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{fcflores — ampolido }@din.uem.br

2Department of Computer Engineering and Industrial Automation

School of Electrical and Computing Engineering

State University of Campinas

P.O.Box 6101, Zip 13083-852 - Campinas - SP - BRAZIL

{fcflores — lotufo }@dca.fee.unicamp.br

Abstract

This paper proposes a method for color gradient com-

putation applied to morphological segmentation of color

images. The weighted gradient (with weights estimated

automatically), proposed in this paper, applied in con-

junction with the watershed from markers technique, pro-

vides excelent segmentation results, according to a sub-

jective visual criterion. The weighted gradient is com-

puted by linear combination of the gradients from each

band of an image under the IHS color space model. The

weights to each gradient are estimated by a systematic

method that computes the similarity between the image to

compute the gradient and an ”ideal image”, whose his-

togram has an uniform distribution. Several experiments

were done in order to compare the segmentation results

provided by the weighted gradient to the results provided

by other color space metrics, also according to a sub-

jective criterion, and such comparison is present in this

paper.

Keywords:Weighted Gradient, Color Gradient, Mor-

phological Segmentation, Watershed from Markers,

Bray-Curtis Distance Function, Weight Estimation

1. Introduction
The edge enhancement of an image by gradient com-

putation is an important step in morphological image

segmentation via watershed from markers [1, 10]. For

grayscale images, the morphological gradient [14, 7] is a

very good option and its computation is simple: for each

point in the image, a structuring element is centered to

it and the difference between the maximum and the min-

imum graylevels inside the structuring element is com-

puted. Here, the similarity information exploited is the

intensity differences among pixels inside the structuring

element.

Such concept does not extends naturally to color im-

ages. Despite the similarity information of color images is

richer than the similarity of grayscale ones, the design of

methods to edge enhancement in color images is complex.

Note that the metric that measures the natural similarity

information of color images is unknown. Also note that if

one considers the color space as a complet lattice [15, 2],

the order relation is not total and even if a total order is

imposed, it will be not natural for the human eye. It does

not compare two colors and decides which one is higher.

It makes no sense to say: ”yellow is higher than blue”.

This paper proposes a metric to compute a gradient

for color images by exploiting the intuitive notion of sim-

ilarity and not by imposing any total order relation in the

color space model. The weighted gradient operator [3, 8]

consists in, given a color image in the IHS color space

model, the linear combination of the weighted gradients

from the three bands of image. The role of weights is to

enhance or obscure the importance of a gradient in the

linear combination: the greater the importance of infor-
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mation contained in a band, the greater the weight to be

assigned to its gradient. For instance, if the color image

presents a great variation of hues, the hue gradient should

receive a major weight.

One way to compute automatically the weights to each

band is via application of a similarity function [3]. The

idea is to consider an ”ideal image” (whose histogram has

a uniform distribution) and to compute the similarity be-

tween the input image and the ideal one. Several ways

to compute the similarity between pairs of objects (in our

case, images) were found in the literature [13, 5, 9]. In

this paper, the similarity is computed by a distance func-

tion called Bray-Curtis distance [13] which gives a value

from 0 (similarity) to 1 (not similarity). The weight to a

gradient is given by the application of this distance func-

tion.

This paper is organized as follows: section 2 presents

preliminary definitions. Section 3 gives the definitions of

weighted gradient. Section 4 states the Bray-Curtis dis-

tance function, used to estimate the weights. Section 5 in-

troduces the weight estimator to the weighted gradient op-

erator. Section 6 explains the morphological image seg-

mentation via watershed form markers. Section 7 shows

the comparison among several color image gradients and

the segmentation results provided by them. And, finally,

we conclude this paper in section 8.

2. Preliminary Definitions

This section presents some definitions used along the

text.

2.1. Color Images

A partial ordered relation is a relation whose prop-

erties is reflexive, transitive and anti-symmetric. A set

whose elements have partial order relation is called a par-

tial ordered set. Given a ordered set L, with a relation

order ”≤”. L is a totally ordered set if, ∀x, y ∈ L, x ≤ y

or y ≤ x. The relation order ”≤” is said total. A partial
ordered set L is a complete lattice (also called chain) if

any subset of L have an infimum and a supremum.

Let L1, L2, · · · , Lm be totally ordered complete lat-

tices. For instance: a subset of Z, or a closed subset of R

are chains. Let
∨
denote the supremum, or maximum, and∧

denote the infimum, or minimum, operations in chains.

