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The Weil-étale topology on schemes over finite fields

S. Lichtenbaum

Abstract

We introduce an essentially new Grothendieck topology, the Weil-étale topology, on
schemes over finite fields. The cohomology groups associated with this topology should
behave better than the standard étale cohomology groups. In particular there is a very
natural definition of an Euler characteristic and a plausible conjecture relating the Euler
characteristic of Z to the value of the zeta-function at s = 0. This conjecture is proved in
certain cases.

Introduction

In this paper we introduce a new, or at least neglected, Grothendieck topology on the category of
schemes of finite type over a finite field. This topology, which we call the Weil-étale topology, bears
the same relation to the étale topology as the Weil group bears to the Galois group.

Recall that, if K is the function field of a curve over a finite field k, K̄ is a fixed algebraic closure
ofK, andGK is the Galois group of K̄ over K, GK comes with a natural surjection π to Gal(Kk̄/K),
which is isomorphic to Ẑ and topologically generated by the Frobenius element φ. The Weil group
WK is just π−1(Z) where Z is the subgroup of Gal(Kk̄/K) consisting of all integral powers of φ.
(Of course, this works equally well if ‘curve’ is replaced by ‘algebraic variety’, but classically only
curves were considered.)

The Weil-étale topology should have several advantages over the étale topology. Conjecturally, all
the motivic cohomology groups in this topology should be finitely generated, whereas in the étale
topology these groups can be quite complicated. Also, the Weil-étale cohomology groups should
contain more information, in the sense that they should determine the étale cohomology groups,
but not vice versa.

Finally, there should be a natural notion of Euler characteristic for these groups, which is closely
related to special values of zeta-functions. In short, it is our hope that the Weil-étale motivic
cohomology groups of algebraic varieties over finite fields should be better suited than the étale
groups to any possible arithmetic application.

In the body of this paper we first prove a global duality theorem for cohomology of Weil-étale
sheaves on curves over finite fields, starting from a similar theorem in the étale case, which is
essentially a version of global class field theory. Our duality theorem is a Verdier-type duality and
is properly stated (Theorem 5.4) in terms of the derived category of abelian groups.

We then go on to state a conjecture (Conjecture 7.3) relating the behavior of zeta-functions
of algebraic varieties V over finite fields at the point s = 0 to Weil-étale Euler characteristics
and prove this conjecture for curves, smooth surfaces, and arbitrary projective smooth varieties.
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In the case when V is projective and smooth, this is a variant of Theorem 0.4a of [Mil86]; but if V
is not projective, we do not know even a conjectural statement in terms of étale cohomology.

In an earlier version of this paper, I had stated Conjecture 7.3 for arbitrary quasi-projective
varieties, but it seems now as a result of recent unpublished work of Geisser that it is false in
general for singular varieties of dimension 2 or more. Geisser has introduced a variant of the Weil-
étale topology called the Weil-eh topology, and Conjecture 7.3 should probably be stated in terms
of the cohomology groups associated with this topology. This cohomology agrees with Weil-étale
cohomology for smooth varieties and for curves, whence the current version of Conjecture 7.3.

It is tempting to think that Conjecture 7.3 follows from resolution of singularities, but I do not
see how to show this. The problem is that, in the terminology of § 7, we cannot conclude that, if two
members of a short exact sequence are θ-finite, then the third one is.

1. The cohomology of Γ0-modules and Γ-modules

In order to avoid confusion, we let Γ0 denote Z as abelian group, and Γ denote Ẑ as topological
abelian group. If M is a discrete topological Γ-module, then H i(Γ,M) will denote the profinite
group cohomology of Γ with coefficients in M .

Lemma 1.1. Let M be a discrete torsion topological Γ-module. The natural map from H i(Γ,M) to
H i(Γ0,M) is an isomorphism.

Proof. It is well known that scd(Γ) = 2, and cd(Γ) = scd(Γ0) = 1. So both cohomology groups are
zero for i � 2 and the lemma is clear for i = 0. So we may assume i = 1. Let σ be a generator
of Γ0. Then H1(Γ0,M) may be identified with M/(σ − 1)M , while H1(Γ,M) may be identified
with Lim−−→(Mσn

(n)/(σ− 1)Mσn
), where M(n) is the kernel of multiplication by Nn = 1+σ+ · · ·+σn−1

on M . Since M is torsion, it is easy to see that M =
⋃

nM
σn

(n). (Let x be in M . Since Γ acts
continuously on M , there exists an r such that σrx = x and there exists an m such that mx = 0.
Then Nmr(x) = 0.)

Lemma 1.2. Let M be any discrete topological Γ-module. Then there are functorial isomorphisms:

(a) H0(Γ,M) ∼= H0(Γ0,M);

(b) H1(Γ,M) ∼= H1(Γ0,M)tor;

(c) H2(Γ,M) ∼= H1(Γ0,M) ⊗Z Q/Z.

Proof. Part (a) is clear.
To prove (b) and (c), we first assume that M is torsion-free. Look at the commutative diagram

H1(Γ0,M) n �� H1(Γ0,M) �� H1(Γ0,M/nM) �� 0

H1(Γ,M)

��

n �� H1(Γ,M)

��

�� H1(Γ,M/nM)

α

��

�� H2(Γ,M)n

��

�� 0

where α is an isomorphism by Lemma 1.1. It follows from diagram chasing that there is a natural
isomorphism

H2(Γ,M)n ∼→ (H1(Γ0,M) ⊗ (Z/nZ))/(H1(Γ,M) ⊗ Z/nZ)

and hence in the limit an isomorphism

H2(Γ,M) ∼→ H1(Γ0,M) ⊗ Q/Z,

since H2(Γ,M) is torsion and H1(Γ,M) ⊗ Q/Z = 0.
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Since H0(Γ0,M) ∼→ H0(Γ,M) and H0(Γ0,M/nM) ∼→ H0(Γ,M/nM), it is immediate that
H1(Γ0,M)n ∼→ H1(Γ,M)n, from which (b) follows.

