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The Weighted Particle Method for
Convection-Diffusion Equations

Part 1: The Case of an Isotropie Viscosity

By P. Degond and S. Mas-Gallic

Abstract. The aim of this paper is to present and study a particle method for convec-
tion-diffusion equations based on the approximation of diffusion operators by integral
operators and the use of a particle method to solve integro-differential equations de-
scribed previously by the second author. The first part of the paper is concerned with
isotropic diffusion operators, whereas the second part will consider the general case of a
nonconstant matrix of diffusion. In the former case, the approximation of the diffusion
operator is much simpler than in the general case. Furthermore, we get two possibilities
of approximations, depending on whether or not the integral operator is positive.

1. Introduction. The particle method was first introduced to compute the
flow of homogeneous incompressible and inviscid fluids (see Leonard [2]). In such
a method the fluid is represented by pointwise vortices which travel with the fluid
velocity. In the case of a viscous fluid, the particle method must take into account
the diffusion effects. If the fluid is only slightly viscous, most of the classical methods
become unstable and lead to unreliable results; it then seems useful to construct
particle methods which are capable to treat diffusion terms. Applications of such
methods can be found in fluid dynamics (e.g., the incompressible Navier-Stokes
equation) and in the kinetic theory of plasma physics (e.g., the Fokker-Planck
equation).

The random walk method gave a first answer to this problem. This method,
which has numerous variants, is based on the introduction of a Monte-Carlo tech-
nique to add a probabilistic part to the motion of the particles. This method,
introduced by Chorin [3], has been applied in various cases by Roberts [4] and
Spalart [5] for example (see also the book of Duderstadt and Martin [6] and the
references therein). The method which was proposed by Cottet, Huberson and
Mas-Gallic in [7], [8] and [9] is based on a viscous splitting of the equation as
studied by Beale and Majda in [10] and on the use of the Green kernel to obtain
an exact treatment of the diffusion equation. This method is valid in the case of
a small viscosity coefficient and relies on the use of the Gaussian function, which
may lead to an exaggerated cost; the one proposed here presents several advantages
with respect to the splitting method. The first advantage is the possibility of using
other functions than the Gaussian, rational fractions for example; other advantages
are its conservation property and the possibility of considering nonsmall or non-
constant viscous coefficients. Furthermore, the proof of convergence of the method
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486 P. DEGOND AND S. MAS-GALLIC

is simpler in the present case. An alternate method inspired by the work of Gin-
gold and Monaghan [11] was studied in [12] and, by the choice of a suitable cutoff
function (see Section 5), can be viewed as a particular case of the present method.
In this paper, we give a detailed presentation together with some extensions of a
method first sketched in [13]. Finally, let us mention that another deterministic
particle method, which can be viewed as a compromise between the Monte-Carlo
method and the viscous splitting method, can be found in [21].

The basic idea of the present method is very different from the one used in the
random walk method. In addition to its position and its volume, a third degree
of freedom, called the strength, is associated with each particle. As usual, the
time evolution of both the position and the volume of the particle is governed by
the convective part of the equation, while the time evolution of the strength is
governed by the diffusion part of the equation. A comparison of this method with
the random walk method has been made by Choquin and Lucquin-Desreux in [14].
The acceleration technique introduced by Beale in [15] is also used. Other numerical
experiments have been done, see [16], [17] and [18].

In Part 1 of this paper we shall restrict ourselves to the case of a scalar diffusion
operator, whereas in Part 2 the general case of a diffusion matrix will be treated,
and different kinds of approximations will be studied. We must mention that in
[19] a first attempt to discretize a matrix of diffusion was studied. Some comments
on this method are given in Part 2.

From now on, given a vector field a: (x,t) E R™ x R —> a(x,t) E R™, a function
a0: (x,t) E R" x R -» a0(x,t) E R and a viscosity coefficient b: (x,t) E Un x R -»
b(x, t) E R+, we shall focus our attention on the resolution of the following equation

(1.1) ^+div(a/)+ao/-^div(6grad/)=0    in Rn x (0,T)

with the initial condition
/(•,0) = /o    onR".

We assume that a, ao and b are sufficiently smooth. We denote by D the diffusion
operator

(1.2) D(í)/ = div(6(-,í)grad/),

(1.3) bEL°°(QT)

withQT = Rn x (0,T).
The method consists in first replacing the diffusion operator by an integral op-

erator and then solving the integro-differential equation by a now classical particle
method. Let e > 0 be a real number and a£ : (x, y, t) E R" x Rn x [0, T] -* a£(x, y, t)
be a function depending on the parameter e such that

ae E L°°((0,T) x R£; J,1^)) nL°°((0,T) x R^L^RJJ));

the integral operator is defined for / E L°°(R") by

(1.4) Q£(t)f(x)= [   (a*(x,y,t)f(y)-o-t(y,x,t)f(x))dy.
jRn
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If a£ satisfies some moment conditions, the operator Qe(i) is an approximation of
D(t), and the solution of

(15) (^-rdw(af) + aof-vQ£(t)f = 0   inR"x(0,T),

l/(-,0) = /o    onR"
is an approximation to the solution of (1.1).

Now, Eq. (1.5) is solved by a particle method, which means that the exact
solution is approximated by a combination of Dirac measures, the particles, the
positions of which evolve in time. Let a quadrature rule be given by a set of indices
J*" C Zn, points x% E Rn and weights w£ > 0, for k E J. The points x\ are tne
locations of the particles and the weights u° are the volumes of the particles.

From now on we assume that a e (L°°(0, T;Lip(Rn)))™. Then, we define trav-
elling particles which follow the integral curves of the vector field a by setting
Xk(t) = X(t;x®,0), which is the solution of

(d£(t) = a(X(t),t),
-   T°

Xi

(1.6)
I X(0) - ,k.

We denote by J(t; £, s) the Jacobian determinant of the change of variable £ —>
X(t;£,, s), and we set ujk(t) = J(i;x^,0)w^. Then, using the location and the
volume of the particles respectively as nodes and weights, we obtain a quadrature
formula

/    g(x)dx~ Y^ uk(t)g(xk(t)).

