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The Weighted Mixed Curvature of a Foliated Manifold

Vladimir Rovenskia

aDepartment of Mathematics, University of Haifa, Israel

Abstract. We introduce the weighted mixed curvature of an almost product (e.g. foliated) Riemannian
manifold equipped with a vector field. We define several qth Ricci type curvatures, which interpolate be-
tween the weighed sectional and Ricci curvatures. New concepts of the “mixed-curvature-dimension con-
dition” and “synthetic dimension of a distribution” allow us to renew the estimate of the diameter of a com-
pact Riemannian foliation and splitting results for almost product manifolds of nonnegative/nonpositive
weighted mixed scalar curvature. We also study the Toponogov’s type conjecture on dimension of a totally
geodesic foliation with positive weighted mixed sectional curvature.

1. Introduction

The ”weighted” curvature is defined for a Riemannian manifold (M, 1) endowed with a vector field X,
e.g., when X is a gradient of a density function f : M → R+. The weighted scalar curvature appeared in
Perelman’s functionals for the Ricci flow. The weighted Ricci curvature was first studied by Lihnerovicz, and
later by Bakry–Emery and many others. The study of weighted Ricci tensor (called also the N-Bakry–Emery–
Ricci tensor) of the triple (M, 1,X),

RicN
X = Ric +

1
2
LX 1 −

1
N

X[
⊗ X[ (1.1)

was motivated by the curvature-dimension condition CD(c,N): RicN
X > c, for a brief overview see [2]. Here

N is an upper bound of the ”generalized dimension” of the weighted manifold, c is a lower bound of the
Ricci tensor Ric, and L is the Lie derivative. The ”musical” isomorphisms [ and ] lower and raise indices
of tensors. Definition (1.1) arises for the Ric of a warped product of M of dimension N > 0 with a manifold
B, when the warping function φ = −(1/N) log f and X = ∇ f .

Distributions on manifolds (i.e., subbundles of the tangent bundle) appear in various situations, e.g.
as fields of tangent planes of foliations. Totally geodesic and Riemannian foliations, having the simplest
extrinsic geometry (respectively, the tangent or orthogonal distribution has zero second fundamental form),
are investigated in a number of works. There is interest of geometers to problems of existence of metrics on
foliations and almost product manifolds with given curvature properties. One may consider three kinds of
sectional curvature for a foliation: tangential, transversal and mixed (denoted by Kmix). The mixed curvature
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is encoded in the Riccati and Jacobi equations along the leaf geodesics. For constant Kmix the solutions
of above equations (and the relative behavior of geodesics on nearby leaves) are well-known, e.g. [4].
Riemannian foliations with totally geodesic leaves have Kmix > 0, and splitting of foliations with Kmix = 0
is possible.

Our main object is (Mn+ν, 1,X) equipped with complementary orthogonal distributions D̃ andD of ranks
dim D̃ = ν > 0 and dimD = n > 0. We study three kinds of weighted mixed curvature (sectional, qth Ricci and
scalar) of almost product manifolds, introduce the notions of ”synthetic dimension” of a distribution and the
”mixed-curvature-dimension” condition, and obtain natural generalizations of several results known for
the case of X = 0. Let > and ⊥ denote orthogonal projections onto D̃ andD, respectively. We define several
functions on (M, 1,X, D̃,D), which ”interpolate” between the weighed sectional and Ricci curvatures; such
functions on (M, 1) for X = 0 were introduced by H. Wu, and then studied by many geometers, see surveys
in [4, 5]. Let Wq be a subspace of D̃m spanned by q 6 ν orthonormal vectors {x1, . . . , xq} at a point m ∈ M,
and y ∈ Dm a unit vector. Set

R̃icq(y,W) :=
∑q

i=1
K(y, xi).

Riemannian manifolds of R̃icq > 0 form a lager class than ones of Kmix > 0. The simplest curvature invariant
of a pair (D̃,D) is a function Smix : M→ R, see [4, 9],

Smix(m) :=
∑n

j=1
R̃icν(y j, D̃m), (1.2)

called the mixed scalar curvature, i.e., an averaged mixed sectional curvature. Here {y j} is an orthonormal
frame ofDm. For example, Smix = Ricy,y when n = 1.

