe-
matically easier, a more adequate description of the waves and
oscillations in the plasma is given by the kinetic approach. This
is especially relevant since we will consider plasmas with a finite
temperature in the following sections. We will compare results
for the two approaches in Sect. 5.

In the kinetic description, one describes the multi-species
plasma using the covariant Vlasov equation for the phase-space
distribution function Fs(xµ, pµ) of each species in the plasma:

dFs

dτ
≡ dxµ

dτ
∂Fs

∂xµ
+

qs

ms
Fµνpν

∂Fs

∂pµ
= 0, (13)

cf. Eqs. (A.25) and (A.26) of Appendix A. As before, Fµν =
∇µAν − ∇νAµ is the Faraday tensor of the electromagnetic field.
The position four vector xµ and momentum four vector pµ satisfy
dxµ/dτ = pµ/ms, with τ the proper time.

Linearizing the Vlasov equation in the Fourier domain, and
calculating the four-current density J̃µ resulting from the linear
perturbation, one can calculate the polarization tensor

(
α
µ
ν

)
s

for
each species.

As was the case in the fluid description, it is convenient to
work with the representation of the polarization tensor αi j in the
Lorentz gauge. The contribution to this tensor from species s,(
αi j

)
s
, can be written as (see Appendix C, Eqs. (C.7) and (C.8)):

(
αi j

)
s
= −ω̄2

ps

∫
d3 p
γ(p)

f0s(p)

(
gi j +

(k · k) pi p j

(k · p)2

)
· (14)

Here f0s(p) is the ordinary Vlasov distribution of the particles in
three-momentum space, normalized to unity so that ns f0s(p) d3 p
is the lab-frame number density of particles with their three-
momentum in an infinitesimal momentum space volume d3 p
around p, with ns the density of species s in the laboratory frame.
The frequency ω̄ps is the plasma frequency based on the density
of species s in the lab frame:

ω̄2
ps =

4πq2
sns

ms
· (15)

As before gi j ≡ ei · e j, and we define pi = p · ei, with pµ = (E, p)
the four-momentum vector so that γ(p) =

√
1 + |p|2/m2c2.

2.3. The cold plasma limit

Because cold plasmas are already well-studied in the literature
we will check our results in later sections by taking the cold
limit. In this section we will give an expression for the polariza-
tion tensor in the cold limit.

It is well-known (e.g. Melrose 1980) that the fluid approach
and the kinetic approach yield the same answer for a cold
plasma. Our expressions for αi j satisfy this simple requirement.
The cold plasma assumption corresponds to putting Cs = 0 in
expression (12), and to putting f0s(p) = δ3(p − ps) in expres-
sion (14). Here ps ≡ γsmsVs is the bulk momentum of parti-
cle species s, where we still allow for relativistic bulk motion
with Lorentz factor γs = 1/

√
1 − V2

s � 1. In that case one has
ns = γsns due to Lorentz-contraction, and the two plasma fre-
quencies defined above are related by:

ω̃2
ps =
ω̄2

ps

γs
=

4πq2
sns

ms
· (16)

The cold plasma polarization tensor is then given by

(
αi j

)
cold
= −

∑
s

ω̃2
ps

(
gi j +

(k · k) UsiUs j

(k · Us)2

)
, (17)

where the sum is over all plasma species, and Uµs = pµs /ms =
γs(1, Vs) is the four-velocity of the bulk motion of species s.
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3. The beam-driven Weibel instability

We now consider the case of a plasma with the following com-
ponents: a (multi-species) “background” plasma, at rest in the
lab frame with a bulk four-velocity Uµs = (1, 0, 0, 0), and two
counterstreaming beams of charged particles moving along the
z-axis, with an associated four-velocity

Uµ± = γb (1, 0, 0, ±Vb) . (18)

The beam Lorentz factor is γb = 1/
√

1 − V2
b . The beam particles

have a rest mass mb and a charge qb. The two beams have a
proper density

n± =
1 ± ∆

2
nb. (19)

The parameter ∆ ≤ 1 measures the asymmetry in the strength
of the two counterstreaming beams, with the symmetric case of
two equal density beams corresponding to ∆ = 0. For simplicity
we assume that the beams consist of a single particle species,
and that the temperature of the two beams, quantified by the
sound speed Cb of the beam plasma in the fluid description or
by the velocity dispersion in the kinetic description (see below),
is identical. The case of beams consisting of more than one parti-
cle species is a straightforward generalization of the results pre-
sented here.

We limit the discussion to the case of waves with a wave
vector k = K x̂ perpendicular to the beam direction, correspond-
ing with a wave four-vector kµ = (ω, K, 0, 0) in the lab frame.
This choice implies that, for species belonging to the background
plasma, one has k · Us = ω, and Ks⊥ = |K|. In this case the three
polarization vectors can be chosen as eµ1 = (K, ω, 0, 0)/

√|k · k|,
eµ2 = (0, 0, 1, 0) and eµ3 = (0, 0, 0, 1), see Appendix B. These three
vectors all satisfy k · ei = 0, ensuring that Ãµ(k) =

∑
i Ãi(k) eµi

satisfies the Lorentz gauge.
For this choice of k, the only non-zero components of the

tensor Di j as defined in Eq. (6) are: D11, D22, D33 and D13 =
D∗31. The dispersion relation D(ω, K) ≡ det(Di j) = 0 factors
into

D(ω, K) = D22

(
D11D33 − |D31|2

)
= 0. (20)

Here |D31|2 = D31D∗31 = D31D13. The explicit expressions for
the non-zero components ofDi j are listed in Appendix C.

The solutionD22 = 0 corresponds to a stable, purely electro-
magnetic mode with Ẽ ⊥ k and Ẽ ⊥ Vb in the lab frame, with
Vb = ±Vb ẑ the beam velocity. This mode is unaffected by the
bulk motion of the forward and backward beam. It will not be
considered further.

The remaining two modes, which follow from D11D33 −
|D31| = 0, are mixed in the sense that the wave electromagnetic
field in the rest frame of the background plasma is – in general –
not purely transverse, with Ẽ ⊥ k in the lab frame, or purely lon-
gitudinal, with Ẽ ‖ k in the lab frame. Physically, this is due to
the fact that the bulk motion of the beams leads to an “advection
current” in addition to the usual “conduction current”. The ad-
vection current arises as charge density perturbations in the beam
plasma are dragged along by the beams, whereas the conduction
current is due to the perturbations in the velocity of the beam
particles. This couples the transverse (current-driven) and longi-
tudinal (charge-driven) response of the beam plasma. However,
in the symmetric case of equal beams, ∆ = 0, the charge den-
sity perturbations of the two beams are opposite and cancel each
other, but the associated advection currents are equal due to the

the opposite sign of the velocity of the two beams. The charge
density cancellation results inD13 = D31 = 0. In that symmetric
case the Weibel instability is purely transverse, with Ẽ ⊥ k and
Ẽ ‖ Vb in the lab frame. We will mostly consider this symmetric
case, where the Weibel instability is the unstable solution branch
of the much simplified dispersion relation

D33(k) = K2 − ω2 +
∑

s

(α33)s = 0. (21)

The asymmetric case with D31 � 0 will be briefly considered in
the next section for the case of cold beams in a cold background
plasma, and in Sect. 9 for the hot case.

4. The limit of a cold beam and the non-relativistic
limit

As a check on our results, we briefly consider the limit of a
cold beam and cold background plasma, and the non-relativistic
limit, for which results are available in the literature. For ease
of comparison we reinstate c in this section. As before we as-
sume k = K x̂ and Vb = ±Vb ẑ in the laboratory frame, which is
the rest frame of the background plasma. Using (6) and (17), the
dispersion relation (20) can be written as:

|k · k|
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝1 −∑

s

ω̃2
ps

ω2

⎞⎟⎟⎟⎟⎟⎠
×
⎛⎜⎜⎜⎜⎜⎝K2c2 − ω2 +

∑
s

ω̃2
ps

[
1 − V2

s

c2
+

K2V2
s

ω2

]⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝∑
s

ω̃2
ps

ω2
KVs

⎞⎟⎟⎟⎟⎟⎠
2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0. (22)

Here the sum extends over all species in the plasma: beams and
stationary background. The background plasma has Vs = 0, and
the “cold” plasma frequency is ω̃2

ps = 4πq2
s ns/ms for species s,

with the density of the two individual beams given by Eq. (19).
This dispersion relation agrees with the more general result of
Akhiezer et al. (1975) for cold relativistic beams in the case k ⊥
Vb, and with the dispersion relation of Alexandrov et al. (1984),
Chap. 6.3.1., for k ⊥ Vb and zero magnetic field.

In the non-relativistic limit, where Vs � c for all species,
the unstable solution branch has |ω2| � ∑

s ω̃
2
ps. The same holds

for weak beams in the relativistic case, i.e. when the plasma fre-
quency associated with the beams satisfies ω̃2

pb = 4πq2
bnb/mb �∑

s ω̃
2
ps. If either of these two inequalities applies one make the

approximation 1−∑s ω̃
2
ps/ω

2 ≈ −∑s ω̃
2
ps/ω

2, and the dispersion
relation (22) reduces to

K2c2 − ω2 +
∑

s

ω̃2
ps

(
1

γ2
s
+

K2V2
s

ω2

)
−

K2

⎛⎜⎜⎜⎜⎜⎝∑
s

ω̃2
psVs

⎞⎟⎟⎟⎟⎟⎠
2

ω2
∑

s

ω̃2
ps

= 0. (23)

Here γs = 1/
√

1 − V2
s /c2. In the non-relativistic limit, with Vs �

c and γs � 1, the unstable branch has |ω2| � K2c2 and the
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solution for the growth rate σ̃ (ω = iσ̃) is (cf. Akhiezer et al.
1975, Eq. (6.1.5.10))

σ̃2 ≈ K2

K2c2 +
∑

s

ω̃2
ps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∑

s

ω2
psV

2
s −

⎛⎜⎜⎜⎜⎜⎝∑
s

ω̃2
psVs

⎞⎟⎟⎟⎟⎟⎠
2

∑
s

ω̃2
ps

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
· (24)

This non-relativistic dispersion relation remains correct even if
one assumes that the magnitude of the velocity of the two beams
is not equal. In the symmetric case, where n+ = n− = nb/2 and
V± = ±Vb, the term

∑
s ω̃

2
psVs vanishes identically and one has:

σ̃2 =
ω̃2

pb K2V2
b

K2c2 + ω̃2
bg + ω̃

2
pb

< ω̃2
pb

(Vb

c

)2

, (25)

where the maximum growth rate, σ̃max ≈ ω̃pb(Vb/c), occurs
when K2c2 � ω̃2

bg + ω̃
2
pb. Here ω̃2

bg ≡
∑

s∈bg 4πq2
s ns/ms is the

plasma frequency associated with the background plasma, and
ω̃2

pb = 4πq2
bnb/mb is the plasma frequency associated with the

beams. Equation (25) corresponds to the well-known expression
for the non-relativistic Weibel instability, which Weibel (1959)
derived for an unstable plasma without a background plasma
(ω̃bg = 0).