From the definition of Qs(t) and the above quadrature formula, we derive the
definition of a discrete version Qeh(t) of the operator Cf,

(1-7) Qi(t)9= ^2LJ1(t)(ae(x,xl(t),t)g(xl(t)) - ^(x^t)^,^!)).
l€J?

This operator maps C,0(Rra)nLoo(Rn) into L°°(R") and the particle method consists
in looking for a measure fn of the form

(1.8) fh(t)= ^wfcWAWÄfr-ztW)-
kejr

The coefficients fk(t) are solutions of ordinary differential equations obtained thanks
to an analogue of (1.7). The method consists in solving the following system, which
gives the positions, the volumes and the strengths of the particles:

dxfc

(1.9)

dt (t) = a(xk(t),t),

— (t) = dwa(xk(t),t)ujk(t),

dh
dt (t) + (div a(xk(t), t) + a0(xk(t), t))fk(t)

= ve-2 ^wjífK^OrfcW.ziíO.O/iW - a£(xi(t),xk(t),t)fk(t)},
l€J?

Xk(0) - r°— xfci Wfc(0)-,.,ow*:• /t(0) = fo(x°k).
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The equations satisfied by the positions and the volumes are classical, which is not
the case for the ordinary differential equation which gives the strengths.

When computing the flow of a slightly viscous incompressible fluid, a great ad-
vantage of this method is that it enables computations for high Reynolds numbers.
On the other hand, in the general case, in order to derive L°° estimates which do
not depend on e, we shall need to impose a lower bound on e which depends on the
viscosity v. In fact, for any fixed positive number Ca, if the following inequality
is satisfied by the viscosity u and the scaling parameter e (see the beginning of
Section 2)

(1.10) v < Cse2,

the integro-differential equation (1.5) is stable in L°° with respect to the initial con-
dition, and so is the numerical scheme. This condition ensures that the numerical
viscosity e2 is not too small compared to the physical viscosity v. As shown in Part
2, this method may be generalized to the case of a nonscalar diffusion operator.

On the other hand, if the viscosity is constant (b = 1), choosing a nonnega-
tive kernel a assures the stability of the method without assuming that condition
(1.10) is verified. In that particular case, the integral operator is positive and the
integro-differential equation, as well as the numerical scheme, possesses a maximum
principle property. In that case, we obtain L°° estimates which do not depend on
the norm of the kernel, and thus which do not depend on e. Choosing a positive
cutoff function may also be interesting in the study of stationary solutions, since
the solution of Eq. (1.5) and the regularized solution of the scheme have the same
asymptotic time behavior as the solution of (1.1).

The paper is organized as follows. In Section 2, by means of Taylor expansions,
we prove the convergence of the integral operator Q£ towards the diffusion operator
D. We study the convergence of the solution of problem (1.5) towards the solution
of (1.1). For this, we need stability results for both Eqs. (1.1) and (1.5). Section 3
is devoted to the study of the particle method. We establish the stability and the
convergence of the method in L°°. In Section 4, the case of a constant viscosity
is emphasized, and we assume that the kernel is nonnegative. First we prove that
the integral operator is positive and establish a stability property of the integro-
differential equation; we derive L°° estimates and we prove the L°° stability of the
scheme with the same kind of arguments. Finally, in Section 5, some examples of
kernels are given and some comments are made on the time-discretized algorithm.

Let us now introduce some notations. By Lip(Rn) we denote the space of Lip-
schitz continuous functions on R" and by Cq (Rn) the space of compactly supported
continuous functions. As usual, Wk'°°(Rn) is the classical Sobolev space provided
with the classical seminorm and norm

|o|fc,oo =   sup ess   \dag(x)\,        \\g\\k,oo =   sup   \g\Pi0O-
|a|=fc,x6R" 0<p<fc

By C, C,... we shall denote positive constants which do not depend on the dis-
cretization parameters to be introduced.    We shall use the following standard
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notation: for x = (xi,..., xn) E Rn and a = (t*i,..., an) E Nn, we set

0\<*\fdaf =
dx^ ■ ■ ■ dx^n '
n n n

i" = f[i-'.    \a\ = ̂ 2ai,    a! = J|a¿!,        a + ß = (q¿ + /?¿)i<¿<„.
t=l 7=1 7=1

The canonical basis of R™ will be denoted by (ei,..., e„).
Let /cZ"; the space l°°(^f) is the space of bounded sequences provided with

its usual norm: for g = (g¡)i€jr in l°°(^f),

(1.11) ||g||oo = sup |éTí] < +00.

By 5n_1 we denote the unit sphere of R™ and by measS"-1 the total mass of its
measure.

From now on we shall assume that the kernel a is symmetric. This condition
is not required for the subsequent analysis, at least in Sections 2 and 3, but the
interest in considering nonsymmetric kernels seems to be rather academic.

2. Approximation of the Convection-Diffusion Equation by an Integro-
Differential Equation. If the kernel o~E satisfies some moment conditions, we shall
prove that the integro-differential equation is an approximation of the convection
diffusion equation. This kind of result is to be compared with the classical plasma
physics approximation of the Boltzmann equation by the Fokker-Planck equation.
This approximation is called small angles collision approximation and occurs in the
case of collisional plasmas in which the collisions are elastic.

Let us fix a constant Ca > 0; we shall assume in the remainder of this section
that the parameter e satisfies the stability inequality (1.10). Moreover, we assume
that the kernel oe has the following form:

(2.1) oe(x, y, t) = -^p(x, y, t)n£(x - y),

where
(2 2) r//eL°°(R"xR"x[0,T]),

I p(x,y, t) = n(y,x, t)    for any x,yERn,tE (0,T),

*w = hv (f ) '
r¡eL1(Rn),

n(—x) = n(x)    for any x E R".

The time dependence of the functions will be omitted in the next proposition,
since t is only a parameter.

PROPOSITION l.   Assume that the function n satisfies the moment conditions

VQ€N",a^2e¿,l< |a| <r + l,

(2.3)

(2.4) /   x"r,(x)dx=i0,
Jr" I 2,     if a = 2et,i E {!,...,nj,

(2.5) /   Mr+2|r/(x)|
Jr"

dx < +00.
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Assume also that p E L°°(Rn, Wr+1<°°(R%)) and is such that

(2.6) p(x,x) = b(x)

for any x ERn. Then there exists a constant C > 0 such that

(2-7) \\Dg-Qeg\\o,oo<Cer\\g\\r+2,oo,

for any function g E Wr+2'°°(Rn).