In contrast to scalar curvature, Smix is strongly related with the extrinsic geometry, and is involved in such
research topics as prescribing Smix on pseudo-Riemannian manifolds [7] and the mixed Einstein–Hilbert
action, see survey [6].

Definition 1.1. We define the weighted mixed qth Ricci curvature of {y,W} by

R̃ic
N

q (y,W) := R̃icq(y,W) +
q
2

(LX/ν 1)(y, y) +
q ν
N
〈X/ν, y〉2, (1.3)

whereN ∈ R is called the synthetic dimension of D̃. By the mixed-curvature-dimension condition CD>(c,N , q)
for D̃, we mean the inequality

R̃ic
N

q > c. (1.4)

Similarly, RicN
q (x,W) for Wq

⊂ Dm, x ∈ D̃m, and CD⊥(c,N, q) forD are defined.

Example 1.1. Let Mk+3 = S3
× M̂k (k > 0) be the product of a unit 3-sphere and a Riemannian manifold.

Suppose that Y is the lift of any unit vector field on S3 and the Killing field X is the lift of Hopf field on S3

(corresponding to standard complex structure on R4 = C2). SetD = span(Y). Then R̃ic
N

k+1(Y, ·) > 1.

Based on (1.2) and (1.3), define the weighted mixed scalar curvature by

S
N,N :=

1
2

Tr1
(
RicN

n + R̃ic
N

ν

)
= Smix +

1
2

div X +
1

2N
‖X>‖2 +

1
2N
‖X⊥‖2, (1.5)

where N,N ∈ R are called synthetic dimensions of D and D̃, respectively.
Let F ν be a totally geodesic foliation of (Mn+ν, 1), and Rx = (R ·,x x)⊥ (x ∈ TF ) the Jacobi operator on

D. If the leaves are closed and Rx > 0 (x , 0), then ν < n; otherwise, any two of them will intersect.
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D. Ferus [3] found a nice topological obstruction for existence of totally geodesic foliations: if Rx ≡ k id⊥ for
some k = const > 0 and all unit x ∈ TL on a complete leaf L, then ν < ρ(n). Here ρ(n) − 1 is the number of linear
independent vector fields on a sphere Sn−1,

ρ((odd) 24b+c) = 8b + 2c for some b > 0, 0 6 c 6 3,

and ρ(n) 6 2 log2 n + 2 6 n. Among Toponogov’s many contributions to Riemannian geometry is the
following conjecture (see survey [4]): The inequality ν < ρ(n) holds for totally geodesic foliations of closed
Riemannian manifolds with Kmix > 0.

We introduce the weightedD-Jacobi operator Rx (x ∈ D̃) by

Rx := Rx +
( 1

2
(LX/n 1)(x, x) + 〈X/n, x〉2

)
id⊥, (1.6)

and similarly define the weighted D̃-Jacobi operator R̃y (y ∈ D). Set

Ric(x, x) := Tr1 Rx, R̃ic(y, y) := Tr1 R̃y.

Thus, Ric(x, x) = Ricνn(x,Dm), see (1.3).
In Section 2, we use (1.4) to estimate the diameter of Riemannian foliations.
In Section 3 we use the weighted mixed scalar curvature (1.5) to prove new integral formulas and

splitting theorems for almost product manifolds.
In Section 4 we study the Toponogov type conjecture: The inequality ν < ρ(n) holds for a totally geodesic

foliation F ν of a closed manifold (Mn+ν, 1,X) under assumption Rx > ‖X>/n‖2 id⊥ for all unit vectors x ∈ TF .
Since Rx > 0 (x , 0) yields Rx > − 1

2 (LX/n 1)(x, x) id⊥ then Rx (and, hence, Kmix) in the above conjecture
can be negative somewhere.