The case of general M follows easily from consideration of the exact sequence

0 →Mtor →M →M/Mtor → 0.

Definition 1.3. A finitely generated Γ0-module M is semi-simple at zero if the natural map from
MΓ0 to MΓ0 is an isomorphism modulo torsion.

Lemma 1.4. Let M be a discrete finitely generated Γ0-module such that the action of Γ0 on M can
be extended to a continuous action of Γ. Then M is semi-simple at zero.

Proof. Let N = MΓ0 = MΓ. Since H1(Γ, N) is torsion, we have an exact sequence modulo torsion:

0 → NΓ0 →MΓ0 → (M/N)Γ0 → 0.

It immediately follows first that both (M/N)Γ0 and (M/N)Γ0 are torsion, and then, since N is
obviously semi-simple at zero, so is M .

2. Definition of the Weil-étale topology

Let k be a finite field and k̄ a fixed algebraic closure of k. Let X be a scheme of finite type over
k and let X̄ = X ×k k̄. We define the Weil-étale topology as the following Grothendieck topology:
W = WX on X by letting Cat(W) be the category defined as follows: the objects of Cat(W) are
étale schemes and of finite type over X̄ . Let π1 be the projection from X̄ to X, and let π2 be the
projection from X̄ to k̄. If (W,f : W → X̄) and (Z, g : Z → X̄) are objects in Cat(W) with W
connected, a morphism φ from (W,f) to (Z, g) is a morphism φ from W to Z such that

(a) π1gφ = π1f and

(b) there exists an integer n such that π2gφ = π2f(Frob)n, where (Frob) is the Frobenius morphism
from Spec k̄ to itself.

(Note that for once we do not have to worry about whether we are using the arithmetic or geo-
metric Frobenius.) A morphism from an arbitrary W is a collection of morphisms on the connected
components of W . The coverings are the surjective families {Wi → Z} in Cat(W), i.e. obtained by
restricting the étale topology from the small étale site of X̄ to the subcategory Cat(W).

We recall that the Galois group of k̄ over k is naturally isomorphic to Γ, and we let Γ0 be the
subgroup of Γ consisting of the integral powers of Frobenius. If G is a Weil-étale sheaf on X then
G(X̄) is in a natural way a Γ0-module. We define H0

W(X,G) to be G(X̄)Γ0 , and H i
W(X,G) to be

the derived functors of H0
W .

Definition 2.1. Let H be a group of automorphisms of a scheme X. We say that H acts on a
sheaf F on X if we have a compatible system of maps ψσ : F → σ∗F for all σ in H.

Proposition 2.2. The category of Weil-étale sheaves on X is equivalent to the category of étale
sheaves on X̄ equipped with a Γ0-action.

Proof. A Weil-étale sheaf G on X restricts to an étale sheaf ρ(G) on X̄. If U is an étale scheme
over X̄ , and σ is in Γ0, let Uσ = U ×X̄ X̄, where the map from X̄ to X̄ is given by σ. Then the
projection map from Uσ to U is a map in our category, and so determines a functorial map G(U)
to G(Uσ), which is exactly a map from ρ(G) to σ∗ρ(G).
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To go in the other direction, a map in our category from V to W gives rise to a commutative
diagram

V ��

��

W

��
X̄

σ �� X̄

where σ is in Γ0. This clearly determines an X̄-map from V to Wσ, and thus a map G(W ) →
G(Wσ) → G(V ), where the map from G(W ) to G(Wσ) is given by (ψσ)∗.

The subcategory of lisse sheaves on X̄ with a Γ0-action is equivalent to the category of
‘Weil sheaves’ introduced by Deligne in [Del80], but Deligne did not actually define a topology,
nor consider sheaves of the type we work with here.

Proposition 2.3. Let G be a Weil-étale sheaf on X. There is a spectral sequence whose Ep,q
2 -term

is Hp(Γ0,H
q
ét(X̄, ρ(G))) and which converges to Hp+q

W (X,G).

Proof. The category of sheaves for the Weil-étale site on k is equivalent to the category of
Γ0-modules and the cohomology groups H i

W (k,G) are canonically isomorphic to the cohomology
groups H i(Γ0, G(k̄)). The functor (π2)∗ has the exact left adjoint π∗2, and so takes injectives to
injectives. Our spectral sequence now just becomes a usual composite functor spectral sequence.

We define a pair of functors: ψ, which maps Weil-étale sheaves on X to étale sheaves on X,
and φ, which maps étale sheaves on X to Weil-étale sheaves on X. We define ψ as follows: if G is a
Weil-étale sheaf, define ψ(G)(U) to be (G(U ×X X̄))Γ0 . If F is an étale sheaf on X, define φ(F ) to
be π∗1(F ) (which is endowed with a natural Γ0-action).

It is readily verified that these functors have the properties listed in the following proposition.

Proposition 2.4.

(a) φ is left adjoint to ψ.

(b) ψφ = 1.

(c) ψ is left exact and φ is exact, so ψ takes injectives to injectives.

(d) ψ(Z) = Z, and ψ(Z/nZ) = Z/nZ.

(e) There is a functorial map ci : H i
ét(X,ψ(G)) → H i

W(X,G) which is an isomorphism when i = 0,
and, by (b), a functorial map di : H i

ét(X,F ) → H i
W(X,φ(F )).

