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“declarative semantics. ” Ideally, queries directed to the program would be answered in accordance
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well-founded partial models are introduced and the well-founded semantics of a program are defined

to be its well-founded partial model. If the well-founded partial model is m fact a total model. it is

called the well-founded model. It n shown that the class of programs possessing a total well-founded

model properly includes previously studied classes of “stratified” and “locally stratified” programs,

The method in this paper is also compared with other proposals in the literature, including Clark’s

“program completion, ” Fitting’s and Kunen’s 3-vahred interpretations of it, and the “stable models”

of Gelfond and Lifschitz.
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1. Introduction

There has been much recent work on extending Horn rule logic programs to

include negative subgoals, giving what are called general logic programs. This

research has proceeded in two general directions, which may be summarized as

the “program completion” approach and the “canonical model” approach.

1.1 PROGRAM COMPLETION SEMANTICS. The original “program completion”

approach, due to Clark [6] and discussed in detail by Shepherdson [37, 38],

Kunen [17], and Lloyd [20], has been to define a new program, called the

completed program (sometimes called the completed database). The com-

pleted program is treated simply as a first order formula (see Section 4). Then,

the negative literals that are logical consequences of the completed program,

and only those, should be considered true. The same applies to positive Iiterals,

so the completion treats positive and negative literals symmetrically. A proof

method that supports this approach, called SLDNF (SLD resolution plus the

negation as failure rule) has been studied extensively. A closely related idea, the

closed world assumption, was introduced in the context of deductive databases

by Reiter [33]. The generalized closed world assumption was proposed by

Minker to handle disjunctive databases [25] without producing the inconsistency

typical of the closed world assumption; it is discussed in Example 3.1.

SLDNF is applied to the original program. Clark showed the procedure to be

sound in the sense that if a goal has a finite SLDNF derivation, then it is a

logical consequence of the completed program. Jaffar et al. showed that

SLDNF was complete (in the same sense) for Horn programs with nonfloun-

dering queries consisting of a conjunction of positive or negative literals, or

both [15]. SLDNF was further investigated for general logic programs by

Lloyd [20] (who coined the term SLDNF), Shepherdson [37, 38] (q.v., for

further bibliography), and others. This approach is “logically” impeccable, but

does not address the issue of how the compiler or the interpreter of the general

logic program should treat atoms (goals) whose positive and negative literals

are neither logical consequences of the completion: The interpreter is not

allowed to either succeed or fail. Also, for some programs the completed

program is inconsistent; for some others, the completed program is consistent

but unintuitive. More importantly, on many natural examples, it yields a

surprisingly weak reasoning ability. We shall illustrate these claims with

examples in Section 7.

Fitting [9] and Kunen [17] gave markedly different, more uniform, semantics

by interpreting the completed program in a 3-valued constructive logic, ele-

gantly eliminating some difficulties of the Clark program completion approach.

The third truth value, 1. , connotes unknown truth value and is “less informa-

tion than” both true and false, which are incomparable. Fitting showed that the

completion of every program has a (unique) minimum 3-valued model, and

suggested that this model be taken for the semantics of the program. Kunen
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describes avariant that isalways recursively enumerable, and characterizes the

3-valued logical consequences of the completed program. From our point of

view, however, these semantics are also too weak to capture the “common

sense” notion of negation as failure, as discussed later in the motivating

examples (Section 7).

A rather different approach to negation is to interpret general rules as

disjunctive clauses. In this context, the generalized closed world assumption

concludes that p is false if there is no minimal positive disjunction p V ql

v c“ “ v qk that is a (2-valued) logical consequence of the clauses [25]. Here, k

may be zero, so that p is simply true. Disjunctive databases are quite different

from logic programs because clauses have no “direction”. Thus, a - not b

and b +- not a are treated alike, as a V b. Example 3.1 illustrates this

distinction.

1.2 CANONICAL MODEL SEMANTICS. The “canonical model, ” or “preferred

model, ” approach has been to declare that a certain model of the original

program is presumed to be the “intended” one, that is, the one that the

programmer and program users have in mind. The justification for choosing the

preferred model relies on an appeal to “common sense, ” and what people who

write or read the program are likely to think it means. R. W. Topor and E. A.