Proof. Using a Taylor expansion of g with integral remainder, and applying it in
(1.4), we obtain

Qtg(x)=e-2\  £ -}dag(x) f   (y - x)a^(x,y)dy

(2.8) + C + 2)    £    h.lo{l-dy+l
\a\=r+2

x ¡^ dag(x + 9(y - x))(y - x)aae(x,y) dydo\.

Expanding p by Taylor's formula and substituting it in (2.8), we can write

r+l
(2.9) Qeg(x)=Y,Q£mg(x) + Reg(x),

771=1

where Qem is a differential operator of order m and R£ is the remainder. Setting

Zl= f   (y-x)ari£(x-y)dy,
Jr"

we have
] Í r+l-\a\

Q*mg(x) = e-2  £   ^d°g(x)lp(x,x)Z*a+    £    j^yp(x,x)Z£a+ß
\a\=m     - [ \ß\ = l

and
(  r+l

[\a\ = l \ß\=r + 2-\a\H-

x i   i   (l-r)r+1-¡alVe(x -y)d^p(x,x + r(y - x))(y - x)a+0 dydr
Jo Jr"

+ (r + 2)    £    -, i' i  (l-ey+1dag(x + 9(y-x))

xn£(x- y)p(x, y)(y - x)a dy d9

The moment conditions (2.4) give

e      JO,        VaeNn,a^2e,-,l < |o| <r+l,
a_l2cT2,    ifa = 2e,,ie{l,...,Ti}.
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As a consequence of the symmetry of p and relation (2.6), we have

dp 1 db
dy-{X'X) = -2dx-{X)-

Finally, thanks to the conditions (2.4), we find

!0, if m = 0or 3 <m < r + l,
b(x)Ag(x), if m = 2,
Vo(x) ■ Vb(x),    ifm = l,

and

(2.11) \R£g(x)\ < C7c-r||?7||o,i||/i||L°o(R;ilvr-n,oo(R„))||o||i.+2,co-

Combining (2.9), (2.10) and (2.11) leads to the desired result.    D
Remarks. 1. From the definition of Rs it is easy to check that arguing as

previously, the following inequality is true for any function g E Wr+2'p(Rn):

H-R^llo.p < CcTr||r7l|o,i||/íllL<x>(R;,ivr+'>°°(Rj))||0||r+2,p-
Then concluding that inequality (2.7) also holds in any U is straightforward,

(2.12) \\Dg-Qeg\\o,v<Cer\\g\\r+2,P.

2. If the function 77 is not even or the function p is not symmetric (one has to
consider the operator Qe in the form (1-4)), an analogous result can be obtained,
assuming that p E L°°(R£, Wr+2<°°(R%)) n L°°(R%, Wr+2'°°{R^)) and that

(2.13) 0(x,x) = g(x,x).

A Taylor expansion of the function p up to order r + 2 must be used to derive this
result.    D

The following classical result is mainly based on the maximum principle property
of parabolic equations. Since we are interested in slightly viscous problems, from
now on we shall assume that v < 1.

PROPOSITION 2. Assume that a E (Loo(0,T;W1'°°(Rn)))n, b E L°°(QT) and
a0 E L°°(QT). if fo E L°°(Rn), problem (1.1) has a unique solution f in L°°(QT)
and

(2.14) ||/(-J)llo,oo<exp(T||diva + a0||o,oc)||/o||o,oo.

If moreover a E (Loo(0,T;Wm+1'oo(Rn)))n, b, a0 E Loo(0,T;Wm'oo(Rn)) and

fo E Wm'°°(Rn), the solution belongs to L°°(0,T;Wm>°°(Rn)) and there exists a
constant C = C(T, an, a, V6) > 0 such that

(2.15) ||/(-,í)||m,oc<C||/o||m,cx>, 0 < f < T.

Let us point out that in inequality (2.15) the constant may depend on v if b is
not constant. Nevertheless, the assumption that v < 1, ensures that the growth of
the solution remains bounded independently of v.

We now present a stability result for integro-differential equations which will
be useful when comparing the solutions of problem (1.1) and (1.5). Although this
result is classical, we need a precise bound, and so give a proof.
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(2 16) í ^ + div(a/) + a0/-^Q(i)/ = 0   inR"x(0,T),

where

Consider the following problem

-jt + div(a/) + at

f(;0) = fo    onR",

(2.17) Q(t)f(x) = i   (a(x, y, t)f(y) - a(y, x, t)f(x)) dy.
Jr*

We assume that

(2.18) /    a(x,y,t)dy=        a(y,x,t)dy,
Jr" Jr"

which ensures that 1 E Ker Q and

(2.19) aEL°°(R^ x (0,T);L\R^)) n L°°(R" x (0,T);L1(R^)).

We set

(2.20) K(t)f(x)= f   a(x,y,t)f(y)dy
jRn

and

(2.21) X(x,t)= I    a(y,x,t)dy,
Jr"

so that Q(t)f = K(t)f — Xf. The operators K and Q map L°° into itself and we
have

(2-22) ll*Wllo,oo < ||tf|| ||/||o,oo,
where

(2.23) ||Ä-||=   sup    /   \a(x,y,t)\dy.
x€R"   JR"

t€(0,T)

The following proposition states a stability result which depends obviously on
the norm of the kernel.

PROPOSITION 3.   Assume that a E (L°°(0,T; W1'°°(Rn)))n and a0 EL°°(QT).
If fo E L°°(Rn), problem (2.16) has a unique solution f in L°°(Qt) and

(2.24) ||/(-,Ollo,oo < ||/o||o,ooexp(T{||a0 -r-diva + i/AHo.oo + 2i/||-K"||}).

Let m be an integer. Assume now that a = o~€ is given by (2.1) with p and r¡
satisfying the hypotheses of Proposition 1,

nEWm'l(Rn)    and   p E L°°((0,T); Wm'°°(R^ x R£)).

