
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2011

The Weil Pairing on Elliptic Curves and Its Cryptographic The Weil Pairing on Elliptic Curves and Its Cryptographic

Applications Applications

Alex Edward Aftuck
University of North Florida

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Mathematics Commons

Suggested Citation Suggested Citation

Aftuck, Alex Edward, "The Weil Pairing on Elliptic Curves and Its Cryptographic Applications" (2011). UNF

Graduate Theses and Dissertations. 139.

https://digitalcommons.unf.edu/etd/139

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2011 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unf.edu%2Fetd%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/139?utm_source=digitalcommons.unf.edu%2Fetd%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

The Weil Pairing on Elliptic Curves and its

Cryptographic Applications

Alex Edward Aftuck

A thesis submitted to the Department of Mathematics and Statistics
in partial fulfillment of the requirements for the degree of

Master of Sciences in Mathematical Sciences

UNIVERSITY OF NORTH FLORIDA
COLLEGE OF ARTS AND SCIENCES

July 2011

The thesis of Alex Edward Aftuck is approved:

Committee Chairperson

Accepted for the Department:

Chairperson

Accepted for the College:

Dean

Accepted for the University:

(Date)

tJ7 / 2 I ! zeD rl

6 '1" /'- Y"L'J \ \

7 J 21/2<1[)

7/ LIo} loll

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Signature Deleted

Contents

List of Figures iv

List of Tables v

Abstract vi

0 Introduction 1

1 Elliptic curves 3

2 Points of finite order, the Double-and-Add algorithm for computing
[n]P 12

3 Divisors of rational functions 15

4 The Weil pairing on points of an elliptic curve 28

5 Miller’s algorithm 41

6 Elliptic curves over finite fields 45

7 The discrete logarithm problem (DLP) and Diffie-Hellman key ex-
change 48

8 The elliptic curve discrete logarithm problem (ECDLP) and elliptic
curve Diffie- Hellman key exchange 52

9 Modified Weil pairings and the tripartite Diffie-Helman key ex-
change 53

Appendices 65
A: Mathematica program for Weierstrass form 65
B: Mathematica programs for EC’s over C 66
C: Mathematica programs for EC’s over Fp 68
D: Mathematica programs for EC’s over Fp2 70

Bibliography 72

Vita 73

iii

List of Figures

1 Elliptic curve addition on E : Y 2 = X3 + 1 4

2 Adding P to itself on E : Y 2 = X3 − 3X + 1 5

3 Λ and the period parallelogram for ω1, ω2 19

4 The period parallelogram mapped to a torus under ℘. 20

5 E : Y 2 = X3 − 2X2 − 3X, with our selected functions and their zeros. 27

6 Four ”nice” points of order 4 on E : Y 2 = X3 − 2X2 − 3X 38

7 Plot of 158i mod 1223 for i = 1, 2, . . . , 200 49

iv

List of Tables

1 The Double-and-Add algorithm . 14

2 Double-and-Add algorithm used to compute [245]P 15

3 Weil pairing values for four ”nice” points in E[4] on Y 2 = X3+2X2−3X. 40

4 Addition table for E : Y 2 = X3 + 4 over the field F5 46

5 Diffie-Hellman key exchange over F1223 51

6 Diffie-Hellman key exchange over E(F1223) 54

7 Tripartite Diffie-Hellman key exchange over E(F1223) 64

v

Abstract

This thesis presents the Weil pairing on elliptic curves as a tool to implement

a tripartite Diffie-Helman key exchange. Elliptic curves are introduced, as well

as the addition operation that creates a group structure on its points. In

leading to the definition of the Weil pairing, divisors of rational functions are

studied, as well as the Weierstrass ℘-function, which shows the complex lattice

as isomorphic to elliptic curves. Several important qualities of the Weil pairing

are proved, and Miller’s algorithm for quick calculation is shown. Next, the

bipartite Diffie-Helman key exchange is discussed over finite fields and elliptic

curves. Finally an example of a modified Weil pairing is defined, which leads

to the tripartite Diffie-Helman key exchange.

vi

0 Introduction

The Diffie-Helman key exchange, created in 1976, is one of the most widely used

cryptographic tools, with several different versions. The process allows two people

to create a common key to a cypher, even if there are eavesdroppers listening to

their conversation. This process is based on the discrete logarithm problem and,

later, the elliptic curve discrete logarithm problem. It wasn’t until the early 2000’s

before a process was developed to allow three people to share a key easily. We want

the process to not require more than one round of communications, as this would

require all parties to be online at once. Anotoine Joux created an effective tripartite

Diffie-Helman key exchange, thus allowing three people to easily share a key. His

work brought in bilinear pairings on elliptic curves, and used them to create the

Diffie-Helman process.

The bilinear pairing on elliptic curves we focus on is the Weil pairing, although

there are others. The Weil pairing was given its original abstract definition by Andre

Weil, but was not fully realized on elliptic curves until later by other mathematicians.

Originally, Weil pairings on elliptic curves were introduced to cryptography not as

a constructive mechanism, as Joux used them, but as a way to hopefully break the

elliptic curve discrete logarithm problem, and thus unravel the Diffie-Helman key

exchange. In the early 1990’s the MOV algorithm [1] was designed to take the elliptic

curve discrete logarithm problem in a finite field of size p and turn it into a discrete

logarithm problem in a finite field of size pk, for some integer k. Unfortunately, the

discrete logarithm problem is still not easily breakable, and thus this method is only

truly effective on very specific curves (curves where the the embedding degree k is

very small.) Thus, the elliptic curve discrete logarithm problem was not harmed too

much, and eventually it was even strengthened by the work of Joux, who ironically

used the pairings originally meant to weaken Diffie-Helman to strengthen it.

Sections 1 and 2 serve as an introduction to elliptic curves. In Section 1, we arrive

at our definition of an elliptic curve and view the ”addition operation,” both in its

natural form of drawing a line through two points and its more analytical form. We

then see how this operation gives the structure of a group to points on an elliptic

curve. In Section 2, we review further aspects of elliptic curves, such as the order of

points, as well as view an algorithm used to add a point to itself multiple times.

In section 3, we begin setting up the basis for Weil pairings by reviewing the

divisors of rational functions. We also see how elliptic curves are related to complex

lattices using the Weierstrass ℘-function, which will allow us to prove a theorem

concerning divisors. In Section 4, we review bilinear pairings, give our definition of

the Weil pairing, and prove several of its qualities. In Section 5, we view Miller’s

algorithm, which gives us a quick way of finding the functions necessary for the Weil

pairing, and will ultimately give us a way to easily calculate the pairing. Section 6

will shift our view from elliptic curves over complex numbers to elliptic curves over

finite fields, which is necessary for cryptographic applications.

The final sections of the paper focus on cryptography and serve to link the more

abstract ideas of elliptic curves with the very practical ideas of cryptography. In

Section 7, we view the Diffie-Helman key exchange, a cryptographic tool based only

on modular arithmetic which becomes exceedingly time consuming due to the discrete

2

logarithm problem (DLP). In Section 8, we view its elliptic curve analog, made even

harder by the elliptic curve discrete logarithm problem (ECDLP). Finally, in Section

9, we show the implementation of the Weil pairing as a cryptographic tool. This

section will end with an example of the tripartite Diffie-Helman key exchange, made

possible by the implementation of the modified Weil pairing.

The Appendices will feature Mathematica programs that implement the algo-

rithms and functions reviewed in the paper. Appendix A features a program that

puts a general homogenous cubic polynomial into Weierstrass form, which may be

needed for the other programs to correctly function. Appendix B features the al-

gorithms and functions of the paper implemented when the underlying field is C.

Appendix C features the same functions when the underlying field is Fp, and Ap-

pendix D features the same functions when the underlying field is Fp2 , as well as a

few functions to easily calculate in said field.

1 Elliptic curves

An elliptic curve, E, is defined as the set of solution points to an equation of the

form Y 2 = X3 + aX + b . As it turns out, there is a natural operation upon the

points of an elliptic curve that give an abelian group. If we consider two points P

and Q, when we draw a line through them, we get a third point on the curve, R. This

operation is referred to as the pound (#) operation, giving us P#Q = R in the above

example. In order to obtain an operation which gives us an abelian group, we then

reflect our point R over the x-axis (by negating the y value of R). This new point

3

P #Q

P + Q

P
Q

Figure 1: Elliptic curve addition on E : Y 2 = X3 + 1

will be called R′, and our operation uses the addition notation, that is, P +Q = R′.

This is illustrated in Figure 1 on the curve E : Y 2 = X3 + 1.

If we were to add a point P to itself, we do not have a second point on E to draw

our line with. Thus, we must consider the tangent line of the curve E at P . In this

case, illustrated in Figure 2, we have a line through two points, one of which with

multiplicity two. When adding a point to itself, we use slightly modified addition

notation, as in: P + P = [2]P , P + P + P = [3]P , etcetera, so that

P + P + · · ·+ P
︸ ︷︷ ︸

n

= [n]P

If we add a point P = (x, y) belonging to E to its reflection over the x-axis,

(x,−y), (denoted −P), the line through the two points is vertical, with no third

point of intersection on the XY -plane. Thus, we must include an extra point in E,

which can be seen as a point at infinity at the end of every curve (this is discussed

further below.) This point is referred to as O. Then P#(−P) = O, and since O

4

P 2 P

P # P

Figure 2: Adding P to itself on E : Y 2 = X3 − 3X + 1

is not on the XY -plane, reflecting it still gives O, thus P + (−P) = O. How does

O behave when added to other points? Drawing a line through P = (x, y) and O

gives a vertical line X = x, which intersects E at P ,O and −P . Thus P#O = −P ,

and negating the y-value, we have P + O = P . This addition is shown below to be

commutative, and thus O acts as the identity.

Now that we have an idea of the structure of elliptic curves, it is time to look at

the background of the material before we define explicitly the curves we will study.

In its most general form, an elliptic curve is any nondegenerate, nonsingular cubic

polynomial. These are of the form

aX3 + bX2Y + cXY 2 + dY 3 + eX2 + fX + gXY + hY 2 + jY + k = 0

with the coefficients belonging to the field of choice. Obviously, this ten coefficient

polynomial is unwieldy to work with. This is where projective coordinates help us.

Definition 1.1. For field K, the set KP 2, the projective plane, is the set of equiva-

5

lence classes on K3 − (0, 0, 0) defined by the relation:

(x1, y1, z1) ≡ (x2, y2, z2) if and only if (x1, y1, z1) = λ(x2, y2, z2) for some λ 6= 0.

The representative classes are denoted [x, y, z].