Sonenberg informally proposed the term canonical model to describe a model

that is selected (often from many incomparable minimal models) to represent

the “meaning” of a logic program or deductive database. The advantage of

assigning a canonical model to a program is that one now has a standard for

correctness of an interpreter 1 on all goals— it must conform to the canonical

model, and succeed or fail appropriately. See [41] for a discussion of how the

canonical model approach can benefit application development.

Another motivation for concentrating on canonical models is the view,

expounded by Reiter [33], that many logic programs are appropriately thought

of as having two components, an intentional database (IDB) that represents the

reasoning component, and the extensional database (EDB) that represents a

collection of facts. Over the course of time, we may want to “apply” the same

IDB to many quite different EDBs. In this context, the properties of the IDB

merit careful study, and it makes sense to think of the IDB as implicitly defining

a transformation from an EDB to a set of derived facts; we would like the set of

derived facts to be the canonical model. For finite cases, the computational

complexity of this transformation can be studied; see Section 8.

One problem with the canonical model approach is that some programs may

not have a canonical model, or if they do, it is unclear that the model matches

the users’ expectations. A further difficulty is that the canonical model may be

computationally infeasible. One line of research has been to look for a

definition of the canonical model that will apply to as broad a class of programs

as possible. Two classes of programs that have been studied are called

stratified and locally stratified. The stratified class has been treated in [1],

[5], [19], and [40], and elsewhere. The locally stratified class, defined and

studied by Przymusinski [31], is a superset of the class of stratified programs.

He defined perfect models, and showed that every locally stratified program

has a unique perfect model. These classes are discussed further in Section 6.

1By “interpreter,” we mean any mechanism for executing the program, including a compiler,
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For a while, there was a feeling that programs that were not at least locally

stratified probably did not really make good sense, that they were inherently

ambiguous, and thus faulty. Thus, failure to have a perfect model was thought

to indicate a flaw in the program rather than in the definition of perfect models.

Recent experience has cast doubt on this attitude (see [11] for discussion), and

spurred the search for further improvements in the definition of the “canonical

model. ”

Gelfond and Lifschitz propose an elegant definition of a stable model that is

closely related to our work [11]. Drawing on ideas in [10], they define a

“stable model” as one that is able to reproduce itself in a certain sense;

a program may have zero, one, or many stable models. In their scheme, when a

program has a unique stable model, that model is considered to be its canonical

model. They argue that the unique stable model is the natural one to associate

with a logic program, and describe some of its properties. Stable models are

discussed further in Section 5.

1.3 WELL-FOUNDED SEMANTICS. This paper proposes a new definition of

canonical model, which we call the well-founded model. We show that for

locally stratified programs the perfect model coincides with the well-founded

model; in addition, certain programs that are not locally stratified have a

well-founded model. Examples are given in Section 7.

But even when a program has no well-founded total model, it has a

well-founded partial model; thus, we define the well-founded semantics of

any general logic program to be that literals in the well-founded partial model

are true, their complements are false, and other literals’ truth values are not

determined by the program. Thus, a partial model can also be viewed as a

model in 3-valued logic. This relationship is discussed in Section 4.

While stratification is a syntactic property of the IDB, for an unstratified

IDB, whether the program has a total well-founded model depends in general

on the EDB. One view of well-founded semantics is as an attempt to give a

reasonable meaning to as much of the program as possible in the unfavorable

cases, when only a partial model exists, as an extension of the semantics for the

favorable cases, which have a total model.

The key idea in our formulation is the concept of an “unfounded set, ” which

is an adaptation of the “closed set” developed for disjunctive databases by Ross

and Topor [35], and is essentially the same as the “securable set” in [36].

Unfounded sets are defined in Section 3.

Since the time that the preliminary version of this paper was presented at a

conference, several alternative formulations of negation that appear to be

equivalent to the well-founded semantics have been developed [3, 8, 32, 42].

We believe that this indicates a robustness of the semantics, and provides

evidence that it coincides well with “common sense” and intuition.