It should be emphasized that the net current in the plasma
should vanish,

J =
∑

s

nsqsVs ẑ = 0 (26)

for a cold plasma. Since ω̃2
ps ∝ q2

s ns/ms this implies that the

growth rate reducing term ∝
(∑

s ω̃
2
psVs

)2
in relation (24) will

vanish if the currents in the plasma are carried by a single
species, for instance by electrons in beam(s) and background.

5. Weibel instability driven by two symmetric beams

We now consider two counterstreaming beams with equal den-
sity and equal temperatures that are propagating through a ther-
mal background plasma at rest. In that case one can use disper-
sion relation (21).

In the fluid approximation, expression for D33 in the set of
relations (C.2) for the components of Di j leads to dispersion
relation

ω2 = K2 + ω̃2
bg + ω̃

2
pb

⎛⎜⎜⎜⎜⎝1 − (ω2 − K2) Ṽ2
b

ω2 − K2C̃2
b

⎞⎟⎟⎟⎟⎠ · (27)

Here we define the two velocities

C̃b =
Cb

γb

√
1 −C2

bV2
b

, Ṽb =
Vb

γCb

√
1 −C2

bV2
b

(28)

with γCb ≡ 1/
√

1 − C2
b. The background and beam plasma

frequencies are given respectively by

ω̃2
bg ≡

∑
s∈bg

ω̃2
ps, ω̃

2
pb ≡

4πq2
bnb

mbhb
, (29)

with hb ≡ 1 + (e + P)±/n±mb the beam enthalpy per unit mass,
which is identical for the two beams in view of our assumption
of equal beam temperatures.

In a kinetic description of the beams we use a mathemati-
cally convenient momentum distribution function for describing
the kinetic version of the Weibel instability: the waterbag dis-
tribution as employed by Yoon & Davidson (1987) and by Silva
et al. (2002). This distribution takes the form

f0b(p) =
Θ(px + px0) − Θ(px − px0)

2 px0
δ(py)

×
[
1 + ∆

2
δ(pz − pz0) +

1 − ∆
2
δ(pz + pz0)

]
. (30)

Here Θ(x) = 1
2 (1 + x/|x|) is the Heaviside step-function.

The waterbag distribution describes two beams, counter-
streaming along the z-axis with a lab-frame density n± = (1 ±
∆) nb/2, and with a momentum dispersion along the x-axis that
is described by a “top hat” distribution in the range −px0 ≤ px ≤
px0. The y-component of the momentum vanishes identically.
Note that the “beam temperature”, as defined by the spread in the
momentum component px, is the same for both beams. The wa-
terbag distribution allows an analytical calculation of the plasma
response, while preserving the two essential features of more re-
alistic distributions: the bulk drift of beam particles in the beam
direction and the beam velocity dispersion along the wave vector
due to thermal motions in the beams. As we show below, the fi-
nal results for a waterbag distribution are close to those obtained
with the fluid model, strengthening the validity of this approach.

It has been shown by Milosavljevic et al. (2006) that the dis-
persion relation for a momentum distribution that is isotropic in
the plane perpendicular to the beam (so that py � 0, but the dis-

tribution only depends on
√

p2
x + p2

y and pz) gives very similar,

but algebraically more complicated, results.
For the response of the background plasma we will (for the

moment) continue to use the results from the fluid approxima-
tion, even though strictly speaking one should use kinetic theory
in order to take the large velocity dispersion in the background
into account. As discussed in Sect. 7 below, this leads to the
anomalous skin effect, cf. Lyubarsky & Eichler (2006). There
we will show that the difference between the two approaches is
small. Alternatively, one can use the dispersion functions derived
recently by Schlickeiser (2004) for a relativistic Maxwellian
distribution.

Using the Eq. (C.12) of Appendix C one finds that the Weibel
dispersion relation (21) for a symmetric waterbag distribution
with ∆ = 0 becomes

ω2 = K2 + ω̃2
bg + ω̂

2
pb

⎛⎜⎜⎜⎜⎜⎝Gb +
K2V2

z0

ω2 − K2V2
x0

⎞⎟⎟⎟⎟⎟⎠ · (31)

Here we define the following characteristic beam parameters: the
beam plasma frequency ω̂pb, the Lorentz factor γ0 and the two
velocities Vx0 and Vz0:

ω̂2
pb =

ω̄2
pb

γ0
=

4πq2
bnb

γ0mb
, γ0 =

√
1 +

p2
x0

m2
bc2
+

p2
z0

m2
bc2
,

Vx0 =
px0

γ0mb
, Vz0 =

pz0

γ0mb
· (32)

The function Gb(px0, pz0) is given by:

Gb(px0, pz0) =
1

2Vx0
ln

(
1 + Vx0

1 − Vx0

)
− p2

z0

p2
z0 + m2

b

· (33)
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When Vx0 � 1 (so that γ0 � γb) the frequency ω̂pb reduces
to the beam plasma frequency ω̃pb based on the proper density
nb ≈ nb/γb of the beam particles. The beam contribution to D33
(the last term on the right-hand side of Eq. (31)) has been derived
before by Silva et al. (2002).

The two dispersion relations (27) and (31) can both be writ-
ten as a bi-quadratic equation for ω of the form

ω4 − B(K) ω2 + C(K) = 0, (34)

Such a bi-quadratic equation for ω occurs often in the theory
of the Weibel instability (Weibel 1959; see also Schaefer-Rolffs
et al. 2006). The two coefficients B(K) and C(K) are:

B(K) =

⎧⎪⎪⎨⎪⎪⎩ ω̃
2
bg + ω̃

2
pb

(
1 − Ṽ2

b

)
+ K2

(
1 + C̃2

b

)
(fl)

ω̃2
bg + ω̂

2
pb Gb + K2

(
1 + V2

x0

)
(wb),

(35)

and

C(K) =

⎧⎪⎪⎨⎪⎪⎩
(
ω̃2

bg + K2
)

K2C̃2
b − ω̃2

pb K2
(
Ṽ2

b − C̃2
b

)
(fl)(

ω̃2
bg + K2

)
K2V2

x0 − ω̂2
pbK2

(
V2

z0 − Gb V2
x0

)
(wb).

(36)

Here “fl” and “wb” respectively stand for the fluid and waterbag
model. The analogy between these two sets of expressions is
clear. The solution for ω,

ω2
± =

1
2B ± 1

2

√
B2 − 4C, (37)

has an unstable branch with ω2− < 0, i.e. ω− = iσ̃ with σ̃ > 0,
provided C(K) < 0. This condition defines a maximum unstable
wavenumber Kmax so that perturbations with

K2 < K2
max =

⎧⎪⎪⎨⎪⎪⎩ ω̃
2
pb

(
M2 − 1

)
− ω̃2

bg (fl)

ω̂2
pb

(
M2 − Gb

)
− ω̃2

bg (wb)
(38)

are unstable and will grow. Here we define an effective “Mach
number” for the beams by

M ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ṽb

C̃b
=
γbVb

γCbCb
(fluid model)

Vz0

Vx0
=

pz0

px0
(waterbag model)

(39)

for the fluid and waterbag model respectively. This shows the
stabilizing influence of the thermal motion of beam particles in
the direction of the wave vector k = K x̂, suppressing the insta-
bility at sufficiently large values of |K|.

6. The case of ultra-relativistic beams

We now concentrate on the ultra-relativistic case, of importance
for the Weibel instability in the shock transition layer of shocks

with bulk velocity Vsh such that γsh = 1/
√

1 − V2
sh � 1. In

the frame of the hot (shocked) plasma, the unshocked mate-
rial forms a relativistic beam. This implies γb ∼ γsh � 1 and
Ṽb � C̃b in the fluid case and pz0 � mb, pz0 � px0 in the wa-
terbag case. It is then possible to describe the properties of the
symmetric Weibel instability using two parameters. The first is
the “Mach number” M defined in Eq. (39) that now satisfies1

M2 ∼ (γb/γCbCb)2 � 1. The second parameter is a measure of
the strength of the two beams, defined by

η ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω̃2

pb/ω̃
2
bg (fluid model)

ω̂2
pb/ω̃

2
bg (waterbag model).

(40)

1 For an ideal gas one has Cb < 1/
√

3 and γCbCb < 1/
√

2.

The ultra-relativistic limit of the fluid model has C̃b � 1/M� 1,
Ṽb � Vb � 1, and in the waterbag model one has Gb � 1 and
Vx0 � 1/M � Vz0 ≈ Vb � 1. To leading order, the expres-
sions (35) and (36) become identical in both models. In terms of
η andM one can write:

B(K) � ω̃2
bg + K2,

C(K) � K2

⎛⎜⎜⎜⎜⎜⎝ ω̃
2
bg + K2

M2
− η ω̃2

bg

⎞⎟⎟⎟⎟⎟⎠ . (41)

Terms of order 1/γ2
b, C̃2

b or V2
x0 have been consistently neglected

with respect to unity.
If we define a dimensionless growth rate σ and a dimension-

less wavenumber κ by

σ2 = −ω2/ω̃2
bg, κ = K/ω̃bg, (42)

dispersion relation (34) can be written as

σ4 +
(
1 + κ2

)
σ2 −

κ2
(
κ2max − κ2

)
M2

= 0. (43)

Here we use that ω is either real (stable modes) or purely imag-
inary (unstable modes) with ω2 < 0 in the latter case. The di-
mensionless maximum wavenumber κmax (see Eq. (38)) of the
unstable modes equals in the ultra-relativistic limit:

κmax ≈
√
ηM2 − 1. (44)

The Weibel instability occurs only if ηM2 > 1 for 0 ≤ |κ| < κmax.
The unstable branch has a growth rate

σ2 =

√√(
1 + κ2

2

)2

+
κ2

(
κ2max − κ2

)
M2

− 1 + κ2

2
· (45)

In many cases expression (45) can be simplified further.
Provided that (1 + κ2)2 � 4κ2

(
κ2max − κ2

)
/M2 one can expand

the root in (45). This yields:

σ2 �
κ2

(
κ2max − κ2

)
M2

(
1 + κ2

) · (46)

This approximation corresponds to the neglect of the σ4 term in
dispersion relation (43), and is valid for all unstable wavelengths
if the beams are weak in the sense that η � 1. In that case one
has σ2 < η � 1. For η close to unity so that ω̂pb, ω̃pb ∼ ω̃bg,
the approximated solution (46) is valid everwhere except in the
vicinity of |κ| = 1 where σ ≈ 1. For very strong beams with
η � 1 one has to use the full solution (45) except when

√
η �

|κ| ≤ κmax ∼ √ηM.
Figure 1 gives the growth rate of the Weibel instability in

units of the background plasma frequency as a function of the
dimensionless wavenumber κ (= Kc/ω̃bg if one uses units with
c � 1). The curves are labeled by the pair of parameters (η,
M). This figure shows that the dimensionless growth rate σ =
Im(ω)/ω̃bg has the following properties:

– For κ = K/ω̃bg � 1 it grows as σ ∝ κ. If the approximated
solution (46) applies one has

σ ≈ κκmax

M ≈ √η κ. (47)

The last approximation is valid if η < 1.
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Fig. 1. The dimensionless growth rate of the ultra-relativistic Weibel
instability in the fluid model for the background response. Shown is
σ = Im(ω)/ω̃bg, as a function of the dimensionless wavenumber, κ =
Kc/ω̃bg, for an instability driven by two beams of equal strength (the
symmetric case). Growth rates are shown for two different values of η,
η = 0.01 and η = 1 and for a range of values of the “Mach number”M.
The different curves are labeled by the value ofM.

