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The Weinstein Conjecture in Cotangent Bundles
and Related Results

H. HOFER* - C. VITERBO

1. - Introduction and Results

Let N = T*M be the cotangent bundle of the smooth connected compact
manifold M. N carries a canonical symplectic structure w = -dA, where A is
the Liouville form on N, see [1]. We consider a Hamiltonian vectorfield

associated to a smooth function H : N --&#x3E; R via

We are interested in finding periodic solutions on a given compact regular
energy surface S = (H = const.}. Regular means 0 on S. If S is
the regular energy surface for another Hamiltonian vectorfield then periodic
solutions for both vectorfields agree up to reparametrisation. This prompts the
following abstraction. Denote by = kem (w / S) the line bundle on TS
which is given by

Then 1 determines the direction of every Hamiltonian vectorfield having S as a
regular energy surface.

DEFINITION 1. A periodic Hamiltonian trajectory on S is a submanifold
P of S such that

(i) ~’ is diffeomorphic to S 1

(ii) T P == ls IP
We denote by P (S) the collection of all periodic Hamiltonian trajectories on S.

* Research partially supported by NSF Grant No. DMS-8603149
Pervenuto alla Redazione il 10 Luglio 1987.
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The breakthrough in the study of periodic solutions on compact energy
surfaces in 3 2’~ is due to P. Rabinowitz [18] and A. Weinstein [27], who proved
the existence of periodic orbits on starshaped resp. convex energysurface in I~ 2n .
Quite recently the second author, [25], has been able to find periodic solutions
on compact energysurfaces of contact type in R2n and to prove a generalization
of a conjecture by A. Weinstein [28] in the R2n -case. Motivated by Viterbo’s
result the first author and E. Zehnder, [12], simplified the arguments in [25]
and proposed an existence mechanism based on a priori estimates for periodic
solutions.

In this paper we shall prove, besides other results, the Weinstein conjecture
for an interesting class of hypersurfaces in a cotangent bundle and answer some
of the questions raised in [9]. We use and considerably refine the approach in
[25] and [12] and combine it with the first author’s critical point theory which
already proved useful in the proof of a conjecture by V.I. Arnold [11]. Here
we use some so far unpublished new results in [10]. We impose the following
hypothesis:

(8) N - T*M is the cotangent bundle of a compact smooth connected
manifold M of dimension at least 2. S is a compact connected hypersurface
in N and the bounded component of N,,S in N contains the zero section
M c T*M.

Some remarks concerning (S) are in order. If N = T * M and dim M &#x3E; 2 then,
as an easy consequence of Alexander duality [24, p. 296], we have the following
situation: if S is a compact connected hypersurface in N not intersecting the zero
section, then N~S’ has exactly two components, a bounded and an unbounded
one. So (S) says that we assume that S "encloses" the zero section of N.
As a consequence of (S) the canonical line bundle ls -&#x3E; S is orientable. We
can take the orientation given by a Hamiltonian vectorfield XH having S as a
regular energysurface such that H(z) --, +oo as z goes to infinity in the fibres
of N = T*Af. If (S) holds the following definition given in [12] is useful.

DEFINITION 3. Let S satisfy ( S ) . A parametrized family of compact
hypersurfaces in N = T*M modelled on S is a diffeomorphism T : ( -1,1 ) x
8 ~ N onto an open neighborhood U of S with compact closure such that

x ) = x for all s ~ ,5 . We shall put Se = T (I e} x S ) in the following.
If P we put A ( P) = f A )P where P inherits the orientation from

ds -~ ,5 (recall TP = ls I P).
Our main result is the following:

THEOREM 1. Let S satisfy (S) and suppose T is a parametrized family of
compact hypersurfaces modelled on S. Then there exists a constant d = d(W) &#x3E; 0

such that for every 8 &#x3E; 0 there is an e &#x3E; 0 in lei  6 for which the hypersurface
8e carries a periodic orbit Pe with
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Now arguing as in [12] we obtain a proof of the Weinstein conjecture for

hypersurfaces satisfying (S) without the assumption HI (8; R) == 0:

COROLLARY 1. If S satisfies (S) and S is of contact type then P (S) =/-, 0.
Moreover we obtain a result based on a priori estimates. Suppose  ., . &#x3E;

is a Riemannian metric on N. If P is a one-dimensional submanifold of N we
can define its length L(P) in the obvious way.

COROLLARY 2. Let S satisfy (S). Assume there exists a constant c &#x3E; 0

such that

for and all e E (-1, 1) for some parametrized family T modelled
on S . Then P (S) =I 0.