Let L be the Cartesian product of L1, L2, · · · , Lm, i.e.,

l ∈ L ⇔ l = {l1, l2, · · · , lm}, li ∈ Li, i = {1, · · · ,m}.

LetE be a non empty set that is an Abelian group with

respect to a binary operation denoted by +. A mapping
f from E to L, f(z) = (f1(z), f2(z), · · · , fm(z)),fi :
E → Li and z ∈ E is called multivalued or multispectral

image. The mappings fi are called bands of the image.

A color image is an example of a multivalued function

whereL = L1×L2×L3 is the representation of the colors

under a certain color space model (a coordinate system

where each point represents an unique color) [6, 11]. Let

Fun[E,L] denote the set of all mappings from E to L,

i.e., all possible color images.

2.2. Color Space Models

In this paper, we used two color space models: the

RGB (Red, Green and Blue) and the IHS (Intensity, Hue

and Saturation) color coordinate systems.

The RGB color space model is a cube defined in a

Cartesian system. This cube is defined by three subspaces

related to one of the three primary colors, red, green and

blue, and the pure representation of these colors are lo-

cated at three corners of the cube. Generally, one color is

represented by a point inside this cube.

The IHS color space model is defined by a coordinate

transformation of the RGB system [11], and it is com-

posed by three attributes: Intensity (holds the luminosity

information), Hue (describes uniquely a color in its pure

form); for example, the red color without any informa-

tion from other attributes) and Saturation (measures the

amount of white light mixed with pure colors).

3. Weighted Gradient
In this section, we present the definition of the

weighted gradient. This operator is a transformation from

a color image under the IHS color space to a grayscale

one, by the linear combination of the gradients from each

band.

Let K = [0, 1, · · · , k − 1] and Θ = [0, 359]. The
set K is a closed interval and has a total order relation.

The set Θ, however, does not have such relation, since
it can be considered as a ”circular interval”, because its

elements are angles [6]. Let f ∈ Fun[E,L] be a color
image under the IHS color space model, whereE ⊂ Z×Z

and L = K × Θ × K.

Since intensity and saturation are represented by func-

tions g ∈ Fun[E,K], their gradients can be computed by
classical morphological gradient operators [14, 7]. How-

ever, it is not the case for hue: since the information of

the hue band consists of angles [6], the band is given by

a function h ∈ Fun[E,Θ], and its gradient can not be
computed by classical morphological gradient, becauseΘ
does not have a total order relation. In order to compute a

gradient for the hue band, it is necessary to define a metric

function for it.

Definition 3.1 Let θ1, θ2 ∈ Θ. The hue distance between
θ1 and θ2 is given by

dh(θ1, θ2) = ∧{|θ1 − θ2|, 360 − |θ1 − θ2|}.

The distance introduced above returns an integer value

between 0 and 180. In order to compute the weighted
gradient, these values will be normalized toK. LetmK :
Θ → K be the normalization function.

Let x ∈ E. The translation of B ⊂ E by x, denoted

by Bx, is given by Bx = {y ∈ E : (y − x) ∈ B}.
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Definition 3.2 Given an image h ∈ Fun[E,Θ], the an-
gular gradient ∇Θ

B : Fun[E,Θ] → Fun[E,K], is given
by, for all x ∈ E

∇Θ
B(h)(x) = mK(

∨
y∈{Bx−{x}} dh(h(x), h(y))

−
∧

y∈{Bx−{x}} dh(h(x), h(y))),

where B ⊂ E is a structuring element centered at the

origin of E.

Let a, b, c ∈ R+. The following gradient is defined as

a linear combination of the morphological gradients for

the intensity and saturation bands with the angular gradi-

ent for the hue band. The three gradients are weighted by

three weights a, b and c in order to enhance or to obscure

the peaks of a gradient image.

Definition 3.3 Given f ∈ Fun[E,L] in the IHS color
space. Given three weight values a, b, c ∈ R+. The

weighted gradient ∇W
B : Fun[E,L] → Fun[E, Z+] is

defined by

∇W
B (f) = ⌊a∇B(f1) + b∇Θ

B(f2) + c∇B(f3)⌋,

where f1, f2 and f3 represent respectively the intensity,

hue and saturation color bands, B ⊂ E is a structur-

ing element centered at the origin of E and ∇B is the

classical morphological gradient [14, 7]. The floor oper-

ation in the equation means that all ∇W
B (f)(x), x ∈ E,

were rounded down, since the linear combination of the

weighted gradients is real.

