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In this essay we deal with the Weinberg-Witten theorem [1] which imposes limitations on massless particles.
First we motivate a classification of massless particles given by the Poincaré group as the symmetry group
of Minkowski spacetime. We then use the fundamental structure of the background in the form of Poincaré
covariance to derive restrictions on charged massless particles known as the Weinberg-Witten theorem. We
address possible misunderstandings in the proof of this theorem motivated by several papers on this topic. In
the last section the consequences of the theorem are discussed. We treat it in the context of known particles
and as a constraint for emergent theories.
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1 Introduction

In the year 1980, Steven Weinberg and Edward Witten impressed by a short and very elegant proof of a
rather general statement [1]. The so-called Weinberg-Witten theorem constrains the spin of massless par-
ticles charged under conserved Poincaré covariant currents to values j < 1/2 or j < 1, respectively. Even
though the theorem is of great importance for several reasons, certainly the most interesting consequence
is that it restricts attempts to construct a composed graviton in the context of ordinary quantum field theory.
Since the time the theorem was published, it is known as an important constraint for theories containing
all kinds of massless particles, first of all a graviton. However, the proof of the theorem heavily relies
on Poincaré covariance. Therefore, trying to bypass the Weinberg-Witten theorem, this is the ingredient
evaded by most new physical ideas towards a theory of massless particles. Recently the theorem attracted
notice in the context of approaches to emergent gravity modifying the natural Poincaré invariant back-
ground geometry, Minkowski spacetime. It can be considered as a fundamental reason for why we might
have to leave the Minkowski background in order to search for an emergent theory of gravity.

2 What are massless particles?

Concealing the “problem child” gravity, Minkowski spacetime is the fundamental background geometry
for all remaining theories in our physical world, at least at the current experimental level. Asking for
symmetry transformations which leave this background geometry invariant, the answer is given by the
Poincaré group consisting of three boosts, three rotations and four translations, including parity and time
reversal. Hence, the Poincaré group is the basic structure of every theory on this background and it suggests
itself to connect the definition of elementary particles to this group. In this second section we search for a
physically motivated definition of particles according to the symmetry structure of Minkowski spacetime.
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804 F. Loebbert: The Weinberg-Witten theorem

2.1 The Poincaré group

The Poincaré or inhomogeneous Lorentz group is the 10-dimensional noncompact Lie group of isometries
of Minkowski spacetime. It associates coordinate systems in different inertial frames defined by Einstein’s
special relativity principle. The corresponding coordinate transformations are given by

Nuda™dx’ = n,, datdz” 2.1
or equivalently

ox'* 0x'"

VA A - — R 2.2
oz Bge P (2.2)
where 7, = diag(—1, 1,1, 1). Hence, these transformations must be of the linear form

" = A" et + at, (2.3)
with constants a* and A*,, satisfying

AP N P =t 2.4
where the last line defines a Lorentz transformation.

If we denote a general Poincaré transformation by (A, a), we find the multiplication rule
(A2, a2)(A1,a1) = (A2, Agar + a2). (2.5)

Setting a to 0 we get a subgroup of the Poincaré group, the homogeneous Lorentz group. The group
of homogeneous Lorentz transformations is again divided into four disconnected subgoups. The most
interesting, which excludes the discrete transformations parity P and time reversal T, is the proper or-
thochronous Lorentz group SO(3,1)" with det(A) = +1 and A° > 1. The whole homogeneous Lorentz
group can be obtained from this subgroup by multiplication with At = diag(—1,1,1,1) and Ap =
diag(1,—1,—1, —1). Therefore the analysis of the homogeneous Lorentz group, in the following simply
referred to as Lorentz group, reduces to the study of the proper orthochronous subgroup.

2.2 The Poincaré algebra

We now consider the action of the Poincaré group on one-particle state vectors in a physical Hilbert space,
i.e. how a Poincaré transformation (A, a) maps the state vector from one inertial frame into another.

Searching for a definition of an elementary particle, we first label our particle vectors by | X'), where X
represents the definition we search for. We assume the representation U (A, a) of the transformation on the
state vectors to be linear, as we want to preserve the superposition principle, and to obey the composition
rule of the underlying symmetry group

U(A, a) (§]X) +¢|Y)) = EU(A, a)|X) + CU(A, a)Y), (2.6a)
U(AQ, GQ)U(Al, (11) = U(AgAl, Aoaq + ag). (2.6b)

This basically represents the mathematical definition of a representation. Furthermore we assume this
representation to be unitary as we aim for a Poincaré invariant scalar product of our one-particle states.

UlU = 1. (2.6¢)
Now we consider Poincaré transformations near the identity of the form of

A¥, = 0h + why, at =€, 2.7)
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where w,, and e” are taken to be infinitesimal and w”” has to be antisymmetric in ;2 and v to fulfill
A, AY onP? = n#¥ . This transformation can be represented on the Hilbert space by writing

1
U(l+w,€) = 14 giwpeM" —ic,P + ... 2.8)

If one evaluates the physically motivated assumptions (2.6), one naturally finds the Poincaré algebra [2]
given by

AMM MPO) = P MM — PP MY — 7R MPY 4 7 MP*, (2.9a)
i[PP, MP] = nhP PT — pho PP, (2.9b)
[P*, P?] = 0. (2.9¢)

Furthermore (2.6) yields

M = M, PHT = pr (2.10)
and from the antisymmetry of w*” we find

MH = —M"F, (2.11)
For the generators P* and M*" we can define the Pauli-Lubanski vector by

1
W, = §6W(,Z,M’”P”, (2.12)

and, furthermore,
Cy =P, P", (2.13a)
Cy =W, WH. (2.13b)

It can be shown that the last two operators commute with all other operators of the Poincaré algebra.
They represent the only quadratic Casimir operators of the Poincaré algebra. In particular C'; and C'y com-
mute with each other and can therefore be simultaneously diagonalized. For this reason their eigenvalues
are the best candidates to label our one-particle states

Cilp?,w?,Y) = p*|p*, w?Y), (2.14)
CQ‘p27w27Y> :w2\p2,w2,Y>. (215)

Here Y stands for possible other labels. Of course, p? represents the momentum square whereas the phys-
ical significance of w? will become clear in due course. Note that at this stage p? and w? can be negative
since they represent the square of a four-vector.

Using the Poincaré generators we may now define a triple of three vector operators by

P = (P',P? P%), (momentum)  (2.16a)
23 231 712 1

J=(M*= M> M"~-) or J; = 561‘]‘ij]€, (total angular momentum) (2.16b)

K= (M" M2 M®) or K;= My, (boost)  (2.16¢)

which obey the following commutation relations

[JZ‘, J]} = iﬁijkt]k, [Pi,Pj} = 07 [KZ‘,K]‘} = —iGiijk, (2173.)
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806 F. Loebbert: The Weinberg-Witten theorem

[Ji, P;] = i€iji Py, [Ji, K] = i€ijn K, [K;, Pj] = —iP%;;, (2.17b)
[J;, PY] =0, [P, Pl =0, [K;, P%] = —iP;. (2.17¢)
We recognize that .J; and P; are conserved as expected since they commute with the energy operator P°.

Furthermore we have seen in (2.9¢) that the momentum operators also commute with each other and we
therefore also choose their eigenvalue p* as a label

Ptlp,p*,w?, Z) = p|p,p*, w*, Z), (2.18)

where Z again denotes possible other labels. As K; is not conserved, its eigenvalues are out of question for
labeling particles. The vectors P; and .J;, do not commute with each other and as we have already chosen
P* as a label we cannot use the total angular momentum J; any more. Nevertheless the operators J; are
going to play an important role in our classification. We will see that the Poincaré Casimir C, the square of
the Pauli-Lubanski vector, is the conserved quantity related to the total angular momentum. If we consider
the total angular momentum as the sum of spin and orbital angular momentum

MM = S 4 XHPY — XV PH, (2.19)

we find that the Pauli-Lubanski vector only depends on the spin part S*. Hence, our considerations are
valid for elementary particles without orbital angular momentum as well as for composed particles with
angular momentum. In each case the quantum number w? is related to the spin of the particle as we will
see in due course.