As in [12] Corollary 2 follows immediately from Theorem 1.

The proof of Theorem 1 is much more technical than the proofs in [12] or
[25]. The basic references for the infinite dimensional set up are [13] ] and [14].
We shall use the same notation. Instead of working in cotangent bundles we will
work in tangent bundles. For this we fix a Riemannian metric on M and pull back
the symplectic structure in T*M via the "Rieszmap" x 2013~ ~, &#x3E;

2. - Basic set up and sketch of the proof of Theorem 1

We pick a smooth function CP1 : ( 0, -~ oo ) x -1,1 ) - R having the

following properties:

Further we pick a smooth function CP2 : such that

where a = diam(U), U = ~((-1,1) x S), and a  r  2a. Using ~2 we

define a smooth map H : (0, +00) x TM --+ R by
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Here B is the bounded component of TMBT([-6,61 x S) and A the unbounded
component. If we put

then A : (b, x) --~ A,, (x) is a smooth realvalued function on (0, + 00) x TM.
Moreover for Ixl &#x3E; 2r we have b. Using this we obtain a continuous
map k : (0, +oo) x (0, +00) ~ ~0, +oo) defined by

with the property = 0. In the following we use some of the results in
Klingenberg’s books, [13] and [14]. Denote by S 1 = R/Z the unit circle and

by A = H1 (,S 1, M) the Hilbert manifold of absolutely continuous loops with
square integrable derivative, i.e.,

We shall call E(q) the energy of q. We define for q E A

It is well known that

can be canonically identified with the tangent space of A, so that the notation
TA is justified. We can equip with the inner product

and denote by Lq A or Lq the completion. Then
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carries the structure of a vectorbundle over A. We denote by 7r : L - A the
canonical projection. Taking the tangent vectorfield along a H1-curve defines a
smooth section

We define a smooth functional (D E C"~(L,R) by

where IIxl12 = (x, x). The critical points are clearly the geodesics on M.
In fact

for all h E Here V denotes the covariant derivative along q = x(z)
associated to the Levi-Civita connection K on M. Moreover k is the
Riemannian connection for the fibre metric (., .) on L which is induced by
the Levi-Civita connection in the obvious way (see [13] or [14] for details).
Hence (8) gives 

’

or equivalently

But this just means q is a critical point of E E Next we define for
b E (0, + oo ) a C 1-functional L - R by

Unlike (D the functional Ob is in general not smooth because of the nonzero
Ab-part by known results on substitution operators in L2-spaces. Moreover the
critical points x of Ob are clearly the solutions of the Hamiltonian system

Here q = 7r(x) and Hb’ denotes the gradient of Hb : TM - R with respect to
the Riemannian metric  .,. &#x3E;TM =  K., ~ ~ &#x3E; +  &#x3E; on TM.
If now x is nonconstant and x(to) E Se for some to e R/Z then x parametrizes
a PeEp(Se).
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DEFINITION. A good critical point of is a point x E L such that

for some e E (-6, 6). All other critical points will be called parasites.
Note that for a function x E L the condition x(0) E Se does not make

sense a priori. However if x is a critical point of ~b then x E C°° (S’, TM) so
that z(0) is well defined.

If x is a parasite we have either

(10) x is a constant

or x is nonconstant and solves

Consequently we have  0 if (10) holds or

if (11) holds.

LEMMA 1. There exists a bo &#x3E; 0 not depending on 6 (see Theorem 1) such
that a nonconstant parasite solution x of (HS)b with b &#x3E; bo and 0

satisfies

and

(14)

PROOF. Since const we infer that = &#x3E; r for all t E R/Z.
Hence 

, ~ I , , , ,

Therefore by (12) and our assumption on x

If we define b o by
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we infer for b &#x3E; bo

Consequently our hypothesis on x implies &#x3E; 2r. Hence using the property
of Hb 

- -

This gives

So q is a geodesic. A straightforward calculation gives now

as required. D

It is a standard fact from the theory of closed geodesics that there exists
a Riemannian metric on M such that the set

consists of isolated points (see [ 14] ). We may assume that our Riemannian
metric has this property. The following result will imply our main Theorem 1.

THEOREM 2. There exists a continuous nonincreasing function e :

(0, +00) &#x3E; [0, such that for every b E (0, there exists a 1 periodic
solution Xb of (HS)b such that

(15) const and 8b(Xb) = 8(b)

e ( b)  for a constant only depending on V.