2. The diameter of a compact Riemannian foliation

The weighted mixed sectional curvature is the weighted sectional curvature of the planes that non-trivially
intersect each of the distributions,

K̃
N (y, x) := K(y, x) + (

1
2

(LX/ν 1)(y, y) +
ν
N
〈X/ν, y〉2)‖x‖2, (2.1)

see (1.3) for q = 1 and W = {x}. Similarly, we define KN(x, y). The x and y in (2.1) are placed in asymmetric

way; generally, we have Kn(x, y) , K̃ν(y, x). Observe that R̃ic
N

q (y,W) =
∑q

i=1 K̃
N (y, xi). The weighted

sectional curvature appears in the formula for the second variation of energy of a path.

Lemma 2.1. Let F ν be a Riemannian foliation of (M, 1,X), and γ̄ : [a, b] × (−ε, ε)→ M a variation of the geodesic
γ(t) = γ̄(t, 0) and the variation field on γ, x(t) = ∂sγ̄|s=0 belongs to TF . Then the index form on a geodesic γ is

I(x, x) =

∫ b

a

(
‖ẋ − 〈γ̇,X〉 x‖2 − K̃ν(γ̇, x) ‖x‖2

)
dt + 〈γ̇,X〉‖x‖2

∣∣∣b
a . (2.2)

Proof. It is known that for a Riemannian foliation, a geodesic started orthogonally to a leaf remains to be
orthogonal to the leaves. Thus, the proof is similar to the proof of [11, Proposition 5.1].

The next lemma concerns the geometry of subspaces in Euclidean vector space.

Lemma 2.2 (see [4]). Let V1, V2 are subspaces in Rl, dim V1 = dim V2. Then there exist orthonormal bases
{ai} ⊂ V1, {bi} ⊂ V2 (which correspond to extremal values of angle between given subspaces) with the property
ai⊥ b j (i , j).
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Let diamF be the maximal distance between the leaves of a foliation F of (M, 1,X).

Theorem 2.1. Let (Mn+ν, 1,X) be endowed with a Riemannian foliation F ν (TF = D̃) with compact leaves of the
second fundamental form h. If CD>(c,N , q) holds for someN > ν, c > 0 and 1 6 q 6 ν, then

(diamF )2 6
2 q‖X⊥‖

c + q‖X⊥‖2
+

{ 2q
c ‖h‖ + π2

4 if ν 6 n − 1,
2q
c ‖h‖ + (q−ν+n−1)π

2

4c if n−1 < ν < n+q−1,
2q
c ‖h‖ if ν > n + q − 1.

Proof. Consider two leaves L1,L2 with distance l = dist (L1,L2), which is reached at points m1 ∈ L1 and
m2 ∈ L2. The shortest geodesic γ(t) (0 6 t 6 1) with length l between m1,m2 is orthogonal to L1 and L2. Since
F is a Riemannian foliation, γ intersect the leaves orthogonally for all t ∈ (0, 1).

Assume the second case: n − 1 < ν < n − 1 + q (the other two cases are similar). Then the parallel
displacement of Tm1 L1 along γwill intersect Tm2 L2 by q′−dimensional subspace V2, where ν−n + 1 6 q′ < q.
The inverse image of V2 in Tm1 L1 we denote by V1. For small l, let Tm1 L1 = V1 ⊕ V′1 be the orthogonal
decomposition where the parallel image of V′1 is uniquely projected onto Tm2 L2 (denote its orthogonal
projection in Tm2 L2 by V′2). Let vectors e1, . . . , eq′ form an orthonormal basis of V1 and continue them to
parallel vector fields ē1, . . . , ēq′ along γ. Obviously, ē1(m2), . . . , ēq′ (m2) belong to V2. Let vectors a1, . . . , as
(where s = q − q′ = dim V′1) form an orthonormal basis of V′1 and vectors b1, . . . , bs form an orthonormal
basis of V′2, and continue them to parallel vector fields ā1, . . . , ās and b̄1, . . . , b̄s along γ. Consider the field of
parallel planes σi(t) along γ, spanned by vectors āi(t), b̄i(t). Assume, that {ai}, {bi} correspond to extremal
angles between V′1 and parallel image of V′2, see Lemma 2.2. Then σi(t)⊥ σ j(t) for i , j. We take the unit
vector b̃i(t) ∈ σi(t) such that 〈āi, b̃i(t)〉 = 0. One may choose bi and b̃i(t) with the properties 〈āi, b̄i〉 > 0
and 〈b̄i, b̃i(t)〉 > 0. Let us introduce the unit vector fields xi(t) = (cosθit) āi + (sinθit) b̃i(t) along γ, where
θi = arccos(āi, b̄i) ∈ [0, π2 ]. Note that 〈xi(t), x j(t)〉 = 0 (i , j), and 〈ẋi(t), xi(t)〉 = 0. We have q′ + s = q. Using
the 2nd variation of E of γ, (2.2), along xi(t) and ē j, we obtain