(f) Let F be an étale sheaf on X. There is a functorial map of spectral sequences from

Hp(Γ,Hq
ét(X̄, π

∗
1F )) ⇒ Hp+q

ét (X,F )

to

Hp(Γ0,H
q
ét(X̄, ρφ(F ))) ⇒ Hp+q

W (X,φ(F )).

Of course, this last spectral sequence breaks up into short exact sequences:

0 → H1(Γ0,H
q
ét(X̄, ρφ(F ))) → Hq+1

W (X,φ(F )) → H0(Γ0,H
q+1
ét (X̄, ρφ(F ))) → 0.

(g) ci and di are isomorphisms if G is torsion.

Note that in Proposition 2.4 part (f), the first spectral sequence is the standard Hochschild–Serre
spectral sequence and the second is the one from Proposition 2.3, and the fact that ρφ(F ) = π∗1(F ).
Proposition 2.4 part (g) then follows from a comparison of these spectral sequences, using Lemma 1.1.

692

https://doi.org/10.1112/S0010437X04001150 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001150


The Weil-étale topology on schemes over finite fields

We remark that, since we are in the ‘small-site’ Weil-étale topology, the apparatus of the mapping
cylinder category (see [Mil80, pp. 73–77]) goes through without change. In particular, if Z is a closed
subscheme of X with open complement U , and i and j are the immersions from Z and U into X,
we have the six standard functors i∗, i∗, i!, j!, j∗, and j∗, with the standard adjointness relations
(i∗ is right adjoint to i∗ and left adjoint to i!, j∗ is right adjoint to j! and left adjoint to j∗), and
satisfying i∗i∗ = id, and i∗j! = 0. If X is a smooth curve over a finite field k with field of fractions F ,
and φ : Spec F → X is the induced map, we have the exact sequence

0 → Gm,X → φ∗Gm,F →
∐

(ix)∗Z → 0,

from which it follows that Rqi!Gm,X = 0 for q �= 1 and R1i!Gm,X = Z.

3. The finite generation of cohomology groups

Throughout this section let k be a fixed finite field.

Theorem 3.1. Let X be a projective smooth variety over k. The Weil-étale cohomology groups
Hq

W(X,Z) are finitely generated for all q, finite for q � 2, and zero for q large.

Proof. We may assume X connected. It follows from [Mil86] that Hq
ét(X,Z) is finite for q � 3

and zero for q large and for q = 1, that H2
ét(X,Z) is the Q/Z-dual of a finitely generated group

of rank 1 (so isomorphic to the direct sum of Q/Z with a finite abelian group A), and of course
H0

ét(X,Z) = Z. We observe that, if we let K̄ be the fraction field of X̄ and j̄ : Spec K̄ → X̄, then
the constant sheaf Z on X̄ is the direct image of the constant sheaf Z on Spec K̄. The Leray spectral
sequence for j̄ shows then that Hq(X̄,Z) is torsion for q > 0, since Galois cohomology is always
torsion.

A comparison of the spectral sequences given at the end of the preceding section then shows
that Hq

W(X,Z) is canonically isomorphic to Hq
ét(X,Z) (and hence finite and zero for q large) for

q � 3, and that H2
W(X,Z) is isomorphic to A = H2

ét(X,Z)/(Q/Z) and hence finite. It also follows
immediately that H0

W(X,Z) and H1
W(X,Z) are both isomorphic to Z.

Lemma 3.2. Let U be a curve over the finite field k. Let F be any Weil-étale sheaf on U . Let j :
U → X embed U as a dense open subset of a projective curve X. Then

(a) the groups Hq
W(X, j!F ) are independent of j and

(b) if F = Z, then they are finitely generated.

Proof. (a) Let j : U → X and j′ : U → X ′ be two completions of U . Replacing X ′ by the closure
of the image of U in X ×X ′ we may assume that there is a map π : X ′ → X such that π ◦ j′ = j.
Since π is finite, so is π̄, and π̄∗ is exact in the étale topology. It follows that the natural map
from Hq

ét(X̄, π̄∗F ) to Hq
ét(X̄

′, F̄ ) is an isomorphism, and hence, by the basic spectral sequence of
Proposition 2.3, the natural map from Hq

W(X,π∗F ) to Hq
W(X ′, F ) is an isomorphism. But π∗j!F is

naturally isomorphic to j′!F (construct a map, and then verify that it is an isomorphism on stalks),
and so the cohomology groups Hq

W(X ′, j′!F ) are isomorphic to the groups Hq
W(X, j!F ).

(b) Let U be an open dense subscheme of V which in turn is an open dense subscheme of the
projective curve X. Let φ : U → X and j : V → X be the given open immersions, and i the closed
immersion of V − U in X. We have the exact sequence

0 → φ!Z → j!Z → i∗Z → 0.

Then part (b) follows from the consideration of the related long exact cohomology sequence,
showing that first the cohomology groups of smooth projective curves, then smooth curves, and
then arbitrary curves, are finitely generated.
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Theorem 3.3. Let d � 2 and let U be a smooth d-dimensional quasi-projective variety over k.
By resolution of singularities we can find a smooth projective variety X containing U as an open
dense subvariety. Let j : U → X be the corresponding open immersion. Then the cohomology groups
Hq

W(X, j!Z) are finitely generated, zero for q large, and independent of the choices of X and j.

Proof. We write Hq for Hq
W . We first show finite generation. Let j : U → X as above, and let

Z = X − U . Let i : Z → X be the corresponding closed immersion. We have the exact sequence of
sheaves on X: 0 → j!Z → Z → i∗Z → 0. Since i∗ is exact, Theorem 3.1 implies that the cohomology
groups Hq(X, i∗Z) ∼→ Hq(Z,Z) are finitely generated and zero for q large, and Lemma 3.2 implies
that the cohomology groups Hq(X,Z) are finitely generated and zero for q large. Hence the long
exact cohomology sequence implies that the groups Hq(X, j!Z) are also finitely generated and zero
for q large.

