
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 8, No. 4, November 1983
Printed in U.S.A.

THE WEIGHTED EUCLIDEAN 1-CENTER PROBLEM*?

NIMROD MEGIDDO

Tel Aviv University

We present an ~ (n (l o ~ n) ~ (l o ~ l o ~ n) ~) algorithm for the problem of finding a point (x, y) in
the plane that minimizes the maximal weighted distance to a point in a set of n given points.
The algorithm can be extended to higher dimensional spaces. For any fixed dimension our
bound is o(n'+') for any c > 0.

1. Introduction. The weighted Euclidean I-center problem is defined in the plane
as follows. Given are n points (x,, y,), . . . , (x,, y,) together with positive weights
w,, . . . , wn. We wish to find a point (x, y) so as to minimize

The special case where wi = 1, i = 1, . . . , n, was proposed by J. Sylvester in 1857 and
amounts to finding the smallest circle that contains all the given points. The general
case was introduced by Francis [3]. The most efficient algorithm known to date for the
unweighted case is an O(n logn) algorithm by Shamos and Hoey [lo].' This algorithm
utilizes the data structure so-called "Farthest point Voronoi diagram." It is not clear
whether the generalization of this concept into weighted Voronoi diagrams may yield
equally efficient algorithms for problems such as the weighted 1-center problem.
Previous algorithms and analysis of the unweighted case appeared in Rademacher and
Toeplitz [8], Courant and Robbins [I], Smallwood [I 11, Nair and Chandrasekaran [6]
and Elzinga and Hearn [2].

The weighted case is solvable in 0(n3) time assuming that we can solve quadratic
equations in constant time. The 0(n3) solution is achieved as follows. The problem can
be posed as of finding the minimal value r* of the variable r such that the balls
Bi(r) = {(x, y) : (x - xi)' + (y - yi)2 < (r / ~ ;) ~) have a nonempty intersection. By
Helly's Theorem [9] this intersection is nonempty if and only if every three of the balls
intersect. We can thus consider triples of balls as follows. Let rgk = min{r : Bi(r) n
Bj(r) f l Bk(r) f 0). Then r* = maxrvk and the point (x, y) is selected as the unique
point in Bi(r*) fl Bj(r*) n Bk(r*) where i, j , k are such that rijk = r*. The goal of the
present paper is to develop an algorithm for this weighted 1-center problem which runs
in 0 (n (log r~)~(log log n)2) time.

*Received December 16, 198 1.
AMS 1980 subject classifcation. Primary: 90C25; Secondary: 68C05.
O R / M S Index 1978 subject classifcation. Primary: 185 Facilities/equipment/location.
Key words. Sylvester's problem, weighted I-center problem, convex piecewise quadratic minimization,
parallel computation, multi-parametric computing.
tThis research was supported in part by the National Science Foundation under Grants ECS-8121741 and
ECS-8218181.

'The present author has recently improved this bound. In a paper entitled "Linear-Time Algorithms for
Linear Programming in R 3 and Related Problems" (to appear in SIAM J. Comput.; also in the proceedings
of the 1982 IEEE Symposium on Foundations of Computer Science, pp. 329%338), a linear-time algorithm is
presented for the unweighted problem. This algorithm generalizes to any fixed dimension in linear-time (N.
Megiddo, "Linear Programming in Linear Time When the Dimension Is Fixed," to appear in J. Assoc.
Comput. Mach.). The method developed in the latter papers, combined with that of the present one, also
allows for an improvement in the weighted Euclidean case and a bound of O(n log2n) is possible in the
planar case. Also, the weighted rectilinear I-center problem can be solved in linear-time in any fixed
dimension.

498

0364-765X/83/0804/0498$01.25
Copynght 0 1983, The I n s t ~ t u t e of Management Sciences

WEIGHTED EUCLIDEAN I-CENTER PROBLEM 499

Unlike the notion of Voronoi diagram our methods here do generalize to higher
dimensional spaces. Thus they yield bounds which are better than any previously
known ones even for the unweighted case in more than two dimensions.