Assume that a E Loo(0,T;Wrm+1'oo(Rn)), o0 E Loo(0,T;Wm'oo(Rn)). If f0 E
Wm'°°(Rn), the solution fe of problem (1.5) belongs to Loo(0,T;Wm'oo(Rn)) and

there exists a constant C = C(T,ao,a,p,n) > 0 such that

(2.25) ||/(-,í)IU,oo<^£-2||/o||m,oo-

Proof. We derive inequality (2.24) by a fixed point iteration technique. Let us
first remark that setting

a = \\a0 + diva + i/A||0,oo + ^11*11!
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the function g = fe~at is a solution of

(2.26) ^ + a • Va + b0g - vKg = 0,

where bo = an + div a + vX + a. We point out that

bo = 0,0 + diva + f A + ||an + diva + ̂ A||o,oo + "11*11 > "11*11 ^ 0.
Let / E L°°(Qt), and let $ be the mapping defined by g = $/, where g is the
solution of „

Í -^ + a • Vo + b0g = vKf,

U(-,0) = /n.
The mapping $ is explicitly given by

($f)(x,t) = fo(X(0;x,t))exp (- i bo(X(T;x,t),T)dr\
(2.27) t V   '/o t 7

+ v      (Kf)(X(r;x,t),T)exp(-      bQ(X((j;x,t),(j)do-\ dr,

where the functions X(r;x,t) have been defined by (1.6).   $ maps L°°(QT) into
itself, and

|(*/-**)(*, t)l
< "11/ — 9'||o,ooll-K"|| /   expí-/   60(^"(cr;a;,i),cr)dcTj dr.

Since 6o > "||*||, we have

"||*|| /   expí-/   0n(A^(cT;x-,í),cT)dcT) dr < 1,

which proves that $ is a contraction. Then, $ has a unique fixed point g* which is
the solution of (2.26) in L°°(QT) and the iterative sequence defined by
(2.28) gk+1 = V, g° = 0,

converges to g*. We verify easily that for any g E L°°(Qt)

(2.29) ||*fl||o,oo < ll/o||o,oo + (1 - exp(-I/||A'||T))||ff||o,oo.

Setting / = 1 - exp(-i/||iï||T) yields
i _ ;fc+l

||ff*+1||0,oo < ||/0||0,oo + /||aA:||0,oc < -TrT-||/0||0,oc,

and finally

(2.30) Hfflkoo^expHlAlirJU/ollcoo.
By construction, the function

/* = a* exp(i(||a0 + diva + vX\\0iOO + v\\K\\))

is the solution of problem (2.16), and inequality (2.30) leads to (2.24). Now, let us
consider the case where the kernel a is defined by (2.1):

a(x, y, t) = e~2p(x, y, t)n£(x - y).
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We have

(2.31) ||Ä"|| < Ce~2,

where the constant C depends on p and r\. Let a E Nn, \a\ > 1. Integrating by
parts, we easily verify that we can write

da(Q(t)f) = da(K(t)f) - da(Xf) = Q(t)(daf) + Ra(t)f,
where the operator Ra is a linear integro-differential operator such that

\\Ra(t)f\\o,oo < Ce"2||/i|||a|,œ||%||0,l||/|||a|-l,oo

< C'e~   ||/|||a|-l,ooi

where the constant C" depends on p and r). Formally differentiating the equation,
we get that the function daf is the solution of Eq. (2.16) with a right-hand side
term which contains the derivatives of / of lower order. The proof of the existence
of a solution in Loo(0,T;Wm'°°(Rn)) and of the estimate (2.25) then follows by
induction.    D

If, moreover, u and e satisfy inequality (1.10), we have

(2.32) ||/(-,Olkoo<CCa||/o|U,oo.
Let / and f£ be the respective solutions of (1.1) and (1.5). The following result
holds.

THEOREM 1. Assume that a E (Loo(0,T;Iv'r+3'oo(Rn)))n, and that b,a0 E
Loo(0,T;H/r+2'oo(Rn)). Assume also thata6 satisfies the hypotheses of Proposition
1 with r > 2, and that condition (1.10) is satisfied. Then there exists a constant
C = C(T,Cs,ao,a,b,n,p) > 0 such that for any function f0 E Wr+2>°°(Rn)

(2-33) ||(/ - /*)(-, OH0.00 < ^el/ollr+2,00-
Proof. Setting g = f — f£, we have

(2 34) ( m + div(a'9) + a°9 ~ uQe[t)g = HD ~ Q£{t))L
I fl(,0)=0.

Applying Proposition 3, we get

(2.35) \\g(-, OHo.oo < Cv [  \\{D - Qe(r))f \\0,oo dr,
Jo

where, in consequence of (2.32), the constant C depends on Cs. Then, Proposition
1 yields

(2.36) ||o(-,i)llo,oo < Cver\\f\\L°c{o,T;W+*^(Rn))i

where C depends again on T,Cs,a,ao,p and n, and the theorem follows in view of
Proposition 2.    □

3. Particle Approximation. Now, we come to the discretization method and
we fix an initial distribution of particles. We choose a set of indices *f C Z", a set
of points x0. E Rn and a set of real numbers oj0. > 0, k E *¥. As mentioned in the
introduction, we define the evolution in time of the particles by setting

(3.1) xk(t) = X(t;x°k,0),        uk(t) = u>°kJ(t;x°k,0),

where the functions X are defined by (1.6).
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In order to avoid technical difficulties, we suppose that the initial distribution of
particles is uniform and that n is compactly supported. That is, given a parameter
h > 0, we have
(3.2) ^ = Z",    x°k = kh,    u°k = hn.

While our analysis could be carried through in a more general case, this assumption
leads to simpler proofs. Furthermore, in the case of the whole space, it has been
proved (see, for example, P. A. Raviart [20]) that the order of the corresponding
quadrature rule is only limited by the smoothness of the functions. Now we prove
the convergence of the discrete operator towards the continuous operator.

PROPOSITION 4.   Let m> n be an integer. Assume that
aE(Loo(0,T;Wm+1'oo(Rn)))n    and   a0 E-Loo(0,T;Wm'oo(Rn)).