2. General Logic Programs and Partial Interpretations

In this section, we introduce our notation and basic definitions, and describe the

class of general logic programs that we shall be considering in this paper.

Definition 2.1. A general logic program is a finite set of general rules,

which may have both positive and negative subgoals. A general rule is written

with its head, or conclusion on the left, and its subgoals (body), if any to the
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right of the symbol “- ,“ which may be read “if.” For example,

P(X) +a(X), not b(X).

is a rule in which P(X) is the head, a(X) is a positive subgoal, and b(X) is a

negative subgoal. This rule may be read as “P(X) if a(X) and not b(X). ” A

Horn rule is one with no negative subgoals, and a Horn logic program is one

with only Horn rules.

Lloyd has recently adopted the word “normal” instead of “general” to

describe rules whose bodies consist of a conjunction of literals, and programs of

such rules [20]. He reserves the word “general” to allow more involved

constructs, such as

w(X) ~rn(X, Y), not (m(Y, Z), not w(Z)),

where the first not applies to a conjunction rather than an atom. Although we

avoid such constructs for simplicity of presentation, the well-founded semantics

is easily generalized to such syntax, so we continue to use the word “general. ”

In keeping with Prolog’s convention, logical variables begin with a capital

letter; constants, functions, and predicates begin with a lowercase letter. We

use the same symbol, for example, p, to refer to both a predicate and its

relation. The arguments of a predicate are terms as customarily defined in

logic:

(1) A variable or constant is a term;

(2) A function symbol with terms as arguments is a term.

Terms may also be viewed as data structures of the program, with function

symbols serving as record names. The word ground is used as a synonym for

“variable-free, ‘‘ in keeping with common practice. Often a constant is treated

as a function symbol of arity zero.

The Herbrand universe is the set of ground terms that use the function

symbols and constants that appear in the program. 2 The Herbrand base is the

set of atomic formulas formed by predicate symbols in the program whose

arguments are in the Herbrand universe. If the program contains a function

symbol of positive arity, then the Herbrand universe and Herbrand base are

countably infinite; otherwise, they are finite.

We shall be considering atoms in the Herbrand base and ground rules whose

variables have been instantiated to elements of the Herbrand universe, which we

call instantiated rules.

Definition 2.2. The Herbrand instantiation of a general logic program is

the set of rules obtained by substituting terms in the Herbrand universe for

variables in every possible way. An instantiated rule is one in the Herbrand

instantiation. Whereas ‘‘ uninstantiated” logic programs are assumed to be a

finite set of rules, instantiated logic programs may well be infinite.

Certain programs exhibit a property called unsafe negation, which can cause

anomalous behavior if interpreted in the Herbrand universe. Appendix A

explains a way to “augment” such programs by introducing an extra rule that

removes the anomalies by enlarging the Herbrand universe. Our development is

independent of whether this augmentation is used or not.

We shall be working extensively with sets of literals, for which we now

introduce some notation and definitions. If p is an atomic formula (atom), then

2 If there is no constant symbol in the program, then one is added arbitrarily
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p is its positive literal, = p is its negative literal, and these two literals are

said to be complements of each other.

Definition 2.3. For a set of literals S we denote the set formed by taking

the complement of each literal in S by 7 “ S.

—We say literal q is inconsistent with S if q ~ 1 “ S,

—Sets of Iiterals R and S are inconsistent if some literal in R is inconsistent

with S, that is, if
Rn7. s#Qj,

—A set of literals is inconsistent if it is inconsistent with itselfi otherwise, it is

consistent.

Definition 2.4. Given a program P, a partial interpretation I is a

consistent set of Iiterals whose atoms are in the Herbrand base of P. A total

interpretation is a partial interpretation that contains every atom of the

Herbrand base or its negation. We say a ground (variable-free) literal is true in

I when it is in 1 and say it is false in I when its complement is in 1. Similarly,

we say a conjunction of ground literals is true in I if all of the literals are true

in 1, and is false in 1 if any of its literals is false in 1.