E
′′

xi
(0) = 〈h(bi, bi), γ̇(1)/l〉 − 〈h(ai, ai), γ̇(0)/l〉 + θ2

i

− l2
∫ 1

0

(
K̃
ν(γ̇, xi(t)) + 〈γ̇/l,X〉2

)
dt + 2〈γ̇/l,X〉 |10 > 0,

E
′′

ē j
(0) = 〈h(ē j, ē j), γ̇(1)/l〉 − 〈h(e j, e j), γ̇(0)/l〉

− l2
∫ 1

0

(
K̃
ν(γ̇, ē j) + 〈γ̇/l,X〉2

)
dt + 2〈γ̇/l,X〉 |10 > 0. (2.3)

Since s = q − q′ 6 q − ν + n − 1,
∑

i θ
2
i 6

π2

4 s, we have
∑q′

i=1 ‖〈h(bi, bi), γ̇(1)/l〉 − 〈h(ai, ai), γ̇(0)/l〉‖ 6 2q′‖h‖

and
∑s

j=1 ‖〈h(ē j, ē j), γ̇(1)/l〉 − 〈h(e j, e j), γ̇(0)/l〉‖ 6 2s ‖h‖. By (1.4) and condition N > ν, we get R̃ic
ν

q(γ̇,W) > c

for W spanned by xi(t) and ē j; hence,
∑q′

i=1 K̃
ν(γ̇, xi(t)) +

∑q−q′

j=1 K̃
ν(γ̇, ē j) > c. Then by (2.3), l2(c + q‖X⊥‖2) 6

2q‖h‖ + (q − ν + n − 1)π2/4 + 2q ‖X⊥‖.

By the third case of Theorem 2.1 we have the following.

Corollary 2.1. Let (Mn+ν, 1) be endowed with a compact totally geodesic foliation F ν and a vector field X tangent to

the leaves. If condition R̃ic
N

q > 0 is satisfied for someN > ν and 1 6 q 6 ν, then ν < n + q − 1.

3. Around the weighted mixed scalar curvature

Define tensors for one of distributions, D̃; similar tensors for D are defined using ˜ notation. Let T, h :
D̃×D̃ → D be the integrability tensor and the 2nd fundamental form of D̃, T(u, v) := (1/2) [u, v]⊥, h(u, v) :=
(1/2) (∇uv +∇vu)⊥. The mean curvature vector of D̃ is H = Tr1 h. A distribution D̃ is called totally umbilical,
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harmonic, or totally geodesic, if h = 1
ν H · 1>, H = 0 or h = 0, respectively. The shape operator A of D̃

and the operator T] are 〈AZ u, v〉 = 〈h(u>, v>),w⊥〉 and 1(T]w u, v) = 〈T(u>, v>),w⊥〉. The local adapted
orthonormal frame {Ea, Ei}, where {Ea} ⊂ D̃, always exists on M. We use inner products of tensors, e.g.
‖h‖2 =

∑
i, j ‖h(Ei,E j)‖2 and ‖T‖2 =

∑
i, j ‖T(Ei,E j‖

2.

3.1. Integral formulas

Integral formulae for foliations relate extrinsic geometry of the leaves with curvature and provide ob-
structions for existence of foliations with given geometry. In Section 3.1, we consider singular distributions,
that is those defined outside a ”singularity set” Σ, a finite union of pairwise disjoint closed submanifolds of
codimension > k under assumption that improper integrals

∫
M ‖ξ‖

s dVg converge for suitable vector fields
ξ defined on M r Σ.