IfnE Wm'1(Rn) and if p E L°°((0,T); Wm>°°(Rn x Rn)), there exists a constant
G = C(T,a,a0,p,ri) > 0 such that for any function g E rVm'°°(R") and for any
tE[0,T]

hm
(3-3) \\Qs(t)g - Ql(t)g\\o,oo < C^\\g\\m,oo.

Proof. We have
(Qe(t)g-Q£h(t)g)(x)

= e 2\        Ve(x-y)p(x,y,t)(g(y)-g(x))dy
I Jr"

Y uk(t)n£(x - xk(t))p(x,xk(t), t)(g(xk(t)) - g(x)) \,

(3.4) <Cn   ll^llm.i,

and we recall the following result of [19]: for any function <p E Wm,1(Rn), we have

/    <p(x)dx- Y Uk{t)<p(xk(t))
jR" k€S

where the constant C depends on T and a. Applying this inequality to the function

y -» ip(x, y, t) =n£(x- y)p(x, y, t)(g(y) - g(x)),

we get

(3.5) |(Q£(í)o - Ql(t)g)(x)\ < Ce-2hmU(x, -, í)IU,i-
Let us compute the derivatives of ip with respect to y: with a e N", we have

d^(x,y)=    Yl   ßi Ua-3-   J'1)101^^ - y)d]p(x,y,t)da-^g(y)

+   E    ~^1(-^0ldavÁx-y)d¡p(x,y,t)(g(y)-g(x)),
ß+1=a P'^'

where the sums are respectively over the set of ß, 7 E Nn such that /?, + 7, < a¿ for
any i, 1 < i < n, and over the set of ß, 7 such that /?, + 7t = a¿, for any 1 < i < n.
We note that

/    \dßn£(x - y)d]p(x,y, t)(g(y) - g(x))\dy
Jr»

< \g\i,oo\d^p(x, -, t)\o,oo /    \y-x\ \d0r)£(x - y)\dy.
Jr"
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Using the change of variable y = ez + x, we verify that

/   \y-x\\d<3r,e(x-y)\dy = e1-^ f   \z\\d0n(z)\dz <Cel'^\r,\mA.
Jr" Jr"

We obtain
s-l

\^(x,-,t)\Sti <C  Y  £~P\v\p,i\ß{x,-,t)\qi00\g\s-p-Qtoo
p+q=0

+ C  Y  £l~P\9\i,oo\p(x,-,t)\qi00\n\pA.
p+q = s

Finally,
\tp{x,;t)\a,i <Ce1-s||ff||8l0o

and
IWi)-,Olki<Ce1-m||»| m,oot

where the constants C depend on T, p and n.   Combining this inequality with
inequality (3.5) leads to the desired result.    D

Remark. If n E Wm>l(Rn) and

pEL°°((0,T)xRx-;Wm'oo(R%))r\L°°((0,T)xR,yl;Wm'oo(Rx'))

but either r\ is not even, or p is not symmetric, we have

hm
(3.6) \\Q£(t)g - Qi(t)g\\o,oo < C^^\\g\\m,oo.

The proof of this result is straightforward.    D
We approximate the solution of (1.5) by the measure //,,

fh(t)= Y^(t)fk(t)6(x-xk(t)),
k€S

where the coefficients fk are solutions of the ordinary differential equation

%i) + (diva(xk(t),t)+a0(xk(t),t))fk(t)
(3 7)

= ve~2 Y ui{t)Ve{xk{t) - xt(t))p(Xl(t), xk(t),t)(h(t) - fk(t)).
les

We have the following bound for the local error.

PROPOSITION 5. Let m>n be an integer. Assume that a, an, p and n satisfy
the hypotheses of Proposition 4. There exists a constant C = C(T,a,ao,p,r¡) > 0,
such that for any function f0 E Wm'°°(Rn) and any t E [0,T]

hm
(3.8) sup \f£(xk(t),t) - fk(t)\ < Ci/-^iT||/o|U,oo.

keS e

Proof. We set

(3.9) ë(0 = (e*WW.        ek(t) = f(xk(t),t)-fk(t),
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and we have

(3.10) ^£{t) + 1Ylßki{t)e,{t) = H,k{t),
íes

(3.11) ejt(0) = 0,

where

Mt) = ((Q£(t)-Q£h(t))f£)(xk(t),t),
ßki(t)= -¡ye~2Ljl(t)r¡£(xk(t)-xi(t))p(xk(t),xi(t),t)   for l ¿ k,

ßkk(t) = div a(xk(t),t) + a0(xk(t),t)

+ ^"2^Wi(í)/7e(xfe(í) -xi(t))p(xk(t),xi(t),t).
Ijtk

There exist two constants C > 0 and C" > 0, independent of h, such that for any
t E [0, T] and any k, I (see for example [18]),

(3.12) C_1/in < wfc(i) < CTi",

(3.13) C'h<\xk(t)-xi(t)\<C"h.
Then, for fc ̂  /,

I/MOI ̂ "£"%WI%(^(i) - xi(í))/í(ifc(0.a:í(0»OI
< CCshne-n,

which proves that the coefficients ßki are bounded for h and e fixed. Let us now
bound the diagonal coefficients. Since the support of n is bounded, the number
of particles to take into account in the sum appearing in ßkk(t) is bounded by the
number of particles in a ball of radius Ce. Thanks to (3.13), this number is bounded
by C(e/h)n, and we get

\ßkk(t)\ < || diva||o,oo + ||ao||o,oo + "£~2 Y "^WM** W " xt(t))p(xk(t), xt(t), t)\
Ijtk

< || diva||o,oo + IMkoo + Cue-2hne-n (^)" < (7(1 + Cs).

Then, setting xp(t) = (il>k(t))k£jr, there exists a constant C > 0, depending on Cs
but neither on h, nor on v or e, such that

|l|ë(i)lloo<q|ê(i)lloo + "PWII=c.
Applying Gronwall's lemma, we obtain

(3.14) ||ê(0||oo <"/V(t-T)|hÊ(7-)H»dr.
Jo

The proof is now complete, since ||t/>(i)||oo is estimated by means of Propositions 4
and 3.    D

Remark. Since inequality (1.10) is satisfied, it is sufficient to require that h < cqe
for the local error to be bounded by

||e(0lloo < CC.$e.
This proves the convergence of the local error with only one particle per cell of
width e, for example.    D
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In order to obtain an approximation of the exact solution / in the sense of
functions, we define a regularized version of fn. Let c; be such that

./r
ç(x) dx = 1.