ThenK2, a standard plane, is a subset ofKP 2 (as (x, y)→ [x, y, 1]) and is referred

to as the affine plane. Since in the projective plane, equivalence classes are determined

by a nonzero constant, (2, 4, 3) ≡ (2/3, 4/3, 1), but (2, 4, 3) 6≡ (2, 4, 0). Thus, we will

consider two groups of classes: [x, y, 1] and [x, y, 0]. [x, y, 1] makes up the affine plane,

while [x, y, 0] is not covered by the affine plane, and makes up our points at infinity.

An affine curve of the form aX + bY + c = 0 might be considered as having two

ends, one heading towards positive infinity, one to negative infinity. These points are

(−b, a, 0) and (a,−b, 0). But (−b, a, 0) ≡ (b,−a, 0), so we consider the line as having

one point at infinity, the representative class [−b, a, 0].

In order to work with affine curves in the projective plane, we need the following

definitions:

Definition 1.2. A homogeneous polynomial over KP 2 is a polynomial in three vari-

ables with coefficients in K such that each monomial is of the same degree.

Example 1.3. The affine curve aX + bY + c = 0 is not a homogeneous polynomial,

but aX + bY + cZ = 0 is. Similarly, the unit circle X2 + Y 2 = 1 is represented as

X2 + Y 2 = Z2 homogeneously.

Then in order to work between the two forms, we need to be able to ”homogenize”

6

and ”dehomogenize”.

Definition 1.4. Let f(X, Y) be an affine polynomial of degree n. Then

(X, Y, Z) = Znf(X/Z, Y/Z)

is a homogeneous polynomial in three variables.

Similarly, if F (X, Y, Z) is a homogeneous polynomial in three variables,

f(X, Y) = F (X, Y, 1)

is an affine polynomial.

Just as the projective plane partitions the points of K3− (0, 0, 0), there are equiv-

alent projective curves.

Definition 1.5. Two projective curves F (X, Y, Z) and G(X, Y, Z) are projectively

equivalent if there exists a nondegenerate 3× 3 matrix A which creates the change of

variables:

X̄
Ȳ
Z̄

 = A

X
Y
Z

such that F (X̄, Ȳ , Z̄) = G(X, Y, Z).

Theorem 1.6. Let f(X, Y, Z) be a nondegenerate, nonsingular cubic curve. Then by

a projective transform, f(X, Y, Z) can be rewritten in the form of

Y 2Z = X3 + aXZ2 + bZ3,

7

where a, b belong to the field of concern, and the discriminant, ∆f = 4a3 + 27b2, of

the cubic is nonzero. After de-homogenizing, the affine cubic version of this curve

will have the form

Y 2 = X3 + aX + b,

known as the Weierstrass form.

Weierstrass equations are among the most common form of elliptic curves studied.

The above theorem is proved in many texts on elliptic curves, such as [3]. Included

in Appendix A is a Mathematica program which will take any f(X, Y, Z) in the form

of the theorem and transform it to Weierstrass form.

In the introduction, we mentioned the point at infinity O. Projective geometry

allows us to describe it in more detail. As X goes to infinity, Y goes to positive

and negative infinity, with the slope of our tangent line nearing vertical. Then, our

tangent line at infinity is projectively equivalent to the line X = 0. Then since a line

aX + bY + c = 0 has point at infinity [−b, a, 0], our tangent line has point at infinity

[0, 1, 0]. Then O = [0, 1, 0].

Definition 1.7. An elliptic curve, E, is defined as the set of solution points to the

Weierstrass equation Y 2 = X3+aX+b, in addition to the point O, with the condition

that the discriminant of the cubic is nonzero: ∆E = 4a3 + 27b2 6= 0.

We want the discriminant to be nonzero to avoid any singularities in the curve. If

we had a point of singularity P on E, we would have much trouble computing [2]P .

Since the tangent line at P is not well defined, neither is our addition operation. Now

8

we formalize the addition operation discussed earlier. Included in the Appendices are

Mathematica programs that implement the addition algorithm over several fields.

Theorem 1.8. [1] Elliptic Curve Addition Algorithm.

Let E be an elliptic curve and let P1 and P2 be points on E.

(a) If P1 = O, then P1 + P2 = P2.

(b) If P2 = O, then P1 + P2 = P1.

Otherwise, let P1 = (x1, y1), P2 = (x2, y2).

(c) If x1 = x2 and y1 = −y2, then P1 + P2 = O.

(d) Otherwise, let

λ =

y2 − y1
x2 − x1

if P1 6= P2

3x2
1 + a

2y1
if P1 = P2

Then P1 + P2 = (x3, y3), where:

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1

Proof Part (a) is clear when considering that the line through P2 and O is a vertical

line, thus intersecting E at the third point of−P2. Reflecting over the x-axis, O+P2 =

P2. Part (b) follows similarly.

If P2 = −P1, as in part (c), the line through the points is X = x1. This vertical

line line intersects E at O by definition, thus P1#P2 = O, and so it follows that

P1 + P2 = O.

9

In either case for (d), the line through P1 and P2 has slope λ . Thus the line has

the equation

Y = λ(X − x1) + y1 (1)

Substituting Y into E and simplifying, we have:

(λ(X − x1)− y1)
2 = X3 + aX + b

X3 − λ2X2 +X(a+ 2λ2x1) + (b− λ2x2
1 − y21) = 0 (2)

Since we already know x1, x2 are roots of the above cubic, if we let x3 be the third

root, we have:

(X − x1)(X − x2)(X − x3) = 0

X3 − (x1 + x2 + x3)X
2 + (x1x2 + x1x3 + x2x3)X − x1x2x3 = 0 (3)

Equating the coefficients of X2 in (2) and (3), we have x1 + x2 + x3 = λ2. Thus

x3 = λ2 − x1 − x2. Now, substituting x3 into (1), we obtain Y = λ(x3 − x1) + y1.

Negating the Y -value, we have y3 = λ(x1 − x3)− y1 and our proof is complete. ✷

Example 1.9. Let E : Y 2 = X3 + 1. Then considering points P = (−1, 0) and

10

Q = (0, 1), as we did in Figure 1, we compute P +Q.

λ =
1− 0

0 + 1
= 1

x3 = 12 + 1− 0 = 2

y3 = 1(0− 2)− 1 = −3

Thus P +Q = (2,−3).

Theorem 1.10. [1] Let E be an elliptic curve. Then the addition operation on E has

the following properties for all P,Q,R ∈ E:

(a) Identity: P +O = O + P = P .

(b) Inverse: P + (−P) = O.

(c) Associative: (P +Q) +R = P + (Q+R).

(d) Commutative: P +Q = Q+ P .

Thus, E with the addition operation is an abelian group.

Proof The proof of (a) and (b) follow from the proof of Theorem 1.8 parts (a) and

(c), respectively.

The proof of commutativity, (d), is easily pictured. The line through P and Q

is unique, regardless of which point is considered first. Thus, the third point of

intersection will be the same, regardless of order. Negating the equal y-values, we

have P +Q = Q+ P .

11

The proof of associativity, (c), is a matter of following the algebra through a

number of cases, and will not be shown here. It is shown in [3]. ✷

2 Points of finite order, the Double-and-Add algo-

rithm for computing [n]P

A natural question to ask is: how many times we can add a point to itself before we

end up at our point at infinity O?

Definition 2.1. We define the order of a point P on E as a positive integer m such

that [m]P = O. If no such integer exists, we say P is of infinite order. For positive

integer values of m, and some field K, we denote the collection of points on E(K) of

order m as

E(K)[m] = {P ∈ E : [m]P = O}.

Often, the field K is set throughout an example, and we simply denote the collection

as E[m].

Interestingly, by this definition of order, a point of finite order P does not only

belong to one E[m], but infinitely many. This can be seen in the case of O. For every

positive integer value of m, [m]O = O. Thus O ∈ E[m] for every positive integer

m. Similarly, if P 6= O and [n]P = O, then [2n]P = [n]P + [n]P = O + O = O,

[3n]P = O, etcetera. Thus P belongs to every E[km] for multiples of m.

Example 2.2. We look at points of order 2. If P were to be of order 2, then

12

P +P = O, so essentially, P = −P . Thus if P = (x, y), we need y = −y for P to have

order 2. Then P = (x, 0). To find these points, consider E : Y 2 = X3 + aX + b. We

know that if we are working in an algebraically closed field, such as C, we can factor

the equation into the form E : Y 2 = (X − α1)(X − α2)(X − α3), and since we have

demanded in our Weierstrass form for E that the right hand side be nondegenerate,

α1 6= α2 6= α3. Thus, we know three distinct points on E, P1 = (α1, 0), P2 = (α2, 0),

and P3 = (α3, 0), each of which is in E[2]. Also, by the argument above, O ∈ E[2].

Since we know that E can have no more than 3 zeros, there are no other points in

E[2].

We have an addition algorithm to compute the coordinates for points such as

P +Q, [2]P , etcetera, and we see that computing [n]P to find the order of P will be

used. What if we wish to compute, say, [5400]P? We could use the addition algorithm

of Theorem 1.8 repeatedly, but this would be extremely inefficient. In order to be

able to compute [n]P for very large values of n, which we will need to be able to do for

applications in cryptography, the Double-and-Add algorithm [1] has been developed.

First, consider n written as its binary expansion:

n = n0 + 2n1 + 4n2 + 8n3 + · · ·+ 2rnr with no, n1, . . . , nr ∈ {0, 1}.

Then, with our addition operation, we can write [n]P as:

[n]P = [n0]P+[2n1]P+[4n2]P+[8n3]P+· · ·+[2rnr]P with no, n1, . . . , nr ∈ {0, 1}.

13

1. Set Q = P and R = O.
2. Loop while n > 0:

3. If n ≡ 1 mod 2, set R = R +Q.

4. Set Q = [2]Q and n = ⌊n/2⌋.
5. If n > 0, continue loop at step 2.

6. Return R which equals [n]P

Table 1: The Double-and-Add algorithm

Now, we notice that in each additive term, we are adding P to itself 2i times, with

i = 0, 1, . . . , r. Then if we let Qi = [2i]P (thus Q0 = P), we can write

[n]P = [n0]P + [n1]Q1 + [n2]Q2 + [n3]Q3 + · · ·+ [nr]Qr with no, n1, . . . , nr ∈ {0, 1}

where each Qi = [2]Qi−1. Now, with each step of addition, we are only completing

one operation of the elliptic curve addition algorithm, as opposed to 2i operations

of it. Table 1 formalizes how the Double-and-Add algorithm will be completed in a

program, and Mathematica code is included in the Appendices.