In the weighted gradient, each gradient is scaled in

order to increase or decrease their influence in the final

result. For example, on images where the hue informa-

tion is the most important, the hue gradient could give a

good result by itself. However, there are cases that it is

not sufficient to enhance the border between objects with

similar hues; it could be necessary to weight, for example,

the saturation gradient in order to distinguish the borders.

Figure 1 (b) shows the result of the weighted gradient

applied to Fig. 1 (a). The weights assigned to the hue,

saturation and intensity gradients are, respectively, a =
0.1055, b = 0.1016 and c = 0.1133.

The first version of the weighted gradient operator was

introduced in [8]. Despite this operator shows itself as

a good solution to compute color gradients, it was not

defined, in that occasion, a systematic method to find

weights to each gradient: the weights assigned to each

gradient in the linear combination step had been imposed

manually. It was necessary a priori to analyze subjec-

tively the color image to be segmented in order to choose

the weights to be applied. Sometimes, it was necessary

to readjust several times the weights to achieve a satisfac-

tory result. It motivated the design of the weight estimator

presented in section 4 and the automatic weighted gradi-

ent introduced in section 5.

(a)

(b)

Figure 1. Weighted Gradient - (a) Original Image. (b) Gradient.

4. Bray-Curtis Distance Function

A similarity function quantifies the association degree

between a pair of objects. We have found that similarity

functions could be suitable for application in order to esti-

mate the weights to the gradients [13, 5, 9]. In the method

introduced below, it was used a well known method to

numerical ecology researchers, the Bray-Curtis distance

function [13]. The distance measured by this function

gives a degree of similarity, which is a value from 0 to

1. The closer the degree is to 0 (1), the greater (lower) the

similarity. The Bray-Curtis distance function is defined

below.

Definition 4.1 Let A and B be two n-dimensional vec-

tors. The Bray-Curtis distance function D : A × B →
[0, 1], is given by,

D(A,B) =

∑n

i=1
|Ai − Bi|∑n

i=1
(Ai + Bi)

,

where Ai and Bi are, respectively, the i-th element of A

and the i-th element of B.

5. Weight Estimation

As stated above, the drawback of the manual weighted

gradient technique was the lacking of a systematic method

to find the weights, which have been imposed manually.

The main criterion applied to choose the weight to a gradi-

ent was the diversity of information contained in the orig-

inal image. For instance:
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1. if there are many different hues appearing in the im-

age, it is imposed a high weight to the hue gradient

original;

2. if there are just blue tones in the image, the hue gra-

dient is not so important and its weight could be

low (however, this gradient does not need to be dis-

carded, since it can still help to separate, for exam-

ple, objects with similar saturation);

3. if the image presents a great variation in luminance,

the intensity gradient should receive a higher weight.

Despite the drawback of manual imposition of

weights, the weighted gradient gives excellent results

when the criterion cited above is applied. This criterion

also should be applied to the automatic method to weight

estimation in order to still achieve good results.

If a band presents all possible values in same quan-

tities (i.e., its histogram has an uniform distribution), its

gradient should receive the maximum weight. To do this,

we consider that there is an ”ideal image” where all possi-

ble values appear in same quantities (i.e., with a histogram

whose distribution is an uniform one). The distance be-

tween the band and the ideal image is computed; if the

distance is closer to 0, it means that the information in the

band is rich and the weight to be assigned should be high.

The distance between the band and the ideal image

can be obtained by computing the distance between their

histograms. Note that there is no real ”ideal image” but

just only its histogram, which has an uniform distribution.

Such histogram is easy to be created: just consider it as

a function with constant value equals to the mean of his-

togram of the band.

Definition 5.1 Let us consider the histogram of an image

f ∈ Fun[E,K] as a function hf : K → Z+. Let fi :
E → Li be one of the image bands and let gi : E →
Li be the ideal image. The weight wi assigned to the

gradient of fi is given by,

wi = 1 − D(hfi
, hgi

),

where D is the Bray-Curtis distance function and hgi
is

the histogram of the ideal image, computed as explained

above.

Bray-Curtis distance function is a simple and suitable

way to compute the weight to a gradient. Its computation

is fast and it gives the similarity measure as a normalized

value contained in the interval [0, 1] (whose boundaries
denotes, in our approach, respectively, similarity and dis-

parity), and thus, providing a simple way to estimate the

weight by the criterion pointed above.