2.3 Representations

Following [2] we now want to find a way to determine the representations U (A, a). At first we consider
translations given by U(1, a). As U is supposed to be a representation, we know that

U(lval)U(laaQ) = U(17a1 +a2)7 (220)
and therefore we can write

U(l,a) = [U(L %)}n (2.21)

for an integer n. But since we consider a pure translation, Eq. (2.8) becomes
U(l,e) =1—1ie, PP+ ..., (2.22)

and hence, keeping only the first order term as a/n is small for large n,

U(1,0) = lim {1 - %aPP”] . (2.23)
This yields
U(l,a) = e P’ (2.24)

and thus we have found the general form of a unitary representation of a translation. It is a general result
that in a positive metric space each irreducible representation of an abelian group is one dimensional. If we
apply (2.24) to our particle states, we see that a translation is given by a phase shift

U(1,a)lp,p* w*, Z) = e~ ""*|p,p*, w*, Z). (2.25)
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Having treated translations, our problem now is reduced to finding representations of the remaining
Lorentz group on these states. We consider

PRU(A,0)|p, p*, w*, Z) = U(A,0) [U'(A,0)P*U(A, 0)] p,p*, w?, Z)
= U(8,0) (A, P*) |p.p, w2, 2)
= A* ,pPU(A,0)|p, p*, w*, Z), (2.26)

to find that U (A, 0)|p, p?, w?, Z) is an eigenstate of P with eigenvalue Ap. Since |Ap, p?, w?, Z) spans by
definition the eigenspace of AP, we find

U(A,0)[p, ) =Y Cls(A,p)|Ap, B), 2.27)
B8

where « is a shorthand notation for (p2,w?2, Z,). We want to choose our labels « such that the matrix
C'(A, p) is in block diagonal form. As p? and w? are Casimir labels and the Casimir operators commute
with all Poincaré operators and are therefore invariant under Lorentz transformations, we know that [p, &)
and |Ap, 3) in Eq. (2.27) have the same p? and w? eigenvalue. Therefore these labels are appropriate for
the goal to write C' in block diagonal form and we can rewrite Eq. (2.27) as

U(A,0)|p,p*,w?, Z) = > Czrz(A,p)|Ap,p*, w*, Z'). (2.28)
Z/

It is now possible to choose the labels Z such that the matrix C'(A,p) is block diagonal. In order to
describe our particles, we look for the shortest possible definition which contains all information given by
the symmetry transformations. Hence, it suffices to consider one block of C'(A, p) which by itself forms a
representation of the Lorentz group. In the following we want to restrict to these irreducible representations.

As p? is an eigenvalue of a Casimir operator, it remains invariant under all Lorentz transformations. For
each value of p? we can choose a reference four momentum k* with k2 = p? which can be obtained by a
Lorentz transformation L

p" =L, (p)k”. (2.29)
Then we find for the one-particle states
p.p* w?, Z) = N(p)U(L(p),0) Ik, p*, w?, Z), (2.30)

where N (p) is just a normalization factor. Now we can apply an arbitrary Lorentz transformation on this
state to find

U(A,0)|p,p*, w*, Z) = N(p)U(AL(p), 0)|k, p*, w”, Z)
= N(p)U(L(Ap),0)U (L™ (Ap)AL(p),0)|k,p*, w’, Z). (2.31)

The transformation L~ (Ap)AL(p) does actually nothing to the vector k*, i.e. it belongs to the little group
or stability subgroup of k" given by transformations B with

BH R — b, (2.32)
For any B and B in the little group we have

U(B,0)[k.p*,w®, Z) =Y Dziz(B)lk,p*, w?, Z'), (2.33)
Z/
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808 F. Loebbert: The Weinberg-Witten theorem

and the representation property yields

Dzz(BB) = Dz z+(B)Dznz(B). (2.34)
Z//

Note that the matrix D(B) on its own furnishes a representation of the little group. In particular we may
choose the little group transformation in Eq. (2.31) to define

B(A,p) = L™ (Ap)AL(p), (2.35)

such that (2.31) becomes

U(A,0)|p, p*,w?, Z) ZDZ/Z P)U(L(Ap), 0)|k, p*, w?, Z"), (2.36)

and by Eq. (2.30) we get

U(Aa0)|pap27w27Z> - ( )ZDZ'Z A , P )|Apap w Z> (237)

We see that one can express the representation of the Lorentz group in terms of the matrix D which
corresponds to a representation of the little group'. Comparison of (2.37) and (2.28) makes it clear that
the induced representation of the Lorentz group represented by the matrix C' is irreducible if and only if
the induced representation of the little group given by the matrix D is irreducible. Hence, the problem of
finding the irreducible representations of the Lorentz group is reduced to finding irreducible representations
of the little group. This also implies that the little group is sufficient to further categorize a particle. It can
be shown [2] that a useful choice of normalization is given by

N(p) =/ (2.38)

so that we get a Lorentz invariant scalar product of the form

(p,d|p,a) = 6000 (P’ — P). (2.39)

Note that the Poincaré invariance of this normalization of one-particle states requires unitarity of the rep-
resentation on the states.

We now want to analyze the Lie algebra of the little group of a reference four-momentum k* as it
suffices to further classify our particle. A general Lorentz transformation near the identity can be written
as

Ul+w,0)=1+ 5 zwp(,Mp" . (2.40)
where again w is assumed to be infinitesimal. This implies that £ transforms as

AR = (14wt )R + ... 2.41)
Little group transformations are defined to leave k* invariant which yields

Wk = 0. (2.42)

L' This method is called method of induced representations and is studied in detail in [3].
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Table 1 Representations of the Poincaré group

Gender Orbit Reference k#*  Little group Representation
p?=—m? Mass-shell (£m,0,0,0) SO(3) Massive
p?=0 Light-cone +£,0,0,E) I1S0(2) Massless

(
p? =n? Hyperboloid (0, 0,0, n) SO(2,1)T  Tachyonic
(

=0 Origin 0,0,0,0) SO(3,1)T  Vacuum

This gives us the definiton of the elements w of the Lie algebra of the little group, a Lie subgroup of
the Lorentz group. Since w,,, is antisymmetric, the general solution of (2.42) can be parametrized by an
arbitrary constant vector n”, i.e.

Wpy = eyupanpka- (243)

Therefore a generic element of the little group algebra restricted to the eigenspace of P with respect to k*
can be described by

M"™w,, =neupe MM E?, (2.44)

where we have just multiplied Eq. (2.43) with the generators M#¥. But in this equation we rediscover the
Pauli-Lubanski vector as the generator of the little group

1
Wy = 5 Curpe MM P (2.45)

Because of the antisymmetry of the e-symbol and the symmetry of the product P? P*, we see that
wW,P" =0, (2.46)

which implies that the little group is in general three dimensional.
Writing W# in terms of the three vectors (2.16),

wi=P.J, W=-JP' —K x P, (2.47)

we find that the zero component of the Pauli-Lubanski vector equals the projection of the spin onto the
momentum vector. This means that for a single elementary particle, W° is proportional to the helicity
operator.

Let us look at what we have done on the last pages. We started with a particle state | X') in a Hilbert
space and the Poincaré group as the fundmental symmetry group of Minkowski spacetime. We found that
the Poincaré algebra has two Casimir operators which can be used to label particles by their eigenvalues.
As the four momentum operators P* commute with each other and are conserved, their eigenvalues can
also be used as a label. At this point we can give the general name |p, p?, w?, Z) to the particle where Z
is still undetermined. We saw that the representation of a translation is given by exp(—ia, P*). In search
of representations of the remaining Lorentz group we found that for each value of p? we can choose a
reference momentum k*. Representions of the Lorentz group are then equivalent to representations of the
little group of k*. The little group algebra is generated by the Pauli-Lubanski vector and we can now look at
the different categories of p? to analyze which algebra W* generates in each case [4]. In the following we
only consider the massive and massless case. We furthermore restrict ourselves to p° > 0, i.e. to positive
energy.
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810 F. Loebbert: The Weinberg-Witten theorem

2.3.1 Massive representations

For a massive particle with p,p" = —m?, we can always find a Lorentz frame in which &* = (m, 0,0, 0).
It is obvious that the little group which leaves this vector invariant is the rotation group O(3) and as we are
only interested in a classification by algebra operators, we can restrict to SO(3). On the other hand we can
also consider the action of the Pauli-Lubanski vector (2.47) restricted to this momentum class

Wolk,m,w*, Z) =J - Plk,m,w?, Z) =0, (2.48a)
Wilk,m,w?, Z) = —J;P°|k,m,w?, Z) = —mJ;|k,m,w?, Z). (2.48b)
This shows that the action of W* is reduced to the action of the angular momentum operator J; and hence
the generated algebra is indeed the Lie algebra of SO(3) representing the spin of the particle in its rest

frame. Thus, we can use the eigenvalues j and js to label our states. The Casimir operator C is now given
by

Cy =W, WH = —m?J?, (2.49)

i.e. proportional to the Casimir of the SO(3) algebra. Because of the irreducibility of the representation
and because (' is a Casimir, it must be proportional to the identity on the whole Hilbert space by Schur’s
Lemma. Since we know the spectrum of the angular momentum operator, we have

Cy=-m?j(j—1)- 1. (2.50)

The complete set of labels for the particle which represents a massive irreducible representation of the
Poincaré group is therefore given by

1X) = [p,m, J, ja)- (2.51)

This can be regarded as the definition of a massive particle based on the fundamental symmetry group of
the assumed background geometry, namely Minkowsi spacetime.