Example 2.3. Table 2 gives an example of a calculation using the algorithm given in

Table 1. In the table, n represents the n used at that step, as defined in the algorithm.

We calculate [245]P , where P = (−2,−10), on the curve:

E : Y 2 = X3 + 13X + 134

Our algorithm results, after rounding, in [245]P = (78.034,−690.160).

14

step i n Q = [2i]P R

0 245 (-2,-10) O
1 122 (5.563,19.4531) (-2,-10)

2 61 (-3.727,5.813) (-2,-10)

3 30 (29.559,-162.314) (89.597,848.853)

4 15 (6.730,-22.941) (89.597,848.853)

5 7 (-2.932,-8.408) (14.351,-57.239)

6 3 (11.184,40.965) (-3.437,6.981)

7 1 (0.085,11.624) (-2.344,-9.521)

8 0 (0.144,-11.656) (78.034,-690.160)

Table 2: Double-and-Add algorithm used to compute [245]P

Note that

245 = 1 + 22 + 24 + 25 + 26 + 27

thus [245]P = P + [4]P + [16]P + [32]P + [64]P + [128]P

and since, in our algorithm, we compute each doubling of P with one point addition,

we only need to compute up to 15 point additions (7 doublings, up to 8 additions of

R+Q), as opposed to 245. In reality, since 245 has 6 nonzero elements in its binary

expansion, we computed [245]P in 13 point additions.

3 Divisors of rational functions

In order to define our bilinear pairing, we need to study how a rational function on E

relates to its zeros and poles. To begin, we look at the simpler example of a rational

15

function of one variable. A rational function is simply a ratio of two polynomial

functions, thus we may state that a general rational function of one variable takes

the form:

F (X) =
a0 + a1X + · · ·+ amX

m

b0 + b1X + · · ·+ bnXn
.

If we allow factorization over the complex numbers, we can find α1, α2, . . . , αr and

β1, β2, . . . , βs such that our function takes the form:

F (X) =
a(X − α1)

d1(X − α2)
d2 · · ·+ (X − αr)

dr

b(X − β1)e1(X − β2)e2 · · ·+ (X − βs)es
.

We may assume that the α’s and β’s are distinct, otherwise the corresponding factors

could be canceled out. We denote any value of X where the numerator vanishes as a

zero, and any value of X where the denominator vanishes as a pole.

Then F has zeros at α1, α2, . . . , αr and poles at β1, β2, . . . , βs, where each zero αi

has multiplicity di, and each pole βj has multiplicity ej, we define the divisor of F ,

div(F), as the formal sum

div(F) = d1(α1) + d2(α2) + · · ·+ dr(αr)− e1(β1)− e2(β2)− · · · − es(βs).

This is effectively a way of keeping track of the zeros and poles of a function. Note

in our definition the zeros have positive coefficients, the poles have negative. Also

note the use of parentheses to distinguish we are not actually computing, say, e1β1

by using multiplication, but that we simply have a pole β1 with multiplicity e1.

Just as we have looked at divisors of functions of one variable, we can consider

16

rational functions of two variables, f(X, Y) : E → C, and look at their divisors.

Definition 3.1. In its most general form, a divisor, D on a curve C is a sum

D =
∑

P∈C

nP (P)

where all but a finite number of nP are zero. The degree of a divisor is the sum of

the coefficients:

deg(D) =
∑

P∈C

nP .

On an elliptic curve, E, the sum of a divisor is the result of dropping the parentheses

from the divisor, thus using the addition algorithm add each P to itself nP times,

and then sum every resultant point.

sum(D) =
∑

P∈E

[nP]P.

Example 3.2. Consider the elliptic curve E : Y 2 = X3 + aX + b. As we have done

previously, the cubic on the right side may be factorized to give an equation of the

form: Y 2 = (X − α1)(X − α2)(X − α3), with each root being distinct.

If we consider the function f(X, Y) = Y , as a rational function, we have that f

vanishes at three points, P1 = (α1, 0), P2 = (α2, 0), and P3 = (α3, 0), giving us three

zeros, each with mutiplicity 1. To find the poles, we must remember that as a rational

function, Y = Y/1. Homogenizing, we have f(X, Y, Z) = Y/Z. Then to find the poles

of f , we must analyze Z as a polynomial. For all affine points on E, Z = 1, so Z = 0

only at O. As a result of our projective transformation, it is easy to show that O is

17

an inflection point and Z = 0 is the tangent line at that point. This gives us that the

pole O has multiplicity 3. Thus,

div(Y) = (P1) + (P2) + (P3)− 3(O).

It is obvious that deg(div(Y)) = 0, and basic calculation using the addition algorithm

gives sum(div(Y)) = O.

The general definition of a divisor as a sum of arbitrary points is quite loose,

and may not actually give us the divisor of a rational function f on E. Thus it is

important to characterize which divisors D have corresponding functions f on E such

that D = div(f).

Theorem 3.3. [2] For an elliptic curve E,

(a) D =
∑

nPP is a divisor of a function f on E if and only if deg(D) = 0 and

sum(D) = O.

(b) div(f) = 0 if and only if f is a constant function.

(c) For functions f and f ′, div(f) = div(f ′) if and only if f is a nonzero constant

multiple of f ′.

To prove this theorem, we now find a group isomorphic to the elliptic curve and

prove it for that group, which will hopefully be easier.

Definition 3.4. Given ω1, ω2 ∈ C with ω2 not a real multiple of ω1, we define the

lattice Λ = 〈ω1, ω2〉 = {mω1 + nω2 : m,n ∈ Z}.

18

Ω1

Ω2

Figure 3: Λ and the period parallelogram for ω1, ω2

Theorem 3.5. [2] Given any elliptic curve E(C), there exists ω1, ω2 ∈ C and a

doubly periodic map ℘ : C/〈ω1, ω2〉 → E(C) that is a group isomorphism. The map is

the Weierstrass ℘-function:

℘(z) =
1

z2
+
∑

ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)

As mentioned above, ℘ is doubly periodic, and its periods are ω1 and ω2. That is,

for z ∈ C,

℘(z + ω1) = ℘(z) and ℘(z + ω2) = ℘(z).

So, if ω ∈ Λ, that is, ω = mω1 + nω2 for some m,n ∈ Z, then for z ∈ C,

℘(z + ω) = ℘(z +mω1 + nω2) = ℘(z).

So, since ℘ effectively does modulo arithmetic on C, our quotient group C/Λ can be

considered as just the period parallelogram defined by ω1 and ω2, shown in Figure 3.

19

Figure 4: The period parallelogram mapped to a torus under ℘.

Points on the lattice, ω = mω1 + nω2 for some m,n ∈ Z, are mapped to the same

point that the origin is mapped to:

℘(ω) = ℘(0 + ω) = ℘(0).

Corresponding points on the border lines are mapped to the same points. Let z1 be

on the bottom border of the parallelogram, that is, z1 = aω1, where 0 < a < 1, and

z2 = aω1 + ω2, which is on the top border.

℘(z2) = ℘(aω1 + ω2) = ℘(aω1) = ℘(z1)

Thus, the top and bottom borders of the period parallelogram are equivalent. By a

similar argument, we have that the left and right borders are equivalent, which shows

that the period parallelogram is essentially a torus (see Figure 4) which is mapped

into E(C).

We moved to looking at the complex lattice to help prove Theorem 3.3, so we now

look at rational functions on C/Λ. Specifically, we want rational functions f : C/Λ→ C.

Due to the discussed doubly periodic structure of ℘, we also want our f to be doubly

20

periodic with periods ω1, ω2. Such functions are known as elliptic functions. The

following definition helps us create elliptic functions.

Definition 3.6. The Weierstrass σ-function for lattice Λ is defined as:

σ(z) = z
∏

ω∈Λ
ω 6=0

(

1− z

ω

)

exp

(

−
(z

ω

)

− 1

2

(z

ω

)2
)

.

Lemma 3.7. [2] The Weierstrass σ-function satisfies:

(a) For all ω ∈ Λ, σ(ω) = 0. Specifically, σ(0) = 0.

(b)
d2

dz2
log(σ(z)) = −℘(z) for all z 6∈ Λ.

(c) For all ω ∈ Λ, there exist constants a, b ∈ C such that σ(z + ω) = σ(z)eaz+b.

Proof For part (a), we can easily see that substituting ω into σ, the first portion of

the infinite product will become zero.

For part (b), we consider

log(σ(z)) = log

z

∏

ω∈Λ
ω 6=0

(

1− z

ω

)

exp

(

−
(z

ω

)

− 1

2

(z

ω

)2
)

= log(z) +
∑

ω∈Λ
ω 6=0

(

log
(

1− z

ω

)

−
(z

ω

)

− 1

2

(z

ω

)2
)

21

Thus, differentiating term by term,

d

dz
log(σ(z)) =

1

z
+
∑

ω∈Λ
ω 6=0

(

−
(

1

(ω − z)

)

−
(
1

ω

)

−
(z

ω2

))

d2

dz2
log(σ(z) = − 1

z2
+
∑

ω∈Λ
ω 6=0

(

−
(

1

(ω − z)2

)

−
(

1

ω2

))

= −℘(z)

Since d2

dz2
log(σ) is equal to −℘, we see that d2

dz2
log(σ) is doubly periodic. Thus:

∫ ∫
d2

dz2
log(σ(z + ω))dzdz =

∫ ∫
d2

dz2
log(σ(z))dzdz

=

∫
d

dz
(log(σ(z)) + a) dz for some a ∈ R.

= log(σ(z)) + az + b for some a, b ∈ R.

Finally, if we set both sides of the equation as the exponent of e, simplification gives:

σ(z + ω) = σ(z)eaz+b,

which completes the proof of (c). ✷

Theorem 3.8. [2]Let n1, . . . , nr ∈ Z and z1, . . . , zr ∈ C. If
∑r

i=1 ni = 0 and

∑r

i=1 nizi ∈ Λ, then there is a doubly periodic rational function f : C/Λ → C such

that div(f) =
∑r

i=1 ni(zi). Additionally, if
∑r

i=1 nizi = 0, which we can force to be

22

true, then

f(z) =
r∏

i=1

(σ(z − zi))
ni .

Proof First, consider that if
∑r

i=1 nizi = λ ∈ Λ such that λ 6= 0, then define our

divisor as
∑r+2

i=1 ni(zi) = (0)− (λ) +
∑r

i=1 ni(zi). Now we have
∑r+2

i=1 nizi = 0, so we

can define f as in the theorem, except with a different integer r.