Note that the Bray-Curtis distance function gives

small results when the histograms are close to. So, it is

necessary to subtract the function result from 1 (the max-

imum weight possible) in order to obtain the weight to the

gradient.

Given the definition above, the weighted gradient can

be redefined as follows:

Definition 5.2 Given f ∈ Fun[E,L] in the IHS color
space. The weighted gradient ∇W

B : Fun[E,L] →
Fun[E, Z+] is defined by

∇W
B (f) = ⌊w1∇B(f1) + w2∇

Θ
B(f2) + w3∇B(f3)⌋.

where f1, f2 and f3 represent respectively the intensity,

hue and saturation color bands, w1, w2, w3 ∈ R+ are

their respective weights estimated by the distance func-

tion, B ⊂ E is a structuring element centered at the

origin of E, ∇B is the classical morphological gradi-

ent [14, 7] and ∇Θ
B is the angular gradient.

In the following, it is presented some experiments

done in order to demonstrate the estimation of weights

by Bray-Curtis distance function. Each experiment con-

sisted in a creation of a synthetic pure blue image under a

IHS color space model and changing one of the bands by

the classical cameraman image, in order to enrich the in-

formation of the band and, thus, to demonstrate how the

method assigns a higher weight to this band. The syn-

thetical image created to the hue, saturation and intensity

experiments are shown, respectively in Fig. 2 (a), 3 (a)

and 4 (a).

In the first experiment (Fig. 2), we demonstrate the

estimation to the hue band. Figure 2 (a) shows an image

obtained by taking a constant blue image and changing

its hue band by the classical cameraman normalized im-

age. We want to show that, since the hue band is the most

important in this image (saturation and intensity bands in

this image are constant), the weight to be assigned to the

hue gradient should be high and the weights assigned to

the saturation and intensity bands should be low.

The proposed distance function computed the follow-

ing weights to Fig. 2 (a): hue w1 = 0.8945 , saturation
w2 = 0.0039 and intensity w3 = 0.0039. Figure 2 (b)
shows the weighted gradient of Fig. 2 (a).

The other two experiments shown in this section are

similar to the first one. Figure 3 (a) was obtained by tak-

ing a constant blue image and changing its saturation band

by the cameraman image. The saturation band of Fig. 3

(a) is the most important band, since the other two bands

are constant, so it is expected that the weight assigned to

the saturation gradient should be high and the other two

weights should be low. The distance function provided

to Fig. 3 (a) the weights: hue w1 = 0.0078 , saturation
w2 = 0.8555 and intensity w3 = 0.0039. Figure 3 (b)
shows the weighted gradient of Fig. 3 (a).

The image used in the third experiment (Fig. 4 (a))

was computed by taking a constant blue image and chang-

ing its intensity band by the cameraman image, in order to

emphasize the intensity information and lower the impor-

tance of the hue and saturation bands. It were computed

the weights: hue w1 = 0.0078 , saturation w2 = 0.0078
and intensity w3 = 0.9844. The weighted gradient of
Fig. 4 (a) is shown in Fig. 4 (b).

56



Franklin César Flores, Airton Marco Polidório &
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(a)

(b)

Figure 2. Hue - (a) Original Image. (b) Gradient.

6. Watershed from Markers
Morphological segmentation via watershed from

markers [1] consists in a sequential application of mor-

phological operators [7] to segment objects in the image.

Basically, it consists in application of morphological gra-

dient operator [7, 4], marker selection and watershed from

markers technique [1, 16].

The watershed from markers can be described by

flooding a topographical relief model of the gray-scale

image. The markers are holes in the image relief where

colored water can enter as the relief is flooded. There is

one color associated to each set of markers. As the relief

is uniformly flooded, different colored water may meet

but cannot be mixed. When all the relief is flooded, each

colored water region defines the catchment basin [12] as-

sociated to the marker. The classical watershed transform

is when the markers are the regional minima of the image.

Watershed from markers is an efficient method to im-

age segmentation, since it reduces the problem of objects

segmentation to the problem of finding markers to these

objects.

7. Experimental Results
This section presents the segmentation results pro-

vided by application of several color image gradients. All

of them, excepting the automatic weighted gradient, pro-

posed in this paper, were compared previously in [8] and

the manual weighted gradient provided the best segmen-

tation results. The experiments described below aim to

compare the automatic and the manual weighted gradi-

(a)

(b)

Figure 3. Saturation - (a) Original Image. (b) Gradient.

ents to other gradients introduced in [8]. It is expected

segmentation results provided by the automatic weighted

gradient, at least, as good as the results provided by the

manual method.