– Around κ ∼ 1 the growth rate saturates. If κmax � 1 the
growth rate has a nearly constant value for 1 � κ � κmax
which, in the approximation (46), equals:

σ ≈ κmax

M ≈ √η. (48)

– The growth rate rapidly decreases to zero at κ ≈ κmax ≈√
ηM.

Comparing the ultra-relativistic result (46) to the classic non-
relativistic result for a cold plasma (25) we can identify the fol-
lowing differences:

– The cold plasma result does not have a cut-off wave num-
ber κmax.

– The denominator of the non-relativistic expression contains
an extra ω̃2

pb term because one can not apply the limit η ≤ 1,
γb � 1 in that case. The corresponding term in the ultra-
relativistic case is ω̃2

pb/γ
2
b, which has been neglected with

respect to ω̃2
bg. That is allowed whenever η � γ2

b.
– In the relativistic case it is important to use the appropriate

relativistic expressions for the plasma frequencies.

Note, however, that the peak value of the growth rateσ ≈ √η for
the ultra-relativistic case is the relativistic equivalent for Vb � c
of the maximum growth rate for the non-relativistic case.

7. Ultra-relativistic background gas

Next we consider the case where the background plasma is de-
scribed as an isotropic, ultra-relativistic gas. In almost all rele-
vant cases one only needs to consider the electron background
response (see below).

We approximate the distribution function of the background
electrons by the ultra-relativistic limit (thermal energy kbT �
mec2) of the well-known Juttner distribution with temperature T :

f0(p) =
1

8π

(
c

kbT

)3

exp(−c|p|/kbT ). (49)

Substituting this into Eq. (C.7) of the Appendix (with ( f0b(p)→
f0(p)) one finds (cf. Alexandrov et al. 1984; Melrose 2001)

α
bg
33 =

ω̃2
bgω

4Kc

[
2ω
Kc
+

(
1 − ω

2

K2c2

)
ln
(
ω + Kc
ω − Kc

) ]
· (50)

Here the background plasma frequency is defined as

ω̃2
bg ≡

4πe2nc2

kbT
· (51)

The contribution of the ions is neglected, assuming that the ions
have not thermalized yet in the shock transition.

If the frequency is purely imaginary, ω = iσ̃ as is the case
here for the unstable mode, one can write αbg

33 as:

α
bg
33 =

ω̃2
bg

2

[
π

2

(
σ̃

Kc

) (
1 +

σ̃2

K2c2

)
−
(
σ̃

Kc

)2

−
(
σ̃

Kc

) (
1 +

σ̃2

K2c2

)
tan−1

(
σ̃

Kc

) ]
· (52)

This follows from the representation tan−1(x) = (i/2) ln[(i +
x)/(i − x)] together with tan−1(x) = π/2 − tan−1(1/x), cf.
Abramowitz & Stegun (1970). The dispersion relation for the
Weibel instability due to symmetric counterstreaming beams,
D33 = 0, now reads:

σ2 + κ2 + ηGb +
σ

2κ

[
π

2

(
1 +
σ2

κ2

)
− σ
κ

−
(
1 +
σ2

κ2

)
tan−1

(
σ

κ

) ]
− ηκ2V2

z0

σ2 + κ2V2
x0

= 0. (53)

Here we employ the dimensionless quantities introduced in the
previous section. In the limitM2 = V2

z0/V
2
x0 → ∞ (cold beams)

and σ2 � κ2, this corresponds to the dispersion relation consid-
ered recently by Lyubarsky & Eichler (2006).

The unstable modes extend from 0 < κ < κmax, where the
value of κmax follows from the condition σ(κmax) = 0. It is easily
seen that κmax equals

κmax =

√
η
(M2 − Gb

)
, (54)

essentially the same value as obtained in the waterbag beam/fluid
background model for ηM2 � 1, the ultra-relativistic limit.

Figure 2 shows the unstable Weibel-branch solutions of dis-
persion relation (53). When one compares the dispersion curves
in this figure with the corresponding fluid results of Fig. 1, one
finds that the curves are very similar. The physical reason is
that – in both the fluid and the kinetic model – the presence of
the hot background leads to a screening current, which slows
the instability at small κ. In the fluid model, which can never
fully capture the effect of the large velocity dispersion of the
background electrons, the classical screening current leads to a
diminished growth rate at wavelengths larger than the skin depth
λsk = c/ω̃bg. In the kinetic model of this section, which takes
proper account of the velocity dispersion, it is the anomalous
screening current due to the velocity dispersion of the particles
along k that leads to a similar effect.

We will consider the low frequency limit, |σ̃| � Kc. In that
case one has

α
bg
33 �

πω̃2
bgσ̃

4Kc
=
πω̃2

bg

4

(
σ

κ

)
· (55)
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Fig. 2. The dimensionless growth rate of the ultra-relativistic Weibel
instability that follows from dispersion relation (53), which employs
a kinetic model for the background response. Shown is σ = σ̃/ω̃bg

as a function of the dimensionless wavenumber, κ = Kc/ω̃bg, for an
instability driven by two beams of equal strength (the symmetric case).
Growth rates are shown for two different values of η and for a range of
values of the “Mach number” M. The different curves are labeled by
the value ofM. The reduction in growth rate for κ � 1 corresponds to
the effect of anomalous screening by the hot background plasma.

This result corresponds to the anomalous skin effect in an
isotropic ultra-relativistic thermal plasma. Taking the ultra-
relativistic limit for the beams, in effect putting Gb ≈ 0, Vz0 ≈
1 � Vx0 and ηM2 � 1, one can replace the full dispersion
relation (53) by the simpler relation

κ2
(
σ2 +

κ2

M2
− η

)
+
π

4
σ

κ

(
σ2 +

κ2

M2

)
= 0. (56)

It is possible to write down a rather complicated expression for
the analytical solution of the cubic Eq. (56) for the dimensionless
growth rate σ. However, the close similarity (see Fig. 2) with
the results for the growth rate obtained with a fluid treatment of
the background plasma suggests that the following interpolation
formula applies, asymptotically exact for both κ2 � 1 and κ2 �
1 when η ≤ 1:

σ2 �
κ2

(
κ2max − κ2

)
M2

(
κ2s + κ2

) · (57)

The screening wavenumber κs, which in this case quantifies the
anomalous skin effect, follows from a consideration of the solu-
tion of dispersion relation (56) in the limit κ2 � 1, σ2 � 1 and
κ2max ≈ ηM2 � 1:

σ2 ≈
(

4η
π

)2/3

κ2. (58)

Comparing this with (57) in this limit,

σ2 ≈ κ
2κ2max

κ2sM2
=
η κ2

κ2s
(59)

one finds that one must have

κs =
(
π

4

)1/3
η1/6. (60)

This defines the dimensionless screening wave number κs for
the kinetic model for the background plasma. The fluid ap-
proximation for the background corresponds to putting κs = 1.
Anomalous screening is important when κ ≤ κs. Note that the
value of κs depends only weakly on the strength of the beams,
and will be close to unity unless η is very small or very large.
Figure 3 compares the growth rate as calculated from the var-
ious dispersion relations for the Weibel instability, both exact
and approximate. The comparison is shown for two cases with
an identical value of κmax ≈ 33: for a relatively dense beam
(η = 1), and for an underdense beam with η = 0.01. For κ � 1
there is little difference as the screening currents of the hot back-
ground are relatively unimportant. In the case η = 1 the largest
differences occur between the various approaches, but the differ-
ence between the growth rate as calculated from the fluid model
and the kinetic model for the background is no more than a fac-
tor 2. In the case η = 0.01 the difference between the two mod-
els is somewhat more pronounced as the screening wavenumber
squared, κ2s ≈ 0.18, becomes significantly smaller than unity.
The growth rates as obtained numerically from the exact disper-
sion relations, and the approximate growth rates obtained from
the approximate relations (46) and (57), agree fairly well for
η = 1, and give an excellent approximation in the case η = 0.01.
This is to be expected in view of the approximation σ2 � κ2
employed in the derivation of the approximate growth rates, as
the maximum growth rate in all cases is σmax ∼ √η.

8. Magnetized Weibel instability
The previous calculations have been for an unmagnetized
plasma. In this section we briefly consider the magnetized case,
in order to compare the results obtained using our formalism
with those of Tautz & Schlickeiser (2006) and to show that, for
typical parameters, the unmagnetized case applies to the Weibel
instability near ultra-relativistic shocks propagating into the in-
terstellar (or circumstellar) medium.