2.3.2 Massless representations

We now want to consider massless representations with p,p# = 0. The natural reference momentum is
given by k* = (E,0,0, E). However, to determine the little group in this case is not as easy as for the
massive representations. The only thing we can say immediately is that SO(2) has to be a part of the little
group. Again we compute the action of the Pauli-Lubanski vector on |k, w?, Z) = |k, p? = 0,w?, Z) given
by

Wolk,w?, Z) = J - Plk,w?, Z) = EJs|k,w?, Z), (2.52a)
Wik, w?, Z) = (=IP° — K x P)1|k,w?, Z) = E(Ko — J))|k,w?, Z), (2.52b)
Walk,w?, Z) = (=IP° — K x P)o|k,w?, Z) = —E(K, + Jo)|k,w?, Z), (2.52¢)
Ws|k,w?, Z) = (=JP° — K x P)3|k,w?, Z) = —EJs|k,w?*, Z). (2.52d)

Motivated by these equations we define

A=K+ Js, (2.53a)
B=Ky—Ji, (2.53b)
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and find the commutation relations for the three generators of the little group of a massless particle

[A, B] =0, (2.54a)
[J3, A] = iB, (2.54b)
[J3, B] = —iA. (2.54¢)

These commutation relations can be identified with the algebra of the Euclidean group 1S0(2) consisting
of two dimensional rotations and translations. As the operators A and B commute with each other, they can
be simultaneously diagonalized and their eigenvalues appear to be useful labels for the particles. However,
if we set

Alk,w?, Z) = alk,w?, Z), (2.55)

Blk,w? Z) = blk,w?, Z), (2.56)
we can define functions f and ¢ of a parameter 6 € R by [5]

F(O) = e71075 A3 |k w2, Z), (2.572)

9(0) = e 73 Be s |k, w?, Z). (2.57b)
Using the commutation relations (2.54) it can be shown that

4@ _

=9 (2.58a)
zil_g —_/ (2.58b)
Solving this with the initial conditions f(0) = a|k,w?, Z) and g(0) = b|k, w?, Z), we find
f(0) = (acosf + bsinb) |k, w?, Z), (2.59a)
g(0) = (bcosf — asin ) |k, w?, Z), (2.59b)
and hence
Ae® 3|k, w?, Z) = (acos@ + bsinf) €02 |k, w?, Z), (2.60a)
Be'3 |k, w?, Z) = (beosO — asinh) e |k, w?, Z). (2.60b)

This implies that for all § € R the state ??”/2|k,w?, Z) is an eigenstate of A and B. However, we do not
observe any continuous degrees of freedom for massless particles which forces us to impose a restriction:
We simply limit the physical states to those with A = B = 0. This issue arises because the little group of
a massless particle 1.50(2) is not semi-simple as it has an Abelian subgroup given by the translations

150(2) = SO(2) x P(2). (2.61)

However, this restriction makes the problem of labeling massless one-particle states much easier. We
can now distinguish the state vectors by their eigenvalue of J3 which generates a U (1) algebra

J3|pa w2aj3> :j3|pa w27j3>' (262)

Here we have replaced the missing label Z by j3. If we remember that Wy = J - P = EJ3 in the massless
case, we see that the eigenvalue j5 corresponds to the helicity of the particle. Since U(1) is abelian like
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812 F. Loebbert: The Weinberg-Witten theorem

the translation group, all representations of the little group are of the form e?/s. The action of the Casimir
operator Co on the k* subspace is now given by

Co = W,WH =0, (2.63)

and again by Schur’s Lemma C5 and thereby our label w? vanish on the whole Hilbert space. Hence, we
find the definition of a massless particle given by

[ X) = [P, Ja)- (2.64)

Massless particles do not have a full spin representation as their little group contains only two dimensional
rotations given by SO(2) and are therefore classified by only the value of their helicity js.

Now we can consider how a massless particle state transforms under a Lorentz transformation. By
arguments similar to those given for the representations of the translation group, a generic element G of
the massless little group can be written in the form

U(G,0) = exp (icA + iB) exp (iJ30), (2.65)

where the last part corresponds to a rotation. If we take into account that we have restricted physical states
to those with A = B = 0, we find

U(G,0)|k, j3) = exp (i033)|k, j3)- (2.66)
Comparison to (2.33) yields
Dj1 5 (G) = exp (i0.J3)d 1, (2.67)

where Z was replaced by j3. The Eqgs. (2.37) and (2.38) now show how the helicity representations of a
general Lorentz transformation act on the massless state vector

A 0
UA,0)lp.ga) = 1 p{? exp [ij38(A, )| A, ja)- (2.68)

Here 0(A, p) is the angle defined by the rotation component of the Lorentz transformation A. Note that the
helicity of a massless particle is Lorentz invariant in contrast to that of a massive particle. The physical
reason for this is that we cannot change the velocity of a massless particle and thereby the projection of its
spin onto the momentum by going to a different reference frame.

3 The Weinberg-Witten theorem

We have seen how to classify massless particles by means of the Poincaré group. Furthermore it was shown
that it is rather easy to find representations of the abelian translation group and that the more complex struc-
tures are hidden in the Lorentz group. As a matter of fact the Lorentz group is a powerful tool. Already
in 1965 Weinberg stated that “Maxwell’s theory and Einstein’s theory are essentially the unique Lorentz
invariant theories of massless particles with spin 7 = 1 and 7 = 2” [6]. Note, however, that besides the
crucial assumption of Poincaré invariance, Weinberg also uses the fact that far from the source we experi-
ence an inverse square law for the electrostatic and the gravitational interactions. In the following theorem
we get to know another fundamental constraint on massless particles primarily based on the assumption of
Poincaré covariance.
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3.1 The theorem
We consider the Weinberg-Witten theorem as presented in the original paper [1]. It is interesting to notice
that the first part of this theorem was already shown in 1962 by Case and Gasiorowicz [7].
Weinberg-Witten theorem.

(A) A theory containing a Poincaré covariant conserved four-vector current .J# forbids massless particles
of spin j > 1/2 with a non-vanishing eigenvalue of the conserved charge [ J'd®z.

(B) A theory containing a Poincaré covariant conserved tensor 7#" forbids massless particles of spin
j > 1for which [ T%d®z is the conserved energy-momentum four-vector.

These statements hold for elementary as well as for composite particles. Note that the structure of both
parts of the theorem is the same. If we include the energy momentum four-vector into our notion of charge,
we can generally speak of charged particles under Poincaré covariant currents. Requiring that [ 7%*d3z
represents the energy-momentum four-vector implies that this quantity does not vanish, whereas in the first
part of the theorem we claim explicitly that [ J°d3x is non-vanishing.

Table 2 The Weinberg-Witten theorem

Theorem A theory with a forbids massless
particles of
(A) Poincaré covariant conserved  spin j > %
current J#* and Q = [ Jd3z # 0.
B) Poincaré covariant conserved spin j > 1
tensor T+ and P* = [T"d3z # 0.