Lemma 3.1 (see [10]). If (k − 1)(s − 1) > 1 and ξ is a vector field on M r Σ such that ‖ξ‖ ∈ Ls(M, 1) then∫
M(div ξ) dVg = 0 holds.

The divergence of the vector field H + H̃ on a Riemannian almost product manifold was calculated
explicitly in [9]:

div(H + H̃) = Smix − ‖T‖2 − ‖T̃‖2 + ‖h‖2 + ‖h̃‖2 − ‖H‖ − ‖H̃‖2. (3.1)

TheD-divergence of a vector field ξ is given by div⊥ ξ =
∑

i〈∇i ξ,Ei〉, and we have

div⊥(ξ⊥) = div(ξ⊥) + 〈ξ, H〉, div>(ξ>) = div(ξ>) + 〈ξ, H̃〉. (3.2)

By (3.1) and using div H̃ = div> H̃ − ‖H̃‖2 and div H = div⊥H − ‖H‖2, we get

div> H̃ + div⊥H = Smix + ‖h̃‖2 + ‖h‖2 − ‖T̃‖2 − ‖T‖2. (3.3)

Next propositions are based on (3.1) and (3.3) and extend results in [9].

Proposition 3.1. Let (M, 1) be a closed Riemannian manifold endowed with complementary orthogonal distributions
D̃ andD defined on MrΣ with codim Σ > k, and a vector field X such that ‖ξ‖1 ∈ Ls(M, 1), where ξ = H̃ + H + 1

2 X
and (k − 1)(s − 1) > 1. Then for all N,N , 0 the following integral formula holds:∫

M

{
S

N,N
−‖T‖2−‖T̃‖2+‖h‖2+‖h̃‖2−‖H‖2 − ‖H̃‖2−

‖X>‖2

2N
−
‖X⊥‖2

2N

}
dVg = 0.

Proof. This follows from (3.1), (1.5) and Lemma 3.1.

We say that (M′, 1′) is a leaf of a distribution D̃ on (M, 1) if M′ is a submanifold of M with induced metric
1′ and TmM′ = D̃m for any m ∈M′.

Proposition 3.2. Let (M, 1) be a closed Riemannian manifold endowed with complementary orthogonal distributions
D̃ and D with div⊥H = 0, defined on M r Σ with codim Σ > k, and a vector field X ∈ X> such that ‖ξ |M′‖1 ∈
Ls(M′, 1′) for all leaves (M′, 1′) of D̃, where ξ = H̃ + 1

2 X and (k − 1)(s − 1) > 1. Then for all N , 0 andN ∈ R the
following integral formula holds:∫

M′

{
S

N,N
− ‖T̃‖2 + ‖h‖2 + ‖h̃‖2 +

1
2
〈X, H̃〉 −

1
2N
‖X‖2

}
dVg′ = 0.

Proof. This follows from (3.3), (1.5) and Lemma 3.1.
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3.2. Splitting of almost product manifolds
Applying S.T.Yau version of Stokes’ theorem on a complete open (M, 1) yields the following.

Lemma 3.2 (see Proposition 1 in [1]). Let (M, 1) be a complete open Riemannian manifold endowed with a vector
field ξ such that div ξ > 0. If the norm ‖ξ‖1 ∈ L1(M, 1) then div ξ ≡ 0.

In Section 3.2 we extend some splitting theorems [4, 8] to the case of almost product manifolds of nonneg-
ative/nonpositive weighted mixed scalar curvature.

In next two theorems we consider harmonic distributions with SN,N > 0.

Theorem 3.1. Let (M, 1) be a complete open (or closed) Riemannian manifold endowed with complementary orthogo-
nal integrable distributions (D̃,D) and a vector field X ∈ X> obeying conditions 〈X, H̃〉 = 0 and ‖X |M′‖1′ ∈ L1(M′, 1′)
for all leaves (M′, 1′) of D̃. Suppose that D̃ is harmonic and SN,N > 0 for some N < 0 andN , 0. Then X = 0 and
M splits.

Proof. By conditions and (1.5), (3.2) and (3.3), we have

div>( H̃ +
1
2

X) = SN,N + ‖h̃‖2 + ‖h‖2 −
1

2N
‖X‖2.