Since by Lemma 3.7 (a), σ(0) = 0, our rational function f has the correct zeros

and poles. Then we need to show f is doubly periodic, thus f(z + ω) = f(z) for any

ω ∈ Λ. To do this, consider

f(z + ω)

f(z)
=

∏r

i=1 (σ(z + ω − zi))
ni

∏r

i=1 (σ(z − zi))
ni

=

∏r

i=1 (σ(z − zi) exp (a(z − zi) + b))ni

∏r

i=1 (σ(z − zi))
ni

by Lemma 3.7 (c)

=

∏r

i=1 (σ(z − zi))
ni exp ((a(z − zi) + b)ni)

∏r

i=1 (σ(z − zi))
ni

=
r∏

i=1

exp ((a(z − zi) + b)ni)

= exp

(
r∑

i=1

(a(z − zi) + b)ni)

)

= exp

(

az

r∑

i=1

ni − a

r∑

i=1

nizi + b

r∑

i=1

ni

)

= e0 = 1

Thus, f(z + ω) = f(z), so f is doubly periodic. ✷

Proof of Theorem 3.3 All results are proven in C/Λ, then transferred to E with the

23

isomorphism provided by the Weierstrass ℘-function.

The proof of Theorem 3.8 proves (a).

To prove (b), consider f = c, for some constant c ∈ C. For c 6= 0, there are clearly

no poles or zeros, and thus the divisor is 0. If f = 0, consider that g = c is simply a

translation of f , but has no poles or zeros.

Considering a function f with div(f) = 0, there are no poles or zeros. Thus by

Picard’s Little Theorem, since there are many complex points not in the image of f ,

f is a constant function.

For (c), we first show a general fact for elliptic functions f and f ′.

f =
(σ(z − α1))

a1 . . . (σ(z − αp))
ap

(σ(z − β1))b1 . . . (σ(z − βq))bq
, f ′ =

(σ(z − γ1))
c1 . . . (σ(z − γp))

cr

(σ(z − δ1))d1 . . . (σ(z − δq))ds
,

which gives us

div(f) =

p
∑

i=1

αi −
q
∑

j=1

βj, div(f ′) =
r∑

i=1

γi −
s∑

j=1

δj.

Then

f

f ′
=

(σ(z − α1))
a1 . . . (σ(z − αp))

ap(σ(z − δ1))
d1 . . . (σ(z − δq))

ds

(σ(z − β1))b1 . . . (σ(z − βq))bq(σ(z − γ1))c1 . . . (σ(z − γp))cr

From this, we can see that

div

(
f

f ′

)

= div(f)− div(f ′). (4)

24

Assuming f = cf ′ for some constant c, div

(
f

f ′

)

= div(c) = 0, by Part (b). Thus,

by equation (6), div(f) = div(f ′).

Assuming div(f) = div(f ′), by equation (6), div

(
f

f ′

)

= 0. Thus
f

f ′
= c for some

constant c, by Part (b). Then f = cf ′. ✷

The divisor of a function div(f) tells us important facts about the evaluation of

f at certain points, but what if we wanted to evaluate another function g at div(f)?

This leads to an important theorem about divisors: Weil reciprocity, which will be

helpful in later proofs.

Definition 3.9. For functions f, g with div(g) =
∑

nP (P), the evaluation of f at

the divisor of g is defined as:

f
(
div(g)

)
=
∏

f(P)nP .

Example 3.10. We look at an example of single variable real-valued functions for

simplicity. For X ∈ R, define

f(X) =
(X − 1)3(X − 3)2

(X − 4)2(X + 2)2
and g(X) =

(X − 2)3(X + 3)4

X2(X + 1)
.

Then clearly,

div(f) = 3(1) + 2(3)− 2(4)− 2(−2)

25

and

div(g) = 3(2) + 4(−3)− 2(0)− (−1)

By definition,

f
(
div(g)

)
=

f(2)3f(−3)4
f(0)2f(−1)

=

(
1

64

)3(

−2304

49

)4

(

− 9

64

)2(

−128

25

)

= −1061683200

5764801

and

g
(
div(f)

)
=

g(1)3g(3)2

g(4)2g(−2)2

=
(−128)3(36)2
(
2401

10

)2

(16)2

= −1061683200

5764801

We notice above that f
(
div(g)

)
= g

(
div(f)

)
. The following theorem states that

this is generally true, an important fact for later proofs.

Theorem 3.11. [2] Weil Reciprocity

For functions f, g mapping curve C into the complex numbers,

f
(
div(g)

)
= g
(
div(f)

)
.

26

P

Q

S

R

f

g

Figure 5: E : Y 2 = X3 − 2X2 − 3X, with our selected functions and their zeros.

Example 3.12. Looking at Y 2 = X3 + 2X2 − 3X, (which could easily be put into

Weierstrass form, if desired) we choose four points P = (−1, 2), Q = (3, 6), R =

(3,−6) and S = 1, 0). Two simple functions on E are the lines f : X − 3 = 0 and

g : Y +X − 1. By viewing the graph of these in Figure 5. we see that f has roots at

Q, R, and O, since all vertical lines intersect O. We also see that g has a root at S

and a double root at P , since it is tangent at P . Thus

div(f) = (Q) + (R) + (O) and div(g) = 2(S) + (P).

Importantly, when we wish to evaluate,say, f
(
div(g)

)
, we need to work in our homo-

geneous forms: f = X − 3Z, g = Y +X − Z. So, by definition:

27

f
(
div(g)

)
= f(S)2f(P)

= (−4)2(−2)

= −32

and

g
(
div(f)

)
= g(Q)g(R)g(O)

= (8)(−4)(1)

= −32

4 The Weil pairing on points of an elliptic curve

We quickly review the defining qualities of a bilinear pairing before moving on to our

definition of the Weil pairing.

Definition 4.1. For abelian groups G, H a bilinear pairing is a map b : G×G→ H

with the qualities:

b(g1 + g2, g3) = b(g1, g3) + b(g2, g3)

b(g1, g2 + g3) = b(g1, g2) + b(g1, g3)

for all g1, g2, g3 ∈ G.

Examples of common bilinear pairings include the dot product • : Rn × R
n → R,

28

the cross product × : R3 × R
3 → R

3, and the map from R
2 × R

2 to R defined as:

([
a
b

]

,

[
c
d

])

7→ det

[
a c
b d

]

= ad− bc.

It can be easily shown that each of these satisfy the conditions of bilinearity.

Through the Weierstrass ℘-function, there is a clear relationship between E[m]

and a vector space with m2 elements. On C/Λ, the set

{
iω1

m
+

jω2

m
, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1

}

is mapped directly into E[m]. These points are easily verified as of order m, since

multiplying
iω1

m
and

jω2

m
by m clearly gives a multiple of ω1 and ω2, respectively.

There are m2 elements in the set, and thus there are m2 elements in E[m]. In fact,

this also illustrates that E[m] = Z/mZ× Z/mZ.

Now, just as the determinant of a matrix can be used to show whether or not a

number of vectors are linearly independent of each other, it would be advantageous

to determine whether or not P,Q ∈ E[m] are both constant multiples of each other

or some other point R ∈ E[m]. This was one of the original motivations of developing

the Weil pairing long before it was used in cryptography.

Now we give our definition of the Weil pairing.

Definition 4.2. For P,Q ∈ E[m], let fP , fQ be rational functions on E such that

div(fP) = m(P)−m(O) and div(fQ) = m(Q)−m(O).

29

The Weil pairing of P and Q is defined as

em(P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)
,

where S 6∈ {O, P,−Q,P −Q} to ensure the pairing is defined and nonzero.

Theorem 4.3. [1] The Weil pairing has the following qualities:

(a) em(P,Q) is independent of choice of the functions and the point S.

(b) The value of the Weil pairing is an m-th root of unity, that is: em(P,Q)m=1.

(c) The Weil pairing is bilinear in a multiplicative manner: for all P1, P2, Q ∈ E[m],

em(P1 + P2, Q) = em(P1, Q)em(P2, Q) and

em(Q,P1 + P2) = em(Q,P1)em(Q,P2).

(d) The Weil pairing is alternating, that is,

em(P, P) = 1 for all P ∈ E[m].

This implies

em(P,Q) = em(Q,P)−1 for all P,Q ∈ E[m].

(e) The Weil pairing is non-degenerate:

if em(P,Q) = 1 for all Q ∈ E[m], then P = O

30

Proof

(a) To show that em(P,Q) is independent of choice of functions, consider that in

the definition, for fP to be used, it must satisfy div(fP) = m(P)−m(O). Then

if we use function f ′
P , where f ′

P 6= fP , we must have div(f ′
P) = m(P) −m(O).

Then by Theorem 3.3 (c), for some constant c,

cfP = f ′
P .

Then, if we denote the Weil pairing acquired from using f ′
p as e′m(P,Q), we see

that

e′m(P,Q) =
fP ′(Q+ S)

fP ′(S)

/
fQ(P − S)

fQ(−S)

=
cfP (Q+ S)

cfP (S)

/
fQ(P − S)

fQ(−S)

=
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)

= em(P,Q).

Clearly, the same is true for choice of the function fQ, thus the Weil pairing is

independent of choice of functions.

Consider F (S) : E(C)→ C, a function defined as

F (S) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)
.

31

We show that F (S) has no zeros or poles, which is equivalent, by Picard’s Little

Theorem, to showing that F (S) is constant. By the divisors of fP and fQ, the

possible zeros would occur when

(1) Q+ S = P , which implies S = P −Q.

(2) −S = Q, which implies S = −Q.

(3) S = O.

(4) P − S = O, which implies S = P .

Checking case (1), S = P −Q,

F (P −Q) =
fP (P))

fP (P −Q)

/
fQ(Q)

fQ(Q− P)
.

By the divisors of fP and fQ, fP (P) = fQ(Q) = 0, which gives a removable

singularity, and since both fP (P−Q) and fQ(Q−P) are nonzero, F (P−Q) 6= 0.

Checking cases (2)-(4) gives the same result. Then em(P,Q) is independent of

choice of S.

(b) Consider the numerator of the Weil pairing raised to the m-th power,

fP (Q+ S)m

fP (S)
m = fP (Q+ S)mfP (S)

−m

Note that this product is of the form of fP evaluated at a divisor:

= fP
(
m(Q+ S)−m(S)

)

Next note that m(Q+S)−m(S) is the divisor of fQ(X −S). Thus, using Weil

32

reciprocity,

fP

∣
∣
∣
∣
div(fQ(X−S))

= fQ(X − S)

∣
∣
∣
∣
div(fP)

Since div(fP) = m(P)−m(O), we have

fP (Q+ S)m

fP (S)
m = fQ

(
m(P − S)−m(−S)

)

=
fQ(P − S)m

fQ(−S)m

Then the numerator and denominator, when raised to the m-th power, equal

each other. Thus em(P,Q)m = 1.