We can only consider the case where the Lorentz force on all
species in the unperturbed plasma vanishes: FµνUsν = 0. This
implies that there is no ambient electric field in the laboratory
frame, and that we are dealing with two equal counterstreaming
beams, ∆ = 0, with the beam velocity aligned with the mag-
netic field. These conditions are rather restrictive. A calculation
of the response of the plasma in the fluid approximation (see
Appendix D) leads to an instability of the ordinary electromag-
netic mode in a plasma, cf. Tautz & Schlickeiser (2006). In the
ordinary mode the wave electric field is along the beam direc-
tion/ambient magnetic field in the lab frame so that Ẽ = Ẽ ẑ.
As before, we choose a wave vector in the laboratory frame per-
pendicular to the beam direction: k = K x̂. The presence of the
magnetic field modifies dispersion relation (27) to (see Eq. (D.6)
of Appendix D):

ω2 = K2 + ω̃2
bg + ω̃

2
pb

⎛⎜⎜⎜⎜⎜⎝1 − (ω2 − K2) Ṽ2
b

ω2 − K2C̃2
b − Ω̃2

b

⎞⎟⎟⎟⎟⎟⎠ · (61)

Here

Ω̃b =
qbB

γbmbhb

√
1 − V2

b C2
b

≡ Ωb

γb

√
1 − V2

bC2
b

, (62)

is an effective gyration frequency of the beam plasma, with B the
magnetic field strength and Ωb ≡ qbB/mbhb. For field-aligned
beams the magnetic field is the same in the lab frame and in
the two respective rest frames of the forward and backward
beam. In the limit of a vanishing beam temperature (Cb = 0,
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Fig. 3. A comparison of the growth rates calculated from the fluid and
the kinetic model for the background response, and from the approx-
imate dispersion relations in both these models: Eqs. (46) and (57).
Dispersion curves are shown in two cases: η = 1 (top figure) and
η = 0.01 (bottom figure), withM2 = 103 andM2 = 105 respectively,
so that the value of the maximum unstable wavenumber, κmax ≈ √ηM,
is identical in both cases.

hb = 1), of low frequency (|ω2| � K2) perturbations and for
a non-relativistic beam velocity (so that Vb � 1, γb � 1 and
Ω̃b � qbB/mb) dispersion relation (61) reduces to the dispersion
relation derived by Tautz & Schlickeiser (2006), their Eq. (19),
in the corresponding case.

Dispersion relation (61) for the magnetized Weibel instabil-
ity can again be written in the form of Eq. (34): ω4 − B(K)ω2 +
C(K) = 0. The relevant coefficients B(K) and C(K) are listed in
Eqs. (D.8) and (D.9) of Appendix D.

The most important effect of the magnetic field is a modifica-
tion of the range of unstable wavenumbers that follows from the
instability condition C(K) < 0. It introduces a wavenumber K−,
below which the magnetic field stabilizes the Weibel instability.
Unstable modes occur for K− < |K| < K+, where K− (K+) is the
smaller (larger) real root of C(K) = 0. From expression (D.9)
for C(K) one finds that the two limiting wavenumbers K± are
given by:

K2
± =

K2
max − K2

B

2

±
√√⎛⎜⎜⎜⎜⎝K2

max − K2
B

2

⎞⎟⎟⎟⎟⎠2

−
(
ω̃2

pb + ω̃
2
bg

)
K2

B. (63)

The wavenumber KB is defined by

KB ≡ |Ω̃b|
C̃b
=
|qb|B

mbhbCb
, (64)

and Kmax is the maximum unstable wavenumber in the field-free
case as defined in Eq. (38). The Weibel instability disappears
in the magnetized case when the unstable wavenumber range
shrinks to zero. This happens when the argument of the square
root in expression (63) vanishes or becomes negative for

KB >
√

K2
max + 4

(
ω̃2

pb + ω̃
2
bg

)
− 2

√
ω̃2

pb + ω̃
2
bg. (65)

The presence of a magnetic field also raises the threshold veloc-
ity: there is only an instability at a given wavenumber K if

(
Vb

Cb

)2

=M2 >

(
K2 + K2

B

) (
K2 + ω̃2

pb + ω̃
2
bg

)
K2ω̃2

pb

· (66)

This last condition is analogous to condition (20b) of Tautz &
Schlickeiser (2006) (after correcting a misprint), who only con-
sider the non-relativistic case.

For the remainder of this section we consider the ultra-
relativistic limit withM2 � 1, Vb � 1 � Cb � 1/M. Defining
the dimensionless limiting wavenumbers κ± = K±/ω̃bg and a di-
mensionless gyration frequency σB = Ω̃b/ω̃bg, the growth rate
of the unstable solution can be represented by the analogue for
the magnetized case of relation (45):

σ2 =

√√⎛⎜⎜⎜⎜⎝1 + κ2 + σ2
B

2

⎞⎟⎟⎟⎟⎠2

+

(
κ2 − κ2−

) (
κ2+ − κ2

)
M2

−1 + κ2 + σ2
B

2
· (67)

The magnetized equivalent of the approximate dispersion rela-
tion (46), valid when (1+κ2+σ2

B)2 � 4
(
κ2 − κ2−

) (
κ2+ − κ2

)
/M2,

reads:

σ2 ≈
(
κ2 − κ2−

) (
κ2+ − κ2

)
M2

(
1 + κ2 + σ2

B

) · (68)

In the ultra-relativistic limit,with Cb � 1 andM2 � 1, one has
KB � M (Ωb/γB) and Kmax � M ω̃pb. If K2

max � ω̃2
pb + ω̃

2
bg

(or equivalently: ηM2 � 1 + η) the Weibel instability vanishes
according to (65) if the magnetic field gets so large that KB ≈
Kmax, or equivalently

|Ωb|
γb
� |qb|B
γbmb

≈ ω̃pb. (69)

In Fig. 4 we show the solution for the dimensionless growth
rate σ(κ) of the unstable Weibel mode (ordinary mode) in the
magnetized case.

The behavior of the growth rate is analogous to the limit-
ing expressions derived recently by Stockem et al. (2006) for the
filamentation instability due to field-aligned beams in a mag-
netized and cold plasma (Cb = 0). These authors use an ex-
pansion of the full dispersion relations near the points ω2 = 0
that separate the stable (ω2 > 0) and unstable (ω2 < 0) wave-
length regions, see Tautz et al. (2007) for details. They consider
multi-species (ions and electrons) beams without a thermal back-
ground (ω̃bg = 0) in the the non-relativistic limit Vb � c. For
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0.001 0.01 0.1 0.25 0.75

~

~

Fig. 4. The dimensionless growth rate σ for the magnetized Weibel
instability for field-aligned beams as a function of dimensionless
wavenumber κ as calculated from the fluid model, for η = 1,M = 100,
and KB/Kmax = 0.001, 0.01, 0.1, 0.25, and 0.75, corresponding to an
increasing magnetic field. The different curves are labeled by the value
of KB/Kmax. The modification Weibel with respect to the field-free case
becomes important for KB ∼ Kmax.

Vb � c the approximation ω2 = −σ̃2 � C(K)/B(K) is univer-
sally valid. Using the expressions (D.8) and (D.9) of Appendix D
with C̃b = 0 and Ṽb � Vb � 1 one finds, using dimensional
units, reinstating c for clarity and retaining the background term:

σ̃2 = ω̃2
pb

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
V2

b − V2
Ab

) (
K2 − K2−

)
ω̃2

bg + ω̃
2
pb + Ω

2
b + K2c2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · (70)

Here VAb = B/
√

4πnbmb = cΩb/ω̃pb is the Alfvén velocity

associated with the beam particles, and ω̃pb =

√
4πq2

bnb/mb,

Ωb = qbB/mbc in this limit. Expression (63) for K− is replaced

by K− =
(
Ωb

√
ω̃2

pb + ω̃
2
bg

)
/
(
ω̃pb

√
V2

b − V2
Ab

)
. The expression

for the growth rate scales exactly the same manner as the ex-
pressions in Stockem et al. (2006), their Eqs. (31) and (33), in
the appropriate limits: σ ∝ √

K2 − K2− near instability threshold
and σ ∼ constant for large K. The threshold condition is also the
same as found by these authors: there can only be an instability
when Vb > VAb.

8.1. When can non-magnetic results be used?

We are mostly interested in the application of the Weibel insta-
bility to the ultra-relativistic shocks associated with gamma ray
bursts. The influence of the magnetic field on the Weibel insta-
bility will be small if K− � ω̃bg (κ− � 1), so that both the max-
imum growth rate and the range of unstable wavenumbers are
comparable with their values in the field-free case, see Fig. 4.
From the discussion above, and in particular from Eq. (63), it
is clear that this situation occurs if KB � Kmax. In the ultra-
relativistic regime, the growth rate of the instability, σ̃ = Im(ω),
is then roughly constant over a wide wavelength range, with

σ̃ ≈ ω̃pbVb for ω̃bg < K < ω̃pbM, (71)

assuming ηM2 � 1. This should be compared with the gyration
frequency of beam particles, which for a relativistic cold beam
with Cb � 1 is

|qb|B/γbmb ≈ |Ωb|/γb, (72)

The ratio of the gyration frequency and typical Weibel growth
rate is therefore

|Ωb|
γbσ̃
≈ |Ωb|
γbω̃pbVb

≈ KB

Kmax
· (73)

This shows that the condition KB � Kmax also ensures that the
growth rate of the instability is much larger than the gyration
frequency of the beam particles.

Taking the beam material to be the unshocked (cold) hydro-
gen plasma interpenetrating the (hot) shocked plasma, the ratio
of the beam gyration frequency and Weibel instability growth
rate equals:

|Ωb|
γbω̃pb

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 × 10−4 BµG
γb
√

ne
(electrons)

7 × 10−5 BµG
γb
√

np
(protons).

(74)

Here BµG is the strength of the pre-existing magnetic field in the
shock transition layer in units of micro-Gauss, and ne (np) is the
proper density of the electron (proton) beam. This proper density
is always comparable to the density of the particles in the pre-
shock medium. The magnetic field strength in the transition layer
depends on the orientation of the pre-shock magnetic field. For
a magnetic field parallel to the shock normal (the case for which
the magnetized Weibel dispersion relation was derived) there is
no field amplification due to shock compression, and the ambient
magnetic field in the transition layer equals the upstream field,
even after a Lorentz transformation to the rest frame of the hot
post-shock material. In that case, the ratio |Ωb|/γbω̃pb is always
much smaller than unity for typical parameters: BµG ∼ 1−100,
γb ∼ γsh/

√
2 ∼ 100 and ne,p ∼ 1−100 cm−3. That implies that in

this case the effect of the magnetic field can be neglected alto-
gether: the growth of the Weibel Instability is so rapid that par-
ticles do not get a chance to start gyrating around the ambient
(pre-existing) magnetic field. Their dynamics can be described
as being unmagnetized, and the range of unstable wavenumbers
and instability growth rate are hardly affected in this case.

If there is a component Bt of the magnetic field along the
shock surface, it could be amplified considerably, with Bt2 ≈
2
√

2 γshBt1 upon completion of the shock transition according
to the relativistic MHD shock jump conditions (see Sect. 1).
But even then one has Bt2/γb ≈

√
2Bt2/γsh ∼ 4Bt1. Here we

have used that γb ≈ γrel ≈ γsh/
√

2, where γrel is the Lorentz
factor associated with the relative motion between the up- and
downstream flow. We reiterate however that this case, where the
beams are not (anti)parallel with the magnetic field, has not been
treated here. In fact, the plasma dynamics near a perpendicular
relativistic shock may very well involve quite different plasma
instabilities, in particular for the thermalization of the heavier
ions, such as the ion-driven gyroresonant instability discussed
by Spitkovsky & Arons (2005) in the context of the relativistic
shocks in the pulsar wind that creates the Crab Nebula.