The proof of Theorem 2, which we will sketch, will take the rest of the paper.
Before that, let us show that Theorem 2 implies Theorem 1.

Let bo &#x3E; 0 as given in Lemma 1. Then we may assume that all the

Xb, b &#x3E; bo, are parasites (otherwise we are done). Hence

where qb = Consequently + b E r, O(b)  c(T), for all b &#x3E; bo.
Since r is discrete we have for some constant c

If now b &#x3E; c we obtain the contradiction
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Note that 6(b) + 6 = e(bo) + bo  + bo for 6 &#x3E; bo. Hence b 

c(W)+bo-8(b)  So we find a good critical point xb with b  c(W)+bo.
This gives

We define a Riemannian metric for A in the usual way by

for ( x, y ) E TA 0153 TA. It is well known that is a complete Hilbert
manifold for the metrics induced in the components of A by ( ~, ~ ) ~ .

For q : R /Z - M in A we denote by q again the induced map R - M.
For s, t e R we obtain an associated parallel transport along q

For r E 1Ft we define an isometric vectorbundle isomorphism Z(r) : L - L by

We have

So induces on each fibre L. a strongly continuous representation of
R by isometries. It turns out that the infinitesimal generator of this group on

Lq is V with domain TqA.
Now we recall a concept introduced in [ 11 ] .

DEFINITION 2. A bounded subset C of L is called uniformly fibre
precompact if for given e &#x3E; 0 there exists To &#x3E; 0 such that

If in addition C is closed we call it uniformly fibre compact.
Next we introduce a certain subset N of the homeomorphism group

homeo(L) of L. Denote by 6 : TA ~ L the smooth vectorbundle map which is
on each fibre the covariant derivative V along the corresponding curve q E A.

We say a smooth map g E has property (g) if the following
holds

(g) The smooth fibre preserving maps L - L : x -~ K o g’(x) and
~ 2013~ ~ o o g’(x) map bounded sets into uniformly fibre precompact
sets.
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Here g’ is the gradient of g with respect to the Riemannian metric

( , ) L : T L end TL - R defined by

Now let p : L - [ - 1, 0] be a smooth map. We call the pair 
admissible if g satisfies (g) and

and moreover if there exists a continuous map r : ~ ---~ R mapping bounded
sets into bounded sets such that

Given an admissible pair (g, p) we have a global flow L - L

associated to the differential equation

Denote by a = a (g, p) the time one map, i.e., a = a1. We put

and

compositions of o,iE
Clearly ,M is a semigroup.

DEFINITION 3. ,M is called the semigroup of basic deformations in L. An
element of J~I is called a basic deformation.

A key property of an h E M is described in the following fundamental
proposition which will be proved later.

PROPOSITION 1 (Intersection-Proposition). Let LO be the zero section of
L and let E be a compact subset of A. Denote by H* Alexander Spanier
cohomology with coefficients in a given commutative ring R. Then there exists
for given an injective (!) ring homomorphism ,Qh such that the following
diagram is commutative

This has the following
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COROLLARY 1. f1 for all 0.

The proof of Proposition 1 is very technical and highly nontrivial. It is

clearly false for h E homeo(L).
Define for n a smooth vectorbundle map Fn : L - TA by

for all y E Tq A where x E Lq. Now we define a family of smooth functionals
by

The following result is the second key step in the proof of Theorem 2.

PROPOSITION 2 (Deformation Proposition). There exists a subsequence
of N such that the following holds.

Given numbers 60 &#x3E; 0, d E ~3 and an open neighborhood U of
{x E Lld(Db(X) = 0,’Ob(X) = d} with &#x3E; 0 there

exist numbers e E (0, eo) and ko E ~T such that for every k &#x3E; ko there is an

hk E M(!) with

Here b &#x3E; 0 {x E L with q)b.nk(X) S c}.
The proof will be given later. We would like to remark that one can

actually show that Cr((Db, d) is compact so that the distance hypothesis is
not needed. Now we can construct O : (0, +00) ~ [0, +00) with the desired

properties.
Fix a compact subset E of A. The properties of E will be specified later.

We only assume for the moment that E 54 0. Define for n E N

by

Since h = I d E J~t we have
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Moreover by Corollary 1 h(LIE) n L° ~ 0, which implies

Summing up (26) and (27) we see that On is real valued.

Using the function l~ introduced in (5) we infer

which gives the continuity Finally by the fourth property of in (1)
we see that b -&#x3E; is non increasing.

This proves the following.