The algorithm is based on maximizing in the set of the weighted distances from a
variable point while searching for the optimal point. It utilizes ideas of solving
parametrized problems introduced by the author in [4], [5]. The new features here are
that we work with quadratic functions and that our problem involves more than just a
single parameter.

2. Minimizing convex piecewise quadratic functions. The central problem of the
present paper is to minimize the function maxi { w , . ((x - x ,) ~ + (y - y,)2)'/2). This is
equivalent to minimizing the function f(x, y) = maxi {wf((x - xi12 + (y - yi)2)}.
Clearly, f(x, y) is convex. This implies that for every y the function h(x) = f(x, y) is
convex and also the function g(y) = min,f(x, y) is convex. We will first show how to
evaluate g(y) at a given y. This evaluation amounts to minimizing a convex piecewise
quadratic function of one variable, namely, h(x).

To simplify the notation let h(x) = max,{a,x2 + b,x + c,) where ai > 0, i =
1, . . . , n. We note that the minimum of h(x) is attained either at the minimum of one
of the defining parabolas or at a point of intersection of two parabolas. We will work
under a model where it takes constant-time to find the intersection of two parabolas,
i.e., the square-root operation takes constant-time. It is obvious that under such a
model h(x) can be minimized in 0(n2) time, namely, by identifying in advance all the
intersections of two parabolas and then searching for the minimum. We will however
develop an O(nlognlog1ogn) algorithm for minimizing h(x). The method is an
extension of a basic principle presented by the author in [4] and further developed
in [5].

Let x, denote the minimizer of h(x). We first observe that given any x it is easy to
recognize whether x < x,, x = x, or x > x,. This is achieved by observing the
derivative, or the one-sided derivatives h'+ (x), h' (x) of h at x. Formally, we evaluate
h(x) and consider the set I = { i : aix2 + b,x + c, = h(x)). The one-sided derivatives
are given by h'+ (x) = max{2aix + b, : i E I) and h' (x) = min{2aix + b, : i E I}. If
h'+ (x) < 0 then x < x,. If h'_ (x) > 0 then x > x,. Otherwise h' (x) < 0 < h'+ (x) in
which case x = x,. These rules enable us to search for x,. We will work as if we had to
find the maximum (with respect to i) of the numbers a,xi + b,x, + ci even though xo
will not be known exactly. Typically, we will have an interval [e', e"] which contains x,
and such that all the comparisons between two parabolas made so far yield the same
outcome for all values of x in that interval. If the outcome of the following comparison
between two parabolas is not uniform over the current interval then this interval will
have to be updated. Specifically, suppose we need to decide which is the larger
between a,x; + bixo + c, and a,xi + bjxo + ci while x, is known to belong to [el, e"].
We then solve the equation a,x2 + b,x + ci = a,x2 + bjx + c, and obtain at most two
solutions el ,e2 in the interval, e' < el < e, < e". Note that if there is no solution in the
interval then it is obvious how to find which of the two parabolas is above the other
one over the interval. The function max(aix2 + b,x + cj,a,x2 + bjx + c,) coincides
with one of the parabolas over each of the subintervals [e', el], [e, , e,], [e2, e"]. We
therefore compute the one-sided derivatives of h(x) at el and e2 and that enables us to
find out which of the subintervals contains x,. We then update our interval, i.e., we
rename the appropriate subinterval [el,e"] and now the maximum between the two
remains in the form of a parabola (rather than a piecewise quadratic function) over the
new interval which is known to contain x,.

We have thus found an alternative way of minimizing h(x) in 0(n2). This is by
using a simple algorithm for finding the maximum of n numbers. This requires n - 1
comparisons. In our case we will compare parabolas instead of numbers. Each

500 NIMROD MEGIDDO

comparison of the maximum-finding algorithm will be translated to solving a qua-
dratic equation (i.e., finding the intersection of two parabolas) followed by evaluation
of one-sided derivatives of h(x) and updating the interval. This process will eventually
yield an interval which contains x, such that the maximum envelope of the collection
of parabolas coincides with one of the parabolas over that interval. The determination
of x, is then straightforward. In this procedure each comparison of the original
maximum-finding algorithm corresponds to a step which requires linear-time in the
generalized problem of maximizing over the set of parabolas. This establishes the
0(n2) bound. We will however improve this bound to O(n logn loglogn) by using a
good parallel algorithm for maximum-finding along the lines presented in [5] .