Some support for the relative unimportance of the magnetic
field in the relativistic case with KB � Kmax comes from the
simulations of Hededal & Nishikawa (2005). Because of numer-
ical limitations they can only follow the electron-driven Weibel
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instability. In the case of field-aligned beams they find that the
Weibel instability develops unhindered if ω̃pb � Ωb/γb, and that
the instability is totally supressed if the beam plasma frequency
and the beam gyrofrequency become of equal: ω̃pb ∼ Ωb/γb in
our notation. In the case of a magnetic field that is perpendicular
to the beam they find a significant modification of the plasma
behavior when Ωb/γb > 0.05 ω̃pb.

It should be pointed out that a similar conclusion about the
limited importance of an ambient magnetic field does not neces-
sarily hold for the non-relativistic version of the Weibel instabil-
ity. If the beam velocity satisfies Vb � c, the maximum growth
rate (for a cold beam) is (see Eq. (25)):

σ̃ = ω̃pb

(Vb

c

)
· (75)

The ratio of this growth rate and the typical gyration frequency
Ωb = qbB/mbc of the beam particles is now

σ̃

Ωb
≈ Vb

VAb
, (76)

where VAb ≡ B/
√

4πnbmb is an Alfvén velocity associated with
the beams. In this case one needs Vb � VAb in order for the un-
magnetized result to apply. This is not guaranteed, especially for
light particles such as electrons. Also, the long-wavelength cut-
off of the unstable wavelength range at K = K− can be important
in this case.

9. The asymmetric case

With the exception of our discussion of the cold beam/cold back-
ground case in Sect. 4, we have so far treated the symmetric
case of the Weibel instability driven by two identical but coun-
terstreaming beams. In that case the beams carry no net current
and the Weibel instability is purely transverse in the rest frame
of the background plasma. In this section we briefly consider the
asymmetric case with ∆ � 0, using the waterbag approximation
for the beams.

We neglect the drift in the background plasma which oc-
curs in the asymmetric case if the beams carry only one sign of
charge. This drift supplies the return current to the beam current
which is needed in the steady state. The effect of the drift will
be small if the beam density is small compared to the density of
the background plasma. If the beams themselves are electrically
neutral, containing an equal amount of positively and negatively
charged particles, our results apply after a straightforward gen-
eralization to a multi-species beam.

We will first transform dispersion relation (20) into a more
convenient form. The longitudinal dielectric response of both
background plasma and beams is contained inD11(ω,K), which
is (see Eq. (C.12) of Appendix C)

D11(ω, K) = − |k · k|
⎛⎜⎜⎜⎜⎜⎜⎜⎝1−

∑
s∈bg

ω̃2
ps

ω2−K2C2
s
−

ω̂2
pb

ω2−K2V2
x0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · (77)

The off-diagonal termD31 gives the coupling between the elec-
trostatic and transverse fields. We now assume that the back-
ground plasma is relativistically hot, with Cs ≈ 1/

√
3 for all

species, and that the beam is ultra-relativistic so that Vx0 �
Vz0 ≈ 1. In the low-frequency limit (ω� K) one has

D11(ω, K) ≈ −K2

⎛⎜⎜⎜⎜⎜⎝1 + 3ω̃2
bg

K2
−

ω̂2
pb

ω2 − K2V2
x0

⎞⎟⎟⎟⎟⎟⎠ ,

D33(ω,K) ≈ K2 + ω̃2
bg +

ω̂2
pb K2

ω2 − K2V2
x0

,

D31(ω,K) ≈ ∆
⎛⎜⎜⎜⎜⎜⎝ ω̂2

pb K2

ω2 − K2V2
x0

⎞⎟⎟⎟⎟⎟⎠ , (78)

where we have put Vz0 = 1 everywhere.
We define a new dimensionless variable to parameterize the

solution of the dispersion relation (20),

Z(ω, K) ≡ ω
2 − K2V2

x0

ω̂2
pb

, (79)

and introduce the two quantities

Z1(K) =

⎛⎜⎜⎜⎜⎜⎝1 + 3ω̃2
bg

K2

⎞⎟⎟⎟⎟⎟⎠
−1

=
κ2

3 + κ2
;

Z2(K) =
K2

ω̃2
bg + K2

=
κ2

1 + κ2
· (80)

The dispersion relation (20) can be written in the form

(Z(ω, K) −Z1) (Z(ω, K) +Z2) + ∆2 Z1Z2 = 0. (81)

The general solution forZ(ω, K) in the asymmetric case reads

Z±(ω, K) =
Z1 − Z2

2
±
√(Z1 +Z2

2

)2

− ∆2 Z1Z2, (82)

which implicitly determines the wave frequency.
For the choice of parameters considered here one has Z2 >

Z1 and therefore Z+ > 0 and Z− ≤ 0. As the frequency of the
two solutions satisfies

ω2
± = ω̂

2
pb Z± + K2V2

x0, (83)

the potentially unstable Weibel branch corresponds with the so-
lution branchZ−, with a corresponding frequency ω−.

The solution corresponding withZ+ is stable. It corresponds
to the stable transverse mode with Ẽ ⊥ Vb that was mentioned in
Sect. 3. The unstable Weibel branch has a dimensionless growth
rate σ2 ≡ −ω2−/ω̃2

bg = −ηZ− − κ2V2
x0, which is:

σ2=
η

2

{√
(Z1 +Z2)2−4∆2 Z1Z2−(Z1 −Z2)

}
− κ2V2

x0. (84)

This solution is represented graphically in Fig. 5.
We now consider a number of specific cases. In the sym-

metric case (∆ = 0) the transverse Weibel mode corresponds
to the solution Z− = −Z2, with a frequency that satisfies
ω2− = −ω̂2

pbZ2 +K2V2
x0. This is the case treated in Sect. 7, which

leads to an instability if Z2 > K2V2
x0/ω̂

2
pb. In the case of a sin-

gle beam (∆ = 1) in a relativistically hot background one has
Z− = Z1 −Z2 and the dimensionless growth rate becomes

σ2 = κ2
(

2η
(1 + κ2)(3 + κ2)

− V2
x0

)
· (85)

This case is unstable for wavenumbers satisfying

κ < κmax(∆ = 1) ≡
(√

1 + 2ηM2 − 2

)1/2

. (86)

One can find a general expression for the maximum unstable
wavenumber for arbitrary −1 ≤ ∆ ≤ 1 by putting σ = 0. We
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Fig. 5. The dimensionless growth rate of the Weibel instability, σ =
Im(ω)/ω̃bg, as a function of the dimensionless wavenumber, κ =
Kc/ω̃bg, in the case of unequal beam densities. Growth rates are shown
for η = 1 and M = 100, and for a range of values of the asymmetry
parameter ∆ as defined in Eq. (19). The different curves are labeled by
the corresponding value of ∆.

give the result in the limit of a beam velocity close to light speed
(1 − Vz0 � 1) so that Vx0 ≈ 1/M� 1:

κmax(∆) =

⎛⎜⎜⎜⎜⎜⎝
√(
ηM2 + 1

)2 − η2∆2M4 − 2

⎞⎟⎟⎟⎟⎟⎠
1/2

. (87)

The asymmetry has the effect of shrinking the range of unsta-
ble wavenumbers with respect to the symmetric case of ∆ = 0.
The condition κ2max > 0 shows that the Weibel Instability only
occurs if

ηM2 >

√
4 − 3∆2 − 1

1 − ∆2
· (88)

For the symmetric case (∆ = 0) one finds ηM2 > 1, while for
the case of a single beam (∆ = 1) Eq. (86) gives ηM2 > 3/2.

If the beams are sufficiently strong, so that ηM2 � 1 and
κmax(∆) � 1, one can approximate dispersion relation (84) in
the range κ2 � 1 by usingZ1 ≈ Z2 ≈ 1:

σ2 ≈ η
√

1 − ∆2 − κ
2

M2
· (89)

This equation clearly shows that the main effect of the asymme-
try is to suppress the maximum growth rate and maximum wave
number (Fig. 5). However, the effects are small unless ∆ is very
close to 1.

10. Discussion and conclusions

We have discussed the Weibel instability of relativistic beams in
a relativistically hot background plasma. We based our calcula-
tions on the first principles of the fluid and the Vlasov description
of the plasma. Our calculations generalize and extend the results
in the literature by presenting a detailed analysis of the disper-
sion relation in tensor form. Our aims have been, in particular:

– to obtain accurate expressions to use in further non-linear
calculations, which we present in the companion paper
(Achterberg et al. 2006);

– to determine the basic parameters that characterize the dis-
persion in the plasma;

– and to estimate whether background magnetic fields or
asymmetry play an important role.

We have shown that the linear growth rate in the relativistic limit
is characterized by only two parameters in the symmetric case
of identical but counterstreaming beams: the ratio η = ω̃2

pb/ω̃
2
bg

of the effective plasma frequencies of beams and background
plasma, and an effective Mach numberM, which is a measure
for the ratio of the momentum of beam particles in the beam
direction and the typical momentum of the thermal motion (ve-
locity dispersion) in the direction along the wave vector. The lat-
ter component is a measure of the pressure in the beam plasma.
These conclusions are independent of the precise model, fluid or
kinetic, that is used to describe the beam-plasma system.

For ultra-relativistic beams (γb � 1) the maximum growth
rate is Im(ω) ≈ √ηω̃bg, and the maximum unstable wavenumber
is Kmax ≈ √ηM2 (ω̃bg/c).

The presence of an ambient magnetic field does not change
the behavior of the Weibel instability unless the field is so strong
that the beam plasma frequency and the gyration frequency of
the beam particles become comparable in magnitude: ω̃pb �
|qb|B/γbmb. A similar conclusion was reached by Hededal &
Nishikawa (2005) on the basis of numerical simulations. For the
typical parameters associated with the ultra-relativistic shocks of
gamma ray bursts (external shocks) that propagate into the inter-
stellar or circumstellar medium the unmagnetized treatment of
the Weibel instability is a good approximation.

Tautz & Lerche (2006) have recently discussed the influence
of the ambient magnetic field on the stability properties of rela-
tivistic beam plasmas with a general distribution function fb(p)
that is symmetric in pz.

In the asymmetric case, characterized by the additional pa-
rameter ∆ = (n+ − n−)/(n+ + n−) with n± the densities of the
two counterstreaming beams, the main effect of the asymmetry is
that the range of unstable wavenumbers shrinks, with the maxi-
mum unstable wavenumber and maximum growth rate scaling as
Im(ω)max, Kmax ∝ (1−∆2)1/4 (cf. Eq. (89)) in the ultra-relativistic
limit with Kc/ω̃bg � 1.