3.2 The proof

As both parts of the theorem have the same structure, they can be proved similarly. In principle we follow
the elegant presentation of Weinberg and Witten [1]. This procedure is not entirely unquestioned [8—12]
and we hope to clarify some misunderstandings at certain points of the proof. These misunderstandings
are especially based on a footnote of Weinberg and Witten in which the authors explain how they define
charge and four-momentum in terms of limits of matrix elements without requiring continuity of these
matrix elements. Nevertheless, some of the papers cited above took this footnote as a reason to claim that
Weinberg and Witten would require continuity and their proof was even described as “inconclusive” [11].
According to Witten, he and Weinberg did just not want to give an a priori discussion of what kind of
possible non-smoothness the matrix elements of 7" or J might have at zero momentum because this was
not necessary [13]. In the following we hope to shed some light on this point related to the difficulties of
defining charge in a physical, i.e. experimental sense.

Proof. We consider the matrix elements of the given Poincaré covariant quantities J* and 1"
between massless one-particle states

v, £41.7"|p, £5) and (o, £j|T"|p, £j), G.D

where we have introduced the one-particle states |p, =75) of four momentum p and helicity +j. The basic
idea of the proof is to show that these matrix elements | 1 | cannot vanish in the limit p’ — p and that they

2 The paper [8] can be regarded as an a posteriori discussion of possible non-smoothness of these matrix elements.
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have to vanish in this limit for spin j > 1/2 or j > 1 massless particles, respectively. We conclude that
a theory based on the given assumptions cannot contain massless particles of higher spin. The key point
is that we derive a contradiction between equations for matrix elements defined in the limit p’ — p. We
are not interested in the case p’ = p. Note, in particular, that we do not require continuity of the matrix
elements at p’ = p. If the limit exists we arrive at a contradiction.

In this first part of the proof we show that the matrix elements (3.1) cannot vanish in the limit
p’ — p. For this purpose we use our assumption of the existence of nonvanishing charges @ = [ .J YB3z
in part (A) and the corresponding expression P* = [ T%*d3z in part (B) of the theorem. Following the
arguments of Weinberg and Witten, we want to base the definition of charge and four-momentum of a
particle on how these quantities are measured in physical experiments. Note that, particularly for massless
particles, the translation of this measurement process into mathematical quantities is far from being trivial
[14,15]. As Weinberg and Witten state in the footnote of their paper, charges, energies, and momenta
are determined by “measuring the nearly forward scattering caused by exchange of spacelike but nearly
lightlike massless vector bosons or gravitons™ [1]. This limit of lightlike momentum transfer corresponds to
the limit (p" — p) — 0. As the momentum transfer goes to zero, the scattering matrix becomes dominated
by its one-particle exchange poles. In this limit only the charge and not the higher multipole moments
are measured [16]. The measuring process of charges is therefore represented by approaching lightlike
momentum transfer. Hence, we could define the charge q and the four-momentum p* of the particles like
Weinberg and Witten for p’ — p by

) . qp*

(', £4|J"p, £j) — m, (3.2a)
By . pt'p”

', 4T |p, £5) — Bnp (3.2b)

The form of the right hand side of these equations, i.e. the proportionality to p*, is dictated by Poincaré
covariance. If we define the charges in this way, i.e. based on physical measurement, it does not matter how
the matrix elements look like at p’ = p. In particular we do not require continuity of the matrix elements
at p’ = p. This is what Weinberg and Witten explain in the footnote of their original paper. However, they
also state that “a continuity assumption seems entirely plausible” [1]; [8] disproves this assumption giving
examples for currents with a discontiuity3 atp’ = p.

The mathematical problem behind upcoming misunderstandings seems to be that physicists like to make
computations with sharp one-particle states normalized by (p’, £j|p, £j) = §©)(p’ — p). Even though
these are actually not physical, one might easily forget this fact. We believe this to be a crucial point in
the proof of the theorem, as the arguments of Weinberg and Witten are based on physical measurements.
The proof was recently revised by Jenkins who works out some of the sketchy comments of Weinberg
and Witten [17]. However, the arguments presented in [17] rely on the sharp definition of the one-particle
states. This is rather misleading and finally still requires an assumption of continuity in order to end up
with a contradiction, in contrast to the proof of Weinberg and Witten.

Weinberg and Witten find Eqs. (3.2) by inspection. We want to try to derive these equations close to the
ideas given in [17] but keeping at the back of our mind that we are dealing with physical particle states
which are not normalized by an exact delta function.

3 The continuity assumption is not required in the proof of Weinberg and Witten. The relevance of this important point can be
read off from the following quotations referring to the Weinberg and Witten paper [1]:
1) “If these results are taken together with a continuity requirement on the matrix elements [...] one ends with a contradiction
which can be removed only by assuming that such particles do not exist” [8].
2) “A first remark is that the continuity assumption of a kernel around the diagonal p = p’, which is replaced in a footnote by
a plausibility argument based on measurement, is by no means an obvious property” [9].
3) “Weinberg and Witten claim that (3.1) or (3.3) imply the vanishing of these matrix elements also for (p’ — p)2 = 0 by
continuity. Unfortunately, their statement is incorrect as the continuity with respect to the particle momenta cannot be proven,
which was pointed out by Sudarshan and Flato et al.” [11] referring to [8,9].
4) “We complete the proof of the theorem, as that given by Weinberg and Witten it is inconclusive” [sic] [11].
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We define the charge and the four-momentum of the massless one-particle states as eigenvalues of @
and PH

Qlp.xj) = qlp,x3j), q#0, (3.3a)
PHp,+j) = pH|p,+5), p" #0. (3.3b)

In contrast to the sharp unphysical particle states, we want to deal with physical states which are smeared
out and hence normalized by

(P, £ilp, £)phys = 67 (0" — p), (34)
where 6% (p’ — p) is a nascent delta function sharply peaked at p’ = p with

lim 5 (p" — p) = 6@ (p' — p). (3.5)
The parameter a can be regarded as small but finite. It is defined by the level of sharpness we can achieve
in physical experiments.

What we are actually doing here is to consider the physical state vector as a superposition of pure
momentum eigenstates in the form of

D %) s = / 55D (B - p)If, £3). (3.6)
Then we find for the normalization

(p1, £J[p2, £J) phys = /dgf?ld?’pz 5( )(p1 - p1)5((1 5 (P2 — p2)d® (P1 — P2)
/d3p1 8 (B1 — p1)0 (1 — p2)

=0 (p1 — p2) 3.7)

where in the last equation we have defined J,,. Note that if we define a physical state as in (3.6) this state is
no longer a pure momentum eigenstate. The eigenmomentum also becomes a superposition of the form

PHlp, +7)pnys = / B56® (B — p)Flp, ). (3.8)

However, the momentum eigenvalue can be identified with the eigenvalue p* since it is sharply peaked at
this momentum. In the following we drop the subscript ‘phys’ to keep the notation as simple as possible.

The essence of the last few lines is that the normalization of our particle states is given by 533) rather than
56,

Continuing the proof, Egs. (3.3) and (3.4) yield

¥, £51Qlp, £5) = 0¥ (p — P'), (3.92)
W, £§|P"p, +5) = p"o{> (p — p'). (3.9b)

On the other hand we can evaluate the charge and the four-momentum as a physical integral over a
large but finite volume V, of radius 1/a. This corresponds to the physical definition of the normalization
in terms of the parameter a. We find

', 11Qlp, +4) = / Bz (p', 2510t %) [p, %)
Va
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= / PPz (p', £l TOt, 0)e T *|p, +5)
Va

= [ ey, 0,0l )

= (2m)3%3 (p’ — p)(p', £4]J°(¢, 0)|p, £5), (3.10a)

and

(o, £§| P |p, £5) = / 0 (g, 5/ TO(t, %) |p, £5)

Va

= / P (p', +j]eT T (8, 0)e ™ >|p, £))
Va

- / d el P =PI (3 4T (£, 0)|p, +5)
Va
= (2m)363) (p' — p) (P, 5 |T°(t,0)|p, +34). (3.10b)
The last equality in each case is justified by

lim, P e P)x = 5B)(p! _ p). (3.11)
a— Va

Comparison of (3.9) and (3.10) shows

lim (p/, [J°(t,0)[p, £7) = s, (3.12a)
p'—p (2m)
lim (', T 1, 0)[p, ) = - (3.12b)
pr—p ’ ’ (2m)3” :
and from this we get by Lorentz covariance
lim (p', +j|J"|p, £5) = av” #0 (3.13a)
p—p E(2m)3 ’
lim (o', |7 |p, £) = 22 20 (3.13b)
pr—p ’ E(27)3 ’

i.e. we recover the physical definition of the charges (3.2) given by Weinberg and Witten*. If we had not
used the physical parameter a we could have only concluded that (3.13) holds for p’ = p, i.e. at the only
point where the delta-function in (3.9) and (3.10) would not vanish. In this case we would have required
continuity of the matrix elements to extend the equation to the limit p’ — p, as it was done by Jenkins [17].
However, Weinberg and Witten explicitly state that they do not want to use this continuity assumption for
their proof. That this was a good decision is illustrated by the examples for discontinuous currents given
in [8]. Our treatment in terms of physical particle states corresponds to the measurement argument given
by Weinberg and Witten.
As we are dealing with massless particles for which

p'pu =0, (3.14)

the right hand side of Eqgs. (3.13) vanishes, if multiplied by p*. Hence, these equations imply that the matrix
elements of the divergences of J# and T#" have to vanish. Therefore one might think that this is the only