Now we show independence. Suppose we have j : U → X and j′ : U →W with X and W being
smooth projective. Let ρ : U → V = X ×W be the map induced by j and j′, and let Z be the
closure of U in V . By resolution we can find a π : Z ′ → Z such that Z ′ is projective and smooth.
Replacing W by Z ′, we may assume that there is a map π : W → X such that π ◦ j′ = j. We next
observe that π∗j′!Z = j!Z, and then the functorial map from Hq(X,π∗F ) to Hq(W,F ) gives us the
following commutative diagram:

0 �� Hq(X, j!Z)/n ��

αq

��

Hq(X, j!(Z/n)) ��

βq

��

(Hq+1(X, j!Z))n ��

γq+1

��

0

0 �� Hq(W, j′!Z)/n �� Hq(W, j′!(Z/n)) �� (Hq+1(W, j′!Z))n �� 0

We know that β is an isomorphism because the standard étale cohomology groups with compact
support of constructible sheaves are well defined. We proceed by descending induction. Let δq :
Hq(X, j!Z) → Hq(W, j′!Z). If δq+1 is an isomorphism then γq+1 is an isomorphism, hence αq is an
isomorphism. Now if we have a map f from one finitely generated group to another such that f
becomes an isomorphism after tensoring with Z/n for every n, then it is easy to see that f must be
an isomorphism. So δq is an isomorphism. We can start the induction because both groups Hq are
zero for large q.

In a slight abuse of notation, let Gm be the Weil-étale sheaf obtained by restricting the étale
sheaf Gm to the Weil-étale site.

Proposition 3.4. Let X be a geometrically connected smooth curve over a finite field k. Then the
cohomology groups Hq

W(X,Gm) are finitely generated for all q and zero if q � 3. If X is projective,
H0

W(X,Gm) = k∗ and H1
W(X,Gm) = Pic(X) just as in the étale case, and H2

W(X,Gm) = Z.

Proof. We begin with the spectral sequence of Proposition 2.3:

Hp(Γ0,H
q
ét(X̄,Gm)) ⇒ Hp+q

W (X,Gm).

This spectral sequence degenerates to give the series of short exact sequences

0 → H1(Γ0,H
q−1
ét (X̄,Gm)) → Hq

W(X,Gm) → H0(Γ0,H
q
ét(X̄,Gm)) → 0.

We now plug in the fact [Mil80, Example 2.22d] that Hq
ét(X̄,Gm) = 0 for q � 2. We immediately

obtain Hq
W(X,Gm) = 0 for q � 3.

We also see that H2
W(X,Gm) is isomorphic to H1(Γ0,Pic(X̄)). Let U(X̄) = H0(X̄,Gm). We have

an exact sequence

0 → H1(Γ0, U(X̄)) → H1
W(X,Gm) → (Pic(X̄))Γ0 → 0.
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Now write X as Y − S with Y smooth and projective and S finite. Let T be the finite set of
points of Ȳ lying over S. First assume that S is empty. Since (Div(Ȳ ))Γ0 = Div(Y ), it follows
that the cokernel of the map from Pic(Y ) to (Pic(Ȳ ))Γ0 is contained in H1(Γ0, k(Ȳ )∗/(k̄)∗), which is
contained inH2(Γ0, (k̄)∗) by Hilbert’s Theorem 90. Then (Pic(Ȳ ))Γ0 ∼→ Pic(Y ) sinceH2(Γ0, k̄

∗) = 0.
Since H1(Γ0,Pic0(Ȳ )) = 0 by Lang’s theorem (any principal homogeneous space of a connected
algebraic group over a finite field is trivial; see [Ser59, pp. 112 and 119]), then H1(Γ0,Pic(Ȳ )) ∼→
H1(Γ0,Z) ∼→ Z. The statement about H0 is clear.

Now let X be arbitrary. We have U(Ȳ ) = k̄∗ and the exact sequences:

0 → U(Ȳ ) → U(Ȳ − T ) →M → 0,
0 → N → Pic(Ȳ ) → Pic(Ȳ − T ) → 0,

where M and N are Γ0-modules which are finitely generated as abelian groups and so whose
Γ0-cohomology is also finitely generated. Since Hq(Γ0, k̄

∗) and Hq(Γ0,Pic(Ȳ )) are both finitely gen-
erated for all q, the result follows. (Since Γ0 has cohomological dimension 1, we need only look
at q = 0 and q = 1. The fact that H1(Γ0, k̄

∗) = 0 follows from the equality of Γ0-cohomology
with Γ-cohomology for torsion coefficients and Hilbert’s Theorem 90. The finite generation of
H1(Γ0,Pic(Ȳ )) again follows from Lang’s theorem. When q = 0, the result is evident.)

4. Verdier duality for abelian groups

In this section we state the surely well-known derived category version of duality in the category
of abelian groups. Let D be the full subcategory of the bounded derived category Db(Z) of abelian
groups consisting of those complexes with finitely generated homology groups. If A is in D, let A∗

be RHom(A,Z). Since Z has finite injective dimension, A∗ is again in D.
We recall Theorem 10.8.7 of [Wei94]: If R is a commutative ring and B is a bounded above

complex of R-modules, then ⊗L
RB : D−(R) → D−(R) is left adjoint to the functor RHomR(B,−) :

D+(R) → D+(R). That is, for A in D−(R) and C in D+(R) there is a natural isomorphism:

HomD(R)(A,RHomR(B,C)) ∼→ HomD(R)(A⊗L
R B,C).