In our discussion of the kinetic theory we used a mathemat-
ically convenient form of the momentum distribution: the two-
dimensional waterbag distribution. The results of Milosavljevic
et al. (2006) gives us confidence that more realistic momentum
distributions will yield qualitatively similar results. Other ap-
proaches are of course possible, such as the one taken by Tautz
& Schlickeiser (2005), who employ a relativistic generalization
for a drifting, two-temperature Maxwellian, where (in our nota-
tion) the case of symmetric beams is described by a momentum
distribution of the form:

f0b(p) = C e−E/kbT⊥
[
e−α (pz−pb)2

+ e−α (pz+pb)2 ]
, (90)

where E =
√

m2
bc4 + p2⊥c2 + p2

z c2, the parameter α is

α =
1

2mbkb

(
1
T‖
− 1

T⊥

)
(91)

and C is a normalizing constant that ensures that the distribution
function integrates to unity over momentum space. The quanti-
ties T‖ and T⊥ are the temperatures for the thermal motion of
the beam particles in the direction along the beam and in the
plane perpendicular to the beam. We note that, by adopting the
waterbag distribution function, we have assumed that there is no
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thermal motion of beam particles in the beam direction, which
formally corresponds to T‖ = 0 (α = ∞). Recent work by Yoon
(2007) suggests that the relativistic Weibel instability persists
even for finite T‖ � 0 as long as T⊥ > T‖. An important differ-
ence between our work and that of Tautz & Schlickeiser (2005)
and Yoon (2007) is the inclusion of a (hot) background plasma
that reduces the growth rate at long wavelengths by screening
currents, which was discussed extensively in this paper.

The beam-driven Weibel instability leads to the genera-
tion of magnetic fields over a wide range of wavelengths,
as also discussed by Gruzinov & Waxman (1999), Gruzinov
(2001), Medvedev & Loeb (1999), Frederiksen et al. (2004),
and Milosavljevic et al. (2006). In this respect it behaves not
unlike the original version of the instability, driven by tempera-
ture anisotropies (Weibel 1959). The next step is a detailed study
of the stabilization mechanisms that terminate the phase of ex-
ponential growth of the instability discussed here. A first discus-
sion of these stabilization mechanisms can be found in Wiersma
& Achterberg (2004). The companion paper (Achterberg et al.
2007) discusses them in more detail.

Appendix A: Covariant formulation of plasma
response

The usual procedure for determining the response of a plasma
to small-amplitude electromagnetic field, which is found in any
book on plasma physics (e.g. Ichimaru 1973; Melrose 1980)
relates the electric field E and the current density J it in-
duces in the plasma by solving the linearized plasma equa-
tions. This determines the conductivity tensor σ. In the Fourier
domain the amplitudes of the current density and the electric
field are related by J̃i(ω, k) = σi j(ω, k) Ẽ j(ω, k), where
(i, j) enumerate the spatial components and a tilde (∼) is used
to denote Fourier amplitudes. One then calculates the suscep-
tibility tensor, χi j(ω, k) = 4πi

ω
σi j(ω, k), and the dielectric

tensor εi j(ω, k) = δi j + χi j in the Fourier domain. The dis-
persion relation of the various linear wave modes that are sup-
ported by the plasma then follows from Maxwell’s equations as
det

{
(c2/ω2)(kik j − k2 δi j) + εi j(ω, k)

}
= 0.

The electromagnetic response of a plasma can also be formu-
lated covariantly (e.g. Melrose 1973, 2001; Dewar 1977). This
has the advantage of immediately yielding results that are valid
for an arbitrary choice of reference frame. The starting point for
such a formulation is the covariant set of Maxwell’s equations,

∇µFµν = 4πJν, ∇µ
(
εµναβ Fαβ

)
= 0, (A.1)

with Fµν the Faraday tensor defined in terms of the electromag-
netic four-potential Aµ ≡ (Φ, A) as (e.g. Jackson 1975)

Fµν = ∇µAν − ∇νAµ, (A.2)

and where εµναβ is the totally antisymmetric (Levi-Cevita) tensor.
For linear wave phenomena, this set of equations will be com-
pleted by a linear (tensorial) relation between the four-current Jµ

and the four-potential Aµ, see Eq. (A.4) below.
It is convenient to formulate the linear response in terms of

the four-potential perturbation δAµ(x) and the associated four-
current perturbation δJµ(x). Assuming plane waves, one can rep-
resent these perturbed quantities in terms of a Fourier integral
with the Fourier amplitudes Ãµ(k) and J̃µ(k):⎛⎜⎜⎜⎜⎜⎜⎝
δAµ(x)

δJµ(x)

⎞⎟⎟⎟⎟⎟⎟⎠ =
∫

d4k
(2π)4

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Ãµ(k)

J̃µ(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ exp(−ik · x). (A.3)

Here (and in what follows) a tilde ∼ is used to denote Fourier
amplitudes of the wave-like perturbations in the various physical
fields, kµ = (ω/c, k) is the wavenumber four-vector and k · x ≡
kµxµ = ωt − k · x.

The Fourier-amplitude of the linearized four-current pertur-
bation carried by some species s in a multi-species plasma can
be related to the Fourier amplitude of the four-potential through

4πJ̃µs (k) =
(
α
µ
ν

)
s
(k) Ãν(k). (A.4)

The quantity αµνs (k) is the polarization tensor. The Faraday ten-
sor associated with the waves, δFµν = ∇µδAν − ∇νδAµ, has the
Fourier amplitude

F̃µν(k) = i
(
kνÃµ − kµÃν

)
, (A.5)

which follows from the replacement ∇µ −→ −ikµ when going
from configuration space to Fourier space. As a result, the first
set of Maxwell’s Eqs. (A.1) reads in the Fourier domain

(k · Ã)kµ − (k · k)Ãµ = 4π
∑

s

J̃µs =
∑

s

(
α
µ
ν

)
s

Ãν. (A.6)

The polarization tensor has a number of simple properties, which
are related to charge conservation and to the gauge freedom of
the electromagnetic field. Charge conservation of each species s
reads ∇ · δJµs = 0, which in the Fourier domain becomes

kµ J̃
µ
s (k) = 0. (A.7)

Also, the four-current of each individual species should be
invariant under a general gauge transformation of the form

δAµ =⇒ δAµ + ∇µχ ⇐⇒ Ãµ =⇒ Ãµ − ikµχ̃. (A.8)

Equations (A.7) and (A.8) together imply that the polarization
tensor must satisfy the relations

kµα
µν
s (k) = αµνs (k)kν = 0. (A.9)

A.1. Plasma response in the fluid approach

If one calculates the plasma response in the fluid approximation
the two conditions (A.9) imply that the linear polarization tensor
of species s can always be written in the form (cf. Dewar 1977;
Melrose 2001, Chap. 4):(
α
µ
ν

)
s
= Pµsα

(
Παβ

)
s
P†βsν , (A.10)

with

Pµsν ≡ δµν − Uµs kν
k · Us

, P†µsν ≡ δµν − kµUsν

k · Us
· (A.11)

Here Uµs is the four-velocity of the frame where species s is
at rest, apart from the thermal motions, so that the unperturbed
mass current of species s is Σµ = ns0msU

µ
s , with ns0 the proper

density and ms the rest mass of the species. The projection ten-
sor Pµsν and its transpose P†µsν project to the hyperplane perpen-
dicular to k, and satisfy

kµ Pµsν = P†µsν kν = 0, PµsνUνs = UsµP†µsν = 0. (A.12)

The determination of αµνs in the fluid approach can then be
reduced to the calculation of

(
Παβ

)
s
.

Linearizing the covariant fluid equation (Eq. (7) of the main
paper) to first order in perturbed quantities, assuming that there
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is no electromagnetic field in the unperturbed state and that the
unperturbed state is uniform and time-independent, yields:

(ρ + e + P)s (Us · ∇) δUµs =hµνs ∇ν δPs + nsqs (δFµν) Usν. (A.13)

Here (and in what follows) ρs = ns0ms, es, Ps and Uµs are the
unperturbed (equilibrium) values of the proper density, internal
energy density, pressure and four-velocity of species s, and hµνs =
ηµν − Uµs Uνs is the projection tensor based on the unperturbed
four-velocity. In the Fourier domain, using ∇µ −→ −ikµ, this
linearized equation of motion becomes:

i(k · Us) (ρ + e + P)s Ũµs = ikµ⊥P̃s − nsqsUsν F̃µν. (A.14)

Here

kµs⊥ ≡ hµν kν = kµ − (k · Us) Uµs . (A.15)

The quantity Ũµs is the Fourier component of the four-velocity
perturbation so that

δUµs (x) =
∫

d4k
(2π)4

Ũµ(k) exp(−ik · x). (A.16)

Note that

k · Us = γs (ω − k · us) (A.17)

is a Doppler-shifted frequency that corresponds to the wave
frequency in the rest frame of species s.

The continuity equation (see Eq. (8) of the main paper) upon
linearization becomes

(Us · ∇) δns = −ns (∇ · δUs) , (A.18)

and the equation of state yields

δPs = ΓsPs

(
δns

ns

)
· (A.19)

These two relations yield expressions for the density perturba-
tion ñs and pressure perturbation P̃s in the Fourier domain:

ñs = −ns

(
k · Ũs

k · Us

)
·

P̃s = −ΓsPs

(
k · Ũs

k · Us

)
· (A.20)

If one substitutes these two relations into Eq. (A.14), and substi-
tutes relation (A.5) for the Fourier amplitude F̃µν of the Faraday
tensor, one obtains a set of four linear relations between the com-
ponents of the two four vectors Ũµs and Ãν:

(ρ + e + P)s (k · Us)Ũ
µ
s + ΓsPs

(
k · Ũs

k · Us

)
kµs⊥

= nsqs

{
(Us · Ã) kµ − (k · Us) Ãµ

}
· (A.21)

However, one of these relations is redundant as the unit normal-
isation of the total four-velocity implies that Ũµs · Usµ = 0, as is
easily checked by contracting Eq. (A.21) with Usµ.