(c) We now prove bilinearity in the first term, (the proof in the second term will

be identical) that is, we show:

em(P1 + P2, Q) = em(P1, Q)em(P2, Q)

fP1+P2
(Q+S)

fP1+P2
(S)

/
fQ(P1+P2−S)

fQ(−S) =

(
fP1(Q+S)

fP1(S)

/
fQ(P1−S)
fQ(−S)

)(
fP2(Q+S)

fP2(S)

/
fQ(P2−S)
fQ(−S)

)

=
fP1

(Q+ S)fP2
(Q+ S)

fP1
(S)fP2

(S)

/
fQ(P1 − S)fQ(P2 − S)

fQ(−S)fQ(−S)

Rearranging gives:

fP1+P2
(Q+ S)

fP1
(Q+ S)fP2

(Q+ S)

/
fP1+P2

(S)

fP1
(S)fP2

(S)
=

fQ(P1 + P2 − S)fQ(−S)
fQ(P1 − S)fQ(P2 − S)

(5)

33

Define a new function, FP1,P2
as:

FP1,P2
(X) =

fP1+P2
(X)

fP1
(X)fP2

(X)
.

Then

div(FP1,P2
) = m(P1 + P2)−m(O)−

(
m(P1)−m(O)

)
−
(
m(P2)−m(O)

)

= m
(
(P1 + P2)− (P1)− (P2) + (O)

)

= mdiv(GP1,P2
)

where GP1,P2
is some function such that div(GP1,P2

) = (P1+P2)− (P1)− (P2)+

(O). Thus FP1,P2
(X) = (GP1,P2

(X))m.

Now, the left side of (5) becomes

fP1+P2
(Q+ S)

fP1
(Q+ S)fP2

(Q+ S)

/
fP1+P2

(S)

fP1
(S)fP2

(S)
=

FP1,P2
(Q+ S)

FP1,P2
(S)

=
GP1,P2

(Q+ S)m

GP1,P2
(S)m

Note that this product is of the form of GP1,P2
evaluated at a divisor, and that

this is the divisor of fQ(X − S).

= GP1,P2

(
m(Q+ S)−m(S)

)

= GP1,P2

(
div(fQ(X − S))

)

Using Weil reciprocity and evaluating fQ(X − S) at div(GP1,P2
) = (P1 + P2)−

(P1)− (P2) + (O) gives:

=
fQ(P1 + P2 − S)fQ(−S)
fQ(P1 − S)fQ(P2 − S)

34

This is exactly the right hand side of (5), and thus

em(P1 + P2, Q) = em(P1, Q)em(P2, Q).

(d) To prove that em(P, P) = 1, consider the definition:

em(P, P) =
fP (P + S)

fP (S)

/
fP (P − S)

fP (−S)
Now, by part (a), we may choose any value of S, so we will let S converge to

O. Then we have:

em(P, P) =
fP (P)

fP (O)

/
fP (P)

fP (O)
= 1.

Now, using bilinearity from (c), we have

em(P +Q,P +Q) = em(P, P)em(P,Q)em(Q,P)em(Q,Q).

Then since em(X,X) = 1, we have

1 = em(P,Q)em(Q,P).

(e) Consider P ∈ E[m] such that em(P,Q) = 1 for all Q ∈ E[m]. Then if

em(P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)
,

35

we can consider two divisors (not necessarily of functions),

DP = (P − S)− (−S) and DQ = (Q+ S)− (S).

Then

em(P,Q) = fP (DQ)/fQ(DP)

Then if em(P,Q) = 1, substituting backwards gives:

fP (DQ) = fQ(DP)

fP (Q+ S)

fP (S)
= fQ(DP)

fP (Q+ S) = fQ(DP)fP (S). (6)

Since the Weil pairing is independent of choice of S, we can replace S with

Q+ S.

fP ([2]Q+ S) =fQ(DP)fP (Q+ S)

replacing fP (Q+ S) by (6), and repeating m times:

fP ([2]Q+ S) =fQ(DP)
2fP (S)

...

fP ([m]Q+ S) =fQ(DP)
mfP (S)

36

But [m]Q = O, thus

fP (S) = fQ(DP)
mfP (S)

and so, fQ(DP)
m = 1.

Raising equation (6) to the m-th power,

fP (Q+ S)m = fQ(DP)
mfP (S)

m

and

fP (Q+ S)m = fP (S)
m

for all S ∈ E and Q ∈ E[m].

Since fP
m is unchanged by a translation by Q, [2] tells us that fP (S)

m =

(h ◦ [m])(S) for some function h, where [m] is the map of adding P to itself

m times to result in [m]P . As we know, div(fP) = m(P) − m(O), and thus

div(h ◦ [m]) = div(fP
m) = m2(P)−m2(O).

If h has a zero, say X, such that h(X) = 0, then h ◦ [m] will have zeros at the

points {X ′ +Q : Q ∈ E[m]} where mX ′ = X. Then if h has a zero, h ◦ [m] will

have m2 distinct zeros. But by its divisor, fP
m only has one zero, P . Thus h

has no zeros, so it must be constant. Then

div(h ◦ [m]) = m2(P)−m2(O) = 0,

which will imply (P) = (O), further implying P = O. ✷

37

P1

P4

P3

P2

Figure 6: Four ”nice” points of order 4 on E : Y 2 = X3 − 2X2 − 3X

Example 4.4. Looking at Y 2 = X3 + 2X2 − 3X, pictured in Figure 6, four easy-

to-work-with points of order 4 are P1 = (−1, 2), P2 = (−1,−2), P3 = (3, 6), and

P4 = (3,−6). We will also use Q = (1, 0), S = (−2,
√
6), and of course O. To

calculate Weil pairings among these four points,we will need the correct functions.

Taking P1 as an example, we need a function fP1
with div(fP1

) = 4(P1) − 4(O).

Without any better algorithm, we would be forced to look at lines drawn through our

points of interest and use the properties of divisors to create a function. Listed below

are the functions used to find fPi
for i = 1, 2, 3, 4.

Function Divisor

g1 : X − 3 = 0 div(g1) = (P3) + (P4) + (O)
g2 : Y + 3X − 3 = 0 div(g2) = 2(P4) + (Q)

g3 : Y − 3X + 3 = 0 div(g3) = 2(P3) + (Q)

g4 : Y +X − 1 = 0 div(g4) = 2(P1) + (Q)

g5 : Y −X + 1 = 0 div(g5) = 2(P2) + (P3)

g6 : Z = 0 div(g6) = 3(O)

38

Now, we use the divisors above to create a set of coefficients ck such that

4(P1)− 4(O) =
6∑

k=1

ckdiv(gk).

These coefficients and functions will give

fP1
=

6∏

k=1

gk
ck .

Solving for the coefficients, c1 = 2, c2 = −1, c3 = 0, c4 = 2, c5 = 0, c6 = −2 and thus,

in homogenized form, we end up with:

fP1
(X, Y, Z) =

(X − 3Z)2(Y +X − Z)2

(Y + 3X − 3Z)(Y − 3X + 3Z)Z2
.

Similarly, after solving:

fP2
(X, Y, Z) =

(X − 3Z)2(Y −X + Z)2

(Y + 3X − 3Z)(Y − 3X + 3Z)Z2

fP3
(X, Y, Z) =

(X − 3Z)2(Y − 3X + 3Z)

(Y + 3X − 3Z)Z2

fP4
(X, Y, Z) =

(X − 3Z)2(Y + 3X − 3Z)

(Y − 3X + 3Z)Z2
.

Then to calculate the pairing of P1 and P3,

e4(P1, P3) =
fP1

(P3 + S)

fP1
(S)

/
fP3

(P1 − S)

fP3
(−S) = −1

after using the addition algorithm to find P3 + S = (−2.496,−2.047), P1 − S =

39

e4 P1 P2 P3 P4

P1 1 1 −1 −1
P2 1 1 −1 −1
P3 −1 −1 1 1

P4 −1 −1 1 1

Table 3: Weil pairing values for four ”nice” points in E[4] on Y 2 = X3 + 2X2 − 3X.

(20.798,−98.990) and using fP1
, fP3

as above. Note that

e4(P3, P1) = e4(P1, P3)
−1 = −1.

To avoid computing all of these, we use the bilinearity and alternating qualities

of e4: Note that [4]P1 = O and −P1 = P2 implies P2 = [3]P1. Thus,

e4(P1, P2) = e4(P1, [3]P1) = e4(P1, P1)
3 = 13 = 1

and by the alternating quality,

e4(P2, P1) = e4(P1, P2)
−1 = 1

Using this and the qualities of the Weil pairing, we attain all values, recorded in

Table 3. It is of note that there are 12 other points in E[4], O and eleven more. Each

of these has complex coordinates, and computing the Weil pairing would have taken

us into the complex fourth roots of unity.

40

5 Miller’s algorithm

Although we were able to calculate 16 Weil pairings in Example 4.4 with only one

true (by the definition) calculations, it is clear that the process was painstaking, and

more importantly, not computer friendly. If a computer is to quickly evaluate a Weil

pairing after being given the curve and two points, this system will not work. If a

point R not in our four ”nice” points was given to us, the process would have to

be completely redone. Thankfully, Miller[4], in 1986, gave an algorithm that quickly

finds functions with desired divisors.

Theorem 5.1. [1] For points P = (xP , yP) and Q = (xQ, yQ) on curve E,

(a) Let λ be the slope of the line through P and Q (where λ = ∞ if the line is

vertical), or the slope of the tangent line through P if P = Q. Define function

hP,Q on E as:

hP,Q =

Y − yP − λ(X − xP)

X + xP + xQ − λ2
if λ 6=∞

X − xP if λ =∞

Then

div(hP,Q) = (P) + (Q)− (P +Q)− (O).

(b) (Miller’s Algorithm) Let m ≥ 1, with binary expansion

m = m0+2m1+4m2+8m3+ · · ·+2n−1mn−1 with mo,m1, . . . ,mn−1 ∈ {0, 1}.

The following algorithm, using hP,Q defined as in part (a), results in a function

41

fP with

div(fP) = m(P)− ([m]P)− (m− 1)(O).

1. Set T = P and f = 1.

2. Loop i = n− 2 down to i = 0:

3. Set f = f 2hT,T .

4. Set T = [2]T .

5. If mi = 1

6. Set f = fhT,P .

7. Set T = T + P .

8. End If.

9. End i-loop.

10. Return f .

Then if P ∈ E[m], div(fP) = m(P)−m(O).