LEMMA 2. (8n)nEN is a continuous family of nonincreasing functions on
(0, +00) with values in [0, +00). Moreover the family is equicontinuous at every
point b E (0, --~oo~ and I E),, (1) ) is bounded by (26) and (27).

From the Ascoli-Arzela Theorem we find a subsequence of N
such that converges uniformly on compact subsets of ( 0, + oo ) to a

continuous nonincreasing function 19 E C ( ( 0, +00), 1 [0, + 00 ) ) .
The sequence (nk ) we get here is actually the sequence which one can

take in Proposition 2.
Now we can prove Theorem 2. We have to distinguish between the cases
= 0 and 7Ti(M) 7~ 0. Here the first case is technically more involved than

the second. For this reason we shall only sketch the second case. So assume for
the following = 0. Then Sullivan’s theory of minimal models for rational
homotopy type, [22] or [23], guarantees the non-triviality of rational Alexander
Spanier cohomology groups of A for an infinite number of dimensions. By
a remark in [29] we can find a compact set E in A such that the inclusion
i : ~ ~ A induces a nontrivial isomorphism in cohomology i * : W* (A) - W* (E)
up to a dimension l~o &#x3E; dim(M). We apply the procedure just described to this
compact set E in order to obtain the continuous function 8.

PROOF OF THEOREM 2. We prove Theorem 2 in two parts, namely

Claim 1. There exists a critical point Xb Of ~b with 8 (b),
and

Claim 2. One can take xb in Claim 1 to be nonconstant.

PROOF OF CLAIM 1. Arguing indirectly we may assume E)(6)) == 0.
Now we employ Proposition 2. Without loss of generality we may assume
nk = k in order not to complicate the notation. Taking U - ~ we find for
eo = 1 numbers no E Nand e E (0,1) such that there is a hn E M for every
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r~ &#x3E; no with

Now we have for n &#x3E; n1 &#x3E; no, for some n1 &#x3E; no, that len (b) - e(b)  2 . By
the definition of en we find for n &#x3E; n 1 a homeomorphism hn E M with

(30)

Hence

giving a contradiction since 18n(h) - 6 (b)  2 for n &#x3E; n 1. This contradiction
shows that O(b) is a critical level for Ob.

PROOF OF CLAIM 2. If 0(6) &#x3E; 0 then xb E E)(b)) cannot be constant
since for any constant critical point we have automatically  0. Now

assume 8 (h) = 0 and suppose all critical points of Ob on level zero are constant.
We find a number (J &#x3E; 0 such that A’ = Iq E AIE(q)  a) has A°=M as a
deformation retract (see [13] or [14]). Then U = LIA’ is a neighborhood of

such that a U has positive distance. We find e &#x3E; 0 and no E N such
that for every n &#x3E; no there exists a homeomorphism hn E .M with the property

We can pick for n &#x3E; n 1 &#x3E; no an homeomorphism hn E ,M with

for some suitable integer no. Hence we must have for n &#x3E; n 1

Consequently f1 LO = 0 which implies

Since hn := hn o hn E we obtain for n &#x3E; r~1 the following commutative
diagram by Proposition 1
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Here i and j are inclusions. By our assumption on ~, ik is an isomorphism
from H (A) # 0 onto Hk ( E ~ ~ 0 for some k &#x3E; dim M. Hence is
nontrivial and injective. Consequently jk o is nonzero and injective.
On the other hand since U = we see that

which shows that jk o ( ~r ~ hn ( I~) ) * = 0 contradicting the properties of E. This
contradiction proves Claim 2 and the proof of Theorem 2 is complete. So it

remains to prove Proposition 1 and 2.

If ~r1 ( M) ~ 0 one can take E = { q ~ where q is noncontractible to a point
and the above arguments work as well, in fact they are considerably simpler
because we can work in a component of A containing only homologically
nontrivial curves.

3. - Some results on uniform fibre compactness

We denote by D the covariant derivative in L~A associated to the

Riemannian connection AB Assume p : R - A is a smooth curve. For numbers
we define

and

LEMMA 3. There exists a constant d &#x3E; 0 only depending on M such that
the following estimate holds

where C ( s 1, so) : - is the parallel transport along ~p.

This has been proved for a similar case in [ 11 ] . However the proof here
is a little bit simpler and we give it for the convenience of the reader.