Now let R = Z, let A be in D, B = A∗, and C = Z. By applying Weibel’s Theorem 10.8.7 twice,
we obtain

HomD(A,RHom(A∗,Z)) ∼→ HomD(A⊗A∗,Z) ∼→ HomD(A∗ ⊗A,Z) ∼→ HomD(A∗, A∗),

so there is a canonical map α in the derived category from A to A∗∗, corresponding to the identity
in HomD(A∗, A∗).

Proposition 4.1. The map α is an isomorphism in D; hence the functor RHom(−,Z) is a contra-
variant equivalence of categories which is inverse to itself.

Proof. The proof is by an easy induction on the length n of the complex A. If n = 1 it follows
immediately, because if F is free and finitely generated, then Hom(F,Z) is dualizing, and if M is
finite, then Ext1(M,Z) ∼→ Hom(M,Q/Z) is dualizing.

5. The duality theorem for non-singular curves

Let U be a smooth geometrically connected curve over a finite field k, let ShU be the abelian category
of Weil-étale sheaves on U , and let ΓU (F ) = H0

W(U,F ). Let j : U → X be an open dense embed-
ding of U in a smooth projective curve X over k, and let F be an object of ShX . Since X has finite
cohomological dimension, we may define RΓX(F ) as an element of the bounded derived category
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by taking an injective resolution I • of F , taking a sufficiently far-out truncation τI •, and applying
the functor ΓX . It is immediate that this defines a unique element in the bounded derived category
of abelian groups. Let J • be an injective resolution of Gm. Then applying the functor ΓX induces a
natural map in D(Z) from RHomX(F,Gm) = HomX(τI •, J •) to RHomD(Z)(RΓX(F ), RΓX(Gm)).

Recall from Proposition 3.4 that H2
W(X,Gm) = Z and Hq

W(X,Gm) = 0 for q � 3, which gives
us a natural map in D(Z) from RΓX(Gm) to Z[−2]. Now compose with the above map to get a
map κF from RHomX(F,Gm) to RHomD(Z)(RΓX(F ),Z[−2]).

Theorem 5.1. Let F be either j!Z (in which case we denote κF by κ) or j!Z/nZ (in which case we
denote κF by κn). Then κF is an isomorphism.

Proof. We begin with the case F = j!Z/nZ. Let Jn denote j!Z/nZ (as both étale and Weil-étale
sheaf). We have the commutative diagram in the derived category of abelian groups:

RHomét(Jn,Gm)
RΓét ��

φ
��

RHomAb(RΓétJn, RΓétGm) ��

��

RHomAb(RΓétJn,Q/Z[−3])

��
RHomW (Jn,Gm)

RΓW �� RHomAb(RΓWJn, RΓW Gm) �� RHomAb(RΓWJn,Z[−2])

The composite of the two top horizontal arrows is the duality isomorphism interpreting class
field theory for function fields in terms of étale cohomology, which was proved by Deninger in
[Den84]. (If F is a constructible torsion sheaf on X, then we have a map induced by RΓ from C1 =
RHomét(F,Gm) to RHom(RΓF,RΓGm) to RHom(RΓF,Q/Z[−3]) = C2, since H i(X,Gm) = 0 for
i > 3, and H3(X,Gm) = Q/Z[−3]. The homology of C1 is Exti

X(F,Gm), and the homology of C2

is (H3−i(X,F ))∗, where ∗ denotes Pontryagin dual. The induced maps on homology come from the
Yoneda pairing. Deninger shows [Den84, Theorem 1.7, p. 94] that these maps are isomorphisms,
and hence it follows that the map from C1 to C2 is a quasi-isomorphism, so an isomorphism in the
derived category.) What we want to show is that the composite of the two bottom horizontal arrows
is an isomorphism, so it suffices to show that the first and last vertical arrows are isomorphisms.

The last vertical arrow is an isomorphism because φ induces an isomorphism between RΓétJn

and RΓWJn, and RHomAb(RΓétJn,Q) = 0 (Exti(A,Q) = 0 if A is killed by n).
We now wish to show that the first vertical arrow is an isomorphism. Let Z be the closed

complement of U , with the induced reduced structure, and let i : Z → X be the natural inclusion.
Let F be a sheaf on X. In both the étale and Weil-étale topologies, Hom(i∗Z, F ) is naturally
isomorphic to i!F , and hence Extq(i∗Z, F ) is naturally isomorphic to Rqi!F . In particular, if F = Gm

we have that Extq(i∗Z,Gm) is naturally isomorphic to Rqi!Gm, which is zero if q �= 1 and Z if q = 1
(see the remarks at the end of § 2). Hence φ takes the étale version of Extq(i∗Z,Gm) to the Weil-étale
version of the same.

Since Extq(Z,Gm) equals Gm if q = 0 and 0 if q �= 0, φ also preserves it, and the exact sequence

0 → j!Z → Z → i∗Z → 0

shows that φ preserves Extq(j!Z,Gm) as well. It then immediately follows that φ also preserves
Extq(Jn,Gm).

Now the local to global spectral sequence, and the fact that Jn is killed by n, shows that φ also
preserves Extq(Jn,Gm), and hence RHom(Jn,Gm), which is what was wanted.

So we have shown that κn is an isomorphism, and we want to complete the proof of Theorem 5.1
by showing that κ is an isomorphism.

By a straightforward descending induction, we obtain the following lemma.
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Lemma 5.2. Let M • and N • be complexes of abelian groups and g a map from M • to N •. Assume
further that there are complexes M •

n and N •
n for every positive integer n such that the following

hold.