Proof To prove that the function hP,Q has the desired divisor, consider the line

through P and Q. The line has the form

Y = λ(X − xP) + yP

and intercepts E at P,Q and −(P +Q). Then

div(Y − yP − λ(X − xP)) = (P) + (Q) + (−P −Q)− 3(O).

This is the divisor of the numerator of hP,Q. Next note that, by the addition algorithm,

xP+Q = λ2 − xP − xQ. Then the denominator of hP,Q is:

X + xP + xQ − λ2 = X − xP+Q.

42

Since this is a vertical line, it intercepts E at P +Q and −P −Q, and has a pole of

duplicity 2 at O. Thus.

div(X − xP+Q) = (P +Q) + (−P −Q)− 2(O).

Then

div(hP,Q) = div(Y − yP −λ(X −xP))−div(X −xP+Q) = (P)+ (Q)− (P +Q)− (O).

Finally, if λ =∞, then the line is vertical, and thus Q = −P . Then we want

div(hP,Q) = (P) + (Q) + (−P −Q)− (O) = (P) + (−P)− 2(O).

The function X − xP has exactly this divisor. This completes the proof of (a).

Part (b) will not be proven in entirety, but the first few cases are shown here:

Let m = 2 = 0 + 1(2), then we have i = 0 as our only use of step (2) of the

algorithm. Thus we will return f after going through step (3) only once, skipping (5)

since m0 = 0, thus giving

f = f 2hP,P = hP,P .

Thus,

div(f) = div(hP,P)

= 2(P)− ([2]P)− (O) by (a)

43

which is the desired divisor.

Let m = 3 = 1 + 1(2), then again we have i = 0 as our only use of step (2) of the

algorithm. However, m0 = 1, so we will use step (5) in this case. Thus we return f

as

f = hP,Ph[2]P,P

Thus,

div(f) = div(hP,P) + div(h[2]P,P)

= 2(P)− ([2]P)− (O) + ([2]P) + (P)− ([2]P + P)− (O) by (a)

= 3(P) + ([3]P)− 2(O)

which is the desired divisor.

If we let m = 4 = 0 + 0(2) + 1(4), we loop through (2) twice. Both times we will

skip (5), since m1 = m0 = 0, thus we return f as

f = (hP,P)
2h[2]P,[2]P .

Then

div(f) = 2div(hP,P) + div(h[2]P,[2]P)

= 2
(

2(P)− ([2]P)− (O)
)

+
(

([2]P) + [2]P)− ([2]P + [2]P)− (O)
)

by (a)

= 4(P) + ([4]P)− 3(O)

44

as desired.

As can be seen, using the relation given by (a) and following the algorithm can

lead to an inductive proof. Also, note that for each of these cases, if P ∈ E[m] for

the selected m, the divisor becomes:

div(f) = m(P)− ([m]P)− (m− 1)(O) = m(P)−m(O).
✷

Another important aspect of Miller’s algorithm is that it can be used to actually

evaluate the function f , simply by evaluating the function at the desired point when-

ever the function is adjusted (steps (3) and (6).) An example where this is done is

contained in the next section, and the Mathematica code is included in Appendix.

6 Elliptic curves over finite fields

In the first section, we worked in E(R), a subset of E(C). As we move to a finite

field with prime p elements, Fp, we lose the geometric interpretation of our addition

operation. That is, we cannot easily talk about lines in E(Fp). However, we may

still use our explicit formulas of Theorem 1.8 to add two points, as long as we use

operations of the field Fp. Thankfully, these additions are simply modular arithmetic.

Example 6.1. Consider the elliptic curve

E : Y 2 = X3 + 4 over the field F5.

Since the field F5 only contains five elements, it is relatively easy to check whether

45

+ O (1, 0) (0, 2) (0, 3) (3, 1) (3, 4)

O O (1, 0) (0, 2) (0, 3) (3, 1) (3, 4)

(1, 0) (1, 0) O (3, 4) (3, 1) (0, 3) (0, 2)

(0, 2) (0, 2) (3, 4) (0, 3) O (1, 0) (3, 1)

(0, 3) (0, 3) (3, 1) O (0, 2) (3, 4) (1, 0)

(3, 1) (3, 1) (0, 3) (1, 0) 3, 4) (0, 2) O

(3, 4) (3, 4) (0, 2) (3, 1) (1, 0) O (0, 3)

Table 4: Addition table for E : Y 2 = X3 + 4 over the field F5

or not, for a certain (x, y) ∈ F5 × F5, (x, y) ∈ E(F5). We just compare the values

y2 mod 5 and x3 + 4 mod 5 for x, y = {0, 1, 2, 3, 4}. Choosing the values of x and y

that equate these quantities, we have

E(F5) = {(1, 0), (0, 2), (0, 3), (3, 1), (3, 4),O}.

Let P = (0, 2) and Q = (3, 4). Then to compute P +Q, we have

λ =
4− 1

2− 0
mod 5 =

3

2
mod 5 = 4

x3 = 42 − 0− 3 mod 5 = 3

y3 = 4(0− 3)− 2 mod 5 = 1

Thus, P +Q = (3, 1). Note that P +Q ∈ E(F5). The results of summing every pair

of points in E(F5) are shown in Table 4.

Since all of the work we have done to this point only required the E to be over

46

a field, all of the theorems we have proved up to this point hold when working with

Fp. Only the work in Section 5 dealing with Weierstrass ℘ and σ functions require

the structure that Fp lies within is algebraically closed, which is true, despite being

beyond the scope of this paper. All examples from this point forward will take place

in E(Fp), or some similar finite field.

Example 6.2. We now use Miller’s algorithm to compute two examples of the Weil

pairing on the curve

E : Y 2 = X3 + 37X over the field F1009.

It is a matter of verifying that the points

P = (8, 703), Q = (49, 20), P ′ = (417, 952), Q′ = (561, 153)

are all of order 7 on E. It is also verifiable that P ′ = [2]P and Q′ = [3]Q. We use

the point S = (0, 0), which is clearly of order 2. Using the mathematica program

included in Appendix C, using Miller’s algorithm we see that

e7(P,Q) = 105 and e7(P
′, Q′) = 394.

Verifying that these are both 7th roots of primitive unity, 1057 ≡ 1 mod 1009 and

3947 ≡ 1 mod 1009. Also, verifying other properties of the Weil pairing,

e7(P
′, Q′) = e7([2]P, [3]Q) = e7(P,Q)6 = 1056 ≡ 394 mod 1009.

47

7 The discrete logarithm problem (DLP) and Diffie-

Hellman key exchange

Now we detour to view a problem which we will later rephrase using elliptic curves.

Definition 7.1. Let g be a primitive root for Fp, and h be a given nonzero element

of Fp. We define the discrete logarithm problem (DLP) as: Given g, h as above, find

the integer x ∈ {1, 2, . . . , p− 1} such that

gx ≡ h mod p.

The integer x is called the discrete logarithm of h to the base g and is denoted by

logg(h).

One may note that there if there is a solution to the DLP, then there are infinite

solutions. This is due to Fermat’s little theorem, which tells us gp−1 ≡ 1 mod p. Then

for x that satisfies gx ≡ h mod p, we have

gx+k(p−1) = gx(gp−1)
k ≡ h(1)k ≡ h mod p

for any integer value of k. This is why we define x as lying between 0 and p− 1.

While seemingly simple, this problem becomes exceedingly difficult dependent

on the prime p chosen, which will become the basis for the security of the Diffie-

Hellman key exchange. Although some methods, such as index calculus [1], have

been developed to solve the DLP faster than brute force, none are quick enough to

48

50 100 150 200

200

400

600

800

1000

1200

Figure 7: Plot of 158i mod 1223 for i = 1, 2, . . . , 200

allow fast breaking of any cryptographic system based on the DLP.

Example 7.2. Consider p = 1223, g = 158. Listing the first 20 powers of g, we have:

i 1 2 3 4 5 6 7 8 9 10
158i 158 504 137 855 560 424 950 894 607 512

i 11 12 13 14 15 16 17 18 19 20
158i 178 1218 433 1149 538 617 869 326 142 422

By viewing the above table, there is no clear pattern to the powers of 158 modulo

1223. This is further exemplified by Figure 7, with the powers of up to 200 plotted.

As it turns out, the order of 158 in F1223 is 1222. Thus, to solve the DLP in the form

of

158x ≡ h mod p,

a brute force method may require one to compute up to 1221 powers modulo 1223.

Even with a relatively small prime number, the DLP can be difficult. In most cryp-

tographical applications, the prime will have hundreds of digits [1], thus creating an

exceedingly difficult problem.

Now, consider the case of Alice and Bob, who are trying to share a private key

to a cipher. Unfortunately, their only means of communication is insecure, and thus

49

anything sent is observed by their adversary Eve. While this seems difficult, the

Diffie-Hellman key exchange offers a solution.

In the first step, one of Alice or Bob communicates a prime p and a nonzero integer

g modulo p. The integer g is best to have a large order, so g is typically a primitive

root. That is, the order of g is p− 1. With this common information, Alice chooses a

secret integer a, Bob chooses a secret integer b, and they both raise g to that power.

This gives:

A ≡ ga mod p and B ≡ gb mod p.

A and B are now communicated between the two, with Eve observing both values.

Now, Alice raises B to the power of her secret integer a, and Bob does the same with

A to his secret integer b, giving:

B′ ≡ Ba mod p and A′ ≡ Ab mod p.

These values are the secret key, as they are equal (shown below) and have not been

broadcast to Eve.

B′ ≡ Ba ≡ (gb)a ≡ (ga)b ≡ Ab ≡ A′ mod p

If Eve, knowing A and B, can determine one of the secret integers a and b, she

can reconstruct the key. Thus, without loss of generality, given A, g and p, she must

be able to find a such that

A ≡ ga mod p.

50

Common Parameters Communicated

p = 1223, g = 158←−−−−−−−−−−−−−−−−−−−→
Secret Integers

Alice: a = 125 Bob: b = 421

First Computations

A = 322 ≡ 158125 mod 1223 B = 873 ≡ 158421 mod 1223

Communication

A = 322−−−−−−−−−−−−−→
B = 873←−−−−−−−−−−−−−−

Common Key Computation

A′ = 199 ≡ 873125 mod 1223 B′ = 199 ≡ 322421 mod 1223

Table 5: Diffie-Hellman key exchange over F1223

In other words, she must solve the discrete logarithm problem.

Example 7.3. Table 5 illustrates a potential Diffie-Hellman key exchange over the

field F1223.

Since this example is based on a relatively small field, the solution to the DHP is

not unpractical to compute by brute force. Again, any real cryptographical applica-

tion would use a much larger prime.