Definition 2.5. We say that an instantiated rule is satisfied in a partial or

total interpretation 1 if the head is true in 1 or some subgoal is false in 1; it is

falsified if the head is false and all subgoals are true. In addition, if the head of

the rule is false in 1, but no subgoal is false in 1 then we say that the rule is

weakly falsified in 1.

Definition 2.6. A total model of a program P is a total interpretation such

that every instantiated rule of P is satisfied. A partial model of P is a partial

interpretation that can be extended to a total model of P.

Although it is customary to omit the adjective “total” when speaking of

interpretations and models, because we shall be dealing with both 2-valued and

3-valued logics, we shall include it for clarity.

Intuitively, a partial interpretation may contain incomplete information: The

positive literals in it are considered to be true atomic facts; the negative literals

denote atoms considered to be false; and the truth values of the rest of the

atomic facts are unknown, or unspecified, at least “at present. ” The natural

ordering on partial interpretations is G . The idea is that 1 G I’ if I’ contains

all the information in 1, both positive and negative, plus possibly more.

For us, a partial model is a partial interpretation 1 such that some instantiated

rules may not be satisfied, but there is a (possibly empty) set of literals whose

addition to the partial interpretation will satisfy all rules. Clearly, this is

impossible if 1 falsifies any instantiated rule. If 1 only weakly falsifies some

instantiated rule, then the addition of some negative literal to 1 may be

necessary to satis~ that rule. Thus recognition of partial models containing

weakly falsified rules may be very difficult. The following lemma shows that

the situation is much simpler if 1 does not weakly falsify any instantiated rule.

LEMMA 2.1. Let P be a program and let I be a partial interpretation. If

I weakly falsifies no instantiated rule from 1?, then I is a partial model of

P.

PROOF. Let I’ be the total interpretation formed by adding to 1 all atoms in

the Herbrand base that are neither true nor false in 1. Let r be an instantiated

rule from P. If 1 satisfies r. then clearly so does l’. If 1 does not satisfy r,
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then the head of r cannot be false in 1, so it is true in I’. Hence I’ is a total

model. ❑

Our notion of partial model is not the same as the natural notions of models

used in 3-valued logics, such as in the approaches of Fitting [9] and Kunen [17].

Nevertheless, the well-founded partial model we construct will also be a model

in Fitting’s 3-valued sense. We shall discuss 3-valued models in Section 4.

3. Unfounded Sets and Well-Founded Partial Models

In this section, we define unfounded sets, which are a variation of closed sets

that were defined for disjunctive databases by Ross and Topor in [35].

Unfounded sets provide the basis for negative conclusions in the well-founded

semantics.

3.1 UNFOUNDEDSETS

Definition 3.1. Let a program P, its associated Herbrand base H, and a

partial interpretation I be given. We say A G H is an unfounded set (of P)

with respect to I if each atom p c A satisfies the following condition: For each

instantiated rule R of P whose head is p, (at least) one of the following holds:

(1) Some (positive or negative) subgoal q of the body is false in 1,

(2) Some positive subgoal of the body occurs in A.

A literal that makes (1) or (2) above true is called a witness of unusability

for rule R (with respect to 1).

Intuitively, we regard 1 as what we already know about the intended model

of P (possibly partial). Rules satisfying condition (1) are not usable for further

derivations since their hypotheses are already known to be false.

Condition (2) is the unfoundedness condition: Of all the rules that still might

be usable to derive something in the set A, each requires an atom in A to be

true. In other words, there is no one atom in A that can be first to be

established as true by the rules of P (starting from “knowing” 1). Conse-

quently, if we choose to infer that some or all atoms in A are false, there is no

way we could later have to infer one to be true.

As described more formally later, the well-founded semantics uses conditions

(1) and (2) to draw negative conclusions. Essentially, it simultaneously infers

all atoms in A to be false. By contrast, the semantics of [9] uses only condition

(1) to draw negative conclusions. The closed sets of Ross and Topor [35] were

defined only with condition (2).