4 Note that it was stated in [9] that the definitions in Eq. (3.13) were “guessed” by Weinberg and Witten.
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matrix elements between
massless one particle states
(p', £j|J*[p, £5) or (p’, £j[T""|p, £j)

e physical measurement Lorentz rotation of
e Poincaré covariance e particle states |p, +7)
e non-vanishing charges e currents J# or TH¥

E # 0 } {zoforj>%orj>1}

Fig. 1 The proof of the Weinberg-
Witten theorem

point of the proof where we need the condition that J* and T*" are conserved tensors’. Note, however, that
it is not clear, especially in the presence of massless particles, how to find a well-defined charge operator
for a non-conserved current [18, 19].

The assumption that the massless particle states are charged under the given currents implies that the
right hand sides of Egs. (3.13) do not vanish and therefore we have shown that the matrix elements of J#
and T" do not vanish in the limit p’ — p.

Now we want to argue in the opposite direction in order to show that these matrix elements have to
vanish for massless particles of higher spin. For arbitrary light-like p and p” we have

@ +p)?=20"p) =20 p-Ippl)
= 2|p'[[p|(cos ¢ — 1) <0, (3.15)

where ¢ is the angle between the three-momenta p and p’. We may distinguish the two cases ¢ # 0
and ¢ = 0. As we are only interested in the limit p’ — p, the second case is not relevant for the proof.
Nevertheless it is interesting to consider it with regard to the continuity discussion above.

For ¢ # 0 the momentum sum is timelike and by Poincaré covariance we can choose a natural Lorentz
frame in which (p’ + p) has no spatial components such that in this frame

Now we consider a rotation by an angle ¢ around the p direction. A rotation by +6 around p implies a
rotation of #” = —# around p’ = —p. Note that this is only true for ¢ # 0 where we can choose the spatial
momenta to have opposite sign. The induced transformations on the particle states are given by Eq. (2.68),

5 Sudarshan states in his discussion of the proof of Weinberg and Witten [8]: “In the general case with particles of j > 3/2
and j > 1, respectively, we also prove that the divergence of any tensor and any vector vanishes between one-particle states.”
Furthermore he says about the tensor in part (B) of the theorem: “This tensor need not be the energy-momentum tensor nor
need it be conserved.” However, we do not see where his statement is proved in [8].
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where the normalization factor is equal to 1 since Ap = p under the rotation considered. Hence, we get

|p, £4) — e |p, +), (3.17a)
P, +5) — TP’ £5), (3.17b)
which yields
(p', 41 (t, 0)|p, £) — e (p', £4]J" (¢, 0)|p, +4), (3.18a)
(', £ T (t,0)|p, £5) — ™27 (', £4|T"(£,0)|p, £7). (3.18b)

On the other hand, a rotation can be described by the fundamental representation of the Lorentz group
acting on J* and T"” making use of the postulated Poincaré covariance of these quantities. The helicities
are invariant under Poincaré transformations as seen in Sect. 2.3.2. Equating two different transformation
rules for the same rotation, we find

=20 ! &[T (t, 0)p, ) = AO) (', 417" (1, 0) |, £5), (3.192)
eS0T 5| T (1, 0)|p, £5) = AO)" ) A(0)" o (', £5|T7 (£, 0)|p, £5), (3.19b)

where A(6) represents the Lorentz transformation according to a rotation by 6 around the direction of p,
i.e. a simple rotation matrix. This can be compared to the idea of active and passive transformations. On
the left hand side we transform the basis states while on the right hand side we transform the currents
themselves. That A(#) is a rotation matrix implies that the eigenvalues of this matrix can only be % and
1. Therefore all components of the matrix elements of J# (¢, 0) in our special Lorentz frame have to vanish
unless 25 € {0, 1}. Similarly all matrix elements of T#" have to vanish unless 25 € {0, 1, 2}.

As J* and T"" are assumed to be Poincaré covariant and the helicities of massless particles are Poincaré
invariant, these matrix elements have to vanish in all Lorentz frames. This holds for all momenta with ¢ # 0
and thus also in the limit p’ — p. Again, only the limit is important, the value of the matrix element at
p’ = p does not matter.

Let us look at what we have done. In the first part of the proof we found Eqs. (3.13) stating that

. ‘ ‘ qp*

1 [ TRt +j) =

p,lgnp<p, JIJH(E, 0)[p, £5) B2n)? # 0,
lim (51T (£, 0)|p. ) = 22 2
p’—>p p? ] ) p? ] E(27T)3 )

whereas the second part yields
1

lim (p’, £j|J"(t,0)|p, £j) =0 for j > 7 (3.21a)
p'—p
lim (p’, +4|T"" (¢,0)|p, £j) =0 for j>1. (3.21b)
p'—p

This is the contradiction we wanted and the end of the proof. Under the given assumptions there cannot
be any charged massless particles of spin j > 1/2 and j > 1, respectively. We have not required that the
matrix elements are continuous at p’ = p.

O

Nevertheless we should not forget that we can distinguish two different cases for the angle ¢. Even
though not necessary for the proof, this shows that the considered matrix elements do not have to be
continuous. For ¢ = 0 we consider the case that p’ and p are parallel. Hence, the particle states transform
as

Ip, £5) — =" |p, +j), (3.222)
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P, £j) — e p! 7)), (3.22b)

i.e. equally, in contrast to (3.17), because we have now a rotation of +6 around both p and p’. Therefore,
under a rotation we have on the one hand

(', 417" (t,0)|p, £5) — (o', £4|.T" (£, 0)|p, £5), (3.23a)
(', £ T (t,0)lp, £5) — (0, £4|T" (£, 0)Ip, £5), (3.23b)

i.e. the matrix elements are now invariant if we apply the rotation on the states. Evaluating the rotation as
a Lorentz transformation applied to the tensors on the other hand shows that

(', £417"(t, 0)|p, £5) = AO)", (P, 5177 (£, 0)|p, +3), (3.24a)
(P, 1T (t,0)|p, £5) = A0)" ,A0)" o (p', £ |T7 (£,0)|p, £5)- (3.24b)

Obviously the right hand side depends on 6 whereas the left hand side does not. Nevertheless, a spatial
rotation only involves two spatial dimensions and therefore only the components of the matrix elements
of J# and T"” along these involved dimensions have to vanish. The components of the matrix elements
along p and p’ or the time axis do not have to vanish as their rotation eigenvalues are 1. In the case ¢ # 0,
these also had to vanish. Furthermore, for ¢ = 0, the tensor components involved in the rotation have to
vanish for all helicities j, and not only for j > 1/2 or j > 1, respectively. This shows that discontinuous
currents are admitted and as mentioned above, examples for such currents are given in [8].

4 The consequences of the Weinberg-Witten theorem

If we intend to build a theory containing massless particles, a good thing to do would be to first ask the
Weinberg-Witten theorem for what we are allowed to do. For this purpose it might be useful to write down
the theorem the other way round:

Weinberg-Witten theorem (Construction mode).

A massless particle of spin j > 1/2 (j > 1) cannot carry a charge (energy-momentum) induced by a
conserved Poincaré covariant vector (tensor) current.

This just states that if we want a massless particle of higher spin, we should not try to give it a charge
induced by a Poincaré covariant current. But how can we violate the Poincaré covariance of the current and
still preserve a consistent theory? One answer is actually pretty close and given by making the massless
particle a gauge particle. The corresponding tensors will no longer be Poincaré covariant due to the pres-
ence of gauges. We will see that this is one reason for why the success of gauge theories is not restrained
by the Weinberg-Witten theorem.