By Lemma 3.2 for each leaf, div>(H̃ + 1
2 X) = 0 when SN,N > 0 and N < 0; thus, h = 0 = h̃ and X = 0. By de

Rham decomposition theorem, (M, 1) splits.

Corollary 3.1. Let (M, 1,X) be endowed with two complementary orthogonal integrable distributions (D̃,D) and a
vector field X ∈ X>. Suppose thatD is harmonic. Then D̃ has no compact harmonic leaves M′ with positive SN,N

|M′

for some N < 0 andN , 0.

Theorem 3.2. Let (M, 1) be a closed or a complete open Riemannian manifold endowed with complementary orthog-
onal harmonic foliations and a vector field X such that ‖X‖1∈L1(M, 1). If SN,N > 0 for some N,N<0 then X = 0 and
M splits.

Proof. Under conditions, from (3.1) we obtain

1
2

div X = SN,N + ‖h̃‖2 + ‖h‖2 −
1

2N
‖X>‖2 −

1
2N
‖X⊥‖2.

By Lemma 3.2, we get div X = 0 when SN,N > 0 and N,N < 0. Thus, h = 0 = h̃ and X = 0. By de Rham
decomposition theorem, (M, 1) splits.

IfD is totally umbilical then ‖h̃‖2 − ‖H̃‖2 = − n−1
n ‖H̃‖

2, and similarly, for D̃.

Theorem 3.3. Let (M, 1) be a closed (or a complete open) Riemannian manifold endowed with complementary
orthogonal totally umbilical distributions D̃ and D and a vector field X obeying ‖ξ|M‖1∈L1(M, 1), where ξ =

H̃ + H + 1
2 X. Suppose that SN,N 6 0 for some N,N > 0. Then X = 0 and M splits.

Proof. Under conditions, from (3.1) we get

div ξ = SN,N
− ‖T‖2−‖T̃‖2−

n − 1
n
‖H̃‖2−

ν − 1
ν
‖H‖2 −

1
2N
‖X>‖2 −

1
2N
‖X⊥‖2.

From this and Lemma 3.2 and since SN,N 6 0 for N,N > 0, we get div ξ = 0. Thus T, T̃,H, H̃ and X vanish.
By de Rham theorem, (M, 1) splits.
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4. The Toponogov conjecture

Much is known about foliations with Kmix = const. Examples are 1) k-nullity foliations on manifolds
with degenerate curvature tensor (the certain metrics are called partially hyperbolic, parabolic or elliptic);
2) relative nullity foliations of curvature-invariant submanifolds M (e.g. of space forms). Submanifolds with
positive relative nullity index µ(M) = dim ker h(m) (introduced by Chern and Kuiper) have a structure of
ruled developable submanifolds.

The proof of Ferus’s result (mentioned in the Introduction) is based on analysis of the matrix Riccati
equation Ḃγ̇ + (Bγ̇)2 + Rγ̇ = 0 on a leaf geodesic γ, where Bx = B(x, ·) for short, and the co-nullity tensor
B(x, y) = −(∇y x)⊥ (x ∈ TF , y ∈ T⊥F ) of F . In the paper we define weighted modification of the co-nullity
tensor of a totally geodesic foliated manifold (M, 1) equipped with a vector field X,

Bx = Bx − 〈X/n, x〉 id⊥ .

The following ”weighted” Riccati equation holds along leaf geodesics:

Ḃγ̇ + (Bγ̇)2 + 2 〈X/n, γ̇〉Bγ̇ + Rγ̇ = 0. (4.1)

Next theorem and corollary with constant Rx > 0 generalize Ferus’s results [3].

Theorem 4.1. Let (Mn+ν, 1,X) be endowed with a totally geodesic foliationF ν. Suppose that there exist k = const >
0 and a point m ∈M such that Rγ̇ = k id⊥ holds along any leaf geodesic γ : [0, π/

√
k]→M with γ(0) = m, and

〈X/n, γ̇〉2 6 k. (4.2)

Then ν < ρ(n).