The contribution of species s to the linear current four-
vector is:

J̃µs = qsñs Uµs + qsns Ũµs . (A.22)

The first term in this expression is the advection current due to
charge density perturbations advected by the unperturbed flow.
This contribution to the current density is responsible for the

occurrence of the Weibel instability. The second term is the con-
duction current due to the velocity perturbations induced by the
electromagnetic fields. Using the first relation of Eq. (A.20), one
can write the Fourier amplitude of the four-current density as

J̃µs (k) =
qsns

k · Us

{
(k · Us) Ũµs − (k · Ũs) Uµs

}
· (A.23)

Solving Eq. (A.21), in effect expressing the components of Ũµs
in terms of the components of Ãµ, and substituting the result-
ing expressions into Eq. (A.23), one can calculate the linearized
current density J̃s in terms of Ã, and from that read off the com-
ponents of the corresponding polarization tensor

(
α
µ
ν

)
s
. We just

give the final result in terms of the tensor
(
Παβ

)
s
:

(
Παβ

)
s
= −ω̃2

ps

(
δαβ −

C2
s kαkβ

(k · Us)2 − K2
s⊥C2

s

)
· (A.24)

For a cold plasma one has C2
s = 0, so that

(
Παβ

)
s
= −ω̃2

ps δ
α
β

with ω̃2
ps = 4πq2

s ns/ms. The cold plasma result has been derived
previously by Dewar (1977), his Eqs. (95) and (114).

A.2. Plasma response in the kinetic approach

In the kinetic approach one must solve the covariant Vlasov
equation. Let Fs(xµ, pµ) d4x d4 p be the number of particles
of species s in the infinitesimal volume d4x in space-time and
four-momentum interval d4 p. The covariant Vlasov equation is

dFs

dτ
≡ dxµ

dτ
∂Fs

∂xµ
+

dpµ

dτ
∂Fs

∂pµ
= 0. (A.25)

Here τ is the proper time, and

dxµ

dτ
= uµ =

pµ

ms
,

dpµ

dτ
= qsF

µ
νu
ν (A.26)

are the four-velocity and the Lorentz force acting on a particle
with mass ms and charge qs. We assume a plane-wave perturba-
tion of the distribution function and all electromagnetic fields
with the perturbations represented by a Fourier integral. The
total Vlasov distribution can be written as

F (x, p) = F0(p) +
∫

d4k
(2π)4

F̃ (k, p) exp(−ik · x), (A.27)

and the linearized Vlasov equation yields:

−i(k · u) F̃s(k, p) = − qs

ms
F̃µν pν

∂F0s(p)
∂pµ

· (A.28)

Here we have assumed that the unperturbed distribution F0(p)
is uniform in space-time and that there is no unperturbed elec-
tromagnetic field. The linear current density associated with this
perturbation has an amplitude

J̃µs (k) =
qs

ms

∫
d4 p pµF̃s(k, p) (A.29)

for particle species s. Using Eq. (A.5) for the Faraday tensor F̃µν
and solving (A.28) for F̃ (k, p) and substituting the resulting ex-
pression one finds:

4πJ̃µs =
4πq2

s

ms

∫
d4 p pµ

(
Ãν − (Ã · p)

(k · p)
kν
)
∂F0s(p)
∂pν

· (A.30)
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After a partial integration one can write (A.30) in the form
4πJ̃µs =

(
α
µ
ν

)
s

Ãν, which defines the polarization tensor of
species s in the kinetic approach:

(
α
µ
ν

)
s
≡ −4πq2

s

ms

∫
d4 p F0s(p) Mµν(k, p), (A.31)

with

Mµν(k, p) = δµν − kµpν + pµkν
(k · p)

+
(k · k) pµpν

(k · p)2
· (A.32)

This result is in fact closely related to the fluid results (A.10)
and (A.11). This can be seen by writing (A.31) in the form(
α
µ
ν

)
s
(k) =

∫
d4 p F0s(p)

[
Pµα(k, p)

(
Παβ

)
s
P†βν(k, p)

]
, (A.33)

with

Pµα(k, p) = δµα − pµkα
(k · p)

P†βν(k, p) = δβν − kβpν
(k · p)

(A.34)

and(
Παβ

)
s
= −4πq2

s

ms
δαβ. (A.35)

In the case of cold beams the fluid and kinetic results are com-
pletely equivalent.

Result (A.31) was derived in a different context by
Achterberg (1986), and also corresponds to expression 227 of
Dewar (1977) and the corresponding expression in Melrose
(2001), Chap. 4.1, for the response tensor of an unmagnetized
plasma. These relations show explicitly that both charge con-
servation, and the invariance of the current density under gauge
transformations of the vector potential, are once again ensured.

Appendix B: Covariant dispersion relation

The linear dispersion relation for modes supported by the plasma
follows from Eq. (A.6), which can be written as

Dµν(k) Ãν(k) = 0. (B.1)

Here we define

Dµν(k) ≡ (k · k) ηµν − kµkν + αµν(k) (B.2)

with αµν(k) ≡ ∑s (αµν)s (k). However, this set of equations is not
linearly independent. The tensor Dµν satisfies (see Eq. (A.9)):
kµ Dµν = Dµν kν = 0. This means that the determinant of the
4 × 4 matrix Dµν vanishes identically: det [Dµν ] = 0.

The dispersion relation for linear waves can be obtained by
noting that one can factor Eq. (B.1) as:(
δ
µ
α − kµkα

(k · k)

) [
(k · k) ηαν + ααν

]
Ãν = 0, (B.3)

since kα ααν = 0. The first factor leads to the vanishing determi-
nant of Dµν. Therefore, the dispersion relation for the waves in
the plasma follows from the requirement that the determinant of
the second factor vanishes identically:

det

⎡⎢⎢⎢⎢⎢⎣(k · k) ηµν +
∑

s

α
µν
s (k)

⎤⎥⎥⎥⎥⎥⎦ = 0. (B.4)

The problem of determining the wave properties therefore cor-
responds to determining the polarization tensor αµν and solving
the dispersion relation (B.4)

In this paper we take a different (but equivalent) approach,
which avoids dealing with the problem det [Dµν ] = 0 altogether.
First of all, we impose the invariant Lorentz-gauge on the wave
electromagnetic fields,

kµÃµ(k) = 0. (B.5)

This choice is convenient, but it should be stressed that the cor-
rect dispersion relation can be derived in any gauge. The one
longitudinal and two transverse degrees of freedom in a plasma
can be described by three “unit” polarization vectors eµ

�
, eµtr1 and

eµtr2. In addition, one has the gauge degree of freedom (Eq. (A.8))
which defines a fourth gauge vector: eµG ≡ kµ/

√|k · k|. We will
not need to consider the degenerate case where k · k = 0.

These four vectors define an orthonormal tetrad ei with eµ0 =
eµG, eµ1 = eµ

�
, eµ2 = eµtr1 and eµ3 = eµtr2. This tetrad can be used to

describe all electromagnetic wave-like phenomena in a plasma.
Assuming that the ordinary wave vector k is along the x-axis so
that kµ = (ω, K, 0, 0), we can choose these four vectors as2

eµG =
(ω, K, 0, 0)√|k · k| , eµ

�
=

(K, ω, 0, 0)√|k · k| ,
eµtr1 = (0, 0, 1, 0), eµtr2 = (0, 0, 0, 1). (B.6)

The three polarization vectors satisfy

k · e� = k · etr1 = k · etr2 = 0. (B.7)

Using these definitions one has

ei · e j ≡ gi j = diag(±1, ∓1, −1, −1), (B.8)

where the upper sign applies in the super-luminal case,ω2−K2 >
0, and the lower sign in the sub-luminal case, ω2 − K2 < 0. This
choice of polarization vectors is convenient for the problem at
hand, but depends on our adoption of the Lorentz gauge.

Adoption of the Lorentz gauge implies that one can expand
the four-potential in terms of the three polarization vectors as

Ãµ(k) =
3∑

j=1

Ã j(k) eµj . (B.9)

This defines three independent four-potential components3.
Contracting the wave Eq. (B.1) from the left with eµi one finds,
using relation (B.7) and definition (B.8), that the wave equation
can be written as

Di j(k) Ã j(k) = 0. (B.10)

Here we employ the summation convention for i, j = 1, 2, 3 and
define the 3 × 3 dispersion matrixDi j by

Di j(k) ≡ eµi Dµν eνj = (k · k) gi j + αi j, (B.11)

where

αi j(k) ≡
∑

s

eµi
(
αµν

)
s
eνj ≡

∑
s

(
αi j

)
s
(k). (B.12)

2 We limit the discussion to the case where k · k = ω2 − K2 is a
real quantity, which includes the case of a purely imaginary frequency
where ω2 < 0.

3 The Lorentz-gauge impliesA0 = e0 · A = 0.
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The gauge vector eG does not figure in these equations. Since
kµ Dµν = Dµν kν = 0, the result of gauge invariance and charge
conservation, the componentD00 vanishes identically, as doD0i
and Di0, where i = 1, 2, 3. This is entirely the result of our
choice of the Lorentz gauge, and in particular of our adoption of
eµ0 = kµ/

√|k · k|.
This procedure correctly isolates the physical wave modes

involving the three vectors e� and etr1,2, and removes the appar-
ent singularity in the calculation of the determinant of Dµν. The
dispersion relation for electromagnetic waves in a plasma there-
fore follows from the solution condition for (B.10):

det
[
Di j(k)

]
= 0. (B.13)

Another choice of gauge corresponds to another choice of the
polarization vectors ei, and of the components ofDi j. However,
the resulting dispersion relation, again formally given by (B.13),
will yield the same modes.

Appendix C: The components of the dispersion
tensorDij

For the sake of completeness we give all the non-zero compo-
nents of the dispersion tensor used in this paper, assuming a
wave vector k = K x̂ and wave frequency ω in the lab frame,
where the background plasma is at rest.

C.1. Fluid approximation

In addition to the background plasma with sound speed Cs =
ΓPs/(ρ + e + P)s for species s, there are two beams with bulk
four-velocity Uµb = γb(1, 0, 0, ±Vb), and a proper density

n± =
1 ± ∆

2
nb. (C.1)

Here nb is the total proper density of the two beams. For sim-
plicity we assume that the two beams have equal temperature so
that their internal sound speed satisfies C+ = C− = Cb.

For waves propagating in the direction perpendicular to the
beam so that kµ = (ω, K, 0, 0) the components of the dispersion
tensor are:

D11 = −|k · k|
⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −

∑
s∈bg

ω̃2
ps

ω2 − K2C2
s
−

ω̃2
pb

ω2 − K2C̃2
b

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
D22 = K2 +

∑
s∈bg

ω̃2
ps + ω̃

2
pb − ω2,

D33 = K2 +
∑
s∈bg

ω̃2
ps + ω̃

2
pb

⎛⎜⎜⎜⎜⎝1 − (ω2 − K2) Ṽ2
b

ω2 − K2C̃2
b

⎞⎟⎟⎟⎟⎠ − ω2,

D31 = ∆
(√
|k · k|

) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω̃2

pb

γCb

√
1 −C2

bV2
b

⎛⎜⎜⎜⎜⎝ KṼb

ω2 − K2C̃2
b

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (C.2)

Here we have defined

C̃b =
Cb

γb

√
1 −C2

bV2
b

, Ṽb =
Vb

γCb

√
1 −C2

bV2
b

(C.3)

with γCb ≡ 1/
√

1 −C2
b, and

ω̃2
ps ≡

4πn2
s q2

s

(ρ + e + P)s
, ω̃2

pb =
4πq2

bnb

mbhb
· (C.4)

The beam enthalpy per unit mass that appears in the expression
for ω̃pb equals hb = 1 + (e + P)±/n±mb, and is identical for the
two beams.