4.1 What about the particles we know?

At this point we want to look at the massless particles predicted by the theories which describe the current
picture of our world. Except for the graviton, all of them are experimentally observed and hence the ques-
tion is how they find their way around the constraints in the last section. Apart from being a gauge particle,
the photon does not carry a charge of the electromagnetic current and therefore is allowed to exist. The
weak gauge bosons are given a mass by the hopefully realized Higgs-mechanism which manifests their
way around the Weinberg-Witten theorem.

www.ann-phys.org (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



820 F. Loebbert: The Weinberg-Witten theorem

Table 3 The particles we know and why they do not violate the Weinberg-Witten theorem

Gauge boson Spin  El. charge Col. charge Mass Theory
Photon vy 1 0 0 no gauge
Weak W-boson W+ 1 +1 0 yes gauge
Weak Z-boson Z 1 0 yes gauge
Gluons g, k=1,..,8 1 1 no gauge
Graviton 2 0 no gauge

4.1.1 The gluon

If we look at the gluons, the problem becomes more interesting. They have spin j = 1 and are charged
under SU(3)color in the Standard Model. Hence, at first glance the Weinberg-Witten theorem seems to be
applicable. They obey the equations of motion

D,G" = J¥, 4.1)
where
G = 9"GY — 9" G" + geap GG, 4.2)
DG = 0,GE” + geap GG (4.3)
5Smatter
o ZZmatter 44
Ja 5GZ ) ( )

the cqpe denote the SU (3)col0r Structure constants, g the coupling and G* the potential. Note that J* is not
a current we can use in the context of the Weinberg-Witten theorem. This current only includes the quark
fields and therefore the gluon is not charged under it

( / Jgdf”x) Ip, +5) = 0. 4.5)

To avoid the Weinberg-Witten theorem it does not matter that for this current we have D, J/' = 0, rather
than 0, J# = 0, the current does simply not include the gluon field.

However, we can split the covariant derivative and set the matter current to zero. Then the equations of
motion become

uGHY = —geancGL G . (4.6)

Now the right hand side provides a current only consisting of the gluon which is the gauge field appearing
in the second part of the covariant derivative. Defining

TV = —gcapcGLGM, (4.7)
the equations of motion furthermore show that
0,J} = 0. (4.8)

This is the Noether current induced by the global symmetry of the matter-free Lagrangian. However, this
current is not gauge invariant, as it includes the bare field GZ. To see why this violates the assumptions of
the Weinberg-Witten theorem, we have to consider a more general idea:
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If one tries to construct a massless spin 1 vector field A* in a quantum field theory [2], this inevitably
leads to the consequence that the field transforms under Lorentz transformations as

U(A,0)A*(z)U 71 (A,0) = A*, AY (Ax) + 0HQ(x, A). (4.9)

The reason for this non-Lorentz covariant behavior is the redundancy generated by describing a massless
field with rwo degrees of freedom by a four component vector. This can be regarded as a physical motivation
for postulating local gauge invariance and the invariance of the Lagrangian under gauge transformations of
the form

Au(x) — Au(x) + 0pe(x). (4.10)

Postulating that the physics of our theory does not change under the transformation (4.10) means a redef-
inition of our equations in order to save Lorentz covariance. Even though the Lagrangian does not change
under a Lorentz transformation, the field A, does and is, in particular, not Lorentz covariant. In this sense
gauge invariance and Lorentz covariance are affiliated with each other.

This implies that the non-gauge invariant gluon field Gf’t is not a four-vector under Lorentz transforma-
tions either and thus the current J/* is not Lorentz covariant. The gluon is not forbidden by the Weinberg-
Witten theorem because it is not charged under a Lorentz covariant current. In the context of the Weinberg-
Witten theorem and the arguments above, the gluon can be regarded as a representative for every gauge
field and it shows why the theorem is not applicable to all of them®.

In the case of the gluon there might be a much simpler but also much less understood argument for
why the gauge particle of QCD does not violate Weinberg’s and Witten’s theorem: Physicists believe that
a massless gluon does not exist in isolation. The gluon is supposed to occur only in form of so called
glueballs, massive particles composed of only gluons. However, this is still pure theory since glueballs
have not been experimentally verified yet. In fact, every Yang-Mills theory is supposed to generate such a
mass gap, a statement which is not proved yet either. From this point of view no Yang-Mills theory gives
rise to massless particles and we do not have to bother about the Weinberg-Witten theorem. Furthermore,
there is the unproved idea of confinement, i.e. physicists believe that color charged particles are forbidden
in nature. Hence, a charged massless particle called gluon could never be measured in any experiment, and
as such does not exist as a single particle. However, the gauge arguments given above become interesting
in the light of gravity.

4.1.2 The graviton

We have a beautiful geometric theory of gravitation which does not ask for a particle description at first
sight. Nevertheless, what makes a lot of people search for an alternative is that, as Witten says, the “exis-
tence of gravity clashes with our description of the rest of physics by quantum fields” [20]. People seem to
be pretty sure that if gravitation is mediated by a particle, then this particle has to be massless and of spin
2. Feynman on this: “In any case, the fact is that a spin-two field has this geometrical interpretation; this
is not something readily explainable - it is just marvelous” [21]. That the graviton has to have even spin
follows from the purely attractive nature of gravity; that it has to be spin 2, from the required coupling to
the energy momentum tensor. Fields of higher spin would also have to couple to conserved tensors with
three or more indices but there are no such tensors except for Pauli-type currents. Up to total derivatives,
the unique conserved tensor with two indices is the energy-momentum tensor. Finally the masslessness of
the graviton is dictated by the long range nature of the gravitational interaction [2,22].

6 The described relation between gauge invariance and Lorentz covariance made the author of [10] even write: “Although the
proof given by Weinberg and Witten (W-W) is very elegant, their theorem is not yet general and clear enough: First the
condition of Lorentz covariance of J,, or ©, in their theorem is in fact a requirement of gauge invariance of them.” The
author uses ©,,, instead of T},
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The physical importance of the spin 2 field stems from the fact that it is equivalent to linearized general
relativity treated on a Minkowski background. Furthermore it can be shown that if we start with linearized
general relativity of the form

uv = Nuv + h;wa (4.11)

full general relativity follows from imposing a self consistent coupling to the energy-momentum tensor,
i.e. we iteratively add terms containing the graviton A, to the energy momentum tensor in order to do
justice to the nonlinear character of Einstein’s theory [23].

This is the reason why particle physicists generally talk about gravity as the theory of the graviton. Thus
one should consider whether this massless particle is actually allowed in the context of the Weinberg-Witten
theorem. However, to discuss this point the most important question seems to be in which framework the
graviton should be treated. Shall we think about it in the context of linearized general relativity, full general
relativity or somehow in terms of an approach to quantum gravity? Like in the case of the gluon, we may
start by writing down the gravitational field equations

1
R, — §g/wR = —81GT)yy. 4.12)

Again, the right hand side, i.e. the matter energy-momentum tensor defined by

1 matter
v — L OSmau (4.13)

B V=3 59 nv ’
is not the tensor to be considered as its matrix elements between one-graviton states vanish identically.
The four-momentum of the graviton is not given by [ T d3x, as TH represents all the energy except for
gravitational energy and again we can say that the graviton is not charged under this tensor.
What we can do is to write Einstein’s field equation in the form [24]
. 1 .