Proof. Assume the contrary, then there are unit vectors x ∈ TmF and y ∈ T⊥mF and λ0 6 0 such that
Bx y = λ0y for a geodesic γ(t) with initial velocity γ̇(0) = x. Let ȳ(t) (ȳ(0) = y) be a parallel vector field along
γ. The eigenvectors of the solution Bγ̇ of (4.1) with Rγ̇ = k id⊥ do not depend on t. Then Bγ̇ ȳ(t) = λ(t) ȳ(t)
for certain eigenfunction λ(t), which satisfies the scalar Riccati equation

λ̇ + λ2 + 2λ 〈X/n, γ̇〉 + k = 0. (4.3)

By (4.2), solution λ(t) of (4.3) cannot be extended to [0, π/
√

k], a contradiction.

The relative nullity space of the second fundamental form h of a submanifold M ⊂ M̄ at m ∈ M is ker h(m) =
{x ∈ TmM : h(x, y) = 0 for all y ∈ TmM}. A submanifold M ⊂ M̄ is curvature-invariant if the curvature
tensor of M̄ obeys (R̄x,y z)⊥ = 0, (x, y, z ∈ TM). Such submanifold with positive index of relative nullity
µ(M) = min

m∈M
dim ker h(m) has a ruled developable structure.

The extrinsic qth Ricci curvature is defined by

Ricq
h(x0, x1, . . . , xq) =

∑q

i=1

(
〈h(x0, x0), h(xi, xi)〉 − 〈h(x0, xi), h(x0, xi)〉

)
.

For q = 1 it is called an extrinsic sectional curvature.

Corollary 4.1 (for X = 0 see [4]). Let Mn be a complete curvature-invariant submanifold in (M̄n+p, 1̄,X). Suppose
that there exists real k > 0 such that along any geodesic γ : R → M starting at γ̇(0) ∈ ker h, the weighted Jacobi
operator of M̄ obeys (4.2) and R̄γ̇ = k id⊥. Then M is a totally geodesic submanifold if any of the requirements a), b)
are satisfied:

a) µ(M) > ν(n) := max{t : t < ρ(n − t)}, b) Ricq
h 6 0 and 2p < n − ν(n) − q + δ1q.
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In [4], we studied Toponogov’s conjecture for a foliation given near a complete leaf: the necessity of
additional assumptions in local case was shown, while the conjecture was confirmed for ruled submanifolds
of spherical space forms. For foliated Riemannian manifolds, our geometric construction is based on
estimates of the length and the volume of associated Jacobi field of ”extremal geodesics”, and it examines
conditions when co-nullity tensor of a foliation has no real eigenvectors, providing ν < ρ(n). Here we
extend the above methods to study the Toponogov type conjecture. A smooth (1, 1)-tensor field Y(t) :
T⊥γ(t)F → T⊥γ(t)F on a leaf geodesic γ is called a Jacobi tensor if it satisfies the equation Ÿ + R γ̇Y = 0, and
ker Y(t) ∩ ker Y′(t) = {0} for all t; hence, the action of Y on linearly independent parallel sections of T⊥γF
gives rise to linearly independent Jacobi vector fields. We have B γ̇ = ẎY−1. A solution y(t) ⊂ T⊥γ(t)F of the

equation ÿ + Rγ̇ y = 0 with constant operator R γ̇ = k id⊥ > 0 is y(t) = y(0) cos(
√

k t) +
y′(0)
√

k
sin(
√

k t). If y(0)
and y′(0) are linearly independent, then y(t) parameterizes an ellipse in the plane y(0) ∧ y′(0), and the area
of the parallelogram y(t) ∧ y′(t) is constant.

Lemma 4.1 (see [4]). Let a solution y(t) ⊂ Rn of the Jacobi ODE

ÿ + R(t)y = 0 (0 6 t 6 π/
√

k), (4.4)

be written in the form y(t) = ȳ(t) + u(t), where ȳ(t) = y(0) cos(
√

k t) +
y′(0)
√

k
sin(
√

k t) and the norm ‖R(t) − k id ‖ 6
ε1 < k/2. Then

‖u(t)‖ 6
ε1

k − (1 − cos(
√

k t)) ε1

∫ t

0

√

k |ȳ(s)| sin(
√

k (t − s)) ds .