Preceding the experiment descriptions, it is necessary

to review the gradients that will be compared. Note that

the weighted gradient is applied to color images under the

IHS color space model. The following operators (Gradi-

ents I to IV ) are applied to color images under the RGB

color space model.

7.1. Gradient I

Let f ∈ Fun[E,L], the Gradient I of f , ∇I
B(f) is

given by

∇I
B(f) =

∨
{∇B(f1),∇B(f2),∇B(f3)},

where ∇B(f) is the morphological gradient. The result-
ing gradient is an image containing the supremum among

the maxima differences em each band of f .

7.2. Gradient II

Let f ∈ Fun[E,L], the Gradient II of f , ∇II
B (f) is

given by

∇II
B (f) =

∨
{∇i

B(f1),∇
i
B(f2),∇

i
B(f3)},

where ∇i
B(f) = f − εB(f) is the internal morphologi-

cal gradient [7]. The resulting gradient is similar to Gra-

dient I , however only internal border of the objects are

enhanced.
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(a)

(b)

Figure 4. Intensity - (a) Original Image. (b) Gradient.

7.3. Gradient III

Let dIII be the norm of a color l ∈ L, given by

dIII(l) = ⌊(l21 + l22 + l23)
1

2 ⌋,

where ⌊p⌋ is the value of p rounded down.
Let ax,B , bx,B ∈ E are two points such that

dIII(f(ax,B)) =
∨

y∈Bx

dIII(f(y)), and

dIII(f(bx,B)) =
∧

y∈Bx

dIII(f(y)).

Let f ∈ Fun[E,L], the Gradient III of f , ∇III
B (f)

is given by

∇III
B (f)(x) = dIII(uf,x,B),

where uf,x,B = (f1(ax,B) − f1(bx,B), f2(ax,B) −
f2(bx,B),
f3(ax,B) − f3(bx,B)).

7.4. Gradient IV

Let dIV be the color distance between l and l′, l, l′ ∈
L, given by,

dIV (l, l′) =
∨

{|l1 − l′1|, |l2 − l′2|, |l3 − l′3|}.

Let f ∈ Fun[E,L], the Gradient IV of f ,∇IV
B (f) is

given by

∇IV
B (f)(x) =

∨

y∈Bx

dIV (f(x), f(y)).

7.5. Segmentation Results

The first experiment consists in to segment the three

flowers (Fig. 5 (a)) given the set of markers imposed man-

ually to each flower and to the background (Fig. 6 (a)).

Note the difficult in to distinguish the borders among the

flowers, mainly between the middle and right ones. Here,

the segmentation results were compared.

Figures 5 (b-e) show, respectively the results of Gra-

dient I , II , III , IV . Figure 5 (f) shows the manual

weighted gradient (with weights {a = 1, b = 1, c = 1})
and Fig. 5 (g) shows the automatic weighted gradient

(whose estimated weights were {w1 = 0.9570, w2 =
0.9219, w3 = 0.9336}). Figure 6 (b-g) show their respec-
tive segmentation results. Again, in order to have a better

visualization, the gradient images were negated and the

watershed lines were dilated and overlaid to the original

image.

All gradients provided the correct segmentation of the

left flower, but the separation of the middle flower from

the rightest one showed to be critical. Gradients I to IV

segmented the middle flower with a piece of the rightest

one. Both weighted gradients almost segmented correctly

the flowers. Note that the contrast between the middle and

the right flowers is very low.

The goal in the second experiment was to segment a

set of billiard balls from the table (Fig. 7 (a)), given the set

of markers shown in Fig. 8 (a), by application of the gra-

dients presented above and to compare subjectively their

segmentation results.

Figures 7 (b-e) show, respectively the results of Gra-

dient I , II , III , IV . Figure 7 (f) shows the manual

weighted gradient (with weights {a = 1, b = 1, c = 1})
and Fig. 7 (g) shows the automatic one (whose esti-

mated weights were {w1 = 0.5977, w2 = 0.7109, w3 =
0.1055}). Figure 8 (b-g) show their respective segmen-
tation results. The gradient images were negated and the

watershed lines were dilated and overlaid to the original

image for a better visualization.