Example 3.1. Consider the program consisting of the eight (instantiated)

rules below.

p(a) -p(c), not p(b).

p(b) ~ not p(a).

p(e) + not p(d).

p(c).

p(d) ~ q(a), not q(b).

p(d) ~ q(b), not q(c).

q(a) ~p(d).

q(b) ~q(a).
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The atoms { p(d), q(a), q(b), q(c)} form an unfounded set with respect to a.

In particular, {q(c)} is unfounded due to Condition (1); there is no rule usable

to establish its truth. The set { P( d), q(a), q(b)} is unfounded due to Condition

(2); we are given no way to establish P(d) without first establishing q(a) or

establishing q(b) (whether we can establish = q( b) to support the first rule for

P(d) is irrelevant for determining unfoundedness). Also, there is no way to

establish q(a) without first establishing p(d), and no way to establish q(b)

without first establishing q(a). Clearly, q(c) can never be proven, but we can

also see that among p(d), q(a), and q(b), none can be the first to be proven.

In contrast, the pair { p( a), p(b)} does not form an unfounded set even

though they depend on each other, because the only dependence is “through”

negation. It is tempting to claim that the proof attempts for p(a) and p(b) will

fail also, but such a claim is faulty.

The difference between sets { p(d), q(a), q(b)} and { p(a), p(b)} is this:

Declaring any of p(d), q(a), or q(b) false does not create a proof that any

other element of the set is true. However, as soon as one of p(a) or p(b) is

declared false, it becomes possible to prove the other is true. And if both are

declared false at once, we have an inconsistency.

The treatment of p(a) and p(b) has something of the flavor of the general-

ized closed world assumption (GCWA), in that (p(a) V p( b)) is a (2-valued)

logical consequence of the program interpreted as indefinite disjunctive clauses;

consequently GCWA also declines to consider them false. However, GCWA

behaves quite differently in general. For example, (p(e) V p( d)) is also a

logical consequence, so GCWA does not consider P(d) false, whereas the

well-founded semantics does. Similar remarks apply to q(a) and q(b). (How-

ever, q(c) is considered false by GCWA; it is in the positive disjunction

(q(c) V p(d) Vp(e)), but this disjunction is not minimal.) As a further differ-

ence, after p(d) is classified as false in the well-founded semantics, P(e) will

become derivable. It is a property of GCWA that the atoms considered false

cannot be used to support any further derivations.

Simultaneously negating all the atoms in an unfounded set generalizes nega-

tion by failure in Horn clause programs; if H is the Herbrand base and 1 is the

set of atoms that represents the minimum Herbrand model of a Horn clause

program [39], then H – 1, the set of atoms not in 1, is unfounded with respect

to 1.

We now formalize the intuition of the preceding discussion. It is immediate

that the union of arbitrary unfounded sets is an unfounded set. This leads

naturally to:

Definition 3.2. The greatest unfounded set (of P) with respect to I,

denoted UP(1), is the union of all sets that are unfounded with respect to 1.

We now make some easy, but instructive, observations about unfounded sets.

To a certain extent, there is a flexibility between having 1p ● I and having p

in an unfounded set. The following lemma shows that, given an interpretation

R, if we deduce that certain facts S are in an unfounded set A and add their

complements to R, other unfounded atoms remain unfounded.

LEMMA 3.1. Let R be a set of Iiterals, and let A be an unfounded set of

P with respect to R. For any subset S G A, A – S is unfounded with

respect to R U ~ “ S.
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PROOF. Any witness of unusability that was an atom in S is now a negative

literal in 1 c S, and hence is still a witness. ❑

The next lemma demonstrates a connection between (lack of) weak falsifica-

tion (Definition 2.5) and unfounded sets. Recall from Lemma 2.1 that 1 in the

next lemma is a partial model.

LEMMA 3.2. Let I be a partial interpretation consisting of positive

literals Q and negative Iiterals ~ “ S. If I does not weakly falsify any

instantiated rule of program P, then S is an unfounded set with respect to

Q.

PROOF. Let p e S and let R be any instantiated rule whose head is p.

Because R is not weakly falsified, some subgoal of R is false in 1. If this

subgoal is positive, it is also in S, so condition (2) of Definition 3.1 is satisfied.