The improved procedure for minimizing h(x) is based on a parallel maximum-
finding algorithm by Valiant [12]. This algorithm consists of O(log1ogn) steps where
during a single step each of n parallel processors executes one comparison. Valiant's
algorithm works as follows. Given the set Ci of the candidates for the maximum after i
steps, we determine the n comparisons to be made during step i + 1 according to a
graph G, on IC,I vertices with the following properties: The graph Gi has no more than
n edges and they form cliques of almost equal sizes, i.e., the cardinality difference
between any two cliques is at most one. By comparing every two members of a clique
only one candidate for the maximum will remain after step i + 1 in each clique.

Using Valiant's parallel maximum-finding algorithm we can do the following for
minimizing h(x). We will run in O(log1ogn) steps corresponding to the steps in
Valiant's algorithm. During a single step we will find the intersections of n pairs of
parabolas and thus obtain at most 2n critical values in the current interval: e' = e,
6 el < - . . 6 e,, 6 e,,,, = e". Now, in order to proceed to the next round of
comparisons we first need to know the exact outcome of each comparison at x = x,.
This amounts to locating x, in a subinterval [ei,ei+ ,I, 0 < i 6 2n. This search for x,
can be carried out as a binary search where the test at any critical value ej amounts to
computing the one-sided derivatives of h(x) at ej. This search can hence be carried out
in O(n log n) time. Since we have O(1og log n) steps like this the O(n log n log log n)
bound follows.

3. Parallel minimization of h(x). The analysis of the preceding section was with
respect to a fixed value of y. Thus, the minimizer xo is in fact a function of y,
x, = x,(y). Our ultimate goal is to minimize f(x, y) with respect to both x and y. We
shall thus have to develop an algorithm for minimizing g(y) = f(x,(y), y). To that end
we will apply the basic idea of using parallelism for efficiently searching for the correct
value of a parameter (i.e., the variable y in our case). We therefore need a good
parallel algorithm for minimizing h(x). The variables of a program for finding xo(y)
will be functions of y. We wish to have a parallel algorithm where the depth, in terms
of the number of operations in which y is involved, is minimized.

Suppose that we employ n processors. They will work in O(log1ogn) phases.
Consider a single phase. After each processor has produced its respective critical value
of x we perform a binary search which requires O(1ogn) evaluations of h and its
one-sided derivatives at critical values. A single evaluation takes O(1oglogn) parallel
time by n processors. Thus, the minimization of h(x) (in other words, evaluating x,(y)
at a given y) is carried out by n processors in ~ (l o g n (l o ~ l o g n) ~) parallel time.

As a matter of fact, this bound can be improved if we employ n logn processors.
This is done as follows. Again, we run in O(log1ogn) phases. A phase starts with the
parallel calculation of n logn critical values of x, one by each processor. Next, these
values are sorted by the nlogn processors in O(1ogn) time, using Preparata's parallel
sorting scheme [7]. We then select logn critical values equally spaced in the set of

WEIGHTED EUCLIDEAN I-CENTER PROBLEM 50 1

critical values. Formally, if the critical values are el < e, < . . . < en ,,,, then we select
en/,, e3,,,,, We allocate n processors to each e, of the selected values and evaluate
h(e,) as well as the one-sided derivatives in O(log1ogn) time. We can then identify an
index j such that e(+ < xO < e(2j+ Again, we select n logn critical values
from those between e(q-l,nl, and e(q+l,n/, and repeat the same idea of parallel
evaluation of the derivatives followed by a reduction of the set of critical values by a
factor of logn. This is repeated until we find an index k such that e, < x, & e,, , . The
number of rounds required to reach this situation is

i.e., O(logn/loglogn). Each takes O(1og logn) time and hence a single phase runs in
O(1ogn) time. Thus, the entire procedure for minimizing h(x) on n logn processors
takes O(1og n log log n) time.