(1) There is a map an from M • to M •
n such that there exists a triangle in the derived category of

abelian groups M • n→M • an→M •
n →M •[1].

(2) There is a map bn from N • to N •
n such that there exists a triangle in the derived category of

abelian groups N • n→ N • bn→ N •
n → N •[1].

(3) There is a quasi-isomorphism gn from M •
n to N •

n such that the triple g, g, gn induces a map of
the aforementioned triangles.

(4) The homology groups hi(M •) and hi(N •) are finitely generated for all i and zero for i large.

Then g is a quasi-isomorphism.

Lemma 5.3. Let G be a Weil-étale sheaf on U . There is a canonical isomorphism in D(Z) between
RHomX(j!G,Gm,X) and RHomU (G,Gm,U ).

Proof. Because j∗ has the exact left adjoint j!, j∗ takes injectives to injectives. Since j∗ is exact,
it carries a resolution of Gm,X to a resolution of j∗Gm,X = Gm,U . The isomorphism then follows
immediately from the adjointness of j∗ and j!.

To complete the proof of Theorem 5.1, we need only point out that the cohomology groups in
question are finitely generated and zero for large i by Proposition 3.4 and Lemma 5.3, and then
apply Lemma 5.2.

Theorem 5.4. (a) RΓU(Gm) is naturally isomorphic to RHomD(Z)(RΓX(j!Z),Z[−2]).
(b) RΓX(j!Z) is naturally isomorphic to RHomD(Z)(RΓU (Gm),Z[−2]).

Proof. Since RΓU(F ) is the same as RHomU (Z, F ), part (a) follows immediately from Theorem 5.1
and Lemma 5.3. Since the functor RHom(·,Z[−2]) is its own inverse, part (b) follows from part (a).

What all this means in terms of cohomology groups is spelled out in the next section.

6. The computation of some cohomology groups

In this section we will compute the Weil-étale cohomology of Gm and j!Z on a smooth curve V .

Theorem 6.1. Let X be a projective smooth geometrically connected curve over the finite field k.
Then we have the following:

(a) H0
W(X,Gm) = k∗, H1

W(X,Gm) = Pic(X), H2
W(X,Gm) = Z, and H i

W(X,Gm) = 0 for i � 3.
(b) H0

W(X,Z) = Z, H1
W(X,Z) = Hom(Pic(X),Z) = Z, H2

W(X,Z) = Ext(Pic(X),Z), which is
the Pontryagin dual of the finite group Pic0(X), H3

W(X,Z) = Ext(k∗,Z), which is the Pontryagin
dual of the finite group k∗, and H i

W(X,Z) = 0 for i � 4.
Let V = X − S be a quasi-projective smooth curve over the finite field k, with X projective,

smooth and geometrically connected, and S finite and non-empty. Let j : V → X be the natural
open immersion and i : S → X be the natural closed immersion. Then we have the following:

(c) H0
W(V,Gm) = U(V ) = the units of V . We have the exact sequence

0 → Pic(V ) → H1
W(V,Gm) → Hom

(∐
S

Z/Z,Z
)

→ 0

and H i
W(V,Gm) = 0 for i � 2.
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(d) H0
W(X, j!Z) = 0 and H1

W(X, j!Z) =
∐

S Z/Z. We have the exact sequence

0 → Ext(Pic(V ),Z) → H2
W(X, j!Z) → Hom(U(V ),Z) → 0

and H3
W(X, j!Z) = Ext(U(V ),Z) = the Pontryagin dual of k∗.

Proof. We have proven part (a) as part of Proposition 3.4, and part (b) follows from part (a) by
Theorem 5.4. For part (c) we claim that H i

W(X, j∗Gm) is naturally isomorphic to H i
W(V,Gm). Let j̄

be the induced map from V̄ to X̄ . We have the two spectral sequences following from Proposition 2.3:

Hp(Γ0,H
q
ét(X̄, j̄∗Gm)) ⇒ Hp+q

W (X, j∗Gm),

Hp(Γ0,H
q
ét(V̄ ,Gm)) ⇒ Hp+q

W (V,Gm).

Since Rij̄∗Gm = 0 for i � 1 (see [Mil80, p. 108]), the Leray spectral sequence degenerates, and
we conclude that Hp

ét(X̄, j̄∗Gm) = Hp
ét(V̄ ,Gm). Hence the two above spectral sequences agree on

their E2-terms, and hence in the limit, which proves the claim.
From the exact sequence of sheaves

0 → Gm → j∗Gm → i∗Z → 0

we get, using the above claim, the exact sequence

0 → H0
W(X,Gm) → H0

W(V,Gm) → H0
W(S,Z) → H1

W(X,Gm) → H1
W(V,Gm)

→ H1
W(S,Z) → H2

W(X,Gm) → H2
W(V,Gm) → 0,

which easily yields

0 → Pic(V ) → H1
W(V,Gm) → Hom

(∐
S

Z/Z,Z
)

→ 0

and H2
W(V,Gm) = 0, thus proving part (c).

We next recall from Weibel [Wei94, Exercise 3.6.1] that for A• any complex of abelian groups,
we have the exact sequence

0 → Ext(h1−p(A•),Z) → hp(RHom(A•
,Z)) → Hom(h−p(A•),Z) → 0.

Now part (d) follows immediately from part (c), together with the duality theorem (Theorem 5.4)
and Lemma 5.3.