51

8 The elliptic curve discrete logarithm problem

(ECDLP) and elliptic curve Diffie- Hellman key

exchange

We now define an analogue to the DLP, defined on the additive group E(Fp).

Definition 8.1. Let P and Q be points in E(Fp) such that Q = [n]P for some integer

n. The elliptic curve discrete logarithm problem is the problem of determining the

integer n ∈ {1, 2, . . . , p− 1} from given points P and Q. Then n is the elliptic curve

discrete logarithm of Q with respect to P , denoted

n = logP Q.

As with the DLP, if there exists one integer n that satisfies P = [n]Q, there exists

an infinite amount of such integers, due to the fact that E(Fp) is a finite group. This

is why we define the solution to the ECDLP as being between 0 and p− 1.

Another potential issue with the ECDLP is that its solution is not necessarily

defined. That is, there exist P,Q ∈ E(Fp) such that Q 6= [n]P for any integer n.

However, in practical applications, this will not interfere: in the Diffie-Helman key

exchange, Alice, Bob, (and Eve) all know the point P from the first communication of

parameters. Then both Alice and Bob’s points are multiples of P , thus guaranteeing

a solution.

Now, considering that the DLP is inefficient to solve, it is logical that the ECDLP

52

would be as hard or harder to solve. In fact, despite the existence of slightly faster

methods to solving the DLP, no method exists for solving the ECDLP that is faster

than brute force [1]. Also, thanks to the Double-and-Add algorithm for computing

[n]P , we can compute [n]P relatively quickly, while the difficulty remains for Alice to

find n.

Example 8.2. Now, we create an example Diffie-Helman key exchange, using E(F1223)

instead of F1223. Our common point is P = (583, 599) on the curve Y 2 = X3+3X+1

over F1223. Note that Alice and Bob only need to share the x-value of the points they

communicate to each other. This is due to the fact that each x-value corresponds to

two y-values, since the y is squared in the equation for E (if y = 0, there is clearly only

one y-value.) This duplicity would only serve to complicate matters, so the x-value

is the only number transmitted.

The example shows that choosing the wrong y-value will not disturb the process:

Bob sent the value B = 447, taken from [421]P = (447, 94). Alice chooses the point

(447, 1129) = −(447, 94), yet ends up with the same key as Bob.

9 Modified Weil pairings and the tripartite Diffie-

Helman key exchange

We now review a key exchange analogous to Diffie-Helman, except with three members

trying to share a private key. We will show that this fails if we use the same method

as above. There are a few restraints which we would wish to place on the process. If

53

Common Parameters Communicated

p = 1223, Y 2 = X3 + 3X + 1, P = (583, 599)←−−−→
Secret Integers

Alice: a = 125 Bob: b = 421

First Computations

A = x{[125]P} = x{(994, 372)} = 994 B = x{[421]P} = x{(447, 94)} = 447

Communication

A = 994−−−−−−−−−−−−−→
B = 447←−−−−−−−−−−−−−−

Common Key Computations

A′ = x{[125](447, 1129)} = x{(835, 304)} = 835 B′ = x{[421](994, 372)} = x{(835, 919)} = 835

Table 6: Diffie-Hellman key exchange over E(F1223)

we wanted to, we could have two of the parties share a key with Diffie-Helman, then

the other two share a key, and communicate through each other. This works, but is

cumbersome. We also do not want to require more than one round of communications,

as this would require all parties to be online at once, making the process less practical.

The solution to this problem, given by Antione Joux in the early 2000’s [5], is to use

bilinear pairings (in our case the Weil pairing.)

Example 9.1. Alice, Bob, and Carlos would all like to share a private key. As above,

any information sent between them before forming this key is suspect to eavesdropping

by Eve. If they try to use a point P on elliptic curve over a finite field E(Fp), each

with their own private integers, the first round of calculations would look like:

A = [a]P, B = [b]P, C = [c]P.

54

Without loss of generality, let’s put ourselves in Carlos’ shoes. After these points are

published, Carlos knows A = [a]P,B = [b]P and his secret integer c. In order to have

the common key, he would need to calculate [abc]P . Since he knows c, he is basically

computing [c]([ab]P). Thus, he needs to glean [ab]P from knowing [a]P and [b]P .

This is exactly the problem that Eve faced in the two person E.C. Diffie-Helman key

exchange. That is, in order for Alice, Bob, and Carlos to share a common key, they

each need to be able to solve the Elliptic Curve Diffie-Helman problem efficiently.

This clearly does not work.

We can create a modified version of the Weil pairing in order to solve this issue.

Generally, the practice only consists of a prime m, an elliptic curve E, and two points

P1, P2 ∈ E where P1 = [a]P , P2 = [b]P for some integers a, b. This is where we see a

limitation of the original Weil pairing, as

em(P1, P2) = em([a]P, [b]P) = em(P, P)ab = 1ab = 1.

This will always give a trivial result. Thus we would like a pairing such that êm(P, P) 6=

1.

This new pairing, êm is defined as

êm(P,Q) = em(P, φ(Q))

where φ is a distortion map on E.

Definition 9.2. Let m ≥ 3 be a prime, E an elliptic curve, and P be a point in

55

E[m]. The map φ : E → E is an m-distortion map on E if:

(a) φ([n]P) = [n]φ(P) for all integer n ≥ 1.

(b) em(P, φ(Q)) is a primitive m-th root of unity, that is, if em(P, φ(Q))r = 1, then

m | r.

Proposition 9.3. [1] Let m ≥ 3 be a prime, E an elliptic curve, P be a point in

E[m], and φ : E → E be an m-distortion map on E. If Q,Q′ are multiples of P ,

then

êm(Q,Q′) = 1 if and only if Q = O or Q′ = O.

Proof Assume, for integers a, b, that Q = [a]P and Q′ = [b]P . Then

êm(Q,Q′) = êm([a]P, [b]P) = em([a]P, φ([b]P)) = em([a]P, [b]φ(P))

= em(P, φ(P))ab

Then if êm(Q,Q′) = 1, em(P, φ(P))ab = 1. Thus by the second part of Definition 9.4,

m | ab. Thus m | a or m | b, and so Q = O or Q′ = O. ✷

Then by Proposition 7.2, we only need a distortion map to create a modified Weil

pairing which will work in our Tripartite Diffie-Helman Key Exchange. There are

several common examples of distortion maps, some of which can be found in [1] and

[5]. In application, of course, the specified field would be much larger than in the

example created here. Examples of the primes used, many are 200 to 300 digits long,

can be found in [6].

56

Proposition 9.4. Let E be the curve Y 2 = X3 + 1 over the field K, and let β be a

primitive cube root of unity in K. That is, β 6= 1, with β3 = 1. Define a map φ on

E as φ(P) = φ(x, y) = (βx, y) and φ(O) = O. Then:

(a) For P ∈ E(K), φ(P) ∈ E(K).

(b) φ respects the addition law on E:

φ(P1) + φ(P2) = φ(P1 + P2) for all P1, P2 ∈ E.

Proof Using the assumptions above,

(a) If P = (x, y) ∈ E(K), then y2 = x3 + 1. If φ(P) = (βx, y), this still holds true:

y2 = (βx)3 + 1 = β3x3 + 1 = x3 + 1.

(b) Now, considering P1 = (x1, y1), P2 = (x2, y2) ∈ E, we have φ(P1) = (βx1, y1), φ(P2) =

(βx2, y2). We look at three cases:

(i) P2 = −P1, that is: P1 + P2 = O. Clearly, φ(P1 + P2) = φ(O) = O.

If P2 = −P1, then x1 = x2 and y1 = −y2. Then

φ(P1) = (βx1, y1) = (βx2,−y2) = −φ(P2).

Thus φ(P1) + φ(P2) = O, and the equality is true.

(ii) If P1 = P2, then using the addition algorithm,

P1 + P2 =
(
λ2 − 2x1, λ(x1 − λ2 + 2x1)− y1

)

57

and

φ(P1 + P2) =
(
β(λ2 − 2x1), λ(x1 − λ2 + 2x1)− y1

)

where λ =
3x1

2

2y1
.

Again using the addition algorithm, for φ(P1) + φ(P2), we will have a new

slope, λ′ = λ =
3βx1

2

2y1
= β2λ. Then we have:

φ(P1) + φ(P2) =
(
(β2λ)2 − 2βx1, β

2λ(βx1 − (β2λ)2 + 2βx1)− y1
)

=
(
β4(λ)2 − 2βx1, λ(β

3x1 − β6λ2 + 2β3x1)− y1
)

=
(
β(λ2 − 2x1), λ(x1 − λ2 + 2x1)− y1

)

= φ(P1 + P2)

(iii) Finally, if P1 6= P2, by the addition algorithm,

P1 + P2 =
(
λ2 − x1 − x2, λ(2x1 − λ2 + x2)− y1

)

and

φ(P1 + P2) =
(
β(λ2 − x1 − x2), λ(2x1 − λ2 + x2)− y1

)

where λ =
y2 − y1
x2 − x1

.

Also, for φ(P1) + φ(P2), our slope will be λ′ =
y2 − y1

β(x2 − x1)
=

λ

β
, so:

φ(P1) + φ(P2) =

((
λ

β

)2

− βx1 − βx2,
λ

β
(2βx1 −

(
λ

β

)2

+ 2βx2)− y1

)

58

interjecting a b3 = 1 into the x-coordinate,

=

(

β3

(
λ2

β2

)

− βx1 − βx2, λ(2x1 −
(
λ2

β3

)

λ2 + x2)− y1

)

=
(
β(λ2 − x1 − x2), λ(2x1 − λ2 + x2)− y1

)

= φ(P1 + P2) ✷

Proposition 9.4 in fact shows that φ is a distortion map. Since φ respects addition

on E,

φ([n]P) = φ(P) + · · ·+ φ(P)
︸ ︷︷ ︸

n

= [n]φ(P).

Now, since the Weil pairing will be a root of unity as long as both points are in E[m],

in order to satisfy condition (b) of Definition 7.1 we just need φ(Q) to be in E[m] for

all Q ∈ E[m]. So if Q ∈ E[m],

O = φ(O) = φ([m]Q) = [m]φ(Q).

Thus φ(Q) ∈ E[m], and the φ defined above is indeed a distortion map.

Now, we develop fields in which such an element β exists, before creating an

example of a modified Weil pairing.

Proposition 9.5. For prime p with p ≡ 2 mod 3, Fp does not contain a primitive

cube root of unity, but Fp2 does.

Proof Let prime p with p ≡ 2 mod 3. Assume β ∈ Fp such that β3 = 1 and β 6= 1.