4. The doubly-parametrized algorithm. We now turn to the variable y and our aim
is to find the optimal value y*, i.e., to minimize g (y) The search for y* will again be
based on the fundamental method of running a parametric version of an algorithm
which evaluates g, while maintaining an interval which is known to contain the
optimal value y*. We have already developed both serial and parallel algorithms for
evaluating g(y). However, we still need a mechanism that will tell us whether a given
value of y is greater than, equal to, or less than y*. This requires some analysis of the
one-sided derivatives of the function g.

4.1. On the derivative of g(y). We will describe two methods for distinguishing
among the cases yo < y*, yo = y * and yo > y * when yo is any given value of y.

Method A. Given yo, we evaluate g(y,) in O(n log n log log n) time and obtain the
optimal value x, = x,(y,) of x (see $2). We now consider the set I, of indices at which
the maximum is attained, i.e., I, = { i : W?((X, - xi), + (yo - yi)2) = f(x0, yo)). Let
(tj,qi) denote the vector difference between (x,, yi) and (x,, yo), i.e., (&,qi) = (xi - x,,
y, -yo). Clearly, the function f(x, y) decreases in the direction of a vector (u, v) if and
only if &u + qiv > 0 for all i E I,. Thus, y* < y o if and only if there exist u and v such
that v < 0 and t,u + q v > 0 for all i E I,. This is equivalent to the existence of u such
that [,u > -qj (i E I,). A necessary and sufficient condition for this to hold is that

max{qi/& :& > 0, i E I ,) <min{qi/& :& <0 , i E I,} and

Similarly, y * > y o if and only if

max{qj/& : 4 < 0, i E lo) < min{qi/& : t, > 0, i E I,) and

The analysis based on these conditions takes linear-time once x,(y,) has been
computed. However, this method does not seem to generalize efficiently when we work
in higher dimensional spaces. Our second method is easier to generalize.

Method B. This second method is based on maintaining the derivatives with
respect to y of the variables in the program for minimizing h(x) (equivalently,
evaluating g(y)). First, consider the critical values of the variable x as being functions
of y . A critical value is obtained by solving an equation of the form

The set of pairs (x, y) solving this equation is either a straight line (when wj = wi) or a

502 NIMROD MEGIDDO

circle. At most two critical values arise. Denote by ev(y) one of the critical values. In
any case it is easy to find the derivative of eV(y) at yo. Now, we know that the optimal
value xo is either a minimum of a parabola or a point of intersection of two parabolas.
We will now study the behavior of these two types of a minimum as a function of the
parameter y . First, note that the minimum of hi(x) = w;?((x - xi12 + (y - yJ2) is
independent of y ; it occurs at x = xi. On the other hand, if x, is at a point of
intersection of two parabolas then it does depend on y. Suppose xo coincides with a
critical value ev(yo). It may happen that x, coincides with several such critical values
eiljl(yo),ei,.,(yo), Let eV(y) be any one of these and consider the function J,(y)
= f(eV(y), y) in the neighborhood of yo. The derivative of J', at yo can of course be

computed in constant time. However, for our purposes we need only to know the signs
of the derivatives &(yo) for those pairs i, j such that eV(yo) = x,(yo). Specifically, if
they are all positive then y* > yo and if they are all negative then y* < y o ; otherwise
Y* =yo.

4.2. Minimizing g(y). As pointed out earlier, the minimization of g(y) will be
carried out by running a parametrized version of the parallel algorithm for minimizing
h(x). More formally, the variables of the program for minimizing h(x) are themselves
functions of the parameter y . In order for these functions to remain tractable we
maintain an interval [d l ,d"] which contains the optimal value y*. This interval will
gradually be reduced so that all the current variables remain quadratic (rather than
piecewise quadratic) functions of y over the current interval.