R — 5 R = —87G(T + T (4.14)
This is exactly the analogous equation to (4.12) but we shifted a part from the left to the right hand side so
that on the left hand side we now have the linearized Ricci quantities in terms of the fluctuations h,,,, over
the Minkowski metric 7),,,,. This equation has the form one could expect for the wave equation of a spin
2 field. The quantity 7,,,, represents the difference between the linerarized and the full field equations, the
energy-momentum pseudotensor of the gravitational field. We have

1 1 lin 1 lin
7;111 = Ryel (RMV - §gm/R - R;(w ) + inMV‘R( )> (4.15)
and
; 1( o*n 0%n? 9%n) 0%h
(lin) P A . ro v Hv 4.16
Ry 2 (333/‘(‘%" Ox oy  DaxrOxH * 8x>‘8m>\> (4.16)
The sum of both quantities now obeys
MTyw + Tw] =0, 4.17)

whereas the statement that 7}, is covariantly conserved illustrates the exchange of energy between mat-
ter and gravitation. It is well known that Einstein’s theory has no local gauge invariant observables. To
construct the quantity 7,,,, explicitly, we have to choose a specific reference frame, i.e. we have to choose
a gauge. However, there are several different ways to construct this pseudotensor [24-26]. In all cases it
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seems to be clear that constructing the pseudotensor breaks general covariance. The failure in finding a
gauge invariant energy momentum tensor for the graviton represents the statement that the energy of the
gravitational field is not localizable or in words of Misner, Thorne and Wheeler, the “local gravitational
energy momentum tensor has no weight” [27]. The gravitational field can be gauged away locally by intro-
ducing Riemannian normal coordiantes, and hence we cannot assign a spacetime position to gravitational
energy’. However, in [24, 25] it is pointed out that the obtained pseudotensor of the gravitational field
is still Lorentz covariant, even though not generally covariant. Thus, at first sight, the Weinberg-Witten
theorem appears to be applicable to this tensor. However, the crucial point seems to be again that these
pseudotensors are constructed in the context of a classical, i.e. a non-quantum theory.

From our viewpoint the situation should be regarded similarly to the case of the gluon. Like the current
J* for the gluon, the quantity 7,,,,, or likewise constructed pseudotensors for the graviton, are not gauge
invariant, i.e. not generally covariant. Constructing a spin 2 field A*" in a quantum field theory, i.e. giving
birth to the graviton, we expect to be confronted with a behavior under Lorentz transformations similar to
that of the massless spin 1 field in (4.9) of the form

U(A, 00" U1 (A, 0) = A" ,AY h?7 (Az) + M (2, A) + 0" (x, A). (4.18)

But this equation has the same structure as those general gauge transformations which leave the linearized
field equations invariant

RHY — B 4 9O (3) + O QU (x). (4.19)

Hence, the additional terms under Lorentz transformations could be absorbed by these gauge terms. To
maintain a Lorentz covariant pseudotensor in the quantum theory would require that 7,,,, is generally
covariant, i.e. invariant under transformations like (4.19). However, as mentioned above, general covariance
is broken already in the classical theory by the procedure to construct the energy-momentum pseudotensor
7,,, for the gravitational field.

Again this shows a close connection between Lorentz covariance and local gauge invariance. One should
notice that this connection appears to come up on the way to a quantum theory. The process of constructing
the energy-momentum pseudotensor for the gravitational field in a classical theory only breaks general
covariance, not Lorentz covariance. Constructing a quantum field then requires additional terms under
Lorentz transformations. To maintain Lorentz covariance of the theory, these additional terms would have
to be eliminated by gauge transformations requiring general covariance. Like for the gluon, this gauge
invariance of the current is not given for the graviton.

Accordingly the graviton is not charged under a Lorentz covariant current and the Weinberg-Witten
theorem does not apply. The fact that gravitational energy cannot be localized seems to be the fundamental
argument for why the Weinberg-Witten theorem is not applicable to the graviton in any theory. Kugo even
says that “the powerful second part of the theorem becomes empty in the presence of gravity” [10]. One
way to think about this is that the geometric nature of the spin 2 particle necessarily leads to the fact that
we cannot construct a gauge invariant energy-momentum tensor in a consistent theory. This implies that as
soon as we suggest the graviton to be of spin 2 or even to have the properties of gravity, we have ruled out
the Weinberg-Witten theorem®.

One should always keep in mind that the arguments given above try to justify the existence of the
quantum of the gravitational field. However, we do not have a quantum theory of gravity and hence the
framework for this discussion is debatable.

7 Note that for every non-abelian gauge theory it can be shown that the gauge field can be transformed to zero at a given point,
which illustrates the similarity to the gluon case.

8 Note in this context that just recently M. Porrati pubished an interesting article in which he presents a proof for an extension

of the Weinberg-Witten theorem to energy-momentum tensors which are not gauge invariant. His argumentation imposes

limitations on massless particles interacting with gravity on a Minkowski background [28]. This result, however, only forbids

massless particles of helicity 7 > 2 in contrast to j > 1 in case of the result of Weinberg and Witten. Therefore it does not

apply to the graviton.
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4.2 Minkowski spacetime — no background for emergent gravity

We should remember that the Weinberg-Witten theorem actually was an answer to several papers which
had suggested to describe the graviton as a composed state in ordinary field theories on a Minkowski back-
ground. The most important consequence of the theorem is that this is not possible. We cannot compose
a graviton from massless particles in Minkowski spacetime which are charged under a Lorentz covariant
current. If we would, for example, try to compose the spin 2 graviton out of two spin 1 gluons, the gluons
would contribute to a Lorentz covariant energy momentum tensor. This implies that their four-momentum
can be described by [ T%d®z. Accordingly, the graviton would be charged under this tensor. This possi-
bility for an emerging graviton was ruled out by the Weinberg-Witten theorem.

The question actually is whether two gluons, which are charged under a Lorentz covariant energy-
momentum tensor, could provide the crucial property of gravity to have no local gauge invariant degrees of
freedom. In the light of the discussion above showing the close relation between Lorentz invariance, gauge
invariance and general covariance, the answer given by the Weinberg-Witten theorem is that a conventional
theory living on a Minkowski background cannot mimic the properties of gravity.

4.3 Evading the Weinberg-Witten theorem

We have seen that the attributes of massless particles, which are used in the proof of the Weinberg-Witten
theorem, are based on the symmetry group of Minkowski spacetime. It should not be surprising that the
theorem can be bypassed if we try to modify the fundamental structure of the background geometry.

4.3.1 Noncommutative geometry

There are several examples for approaches which violate Lorentz covariance in order to evade the Weinberg-
Witten theorem. The ideas range from introducing a fundamental lattice in the basic theory [29] to consid-
ering the emergence of massless particles by spontaneous breaking of Lorentz invariance [30].

Recently it was suggested by H.S. Yang [31] that gravity could emerge from electromagnetism in the
context of noncommutative geometry. The concept of noncommutative space can be traced back to the
1930s when Heisenberg first suggested it to give rise to a coordinate uncertainty. This reason for dealing
with noncommutative geometry is still attractive, as it introduces a minimal length and a natural cutoff to
treat divergences in quantum field theory. Even though the idea of postulating commutation relations of the
form

[z, 2] = i0" (4.20)

is quite self-evident in the context of our world of quantum theories, Connes gives another interesting
motivation for why we should think about this approach [32]:

If we consider the action terms representing current physics, i.e. the Einstein-Hilbert action Sgp and
the action of the Standard Model Ssn, we find two different fundamental symmetry groups. The first
corresponds to coordinate transformations given by the diffeomorphism group Diff (M) of an underlying
manifold M. The second is the group of local gauge transformations G represented by maps from the
manifold to the small gauge group G

G = {maps: M — G}. (4.21)
At the current state of our experiments we believe that

G=U)y x SU(2) x SU(3)color- (4.22)
The full group of symmetry transformations of the action

S = Seu + Ssm, (4.23)
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is then given by the semi-direct product
U = G x Diff (M). (4.24)

Nevertheless, the classical theories we know are defined on the manifold M with the invariance group of
only Sgy as its diffeomorphism group. A much more natural idea is to ask for an underlying space X with
diffeomorphism group Y. Searching for such a space, we are confronted with the general mathematical
result that the connected component of the identitiy in the diffeomorphism group Diff (X') of an ordinary
manifold is always a simple group. Thus, if we want to include the identity in the group of symmetry
transformations, this implies that G cannot be a normal group of /. Therefore an ordinary manifold cannot
have a diffeomorphism group with the structure of a semi-direct product.

Following Connes we want to show that noncommutative spaces naturally imply this structure. For an
ordinary manifold the algebraic object that corresponds to a diffeomorphism is an automorphism o €
Aut(.A) of the algebra A of coordinates. In contrast to an ordinary algebra, the noncommutative algebra
has inner automorphisms Int(.A) of the form

afr) =uzu', Yz € A and wu€ A invertible. (4.25)
If we now define the outer automorphisms as the quotient

Out(A) = Aut(A)/Int(A), (4.26)
it is generally true that we have an exact sequence of the form

1 — Int(A) — Aut(A) — Out(A) — 1. (4.27)
Let us consider an example where

A =C>(M, M,(C)), (4.28)

i.e. A equals the algebra of smooth maps from a manifold M to the algebra of n x n matrices. It can be
shown that the group Int(.A) is locally isomorphic to the group G of smooth maps from M to the small
gauge group G, where G = PSU(n) represents the quotient of SU(n) by its center. In this example
Eq. (4.27) becomes

1—6G—U—Diff(M) — 1, (4.29)
which implies the statement that I/ is the semi-direct product of G and Diff (M)
U =G x Diff(M).