The turbulence of a leaf L of a totally geodesic foliation is the rotational component of the co-nullity tensor,
see [4],

a(L) = sup{〈Bx(y), z〉 : x ∈ TL, y, z ∈ TL⊥, y⊥ z, ‖x‖ = ‖y‖ = ‖z‖ = 1}.

If a(L) = 0 for all leaves then T⊥F is tangent to a totally umbilical foliation.

Theorem 4.2 (Local). Let F ν be a totally geodesic foliation of (Mn+ν, 1,X), and there exists a point m ∈M such that
along any leaf geodesic γ : [0, π/

√
k]→ L (γ(0) = m) we have (4.2) and

0 < k1 id⊥ 6 Rγ̇ 6 k2 id⊥, (4.5)

(k2 − k1 + 2 ε) max{a(L)2, k} 6 0.3 k(k2 + ε), (4.6)

where k = (k1 + k2)/2 and ε := ‖〈∇γ̇(X/n), γ̇〉 + 〈X/n, γ̇〉2‖ < k1. Then ν < ρ(n).

Proof. Notice that ε = 0 is provided by X> = 0. It is sufficient to show that linear operators Bx : T⊥mF →
T⊥mF , (x , 0), have no real eigenvalues. Suppose the opposite, i.e., there exist unit vectors x0 ∈ TmF , y0 ∈

T⊥mF and λ 6 0 with the property Bx0 (y0) = λy0. Let γ(t) : [0, π/
√

k]→ M, γ̇(0) = x0 be a leaf geodesic, and
y(t) : γ→ T⊥γF a Jacobi vector field on γ through the vector y0. Hence (4.4) holds with ‖R(t)−k id ‖ 6 k2−k1

2 +ε,
see (1.6), where ẏ = ∇γ̇ y and ÿ = ∇γ̇∇γ̇ y.

The Jacobi vector field y(t) may be written in a form y(t) = (cos(
√

k t) + (λ/
√

k) sin(
√

k t))y0 + u(t), where
u(0) = u′(0) = 0. (For k2 = k1, we have u(t) = 0, hence y(t) vanishes at t0 = arcctg(−λ/

√
k)/
√

k. This
contradiction completes the alternative proof of Theorem 4.1). We show for (4.5) and k1 − ε > 0.582(k2 + ε),
that the function |y(t)| – the length of the Jacobi vector field y(t) – has a local minimum at tm in the interval
(0, π/

√
k).

Our second observation is that the function V(t) – the area of a parallelogram, whose sides are the vectors
y(t) and y′(t), varies ”slowly” along a geodesic γ. (This function is constant when k2 = k1.) By Lemma 4.1
and (4.6), these will yield a contradiction, because V(t) cannot increase from zero value V(0) to a ”large”
value V(tm) on a given interval with length tm < π/

√
k. The rest of proof repeats the steps 2-4 in the proof

of Theorem 4.10, case (a) in [4] with ε of different sense.
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Theorem 4.3 (Decomposition). Let F ν be a compact totally geodesic foliation of (Mn+ν, 1,X). Suppose that (4.2)
and the following hold:

0 6 k1 id⊥ 6 Rx 6 k2 id⊥ (x ∈ TF , ‖x‖ = 1),

(k2 − k1 + 2 ε) ·max{a(L)2, k} 6 0.3 (k2 + ε) k, (4.7)

where L is some leaf, k = 1
2 (k1 + k2) and ε :=

∥∥∥ 〈∇x(X/n), x〉 + 〈X/n, x〉2
∥∥∥ < k1. If ν > ρ(n) then k1 = k2 = 0 and M

splits along F .

Proof. By the proof of Theorem 4.2, we get Kmix = 0. Hence, our compact totally geodesic foliation splits,
see [4, Lemma 4.14].

Theorem 4.2 (with Rx > 0) generalizes [4, Theorem 4.10] when X = 0. Theorem 4.3 (with Rx > 0)
generalizes [4, Theorem 4.16] when X = 0. Theorems 4.2 and 4.3 are not true without conditions (4.6) and
(4.7), but their coefficient 0.3 is obtained by the method for proving and can presumably be increased.
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