PROOF. Define Q : R x R --+ M : 0 (s, t) = Q ( s ) (t) . By a density argument
we may assume that Q is smooth and we get the general formula (3) by a
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simple approximation argument. For in R denote by

the parallel transport maps in M along t - 0(so, t) and s - 

respectively. We have obviously

we put

We compute

Now

Here R : T M -; T M is the curvature and 9 denote the partial
derivatives. From (5)

since ( Now we combine (4) and (6) to obtain

Let d &#x3E; 0 be a constant such that  lei I for

(a, b, c) E TM e TM e TM. Then we estimate
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Now we find for x E Lq using (7) (q = v(so))

Integrating this inequality yields

Next we need a variant of a representation formula similar to that used in
[ 11 ]. We take however a form which is adapted to the Intersection Proposition
which we have to prove. Consider the differential equation

have the properties as described in §2. So in particular g satisfies

(g) and Ilç(x)IIL S 1 for all x E L. Denote the flow associated to (8) by

We define a map aE: R x L --&#x3E; A by

Then Q ~ ( 0, x ) = For fixed x E L and t, s ~ R we obtain a parallel transport
in L along aE(,x) associated to the Riemannian connection K^ previously
introduced. Hence we obtain induced maps
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Denote by £ ~ A x A the Banach space bundle over A x A where the fibre over
(ql, q2) E A x A consists of all bounded linear operators --; Lq2’ By our
assumptions which imply that ~ is a smooth vectorfield on L we can consider
the map - U~ ( t, s ) as a smooth map from L x R x R into ,~ . Now

suppose D : L ~ L is a continuous fibre preserving map. We associate to D
and ~ a new map

Clearly D~ is continuous and

Hence De is a homotopy of fibre preserving maps. We need the following.

LEMMA 4. Assume ~ is as described above and D : L - L is a continuous
fibre preserving map mapping bounded sets into uniformly fibre precompact sets.
Then De maps bounded sets in R x L into uniformly fibre precompact sets in
L.

PROOF.  1 for all x E L we obtain the estimate

Moreover we have the standard estimate (see [13], [14])

where dA is the metric on (a component of) A. (12) of course implies that for
given bounded set W of L there exists a constant c ( W ) &#x3E; 0 such that

We estimate now using Lemma 3

Since the flow maps bounded sets into bounded sets the previous estimates and
our assumption on D implies the desired result. D
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The next estimate is very useful

LEMMA 5. Let x E Lq and assume there is a constant d &#x3E; 0 such that

where II is the maximum norm. Then

PROOF. The strongly continuous group T --&#x3E; Z(T) on Lq has the
infinitesimal generator 6 with domain c Hence we have for h E Tq A

We compute therefore for x E Lq and h E Tq A

This implies

Now if I l’  1, h E Tq A and t E R

Combining (16) and our assumptions we find
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Next define a smooth vectorbundle map 1 : L - L by

Here 6* : L --4 TA is the adjoint of 8 : TA - L.

LEMMA 6. We have the estimates

PROOF. We have for x E Lq and h E Tq A

Since I ’~ we infer

By Lemma 5 this implies

Moreover

4. - The Intersection Result

First we give a representation result for the maps in .M and ,M respectively
similar to a result in [11].

LEMMA 7. Let ~’ be as described in the definitions of J~t and A. Then
there exist continuous maps all, a22 : R x L - (0, +oo), and a21 : R x L --~

( - oo, 0~ ] mapping bounded sets into compact sets of (0,+00) 1
respectively, and continuous maps Bi : R x L ~ L mapping bounded sets into
uniformly fibre precompact sets such that they satisfy
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and in matrix notation we have the following identity:

Here we use the notation introduced in §3, for example 7c~ : R x L -~ L :
(s, x) - Ux~ (0, s~ (~ * s) etc.

PROOF. We have

Now put a ± = 1 (- 1 ± and denote by Dz the covariant derivative in L
associated to K above TA (z) in the direction z. We compute with y = Id-88*:

For B/ we derive the following estimate using the estimates for -1 in Lemma
6.
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Since  1 and g satisfies (g) we infer also using Lemma 6 that J9~
map bounded sets of R x L into uniformly fibre precompact subsets of L. From
(4) we obtain via the variation of constant formula

It is an immediate consequence of Lemma 3 and (5) that B2 map bounded
subsets of R x L into uniformly fibre precompact subsets of L. From (6) we
obtain now the following formulas

and

Multiplying (7) by + 1 a and (8) by - 1 
+ and using

a -a a -a

Lemma 3 again for the expressions involving Uj(0, s) B 1 (s, x) we find the
desired representation. D

LEMMA 8. Let h = 0’1 0 ... 0 an be an element of J~I where ai E .M . Assume
ori is the time one map for the flow associated to the differential equation
it = ~i (x) where Çi has the usual properties as specified in the definition of .M.
Denote by Q9 the time-s-map for s E [0, 1] and put h9 - Q9 0 ~ ~ ~ 0 Then there
exist continuous maps a, b : ~0, 1~ x L -~ Rand B : [0,1] x L - L such that
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x) _ 0, 7r o B(s, x) _ 1r(x) for all s E ~0, 1J and x E L.