R"

For any real number s > 0, we set <;£(x) = e~nç(e~1x). We define

(3.15) f£h(x,t) = Y "k(t)fk{t)Çe(x - xk(t)).
kes

Let us now assume that the function c satisfies the moment conditions

(3.16) /    xaç(x) dx = 0,        a€N",l < |a| <r'-l,
Jr"

(3.17) i   |i|r'|f(i)|di<+oo
Jr"

for an integer r' > 2. We assume also that f is compactly supported. We then have

THEOREM 2. Let m > n, m' > n, r > 2 and r' > 0 be integers, and
s = max(r',r + 2,m,m'). Assume that a E (L°°(0,T;Ws+1'°°(Rn)))n and a0 E
Loo{0,T;Wa'°°(Rn)). Assume that condition (1.10) is satisfied. If n E Wm>l(Rn)
and satisfies the moment conditions (2.4) and (2.5), if

p E L00((Q,T);Wm'QO(Rn x Rn)) n L°°{{0,T) x R^;Wr+1'°°(R^)),

and if ç E Wm ^(R") and verifies conditions (3.16)^(3.17), there exists a constant
C = C(T,a,ao,i,p,n,Cs) > 0 such that for any function /o E Ws'°°(Rn) and any
í 6 [0,21

(3.18) ||(/ - f£h)(-, OH0.00 < C (e'' + ^ + v (e' + ^ H ||/o||8l00.

Proof. We write

(/-Ä)(-,*) = (/-/•)(•,*) + (/*-<(*)/•)(•,«) +«WZ*-/i)(-,i),
7r£h(t)f£(x,t) = Y Mt)f£(xk(t),t)ç£(x-xk(t)).

kes

We apply successively Theorem 3 of [19], Proposition 3, Theorem 1 and Proposition
2 to obtain bounds on the first two terms; it thus remains to bound (i^£l(t)f£ —
ffi)(;t). Setting again ek(t) = f£(xk(t),t) - fk(t), we have

(3.19) K(t)f£-f£h)(x,t)= Y Mt)ek(t)i£(x - xk(t)).
kes

Since the support of c is bounded, arguing as in the proof of the previous proposi-
tion, we get

(3.20) Wh(t)f£ - fi)(-,t)\\o,oo<C\e(t)\\oo-

Finally, Proposition 5 provides a bound on ||ë(i)||œ, and combining this with the
bounds obtained for the previous terms yields the announced result.    G
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Remarks. 1. The assumption that the supports of the functions f and n are
bounded is not necessary but leads to simpler proofs. In fact, it would be sufficient
to assume that both functions are rapidly decreasing at infinity.

2. If /o E L1(Rn), any solution of (1.1) satisfies the L1 conservation relation

(3.21) — /    f(x,t)dx+       a0(x,t)f(x,t)dx = 0.
dt Jftn Jftn

It is easy to check that any solution of (1.5) satisfies the same relation. Exchanging
the roles of k and /, for any sequence lp — (<pk)kçjr in l°°(^f), we have

Y^^^t^i^n^Xk^) - xi(t))p(xk(t),xi(t),t)(ipi -tpk) =0;
k,ies

thus, any solution of the ordinary differential equation (3.7) satisfies the following
discrete analogue of (3.21)

(3-22) Jt ( E "k(t)fk(t) ) + Y Uk(t)ao(xk(t), t)fk(t) = 0,
\kes I     key

and the scheme is conservative.
3. In the case of a nonsymmetric kernel, Eq. (3.7) becomes

^-(t) + (div a(xk(t),t) + a0(xk(t),t))fk(t)

(3.23) = ve~2 Y"i(t){riÁxk(t) - xl(t))p(xk(t),xl(t),t)fl(t)
les

-r)£(xi(t) -xk(t))p(xi(t),xk(t),t)fk(t)}.

The convergence of f\ towards f£ can still be proved, and we get

IK/ - A£)(-,í)ll0,oc < G Y + ̂  + V (V + ̂ î)j  ll/olU.oo.      □

4. Particular Case of a Positive Kernel: Uniformly Stable Approxi-
mation. In this section we restrict ourselves to the case of the Laplace operator
and consider the previous integral operator in the case of a nonnegative kernel a.
We shall prove that a maximum principle property is true for both the integro-
differential equation and the particle method. Thus, without assuming that in-
equality (1.10) is satisfied, we shall obtain L°° estimates. This approximation is
called uniformly stable precisely because the stability of the method is proved with-
out any assumption on the discretization parameter. In fact, we need not assume in
this section that the viscosity is small, although the particle method is well known
to be better suited to slightly viscous media. The results, and sometimes the proofs,
are very similar to those of the previous sections; thus, some proofs will only be
sketched.

We assume that the viscosity coefficient b is constant, equal to 1, and that the
function a£ is given by

(4.1) a£(x,y,t) = —n£(x-y),
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where the function n£ satisfies the assumptions (2.3). Thus,

a£ 6 L°°((0,T) x R^L^RJ)) nL°°((0,T) x R^L1^))

is symmetric and

Q£(t)f(x) = e-2 i   r¡£(x - y)(f(y) - f(x)) dy.
Jr"

We first prove the analogue of Proposition 3 in the case of a nonnegative kernel.

PROPOSITION 6. Assume that r\ is nonnegative. Assume also that a 6
(Loo(0,T;W1'oo(Rn)))n and a0 E L°°{QT). Ufo € L°°(Rn), the unique solution f
of problem (2.16) in L°°(Qt) is bounded as follows:

(4.2) ||/(-,i)llo,oo<exp(ar)||/o||o,oo,

where

(4.3) a = -inf{(ao + diva)(x,£),(z,0 &Qt}-

Letm beaninteger; if a E L°°(0,T; Wm+1'°°(Rn)), a0 G L°°(0,T; Wm'°°{Rn)) and
n E Wm'l(Rn), then for any initial condition f0 E Wm'00(Rn) the solution belongs
to Loo(0,T;Wm'oo(Rn)), and there exists a constant C = C(T,a0,a) > 0 such that

(4.4) ||/(-,Ollm,oo<C||/o||m,oo.