C.2. Kinetic theory

We express the covariant distribution F0 in terms of the more
familiar phase-space density f0s(x, t, p), which is defined in
terms of the ordinary momentum p and particle density ns in
the lab frame. Particles must lie on the mass shell: (p0)2 − |p|2 =
E2−|p|2 = m2

s for c = 1. If one assumes that the unperturbed dis-
tribution is spatially uniform and time-independent, the relation
between F0s and f0s reads

F0s(xµ, pµ) = ns f0s(p)
δ(p0 − γ(p) ms)

γ(p)
· (C.5)

Here γ(p) =
√

1 + |p|2/m2
s . The momentum distribution f0s(p)

has been normalized so that∫
d3 p f0s(p) = 1. (C.6)

The quantity ns is the lab frame density of species s. The
momentum integration then formally changes according to
d4 p F0s(pµ) =⇒ ns d3 p f0s(p)/γ(p), which remains Lorentz-
invariant as both d3 p/γ(p) and ns f0s are Lorentz-invariants (e.g.
Landau & Lifshitz 1975).

As in the fluid treatment, we can use the set of polarization
vectors and their properties to derive the kinetic equivalent of the
fluid results. General expression (A.31) for the covariant polar-
ization tensor

(
α
µ
ν

)
s
, together with the choice (B.6) for the po-

larization vectors, leads to the following components of the cor-
responding polarization tensor

(
αi j

)
s

of particle species s in the

Lorentz-gauge kµÃµ = 0:

(
αi j

)
s
= −4πq2

sns

ms

∫
d3 p
γ(p)

f0s(p)Mi j(k, p). (C.7)

HereMi j(k, p) is defined as

Mi j ≡ eµi Mµν eνj = gi j +
(k · k) pi p j

(k · p)2
, (C.8)

with pi ≡ p · ei, where pµ = (γ(p) ms, p).
The components of the polarization tensor with kµ =

(ω, K, 0, 0) follow as

αb
11 = |k · k|

4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p)

{
1 − v2x

(ω − Kvx)2

}
,

αb
22 =

4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p),

αb
33 =

4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p)

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 −
v2z
(
ω2 − K2

)
(ω − Kvx)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
αb

31 = α
b∗
13

= −√|k · k| 4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p)

{
vz (K − ωvx)

(ω − Kvx)2

}
· (C.9)

Here u = p/γmb is the velocity of beam particles with momen-
tum p.
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It can be shown by partial integration that this is equivalent
with

αb
11 = −

4πq2
bnb|k · k|
K2

∫
d3 p

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
K
∂ f0b(p)
∂px

ω − Kvx

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ ,

αb
33 =

4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p)
(
1 − v2z

)

−4πq2
bnb

∫
d3 p

{
v2z

ω − Kvx

(
K
∂ f0b(p)
∂px

)}
,

αb
31 =

√|k · k|
ω

⎡⎢⎢⎢⎢⎣4πq2
bnb

mb

∫
d3 p
γ(p)

f0b(p) vxvz

+ 4πq2
bnb

∫
d3 p

{
vxvz
ω − Kvx

(
K
∂ f0b(p)
∂px

)}]
. (C.10)

This particular form is convenient in the waterbag approximation
discussed below.

C.3. Waterbag approximation

We use a momentum distribution for the beams of the form

f0b(p) =
Θ(px + px0) − Θ(px − px0)

2 px0
δ(py)

×
[
1 + ∆

2
δ(pz − pz0) +

1 − ∆
2
δ(pz + pz0)

]
. (C.11)

For the background we continue to use the fluid approximation.
Substituting (C.11) into (C.10) the evaluation of the αb

i j is
straightforward as the px-derivatives in these expressions con-
vert the Heaviside step-functions in (C.11) into Dirac delta-
functions. The resulting components of the dispersion tensor are:

D11 = −|k · k|
⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −∑

s∈bg

ω̃2
ps

ω2 − K2C2
s
−

ω̂2
pb

ω2 − K2V2
x0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
D22 = K2 +

∑
s∈bg

ω̃2
ps + ω̂

2
pb G̃b − ω2,

D33 = K2 +
∑
s∈bg

ω̃2
ps + ω̂

2
pb

⎛⎜⎜⎜⎜⎜⎝Gb +
K2V2

z0

ω2 − K2V2
x0

⎞⎟⎟⎟⎟⎟⎠ − ω2,

D31 = ∆
(√|k · k| )

⎡⎢⎢⎢⎢⎢⎣ ω̂
2
pb KVz0

ω2 − K2V2
x0

⎤⎥⎥⎥⎥⎥⎦ · (C.12)

Here we define the beam plasma frequency by

ω̂2
pb =

4πq2
bnb

γ0mb
, (C.13)

define a characteristic Lorentz-factor and velocity components

γ0 =

√
1 +

p2
x0

m2
bc2
+

p2
z0

m2
bc2
,

Vx0 =
px0

γ0mb
, Vz0 =

pz0

γ0mb
, (C.14)

and introduce the two functions

G̃b = γ0

∫
d3 p
γ(p)

f0b(p) =
1

2Vx0
ln

[
1 + Vx0

1 − Vx0

]

Gb = γ0

∫
d3 p
γ(p)

f0b(p)
(
1 − v2z

)

= G̃b −
p2

z0

p2
z0 + m2

bc2
· (C.15)

The result for the beam contribution to the polarization tensor,
αb

i j, has been derived by Silva et al. (2002), using a somewhat
different notation.

Appendix D: Magnetized Weibel instability

We briefly consider the magnetized case, in order to compare
the results obtained with the present formalism with those of
Tautz & Schlickeiser (2006). We limit the discussion to the case
where the electric field vanishes in the laboratory frame (the rest
frame of the background plasma), and where the beam velocity
is along the magnetic field in the z-direction. The beam trajectory
then remains straight, and we do not have to deal with the much
more difficult case of oscillator beams that gyrate around the
ambient magnetic field. This means that the Lorentz force on
all components vanishes in the unperturbed state: in a covariant
notation

FµνUsν = 0. (D.1)

In both the laboratory frame and the rest frame of the beams,
moving with velocity ±Vb along the z-axis, the only non-
vanishing components of the Faraday tensor are F21 = −F12 =
B, with B the strength of the magnetic field B = B ẑ in the labo-
ratory frame.

In the fluid approximation the linearized equation of mo-
tion for small perturbations in the four-velocity of species s now
reads, when transformed to the Fourier domain:

(ρ + e + P)s (k · Us)Ũ
µ
s + ΓsPs

(
k · Ũs

k · Us

)
kµs⊥ − insqsF

µνŨsµ

= nsqs

{
(Us · Ã) kµ − (k · Us) Ãµ

}
. (D.2)

The last term on the left-hand side gives the first-order Lorentz
force. Solving this equation, expressing the four-velocity pertur-
bation in terms of the vector potential Ãµ, and calculating the
associated four-current density, one finds the polarization ten-
sor αµν . As before, we express the final result in terms of the
tensor

(
Παβ

)
s

for each species in the plasma:

(
Παβ

)
s
= − ω̃

2
ps

N(k)

{
(k · Us)2

[
(k · Us)2 − K2

s⊥C2
s

]
δαβ

−i (k · Us)Ωs

[
(k · Us)

2 − (k · b)2C2
s

]
εαβµνU

µ
s bν

+i (k · Us)Ωs(k · b)C2
s kνUµs bλ

[
εανµλbβ − bαεβνµλ

]
− (k · Us)

2 C2
s kαkβ + (k · Us)

2Ω2
s bαbβ

}
. (D.3)

In this expression we define

N(k) ≡ (k · Us)2
[
(k · Us)2 − K2

s⊥C2
s

]
−Ω2

s

[
(k · Us)2 − (k · b)2C2

s

]
(D.4)
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and

Ωs ≡ nsqsB
(ρ + e + P)s

, (D.5)

which is an effective gyrofrequency with B the magnetic field
strength in the lab frame. In this particular case it is also the
strength of the magnetic field in the rest frame of the beams,
as follows from the Lorentz-transformations of the electromag-
netic field, e.g. Jackson (1975), Chap. 11. The quantity K2

s⊥ is
defined in Eq. (11) of the main paper. The quantity εαβγδ is
the totally antisymmetric Levi-Cevita tensor, and the four-vector
bµ = (0, B/B) corresponds to a space-like vector whose spatial
component is along the magnetic field in the lab frame, where
it takes the form bµ = (0, 0, 0, 1). It is easily checked that we
recover the earlier result (A.23) for the unmagnetized case by
putting Ωs = 0.

We limit the discussion to the case where the wavevector k =
K x̂ in the laboratory frame is perpendicular to the magnetic field
B = B ẑ (and the beam velocity) so that (k·b) = 0. We assume two
symmetric counterstreaming beams. The Weibel instability then
corresponds to the instability of the ordinary mode, cf. Tautz &
Schlickeiser (2006), with the wave electric field δE along the
unperturbed magnetic field in the laboratory frame where the
background plasma is at rest. A straightforward calculation then
shows that the relevant component of the dispersion tensor,D33,
becomes:

D33 ≡ K2 − ω2 +
∑
s∈bg

ω̃2
ps + ω̃

2
pb

⎛⎜⎜⎜⎜⎜⎝1 − (ω2 − K2) Ṽ2
b

ω2 − K2C̃2
b − Ω̃2

b

⎞⎟⎟⎟⎟⎟⎠ · (D.6)

Here we define

Ω̃b =
Ωb

γb

√
1 − V2

b C2
b

, (D.7)

and all other quantities have been defined in Appendix C,
Eqs. (C.3) and (C.4).

The Weibel dispersion relation, D33 = 0, again takes the
form of a bi-quadratic equation for the lab-frame wave fre-
quency ω, see Eq. (34) of the main paper, but now with the
coefficients

B(K) = ω̃2
bg + Ω̃

2
b + ω̃

2
pb

(
1 − Ṽ2

b

)
+ K2

(
1 + C̃2

b

)
, (D.8)

and

C(K) =
(
ω̃2

bg + ω̃
2
pb + K2

) (
K2C̃2

b + Ω̃
2
b

)
− ω̃2

pb K2Ṽ2
b . (D.9)

This corresponds to the replacement K2C̃2
b −→ K2C̃2

b + Ω̃
2
b with

respect to the field-free case. As before, the instability condition
reads C(K) < 0.
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