Moreover a, b map bounded sets into compact sets of (0, + 00), (- oo, 0 ]
respectively, and B maps bounded sets into uniformly fibre precompact sets.

PROOF. We proof the representation by induction. If h9 - Q9 we have by
Lemma 7

which shows that Lemma 8 holds for n = 1. Now assume we have proved for
k  n - 1 that o a9 can be represented by

where the data has the required properties. We show now that (11) also holds
for the case k = n which implies (9). Let h8 = or’ o... o orn = h9 o We find
with the obvious abbreviations
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Now one easily verifies that is the desired 2 x 2 matrix and that A has
also the desired form. An application of Lemma 3 to (12) shows that B1 and
B2 map bounded sets into uniformly fibre precompact sets. The other properties
are also easily verified. D

Now we are in the position to prove the intersection result.

PROOF OF PROPOSITION 1. Let hEM and put h = a1 O...... o an where

Qi is the time one map of a flow associated to a differential equation
x= Ei ( x) where £i has the properties specified in the definition of M. Put as
before

We find a constant c &#x3E; 0 such that

Denote by Int(s) for s E ~0, 1~ the set

and

By (13) we have h8 (x) == x for all s E ~0, 1~ provided x E LIE and Ilxll I &#x3E; c.

The problem n is, using Lemma 8, equivalent to

Dividing by a ( s , x ) &#x3E; 0 (16) takes the form

where 1 : ~0,1~ x L - (-oo, 0~ maps bounded sets into compact sets, Z(O, x) = 0,
and f3 : [0,1] x L - L maps bounded sets into uniformly fibre precompact sets
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N N N

and B (0, x) - 0. Moreover b (s, x) - 0 and B(5,x) = 0 for all s E [0, 1] and
x E with Ilxll ( &#x3E; c. (17) is a fixed point problem for a fibre preserving map
in L ( ~ -~ E of the form

where T : [0,1] x maps bounded sets into precompact sets (recall
that E is compact and B maps bounded sets into uniformly fibre precompact
sets). Moreover

Further Fix(s) = {x E = x}. LIE is an ANRE in the sense of Dold
[7]. Dold’s fixed point transfer for ENRE generalizes trivially to if the
base space E is compact (see [2] or [11]). (It also generalizes if E is only
paracompact as it was shown in a thesis of one of Professor Dold’s students
which is unfortunately not published (B. Schafer, Ph.D Thesis 1981)). Using the
properties of this slight generalization of the fixed point transfer we find a group
homomorphism tr(s) for s E ~0, 1~ making the following diagram commutative

for all s E ~0,1~. Here H denotes Alexander-Spanier-Cohomology with
coefficients in a commutative ring R and 7r, : Fix ( s ) -; E is induced by the
projection 7r : L - A. Further we have the cohomology-commutative diagram

Passing in (21) to cohomology and using (20) we finally obtain for s = 1

Put now (~) ~7r~. Then (3h is injective since ~ri is injective by (20).
Observing that Int( 1) = n LO the proof is complete. D
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5. - The Deformation Result

In order to prove Proposition 2 we need some more estimates.

LEMMA 9. For a bounded subset S of Lq, q E A the following statements
are equivalent

(i) S is precompact.

(ii) Given e &#x3E; 0 there exists To &#x3E; 0 such I S ê for all x E S
and lr  To.

This is a straightforward variant of a classical result of Riesz, see [30] for
a proof.

The following result is crucial.

LEMMA 10. Assume ( qn ) c A is a bounded sequence. Then the following
statements are equivalent

(i) ( qn ) is precompact in A.

(ii) Given e &#x3E; 0 there exists To &#x3E; 0 such that j j Z ( T ) a qn - a qn j j I S ê for all
and 1ri  To.

PROOF. (i) ~ (ii) is trivial.