7. Values of zeta-functions at zero

In this section we will state the conjecture mentioned in the Introduction and prove it for curves
and smooth projective varieties, and a modified form of it for smooth surfaces. Let k = Fq be a
finite field. Let Γ be the Galois group of k̄ over k, and let φ be the Frobenius element of k, which
sends x to xq and topologically generates Γ. Let Γ0 denote the subgroup of Γ generated by φ. Let θ
in H1

W(k,Z) = H1(Γ0,Z) = Hom(Γ0,Z) be the homomorphism that sends φ to 1.
We also denote by θ the pullback of θ to H1

W(X,Z), where X is any scheme over k. For any sheaf
(or complex of sheaves) F on the Weil-étale site of X, there is a natural pairing F ⊗Z to F induced
by x⊗n→ nx. This pairing induces a map

⋃
θ from H i

W(X,F ) to H i+1
W (X,F ). Observe that, since

θ lies in H1(Γ0,Z), θ∪θ = 0, so cupping with θ makes the cohomology groups (or hypercohomology
groups) H i

W(X,F ) into a complex. Let hi
W(X,F ) be the homology groups of this complex.

Definition 7.1. Assume that hi
W(X,F ) is finite for all i, and zero for i large. Define the Euler

characteristic χ(X,F ) to be
∏

i |(hi(X,F )|(−1)i
.
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Assume that we have a cohomological δ-functor H i from an abelian category A to the category
of abelian groups, with H i = 0 for i < 0. Assume also that we have a cohomology operation
θ : H i → H i+1 with square zero for all i. Let A be an object in A, and let hi(A) be the homology
of the complex H i−1(A) → H i(A) → H i+1(A), the maps being given by θ. Say that A is ‘θ-finite’
if hi(A) is finite for all i and H i(A) is zero for i large. In this case, let χ(A) =

∏
i |(hi(A))|(−1)i

.

Proposition 7.2. (a) If 0 → A → B → C → 0 is exact, and A,B and C are all θ-finite, then
χ(A)χ(C) = χ(B).

(b) If B and C are θ-finite, and H i(B) is finite for i � 2, then A is also θ-finite.

Proof. Let αi (respectively βi) (respectively γi) be the map from H i(A) to H i(B) (respectively
H i(B) to H i(C)) (respectively H i(C) to H i+1(A)). Let Di be the image of αi, Ei the image of βi,
and F i the image of γi. Let f i be θ on H i(A), gi be θ on H i(B), and hi be θ on H i(C).

Let δi be the map induced by θ from Di to Di+1, εi be the map induced by θ from Ei to Ei+1,
and ρi the map induced by θ from F i to F i+1. Then we have the commutative diagram:

0 �� D0 ��

δ0

��

H0(B)
β0

��

g0

��

E0 ��

ε0

��

0

0 �� D1 ��

δ1

��

H1(B)
β1

��

g1

��

E1 ��

ε1

��

0

0 �� D2

��

�� H2(B)

��

β2
�� E2

��

�� 0

Let H i(δ) = Ker(δi)/Im(δi−1), and similarly for H i(ε), H i(β), H i(f), H i(g), and H i(h).
It follows from the above commutative diagram that we have an exact sequence

0 → H0(δ) → H0(g) → H0(ε) → H1(δ) → H1(g) → H1(ε) → · · ·
and similarly we obtain the exact sequences

0 → H0(ε) → H0(h) → H0(ρ) → H1(ε) → H1(h) → H1(ρ) → · · · ,
0 → H0(f) → H0(δ) → H0(ρ) → H1(f) → H1(δ) → H1(ρ) → · · · .

We have assumed that H i(f),H i(g), and H i(h) are finite for all i. It follows easily by induction
that all the groups H i(ε),H i(δ), and H i(ρ) are also finite.

Since H i(A),H i(B), and H i(C) are zero for i large, so are Di, Ei and F i. Hence all the Euler
characteristics are defined, and with the natural notations, we have

χ(D)χ(E) = χ(B), χ(A)χ(F ) = χ(D), χ(E)χ(F ) = χ(C),

from which it follows that χ(B) = χ(A)χ(C), and we have proved part (a). A similar and entirely
elementary argument proves part (b).

We now state the conjecture.

Conjecture 7.3. Let U be a quasi-projective variety over k, and let j : U → X be an open dense
immersion of U in a projective variety X. Assume either that U is smooth or that U is a curve.
Then we have the following.
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(a) The cohomology groups H i
W(X, j!Z) are finitely generated abelian groups, independent of the

choice of open immersion j, and zero for i large.

(b) The alternating sum of the ranks of the cohomology groups H i
W(X, j!Z) is equal to zero.

(c) The order aU of the zero of the zeta-function Z(U, t) at t = 1 is given by the ‘secondary Euler
characteristic’

∑
(−1)iiri, where ri = rank(H i

W(X, j!Z)).

(d) The homology groups hi
W(X, j!Z) of the complex (H •

W(X, j!Z), θ) are finite.

Let Z∗(U, 1) be limt→1 Z(U, t)(1 − t)−aU . Then we have that

(e) Z∗(U, 1) is equal, up to sign, to χ(X, j!Z).

We remark that part (d) immediately implies part (b).

Theorem 7.4. Conjecture 7.3 is true if U is projective and smooth, or if U is a smooth surface, or
if U is a curve. (If U is a smooth surface, we must also take the projective surface X containing U
to be smooth.)

Proof. We begin with the case where U is projective and smooth, so X = U and j is the identity.

Lemma 7.5. Let X be projective and smooth. Then Conjecture 7.3 is true forX and the cohomology
groups H i

W(X,Z) are finite for i � 2.

Proof. We start with the formula of Milne [Mil86, Theorem 0.1]:

Z∗(X, 1) = |(H2
ét(X,Z)cotor)|

∏
i�3

|(H i
ét(X,Z))(−1)i |det(δ)−1.