Recall that the minimization of h(x) is carried out in O(1oglogn) phases. During a
single phase we produce n logn critical values of x. After the n logn critical values of x
have been produced, we run a sequence of O(logn/loglogn) stages at the end of
which we locate xo between two consecutive critical values of x. During a single stage
we select logn critical values, evaluate h(x), h'+ (x) and h l (x) at each of them and
locate xo between two critical values which are consecutive in the set of logn values we
have selected.

We will now review the execution of a single phase and examine the role of the
parameter y during each of the different steps constituting the phase.

(i) Computing critical values of x. The basic operation here is solving (for x) an
equation of the form w~((x - + (y - yi)2) = w;((x - x ~) ~ + (y - Y,)2). The cases
wi = w, and wi # w, are fundamentally different. If wi = wj then the solution x is a
linear function of y. Suppose wi # w,. Here the solution has the form of a circle:
(X - n,)* + (y - 6,)' = ci. In this case two critical values of y arise, namely, by ev.
Specifically, if (y - bVl < cv then two critical values of x are produced whde if
ly - by] > cq then no critical values of x arise (i.e., the outcome of the comparison
between the two parabolas is uniform in x when ly - bVl >/ c!,). During this step of
producing the critical values of x (as functions of y) we also produce critical values of
y. We then narrow down the interval [d ' ,d"] so that it will contain y * but none of
these critical values of y in its interior.

(ii) Sorting the critical values of x. In order for us to be able to select logn critical
values adequately, we will sort the set of critical values of x over an interval which
contains y* and over which the sorting permutation is constant. The sorting operation
requires comparisons between critical values. The outcome of a comparison may
depend on the value of y . For example, suppose that we need to compare ei(y) which
is defined by (ei(y) - aJ2 + (y - bJ2 = C: with ej(y) which is defined by

Then the critical values of y are determined by the points of intersection of these two
circles. The case when a critical value is a linear function of y is similar. The sorting

WEIGHTED EUCLIDEAN I-CENTER PROBLEM 503

will be carried out by following Preparata's sorting scheme with n(1ogn)' processors
(since we sort n logn elements). There will be O(1ogn) rounds of comparisons. During
each round we obtain 0(n(logn12) critical values of y (intersections of circles)
and then update [dl, d"] in O(n(log n)210g log n) time. Thus, the sorting step takes
~ (n (log n)310g log n) time.

We now consider the O(logn/loglogn) rounds where during each round we test
logn critical values of x and seek to locate x, among them. Given a critical value ek(y)
of x, we need to look at the signs of the one-sided derivatives of h (x) at ek(y). This
requires that we first identify the set of maximizing indices:

Moreover, we have to find a neighborhood of y* in which this set is constant.
(iii) Evaluating I(ek(y)). To find the set I(ek(y)), we run a parallel maximum-

finding algorithm on the set of functionsJ;,(y) = w"(ek(y) - + (y - yi)2). Compar-
isons between J;(y)'s yield critical values of y and we then search for y* among them.
We will shortly discuss these comparisons but it is already clear that it will take
O(1og log n) rounds of such comparisons, each followed by a binary search that takes
O(n(log n)'loglog n) time, to reduce the interval so that eventually the set I(ek(y)) is
constant. Thus, the set I(e,(y*)) is determined in ~ (n (l o ~ n) ~ (l o ~ l o g n) ') time. We now
return to the comparisons between the J.(y)'s. Such a comparison requires that we
solve an equation of the form

Replacing ek(y) by a variable 5, we obtain either a circle or a straight line on which the
pair (5, y) must lie. On the other hand the relation 5 = ek(y) determines another circle
(or, possibly, a straight line) on which the pair (5, y) must lie. The critical values of y
arising here are therefore obtained by finding the points of intersection of two circles
(or, possibly, a circle and a line or even two lines). Thus, at most two such values are
produced per each comparison.

(iv) Evaluating h1(e,(y)). Given an index i E I(ek(y*)), a critical value of y is
determined by substituting ek(y) for x in the partial derivative of

with respect to x and equating to zero. This is simply when ek(y) = xi, i.e., the value of
y where the line x = xi intersects the circle (or line) which determines ek(y). We
will work on all the selected logn ek(y)'s simultaneously. Thus, we will produce
O(1ogn) critical values of y and then search for y* among them. This search takes
~ (n (l o ~ n) ~ l o ~ l o ~ n) time and eventually we know the position of x,(y*) relative to
each of the selected e,(y)'s.