(ii) ~ (i) We have the estimate

By our hypothesis using the Ascoli-Arzela-Theorem we may assume that qn - q
uniformly for some continuous loop q (after passing to some subsequence).
Taking some exponential chart based at some smooth loop "a" close to q we
have with 

I d i i

the following representations of a qn

where V is the covariant derivative along "a" and 4a is the "twist map" based
at "a". By our assumption we have

Since £n 2013~ uniformly and ea(£) uniformly we see that (çn) is

bounded in Using the weak completeness of a Hilbert space we
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must have ~ E and in 2013~ weakly and q E A. Consider the family
of paths pn : [0, 1] ~ A defined by

(They are clearly well-defined for large n). We have

Moreover the length of the paths is bounded by a constant C2 &#x3E; 0 independent
of n e N. Denote by Cn : ~Q the paralleltransport along pn. As a
consequence of Lemma 3 we find a constant c 2 &#x3E; 0 such that

for all n Hence by our assumption (ii) is precompact in 

Eventually taking a subsequence we may assume

for some y E L q . Now we pass to local coordinates in order to study (1)

where y = One verifies easily that in La. Since

ea(çn) ~ ea(ç) uniformly we see that (Vçn) is a Cauchy sequence. So (çn) is

convergent in and the limit must be ~ E Consequently

as required. F-1

Next we need some estimates on the vectorbundle maps Fn introduced in
§2.

LEMMA 11. For all n E ‘~ Fn is a smooth vectorbundle map. Moreover
we have

Further we have the following estimates
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PROOF. The first is clear. For the second part replace in

y by Then we obtain

Now let h E TqA. Using the fact that 6 restricted to the fibre over q is the

infinitesimal generator of the group we compute

This implies

Now combining (5) and (6) gives

For the last inequality we compute using = 6Z(T) since 6 is the

infinitesimal generator for (Z(r)),ER
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as required. D

LEMMA 12. Let c L, x E L, and (nk ) c N such that L
and oo. Then

PROOF. Since by Lemma 11

we infer lim sup IIFnkXkll S Ilxll. Moreover we have by Lemma 11 I 
- 

-

Hence taking a sequence c TA such that yk - y and

TA (yk) = 1r(Xk) we have since

taking the limit

Now (7) and (8) imply immediately in L. D

Finally we need

LEMMA 13. For fixed x E Lq, y, z E Tq A, with R : TM

being the curvature, we have the following identity

Moreover for some constant c &#x3E; 0 only depending on M

Recall the definition of 

1

LEMMA 14. gb,n satisfies (g). In particular we have the following estimates
for some constant c (b) depending continuously on b, but being independent of
nEN
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PROOF. Denote the gradient of Ab with respect to the inner product
 ’) ’ &#x3E; T ~,,t ~  W , K. &#x3E;M +  T"M’ &#x3E;M

We have with = 

Hence

which implies (i) since IIFnxl1  I and IIHb(x) II I  const(b) for all x E L.

Moreover using Lemma 13

Consequently for a suitable c(b)

This proves (ii). Next we have

Applying Lemma 13 to (12) gives, for a suitable c ( b ) depending continuously
on b,
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From Lemma 5 and (13) we deduce

which proves (iii). In order to prove (iv) observe that FnKHbFnx
(see ( 10)). Now using Lemma 11 (4) we find

which establishes (iv). D

Recall the definition of O as limit of a sequence where the

convergence is uniformly on compact subsets of (0, +aa). Without loss of

generality we may assume nk = I~ in order to simplify the notation. We need
the following

LEMMA 15. Let f : T M -; T M be a continuous fibre preserving map
satisfying the estimate

for some positive constant c. Then the induced map f : L - L : x
Î(x), i(x) (t) = f (x (t)) a.c., is continuous and maps uniformly fibre precompact
sets into uniformly fibre precompact sets.

PROOF. It is well known that the assumption (13) implies the continuity of
Let B be a uniformly fibre precompact subset of L. Since B is bounded 1r(B)
is bounded and by the compact embedding A ~ C(S’, M) a finite number of
exponential charts, say ( expQ t ( ~ ~z ) ) z + ~ ... k cover ~r ( B ) . Here qi E C °° ( S, M ) and
expq, : Vi ~ A is a diffeomorphism onto an open neighborhood of qi. We have
~z and may assume that Vi is a convex open zero neighborhood.
In order to prove the lemma we may assume without loss of generality that
1r(B) c where q = q 1 and V = Vi. Now arguing indirectly we find a
sequence B, a sequence ( Tn ) c R, Tn - 0, and an ê &#x3E; 0 such that

Let qn = ~r ( xn ) . Introducing local coordinates we have qn = E 2 Y,
where the (gn) are bounded in Eventually taking a subsequence
we may assume
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Using the usual trivializations, see [13, 14], we have the commutative diagram
with U=expq(1/2V)

where h is induced by a map h : q* cl ( U) (B q* TM that has
the same properties as f.