Here δ is the map induced by cup product with the fundamental class in H1(Γ, Ẑ) from H0(X, Ẑ)
to H1(X, Ẑ). Note that we have switched here from Milne’s use of ζ(X, s) to Z(X, t), where t = q−s,
and corrected the obvious misprint (q1−s should be q−s).

(Milne assumes throughout his paper that X is a variety, i.e. geometrically connected, but his
proof of Theorem 0.1 remains valid in the general projective smooth case.) We should point out here
that the formula of Milne combines the cohomological description of the zeta-function due to Artin
and Grothendieck, a deep theorem of Gabber [Gab83], Deligne’s proof of the Riemann hypothesis
for varieties over finite fields [Del80], and some sophisticated p-adic computations due to Milne.
Milne of course also shows that the groups H i

ét(X,Z) are finite for i � 3 and that the cotorsion
quotient group of H2

ét(X,Z) is finite. In fact he shows that H2
ét(X,Z) is the direct sum of Q/Z and

a finite group.
A comparison of the two spectral sequences of Proposition 2.4, part (f), using Lemma 1.1 and

the fact that the groups Hp
ét(X̄,Z) are torsion for p > 0, shows that the natural map from Hp

ét(X,Z)
to Hp

W(X,Z) is an isomorphism for p � 3. Since H1
ét(X̄,Z) = 0, we also have the exact sequence

0 → H2(Γ,H0
ét(X̄,Z)) → H2

ét(X,Z) → H2
W(X,Z) → 0,

which identifies H2
W(X,Z) with H2

ét(X,Z)cotor, and of course shows that its order is finite.
To show the identity of Milne’s Euler characteristic with ours, it only remains to relate our

map from H0
W(X,Z) to H1

W(X,Z) given by cup product with θ to Milne’s. But the equality of
the orders of the cokernels, which is what is needed, follows immediately from the fact that we
have identifications of H i

ét(X, Ẑ) with H i
W (X,Z) ⊗ Ẑ for i = 0, 1 compatible with the relevant

cup products. So we have proved parts (d) and (e) of the theorem, and part (b) is an immediate
consequence of part (d). Also, parts (a) and (c) follow immediately from the proof of Theorem 3.1.
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(If X is projective, smooth and geometrically connected, consider the standard representation of the
zeta-function Z(X, t) of X as

∏
Pi(X, t)(−1)i+1

, with Pi the characteristic polynomial of Frobenius.
It is immediate that P0(t) = 1− t, and so has a simple zero at t = 1. It follows from Deligne’s proof
of Weil’s Riemann hypothesis that the other Pi do not vanish at t = 1, so Z(X, t) has a simple pole
there.)

Lemma 7.6. Let U = X − Z. Let j be the open immersion of U in X and let i be the closed
immersion of Z in X. Assume that Conjecture 7.3 holds for Z and that X is projective and smooth.
Assume also that the cohomology groups of U with compact support H i

W(X, j!Z) are finitely gen-
erated and independent of the choice of j. Then Conjecture 7.3 holds for U .

Proof. It follows from Lemma 7.5 that Conjecture 7.3 also holds for X and the cohomology groups
H i

W(X,Z) are finite for i � 2. We have the exact sequence of Weil-étale sheaves on X:

0 → j!Z → Z → i∗Z → 0.

It then follows from Proposition 7.2 that χ(X, j!Z) is well defined and we have χ(X,Z) =
χ(X, j!Z)χ(X, i∗Z). Since we also know that Z∗(X, 1) = Z∗(U, 1)Z∗(Z, 1), we have proven parts (b),
(d) and (e) of Conjecture 7.3 and Theorem 7.4 for U , and we have assumed part (a) as part of the
hypothesis. It remains to prove part (c).

Lemma 7.7. Let U be as in Lemma 7.6. Then we have the following.

(a) The groups H i
ét(X̄, j!Z) and H i

ét(X̄, i∗Z) are semi-simple at zero.

(b) Conjecture 7.3, part (c) is true for U .

Proof. Lemma 1.4 immediately implies part (a) of Lemma 7.7.
We have first the exact sequence (modulo torsion)

0 → H0
W (X,Z) → H0

W (X, i∗Z) → H1
W (X, j!Z) → H1

W (X,Z)

→ H1
W (X, i∗Z) → H2

W (X, j!Z) → 0.

By comparing this sequence with the exact sequence (modulo torsion)

0 → H0
ét(X̄,Z) → H0

ét(X̄, i∗Z) → H1
ét(X̄, j!Z) → 0

and using the semi-simplicity, we see that the rank ofH1
W (X, j!Z) is equal to the rank of H0

W (X, i∗Z)
−1, and the rank of H2

W (X, j!Z) is equal to the rank of H1(X, i∗Z)−1. Also the rank of H i
W (X, j!Z)

is equal to the rank of H i−1(X, i∗Z) for i � 3.
It then follows, assuming Conjecture 7.3 for Z, that the ‘secondary Euler characteristic’ of U

is equal to the difference of the ‘secondary Euler characteristic’ of X and the ‘secondary Euler
characteristic’ of Z. Since the same relationship holds for the orders of the respective zeros of the
zeta-functions at t = 1, we have proved part (b) of Lemma 7.7.

Hence we have now also proved Lemma 7.6.

Now we return to the proof of the original theorem. Lemmas 7.5 and 7.6 immediately yield
Theorem 7.4 for smooth curves. Then an argument essentially identical to that used in the proof
of Lemma 7.6 yields the result for all curves, by comparing an arbitrary curve to a smooth open
dense subset. Finally the result for any smooth surface U follows immediately by using Lemma 3.2
(applied to the projective curve X − U), Lemma 7.5 and Lemma 7.6.
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