The entire search for x, consists of O(logn/loglogn) rounds, where during each
round it takes ~ (n (log n12(log log n)') time to narrow down the interval. Thus, the
entire search for x, in one phase takes O(n(log n)310g log n) time. We conclude that the
entire procedure takes O(n(log n)3(log log n)2) time.

5. Extension to higher dimensional spaces. Our procedure can be extended to
higher dimensional spaces. When passing from R d to R d + ' the (d + 1)st coordinate
serves as a parameter and we search for its optimal value by employing a parallel
algorithm for the d-dimensional problem. Let Tp(d) and T,(d) denote the parallel time
and serial time, respectively, required for solving the d-dimensional problem. Then we
obtain T,(d + 1) < (T,(d) . log n) . T,(d) and T,(d + 1) < (T,(d) . log n) . T,(d); this
is by following the parallel algorithm for the d-dimensional problem and during each
phase running a binary search which amounts to O(logn) solutions of the d-

504 NIMROD MEGIDDO

dimensional problem. This is not the best possible construction since it does not utilize
the possibility of selecting logn critical values and testing them simultaneously.
However, the improvement by using this idea is relatively small. We thus obtain the
following bounds:

T p (d) = log n) ' * '(log log n)?* I) and

These bounds are of course not very appealing when we think of the problem in a
general dimension. However, for a fixed dimension we obtain a bound which is
asymptotically less than n '+ ' for every E > 0. We note that a brute-force method
would yield a bound of O(nd). Also, no polynomial algorithm is known for the
weighted problem in genera! d imen~ ion .~

*R. Chandrasekaran ("The Weighted Euclidean I-Center Problem," Oper. Res. Lett. 1 (1982), 11 1-1 12)
has pointed out that a polynomial algorithm exists for the problem in general dimension. However, in his
model the number of arithmetic operations is bounded by a polynomial function of the sum of logarithms of
the coordinates and not only in n and the dimension. The existence of a genuinely-polynomial algorithm
(i.e., the number of arithmetic operations bounded by a polynomial in n and the dimension) implies the
existence of a genuinely polynomial algorithm for linear programming.

References
Courant, R. and Robbins, H. (1941). What Is Mathematics?, Oxford University Press, New York.
Elzinga, J. and Hearn, D. W. (1972). Geometrical Solutions for Some Minimax Location Problems.

Transportation Sci. 6 379-394.
Francis, R. L. (1967). Some Aspects of a Minimax Location Problem. Oper. Res. 15 1163-1 168.
Megiddo, N. (1979). Combinatorial Optimization with Rational Objective Functions. Math. Oper. Res.

4 414-424.
(1981). Applying Parallel Computation Algorithms in the Design of Serial Algorithms.

Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science, 399-408.
To appear in J . Assoc. Comput. Mach.

Nair, K. P. K. and Chandrasekaran, R. (1971). Optimal Location of a Single Service Center of Certain
Types. Naval Res. Logist. Quart. 18 503-510.

Preparata, F. P. (1978). New Parallel-Sorting Schemes. IEEE Trans. Comput. C-27 669-673.
Rademacher, H. and Toeplitz. 0 . (1957). The Enjoyment of Mathematics. Prmceton University Press,

Princeton, New Jersey.
Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton, New Jersey.
Shamos, M. I. and Hoey, D. (1975). Closest-Point Problems. Proceedings of the 16th Annual IEEE

Symposium on Foundations of Computer Science, 15 1 - 162.
Smallwood, R. D. (1965). Minimax Detection Station Placement. Oper. Res. 13 636-646.
Valiant, L. G. (1975). Parallelism in Comparison Problems. SIAM J . Comput. 4 348-355.

DEPARTMENT O F COMPUTER SCIENCE. STANFORD UNIVERSITY, STANFORD, CALIFOR-
NIA 94305