Gradient I provided a good segmentation of the balls,

except to the black one; this ball and its shadow were seg-

mented together. The black ball segmentation showed it-

self a critical problem since it was not also achieved by the

Gradients II , III and IV . Gradient II provides an un-

pleasant segmentation of the ball and Gradients III and

IV did not achieved a good segment of the red ball.

Both manual and automatic weighted gradients pro-

vided good segmentation results, excepting by a minor

distortion in the segmentation of the pink ball, the seg-

mentation results provided by the automatic method is

very close to results provided by the manual one.

In order to make the third experiment, we created a

color image (Fig. 9 (a)) where the hue band is a tran-

sition from red (left )to magenta (right) passing by yel-

low, green, cyan and blue colors. The saturation band is

constant with the maximum allowed value. The intensity

band is given by classical foreman image in grayscale.

The goal in this experiment is to segment the foreman,
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5. First Experiment - Flowers: (a) Original Image.

(b-e) Gradients I to IV . (f) Manual Weighted Gradient.

(g) Automatic Weighted Gradient

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6. Segmentation Results - Flowers: (a) Set of

Markers. (b-e) Gradient I to IV . (f) Manual Weighted

Gradient. (g) Automatic Weighted Gradient
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7. Second Experiment - Billiard Balls: (a) Origi-

nal Image. (b-e) Gradients I to IV . (f) Manual Weighted

Gradient. (g) Automatic Weighted Gradient

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. Segmentation Results - Billiard Balls: (a) Set

of Markers. (b-e) Gradient I to IV . (f) Manual Weighted

Gradient. (g) Automatic Weighted Gradient
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 9. Third Experiment - Color Foreman: (a) Origi-

nal Image. (b-e) Gradients I to IV . (f) Manual Weighted

Gradient. (g) Automatic Weighted Gradient

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10. Segmentation Results - Color Foreman: (a)

Set of Markers. (b-e) Gradient I to IV . (f) Manual

Weighted Gradient. (g) Automatic Weighted Gradient
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given the set of markers in Fig. 10 (a). Again, the seg-

mentation results are compared subjectively.

The results of Gradient I , II , III , IV are shown, re-

spectively, in Fig. 9 (b-e). Figure 9 (f) shows the manual

weighted gradient (with weights {a = 1, b = 1, c = 1})
and Fig. 9 (g) shows the automatic one (whose esti-

mated weights were {w1 = 0.7305, w2 = 0.0078, w3 =
0.9844}). Figure 10 (b-g) show their respective seg-

mentation results. Once more, the gradient images were

negated and the watershed lines were dilated and overlaid

to the original image.

Note that the helmet region showed itself critical in

the segmentation process. Gradients I , II , III and IV

missed in several degrees the helmet border and the back-

ground invaded the helmet. Gradient IV also provided a

wrong segmentation in the eye of the foreman.

The trivial set of weights imposed to the manual ver-

sion of the weighted gradient ({a = 1, b = 1, c = 1})
did not provide a correct segmentation result. The top

of the helmet joined to the upper background. The auto-

matic weighted gradient estimated a better set of weights

{w1 = 0.7305, w2 = 0.0078, w3 = 0.9844}) and pro-
vided a correct segmentation of the foreman.

8. Conclusion

This paper proposes a gradient for color images by

linear combination of weighted gradients from the three

bands of an image under the IHS color space model: the

weighted gradient operator. The function of the weights

is to raise or lower the contribution of each gradient in

the linear combination, and they are estimated by an au-

tomatic method that computes the similarity between the

band histogram and an histogram whose distribution is

uniform. Such similarity is computed by a Bray-Curtis

distance function, whose gives a value from 0 (similarity)

to 1 (not similarity).

Several experiments were done in order to compare

the segmentation results provided by various color gradi-

ents following a subjective visual criterion. The weighted

gradient, with weights estimated by Bray-Curtis distance

function, provided the best segmentation results.

One of the advantages of the proposed method is that

it not requires any parameters other than the color image

itself and a connectivity parameter. The evaluation crite-

rion of the diversity of information in an image, given by

the distance between the image band and an ”ideal im-

age” whose histogram has an uniform distribution, is a

very good criterion to give weights to each band gradi-

ents.

Future works include the application of other tech-

niques, such as other distance functions and information

theory methods (as first-order entropy), in order to do

weight estimation in the proposed framework. It will be

also studied the exploitation of other color space models

in order to compute color gradients.
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