Hence, we find that an underlying noncommutative space naturally includes the idea of a diffeomorphism
group with a semi-direct product structure, whereas this structure is not possible for an ordinary manifold.
As this is the symmetry group structure of the most fundamental action we have today, it suggests itself to
think of building a theory on a space which admits this structure for its diffeomorphism group.

As always, the most interesting question is how this alternative approach can deal with the problem
of gravity. As we have already indicated above, there are suggestions that in noncommutative spacetime
gravity could emerge from electromagnetism. Of course, this is an idea that first has to pass the Weinberg-
Witten theorem. As we have also indicated, the key point in this case is Lorentz invariance. Postulating
noncommutative coordinates like in (4.20) singles out special spacetime directions due to the presence of
6% . It follows that the energy-momentum tensor in noncommutative geometry is not Lorentz covariant and
according to the Weinberg-Witten theorem a graviton emerging from electromagnetism as proposed in [31]
would be allowed.
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4.3.2 AdS/CFT duality

The most popular representative of an emergent theory that evades the Weinberg-Witten theorem is cer-
tainly the idea of the AdS/CFT duality incorporating the holographic principle. In 1993 ’t Hooft [33] and
two years later also Susskind [34] suggested that a theory of quantum gravity can be approached by the
assumption that our 3+1 dimensional world could be a projection from a 2+1 dimensional theory, that is to
say that all degrees of freedom are described by the lower dimensional theory. The idea was that the bound-
ary of a very large region could be regarded as a flat plane at infinity. What we see in three dimensional
space could be projected onto this distant screen which contains all necessary information to describe the
bulk inside. The name of this idea can be based on a statement by "t Hooft who wrote that “the situation
can be compared with a hologram of a three dimensional image on a two dimensional surface” [33].

To see how this can be combined with the concept of AdS/CFT duality it is insightful to go back to
the roots of string theory. The idea to describe particles by strings came up in 1970 as an approach to deal
with the large number of mesons and hadrons. It was not really successful in this context and was finally
superseded by QCD. But the strong interaction remained a source for interesting ideas. As the gauge group
of QCD is SU(3), quarks have three color charges. However, it becomes strongly coupled at low energies
and therefore cannot be treated in perturbation theory. To solve these difficulties with QCD calculations,
't Hooft suggested in 1974 to treat the strong interaction in terms of a large number N of colors [35]. In
this so called ’t Hooft limit

N — 00, A= g¢?N = fixed, (4.30)

where A defines the 't Hooft coupling and ¢ the coupling constant of the underlying matrix gauge theory,
only planar Feynman diagrams survive. In this limit the structure of the considered gauge theory bears
resemblance to string theory, which gave rise to a striking idea by Maldacena in 1997 relating gauge and
string theories [36].

Naively we could try to think about a relation of a four dimensional gauge theory to a four dimensional
string theory. To make life as easy as possible, we want to start with a very symmetric gauge theory. Hence,
we consider SU(N) maximally supersymmetric, conformally invariant N” = 4 Yang-Mills theory in four
spacetime dimensions. In addition to the gauge fields (gluons), this theory contains four fermions and six
scalar fields. We have a global R-symmetry that rotates these scalar and fermion fields. The conformal
group in four dimensions is SO(4, 2) which includes the usual Poincaré group as well as scale transforma-
tions and special conformal transformations.

However, it is well known that string theory in four flat spacetime dimensions is not consistent. Trying to
quantize it, one has to introduce an extra field, called Liouville field [37], in order to deal with the anomaly
of the classical Weyl symmetry of the Polyakov action

1

Sp[X,7]=—— y

drdo (=) %9, X 9, X ,,. 4.31)

Here X denotes the embedding coordinates of the string, v the world sheet metric and « the string tension.
The Liouville field can be interpreted as an extra dimension giving an example of how consistency can
require the introduction of additional spacetime dimensions.

Hence we have to think of at least a five dimensional background for the corresponding string theory.
The space should have four dimensional Poincaré invariance which yields the ansatz

ds® = f(2)*(datdzx,, + dz?). (4.32)

Since we have chosen our gauge theory to be conformally invariant, this should be reflected on the string
side of the correspondence implying that the theory should be invariant under rescaling

T — AX. (4.33)
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z ,  strings in the bulk . . .
Fig. 2 Schematic idea of the AdS/CFT duality: A

string theory on Ad.Ss x S® could have a dual descrip-

% gauge particles tion in terms of a gauge theory defined on the bound-

& on the boundary ary of AdSs x S®. Here the Weinberg-Witten theorem
would allow the graviton, described by strings in the

bulk, to emerge as the holographic projection of two
gluons living on the boundary. The figure sketches

% this setup with z and z* denoting the coordinates of
ﬁ xt AdSs. In this context Minkowski spacetime can be

regarded as the projection screen of a ten dimensional

string theory.

However, string theory has a scale in form of the string tension. Consequently the only way out is that
the scale invariance is an isometry of the background. Thus, under (4.33) we should have z — Az and
choosing f(z) = R/z yields the metric of five dimensional Anti-de Sitter space in Poincaré coordinates

_ R dz# dxuz—i— dz? (4.34)

z
As we consider a supersymmetric gauge theory, the strings should be supersymmetric too. It is well known
that consistency then requires spacetime to be of dimension ten. Similarly to the argument in four dimen-
sions, we add five more dimensions to get a ten dimensional space. Thinking about the geometry of these
additional five dimensions, we remember that our gauge theory has a SU (4) ~ SO(6) global symmetry,
which suggests a five sphere S® for the additional dimensions. This argumentation sketches what Malda-
cena showed in his famous paper [36]: In the large N limit, A" = 4 SU(N) Yang-Mills theory can have
a dual superstring theory in ten dimensions. Furthermore it is known that every string theory contains a
massless excitation of spin 2, which, recalling the arguments in Sect. 4.1.2, can be regarded as a description
of gravity. Hence, we find that gauge theories could imply a gravitational theory.

If we now combine the idea of the holographic principle and gauge-string duality, the impressive picture
of AdS/CFT duality arises. The graviton could emerge as a hologram of a gauge theory. That is to say that
from a gauge theory defined on a screen, a bulk geometry based on string theory could emerge in the limit
of a large number of colors. This bulk theory would contain a spin 2 field and thus a theory of gravity.
Unfortunately, no boundary theory is known as yet which gives rise to an interior theory describing exactly
the four interactions we experience. Overviews over these ideas are given in [38—41].

The concept described above shows a possibility for the graviton to emerge from or to be composed
of ordinary particles in the boundary theory, i.e. the hologram of the boundary particles could look like
the graviton in our world. But how is this consistent with the Weinberg-Witten theorem? The answer
is that for the bulk, containing a gravitational theory, we cannot construct a Lorentz covariant energy-
momentum tensor, as described in 4.1.2. This argument is actually the same as that to justify a graviton in
Minkowski spacetime. However, now the boundary theory has an energy-momentum tensor which lives in
lower dimensions than the graviton and does not contain the graviton itself. In this holographic sense, the
spin 2 graviton now could be composed of two spin 1 gluons, as the energy-momentum tensor of the latter
lives in a different spactime, and the Weinberg-Witten theorem would be bypassed.

S Summary

We have seen that, based on the isometry group of Minkowski spacetime, the Poincaré group, one may clas-
sify massless particles by their helicity and four-momentum. Basically by using the properties of Poincaré
covariance, which is motivated by the form of the background geometry, we have derived the Weinberg-
Witten theorem, especially dwelling on the continuity discussion in the proof. The theorem restricts the
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classification parameter ‘spin’ of massless particles if we impose that these particles are charged under
conserved Poincaré covariant currents. The most important consequence of these limitations on massless
particles are constraints on an emerging graviton in Minkowski spacetime. We have described why, in the
context of gauge theories and gravity, the theorem is not applicable and how emergent theories evade the
Weinberg-Witten theorem by modifications of the crucial background geometry.
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