We write in local coordinates

If Cn : Lqo , qo = expq (~0) denote the parallel transport along the curve
s --~ expq (( 1 - s ) ~’~ + s ~o ) then by Lemma 3 we find for every 6 &#x3E; 0 a number

To &#x3E; 0 such that

In local coordinates let us write fin for the representative of On Xn. Hence if
C~ represents Cn we have

Writing down the equations for the parallel transport, using (15), we infer that
0 in Again by Lemma 3 we may assume that fin is

convergent (eventually we have to take a subsequence). Hence we find

Consequently

where the first coordinate converges weakly in and the second

strongly in L2(q*TM). Hence in diagram (16) we see that the principal part
of h (the second component) converges strongly in L2(q*TM). It is now

straightforward that

Hence ( Cn , f ~ xn ) ) is precompact in Lqo. By Lemma 3 f ( ~n ) ) is uniformly fibre
precompact. (Apply to OnÎ(xn)’)

LEMMA 16. If ( xn ) c L is a uniformly fibre precompact sequence then
is uniformly fibre precompact.
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PROOF. If ( xn ) is (u fpc) then by Lemma 11 is (ufpc). Since

where i is as in Lemma 15, we see that (Î(Fnxn)) is (u f pc).
Again by Lemma 11 is (ufpc). D

We may assume O uniformly on compact subsets of (0, +oo).
We shall prove now Proposition 2 for nk = k.

PROOF OF PROPOSITION 2.

Step 1. Given a sequence c L such that - d and
- 0 the sequence is precompact. Moreover any limit point x

of satisfies = d, ~b(~) = 0.
We have to show that every subsequence of (xk) has a convergent

subsequence. Without loss of generality we show that (Xk) has a convergent
subsequence. Since ~ 0 we find

(For the second part in (17) we used that 0 implies
118 o (T?r)~~(~)~ ~ 0). From (17) we infer, for some sequence ek --; 0

and constant c(6) &#x3E; 0,

where dk - d. Hence is bounded. Using (17) again we see that 
is bounded. Now using (17) (the second part) we see that

Here we used Lemma 6 and 14. Moreover (Yk) is a suitable sequence in L such
that IIYkl1 - 0. Since (118qkllJ is bounded (qk) is bounded in A. Consequently
(18) implies that (xk) is (ufpc). Using the first part of (17) and Lemmas 10
and 16 we see that (qk) is precompact. Since (qk) is precompact and (xk) is
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(u f pc) we infer that (Xk) is precompact. So we may assume xk - z for some
x in L. Now taking the limit in - 0 using Lemma 12 we obtain

(19)

and similarly

(20)

Step 2. Given numbers 0, d E R and an open neighborhood U of
d) there exist numbers E E (0, so) and l~o E N such that

= {2: E  r}, = {x e r} and tt»~~ = n 

PROOF. Arguing indirectly we find a sequence nk which is monotonic and
nk - oo such that for suitable xk we have

by Step 1 is precompact and a limit point, say x, satisfies 

d, 4)’(x) = 0. But we must have z g U contradicting the fact that d) is

contained in U.

Step 3. Completion of the proof.
Let U be a neighborhood of d) with 2p := dist(aU, d)) &#x3E; 0.

Pick an open neighborhood V of d) with V c U and dist(aU, V) 2’: p.
By Step 2 we find eo &#x3E; 0 such that for all c c (0, eo] we have

provided k &#x3E; ko for a suitable integer ko. Given x E L, we find for t E R

Hence there exists a smooth function q - t(q), t(q) &#x3E; 0, mapping bounded sets
into bounded sets such that &#x3E; t(9) if x E Lq we have
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Hence we can find a smooth function p : L - ~-1, 0~ 1 such that

for some r : A - R mapping bounded sets smootly into bounded sets and

and

(23) for some e1 E (0, minjeo, 1})

and k&#x3E; ko.

Now one estimates using standard idea (see [11]) for some e E (0, ê1) (suitably
small) that

Here (x, t) the flow associated to Çk == for all k &#x3E; 1. Now

define hk : L ~ L by

Since (Db. k - and gb.k satisfies (g) we find that hk E M, actually in
M. This completes the proof of Proposition 2.
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