Proof. Proposition 3 assures the existence and the uniqueness of the solution in
L°°(Qt); it suffices, then, to establish the estimate. Let us first assume that /n is
nonnegative and let us return to the fixed point method defined by (2.28). Since a
is > 0, by (2.27) we have that / > 0 implies $/ > 0. This proves that all terms gk
of the sequence are > 0 and then that the limit (the existence of which is proved
by Proposition 3) is also nonnegative. This limit is the solution of (2.16). Thus, if
the initial function is > 0, the solution remains > 0 for any time. In the general
case of an initial function which does not have a constant sign, we set

/(•,*) = /*(-, 0 + ll/o||o.oo«xp(ot),
where a is defined by (4.3). Then a + an + diva > 0, and g* is the solution of

Í -^-+div(ao*)+a0a* - vQg* = (a + a0 + diva)||/0||o,oo exp(ai) > 0,

1 S*(-,0)=/o + ||/o||o,oo>0.
The function a* is then nonnegative and

(4.5) /*(•,«) >-H/o||o,ooexp(ai).

Now, consider the function

h*{;t) = -/*('.*) + ll/ollo,oo exp(crt)-
h* is the solution of the same equation with nonnegative data; h* is then > 0 and

(4.6) r(-,0<ll/o||o,ooexp(aO.
Combining (4.5) and (4.6) leads to (4.2). The estimate (4.4) is obtained by formally
differentiating the equation.    G
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Again, we denote by / and f£ the solutions of (1.1) and (1.5), respectively. The
following result is the analogue of Theorem 1, and its proof, which is very similar
to that of Theorem 1, will only be sketched.

THEOREM 3.   Assume that

aE(Lco(0,T;W5'oo(Rn)))n    and   a0 E Loo(0,T;W4'oo(Rn)).

Assume that n is > 0 and satisfies the hypotheses of Proposition 1.  There exists a
constant C = C(T, n, ao, a) > 0 such that for any function /n G W4'°°(Rn)

(4-7) ||(/-/£)(-,i)llo,oc<C"£2||/o||4,oo.

Proof. We set g = f - f£, and we obtain
,   Pin

+ div(ao) + a0g - vQ£(t)g = v(A - Q£(t))f,
(4.8) \   dt

I ff(-,0) = 0.
Applying Proposition 3, we find

||ff(-,f)llo,oo<Ci//  ||(A-Q£(T))/||o,ocdr,
Jo

where the constant C depends on T, a and ao, and the theorem follows from
Propositions 1 and 2.    G

Before stating the convergence of the method, let us first recall a stability result
proved in [12].

LEMMA.  Assume that we are given continuous functions of t, (bkj(t))kj£zn>
which satisfy for some constant C > 0 and for any k E Zn,

(i)       bkti(t)<0   for anylEln, Ifk,

(ii)       X>fcli(0>o,
(4.9) ««»

(iii) £|6fc,i(t)l<a

Given continuous functions oft, g*(t) = (gk(t))k^jn and v°* = (ffc)fcezn such
that for some constant M > 0 and some continuous function G > 0,

,      x Í 0 < í;^ < M,4.10 { k
I 0 < gk{t) < G(t)

for any k E Zn and all t E [0,T], there exists a unique solution v*(t) = (vk(t))k&zn
of the following differential system

!dvk dt !«■
vk(0) = v°k.

Moreover, v* satisfies the inequality

(4.12) 0<vk(t)<M+[   G(s)ds.
Jo

-¿f(t)+YbkÁt)vi(t) = 9k(t),
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We now prove

PROPOSITION 7. Let m > n be an integer. Assume that a, ao and r¡ satisfy the
hypotheses of Proposition 4. There exists a constant C = C(T,a,ao,r¡) > 0 such
that for any function f0 E Wm'°°(Rn) and any t E [0, T]

hm
(4.13) sup \fe(xk(t),t) - fk(t)\ < Ci/-^tî||/o|U,oo.

kes £  +

Proof. Again, we set

(4.14) e{t) = {ek{t))k&s,        ek(t) = f£(xk(t),t) - fk(t),

and we have

(4.15) ^-(t) + Y(*ki(t)et(t) = isMt),        efc(0) = 0,
íes

where

Mt) = ((Q£(t)-Qi(t))f£)(xk(t),t),
aki(t) = -ve~2uJi(t)r)£(xk(t) - x¡(t))    for / ¿ k,

otkk(t) = diva(xk(t), t) + a0(xk(t),t) + ue~2 Y ui(t)Ve(xk(t) - xt(t)).
i/fc

The boundedness of the norm of ë will follow from an application of the previ-
ous lemma. Actually, the lemma cannot be applied directly, because the sign of
the diagonal coefficients akk(t) is not known. On the other hand, these diago-
nal coefficients are easily changed by multiplying the function by some appropriate
exponential of t. Precisely, setting a = \\ diva+ao||o,oo! we verify that the functions

~ek(t) = ek(t)e~at + v f  ||?(r)||00e-a(i-T) dr
Jo

are solution of a system which differs from the previous one only by the diagonal
coefficients. In fact, we have

l6k-[t) + Y ßki{t)ei{t) = v(Mt)e~at + PWIloo),        MO) = 0,
dt tes

where

ßkk(t) = akk(t) + a   for any k ES,

ßki(t) — akl(t)    for any &,/ E <?, k ± I.