Then the order of β in Fp must be 3. So, by Lagrange’s Theorem, 3 divides the order

59

of the multiplicative group Z/pZ∗ = Fp − {0}. Then p− 1 = 3k for some integer k, or:

p ≡ 1 mod 3. This is a contradiction.

Now, assume there exists a β 6= 1 such that β3 = 1. If we can show that the

set {a + bβ : a, b ∈ Fp} is closed under multiplication and has p2 elements (which it

obviously does), then it is Fp2 . Now, to show it is closed under multiplication, let

a+ bβ and c+ dβ be two arbitrary elements.

(a+ bβ)(c+ dβ) = ac+ β(ad+ bc) + bdβ2

But, β3 = 1 implies 0 = β3− 1 = (β − 1)(β2 + β + 1). Since we know β 6= 1, we have

β2 + β + 1 = 0 which implies β2 = −(β + 1). Thus:

(a+ bβ)(c+ dβ) = ac+ β(ad+ bc)− bd(β + 1)

= (ac− bd) + β(ad+ bc− bd) ✷

60

Thus we will use Fp2 as the underlying field in this distortion map and the modified

Weil pairing.

Example 9.6. We show an example of a modified Weil pairing, where p = 11 and

E : Y 2 = X3 + 1. It is easily verifiable that P = (5, 4) ∈ E[4] on E(F11). Then using

our distortion map, φ(P) = (5β, 4), which also belongs to E[4]. Then

ê4(P, P) = e4
(
P, φ(P)

)
= e4

(
(5, 4), (5β, 4)

)
.

Plugging this into our Weil pairing function which has been adapted to work in

Fp2 ,(found in Appendix D) and using S = (7, 6), we end up with ê4(P, P) = 9 + 7β.

To verify this is a fourth root of unity in F112 ,

(9 + 7β)(9 + 7β) = (81− 49) + β(63 + 63− 49) mod 11

(by our work in the proof of Proposition 9.5)

= 32 + 77β mod 11

= 10

Thus

(9 + 7β)4 =
(
(9 + 7β)2

)2
= 102 = 1 ∈ F112 .

Now we have the necessary tools for our tripartite Diffie-Helman key exchange.

The first steps of the process are similar to the bipartite EC Difffie-Helman seen in

Example 8.2: the common parameters of q = p2 for some prime such that p ≡ 2 mod 3,

61

the curve (Y 2 = X3 + 1 in this construction), and a starting point P ∈ E[m] are

published. In the first computation, Alice, Bob and Carlos compute Qa = [a]P ,

Qb = [b]P , Qc = [c]P , respectively, where a, b, c are their respective secret integers.

They then send out the first communications: the x-values of Qa, Qb, and Qc. Now

we will take the viewpoint of Alice: she computes the modified Weil pairing of Qb

and Qc, and raise it to the power of her secret integer, a. This gives:

êm(Qb, Qc)
a = êm([b]P, [c]P)a = êm(P, P)abc.

If each of the three parties raise the modified Weil pairing of the other two points to

their secret integer, they will each have the same key.

Here, as in the bipartite EC Diffie-Helman, Eve has to conquer the ECDLP in

order to know the shared key. Since she knows Qa, Qb and Qc from the round of

communications, she is easily able to compute, say, êm(Qb, Qc). But, she would need

to know the secret integer a in order to have the common key. Thus if m is adequately

large, there is no practical way for her to attain the common key.

Example 9.7. Now, we create an example tripartite Diffie-Helman key exchange.

We begin with p = 1223, which satisfies p ≡ 2 mod 3, over the curve Y 2 = X3 + 1.

By inspection, we find that P = (1103, 1213) ∈ E[408]. For computing the Weil

pairings, we use S = (0, 1222) ∈ E[4], although in application, each member would

likely use a different S. This will not effect the values attained since em is independent

of choice of S. After communicating p, E and P , the first round of computations will

be using the Double-and-Add algorithm to compute [a]P, [b]P , and [c]P . Supposing

62

a = 121, b = 433, c = 97, we have:

Qa = [a]P = (694, 1049), Qb = [b]P = (764, 140), Qc = [c]P = (18, 84).

The x-values of these points are communicated, as in the bipartite EC Diffie-Helman

key exchange, and our members begin the common key computation.

Each party will compute the modified Weil pairing of the other two points, and

then raise it to their own secret integer. So, Alice’s computation will be:

ê408(Qb, Qc)
a = ê408

(
(764, 140), (18, 84)

)121

= e408
(
(764, 140), (18β, 84)

)121

= (438 + 50β)121

= 1094 + 192β

Similarly, Bob’s computation will be:

ê408(Qa, Qc)
b = ê408

(
(694, 1049), (18, 84)

)433

= e408
(
(694, 1049), (18β, 84)

)433

= (904 + 393β)433

= 1094 + 192β

63

Common Parameters Communicated

p = 1223, Y 2 = X3 + 1, P = (1103, 1213) ∈ E[408]←−−→
Secret Integers

Alice: a = 121 Bob: b = 433 Carlos: c = 97

First Computations

x{Qa} = x{[121]P} x{Qb} = x{[433]P} x{Qc} = x{[97]P}
= x{(694, 1049)} = x{(764, 140)} = x{(18, 84)}
= 694 = 764 = 18

Communication

x{Qa} = 694, x{Qb} = 764, x{Qc} = 18←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Common Key Computations

ê408(Qb, Qc)
a ê408(Qa, Qc)

b ê408(Qa, Qb)
c

= (438 + 50β)121 = (904 + 393β)433 = (1103 + 1041β)97

= 1094 + 192β = 1094 + 192β = 1094 + 192β

Table 7: Tripartite Diffie-Hellman key exchange over E(F1223)

Finally, for Carlos:

ê408(Qa, Qb)
c = ê408

(
(694, 1049), (764, 140)

)97

= e408
(
(694, 1049), (764β, 140)

)97

= (43850β)
97

= 1094 + 192β

Included in the Appendix D are tools for working in Fp2 , and using these it is

verified that 1094 + 192β is a 408th root of unity in Fp2 . This will be the common

key shared by the three parties. The process is summarized in Table 7.

64

Appendices

A: Mathematica program for Weierstrass form

This section consists of weirform, a Mathematica program which, when input a

general homogenous cubic polynomial, will output the Weierstrass form of the poly-

nomial, as given in Theorem 1.6.

65

B: Mathematica programs for EC’s over C

The following Mathematica programs are meant to be used when the underlying field

is C. All of the programs assume that the EC has been put into Weierstrass form of

Theorem 1.6, and require the input of a and b, the coefficients of the elliptic curve.

The program esum computes the elliptic curve addition algorithm, Theorem 1.8,

on E(C).

The double-and-add algorithm of Section 2 is implemented in the program dou-

bleadd, which requires the use of esum.

The programH computes the function hT,T (in Theorem 5.1 Part (a)) with desired

divisors for Miller’s algorithm. Note that implementation will require the program

esum.

66

The next program, millercalc, implements Miller’s algorithm while plugging in

the necessary x and y-values to compute the Weil pairing. Note that implementation

requires the program H, and thus esum.

Finally, the program weilpairing uses the millercalc program to find and eval-

uate fP and fQ at the desired points, giving the Weil pairing of P and Q.

67

C: Mathematica programs for EC’s over Fp

This section consists of fpesum, fpdoubleadd, fpH, fpmillercalc, and fpweilpair-

ing, all of which serve the same purposes of their counterparts in Appendix B, but

work over a finite field Fp for prime p. Note that these also require the curve to be

in the Weierstrass form of Theorem 1.6, and thus require the input of a and b, the

coefficients of the elliptic curve. These programs also require the input of mod, the

prime p which the modular arithmetic will be done under.

68

69

D: Mathematica programs for EC’s over Fp2

This section contains all of the equivalent programs as Appendix C, but made to

work in the field Fp2 . There are first a few programs we need in order to work easily

with numbers of the form a + bβ ∈ Fp2 . The program fp2multiply takes as input

two numbers of the form a+ bβ and outputs their multiplied value in Fp2 , while the

program fp2power uses a double-and-add algorithm to repeatedly multiply a number

in Fp2 by itself n times.

The program fp2inverse creates the multiplicative inverse of a number in Fp2 .

Thus, if one has x, y ∈ Fp2 and wants to compute the value of x/y ∈ Fp2 , they would

compute: fp2multiply[x,fp2inverse[y]].

Finally, we have the equivalent programs to work on elliptic curves in Fp2 . Note

that we still only need to input mod= p, not p2.

70

71

Bibliography

[1] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman An Introduction to Mathemat-
ical Cryptography. Springer, New York, 2008.

[2] Joseph H. Silverman The Arithmetic of Elliptic Curves. Springer-Verlag, New
York, 1986.

[3] Joseph H. Silverman, John Tate Rational Points on Elliptic Curves. Springer,
New York, 1992.

[4] Victor S. Miller Short Programs for Functions on Curves. Unpublished, IBM,
Thomas J. Watson Research Center, 1986.

[5] Antoine Joux A One Round Protocol for Tripartite Diffie-Hellman. Journal of
Cryptography, 17: 263276, 2004.

[6] Antoine Joux, Kim Nguyen Separating Decision Diffie-Hellman from Compu-
tational Diffie-Hellman in Cryptographic Groups. Journal of Cryptography, 16:
239247, 2003.

72

Vita

Alex Edward Aftuck

Place of birth:

Date of birth:

Education:

Bachelor of Science: Mathematical Sciences, May 2008

University of North Florida: Jacksonville, FL

Masters of Science: Mathematical Sciences, August 2011

University of North Florida: Jacksonville, FL

Teaching Experience: Graduate Teaching Assistant

Department of Mathematics and Statistics

University of North Florida: Jacksonville, FL

73

	The Weil Pairing on Elliptic Curves and Its Cryptographic Applications
	Suggested Citation

	Title Page
	Contents
	List of Figures
	List of Tables
	Abstract
	0 Introduction
	1 Elliptic curves
	2 Points of finite order, the Double-and-Add algorithm for computing [n]P
	3 Divisors of rational functions
	4 The Weil pairing on points of an elliptic curve
	5 Miller's algorithm
	6 Elliptic curves over finite fields
	7 The discrete logarithm problem (DLP) and Diffe-Hellman key exchange
	8 The elliptic curve discrete logarithm problem(ECDLP) and elliptic curve Diffie- Hellman keyexchange
	9 Modifed Weil pairings and the tripartite Diffie-Helman key exchange
	Appendices
	A: Mathematica program for Weierstrass form
	B: Mathematica programs for EC's over C
	C: Mathematica programs for EC's over Fp
	D: Mathematica programs for EC's over Fp2

	Bibliography