Arguing as in the proof of Proposition 5, we check that the coefficients ßki (t) satisfy
the following inequalities, for any k, I E J^ and t E [0, T\:

(i) ßki(t)<0   for/^fc,

(ii) V/9fci(t)>0,
(4.16) lGJr

(iii)        Y l&'WI <C(l + ve-2).
íes
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Since, moreover, ipk(t)e  at + ||V>(0lloo > 0 for any k E J', we can apply the lemma,
which establishes that ëk(t) > 0 for any k. Thus, it follows that for any k E Jf

Considering then

leads to

ek(t)>-u i  ||V(r)||ooeordr.
Jo

ek(t)e~at-u i Ü^Ue-^-^dr
Jo

m < " / ii^(7Jo

C1
ek(t)<v I   ||V(r)||ooeardr,

for any k E J2". Combining these two results yields

(4.17) ||ë(i)||oo <" /   ||^(r)||00exp(r||diva + a0||o,oo)dr,
Jo

and the result follows from an application of Propositions 4 and 6.    G
Let c be a cutoff function with integral 1. We define the regularized version of

A by
f£h(x,t)= £>fc(i)/fc(0^(z-ZfcW)-

kes
We assume that n and ç have compact supports, that f e Wm''1(Rn) n Cq(R")
for some integer m' and verifies the moment conditions (3.16) and (3.17) for some
integer r' > 0.

THEOREM 4. Let m > n be an integer and s = max(r',4,m,m'). Assume
that a E (Loo(0,T;Ws+1'oc(Rn)))n and a0 E L°°(0,T;Ws>°°(Rn)). Assume that
î] satisfies the hypotheses of Theorem 3 and Proposition 7. Then there exists a
constant C = C(T,a,ao,c,r¡) > 0 such that for any function f0 E Ws'°°(Rn) and
any t E [0, T]

(4.18) ||(/ - f£h)(-, Olio.» <C\er +—7 + vle2 + —T)\ ||/0|
hm ( 2      hm

e^ + "{£  +^+'

The proof is very similar to that of Theorem 2 and follows from an application
of the previously established results.    G

5. Further Remarks.
5.1. Stability of the Time Discretization. We present a stability analysis of

the ordinary differential equation (3.7) which gives the strength of the particles.
For simplicity we assume that there is no convection (a = 0) and no deformation
(ao = 0), that the viscosity b is equal to 1 and that the space dimension is one.
The positions of the particles are given by xk = kh, the volumes by uk = h, and
the equation is

f^) - Í E «si** - *t)W) - /*(*)) = 0-
I

We choose a time step Ai > 0 and we denote by fk the approximation of fk(nAt).
Using Euler's scheme, we write

4n+1=E^/"'
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where

a-ki
uAt,    (k- for k ± I,

"Ai   ^    fk-l,
l^k

The scheme is yl-stable if
sup^]|afc/| < 1.

Since

Elafc'l =
i/Ai

l±k

k-l. + uAt

i#fc

k-l >1,

the stability conditions are

(5.1)

Í rj>0,
uAt3hYv(k-^h)

Since the function rj is even and compactly supported, say in [—d, d], we have

+oo

f#fc

k-l h)=2Yv{!f)<2d£-\\V\\0,oo,

and the scheme is stable if n > 0 and

(5.2) 2iyAid||r?||o,oo < e2.

If the function n is not compactly supported, it is sufficient to bound the sum as
follows, for example: we consider the case of the Gaussian function and write

^    (kh\        1    ^       /   k2h2\ ^     e      f+°°       (SH-J=^Çexpl-^J-^^/o explexP(-^)d*=2T

The stability condition is then

(5.3) uAt < e2

We point out that the parameter h does not appear either in inequality (5.2) or
in (5.3). The constraint imposed to Ai is not too strong since it relates the time
step to the cell width and becomes less demanding when v diminishes. The same
analysis can be done in higher dimension and in the case where the velocity a is
different from 0, provided that div a = 0 and a0 = 0.

5.2. Examples of Functions n. Numerous examples of kernels will be studied in
Part 2 of the paper; here we mention some possibilities.

A. A first example of a spherically symmetric function. Consider a function
ç: R+ -+ R and set

(5.4) V{x) = -2|a;r1?(|a:|),
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where \x\ = (x\-\-hz2 )xl2. If for an integer r the function f satisfies the following
moment conditions,

r + oo
(5.5) /       tn-1ç(t)dt = (measSn-1)-1,

Jo

(5.6) /       í2p+"-1?(í)dí = 0,        l<p<fc=
Jo 2'

+oo/■+oo
(5.7) /       tr+n+1\ç(t)\dt <+oc

Jo
for an even integer r, then the function n satisfies conditions (2.4) and (2.5) for the
integer r. This result is easily proved by means of spherical coordinates.

We can also rewrite r\ as

(5.8) n(x) = -2|x|"2Vc(x) ■ x,

where ç(x) = ?(|x|) for any x E Rn and where the function ç satisfies the moment
conditions classically imposed on cutoff functions. Let us note that in [12] the case
of functions r) constructed by (5.8) with nonnegative functions ç was considered.
In that case, r = 2, and condition (5.6) disappears.

B. Second derivative of a cutoff function. Consider again a function ç: Rn —► R
which is at least twice continuously differentiable and which satisfies the moment
conditions (3.16) and (3.17) for some integer r > 2, and set

(5.9) 1,(1) = Açr(x-).

Then the function r¡ satisfies the conditions (2.4) and (2.5) for r, and the integral
of n is equal to 0. Furthermore, in the case of a constant function b, say 6=1, the
natural choice of p is p = 1, and the operator Q£ is reduced to

(5.10) Q£f = e-2n£ * f.

When constructing the particle method, one has to pay attention to the conserva-
tion property of the scheme, and the resulting approximate operator is

(5.11) Q£h(t)g = e~2 Y "i{t)Ve{x - x,{t)){g{x,{t)) - g(x))
íes

instead of

Q%(t)g = £~2 Y "i(t)Ve(x - xl(t))g(xl(t)).
les

Let us also mention that the integer r is even because of the symmetry of the
function and that there is no hope to obtain a nonnegative function r¡.

C. Another example of radially nonsymmetric functions. Another obvious choice
is to take the function n in the form of a tensor product of one-dimensional func-
tions,

(5.12) n(x)=   H   çfci),
Ki<n
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where each function çi satisfies the conditions

U(t)dt = \,

t2ïi(t)dt = 2,

tp^i(t)dt = 0,        p=lor3<p<r + l,
R

/V+2fo(í)|dí<+co.
Jr

Let us notice that in that case the integer r is obviously equal to 2, because

./r

Jr

Jr

Jr
x2Xjn(x)dx = 4.    G

R
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