If this subgoal is negative, its positive version is in Q so condition (1) is

satisfied. ❑

3.2 WELL-FOUNDED PARTIAL MODELS. We now consider a (possibly transfi-

nite) sequence that results from combining two set transformations. The limit of

this sequence defines the well-founded semantics. In what follows, the word

transformation always means a transformation between sets of literals, where

their atoms are in the Herbrand base of a given program P. We recall that a

transformation T is called monotonic if T(1) G T( J), whenever 1 ~ J.

Definition 3.3. Transformations Tp, Up, and Wp are defined as follows:

—p e TP( 1) if and only if there is some instantiated rule R of P such that R

has head p, and each subgoal literal in the body of R is true in 1.

—Up( 1) is the greatest unfounded set of P with respect to 1, as in Definition

3.2.

–WP(l) = TP(l) U 7 “ UP(l).

LEMMA 3.3. TP, UP, and Wp, are monotonic transformations.

PROOF. Immediate from definitions. ❑

We wish to emphasize that, unlike some other methods, our TP treats positive

and negative subgoals symmetrically. In deciding whether a negative subgoal

not p is true, some methods look for the absence of p from 1. For us the

presence or absence of p is immaterial for the truth of the subgoal not p; we

require the presence of 1p.

Definition 3.4. Let a range over all countable ordinals, The sets 1. and

1 m, whose elements are literals in the Herbrand base of a program P, are

defined recursively by:

(1)

(2)

(3)

For limit ordinal Q,

la= u 18.
0<.

Note that O is a limit ordinal, and 10 = @.

For successor ordinal a = ~ + 1,

I y+l = WP(I,),

Finally, define

I@= u Ia.
m
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Following Moschovakis [29], for any literal p in 1 m, we define the stage of

p to be the least ordinal a such that p c la. We observe that the stage is

always a successor ordinal for literals in 1 m.

LEMMA 3.4. I. as defined in Definition 3.4 is a monotonic sequence of

partial interpretations (i. e,, is consistent).

PROOF. The proof is by induction on u. The basis, a = O, is immediate.

For a >0, assume the lemma is true for 13< u.

For monotonicity, first let a = -y + 1 be a successor ordinal. If literal

q c Iy, there is a smallest D < T such that q ~ Wp( 18) (even if T is a limit

ordinal). But WP is monotonic, so by the inductive hypothesis q c Wp( IY).

Monotonicity for limit a follows from the definition of la.

To show consistency for successor ordinal a = T + 1, note that every literal

in la first appears in some Ie + ~, that is, at a successor ordinal “stage.” Let

A be any set of positive ground literals that has a nonempty intersection with

(the positive literals of) 17+,. It is sufficient to show that A is not unfounded

with respect to 17, for then the greatest unfounded set of 17 is also disjoint

from the positive part of ]Y + ~. Choose the earliest 10+ ~ that intersects A and

select an atom p in that intersection. Then p was derived by some rule R all

of whose subgoals are in lB. By the inductive hypothesis, those subgoals are

also in lY, and Jy is consistent, so none of the subgoals is false in 17. By the

choice of B, they are not in A. Thus rule R has no witness of unusability,

which demonstrates that A is not an unfounded set with respect to 17.

For limit ordinal a >0, to show that la is a partial interpretation, assume

the lemma is true for 13< a. If both q and 7 q are in 1., there is some

successor ordinal -y + 1 < u such that the same is true. This contradicts the

inductive hypothesis. ❑

It follows by classical results of Tarski that 1 m is the least fixed point of the

operator WP. The Herbrand base is countable, so for come countable ordinal
~ ~~=1> a.

Definition 3.5. The closure ordinal for the sequence 1. is the least

ordinal a such that 1 m = la (cf. [29]).

Examples can be constructed where the closure ordinal is above o, but the

authors believe such examples to be very rare in practical logic programming.

In the case of a function-free program with a finite EDB, which is common in

deductive databases, the limit is reached after a finite ordinal. The “data

complexity” of this case is discussed in Section 8.

Definition 3.6. The well-founded semantics of a program P is the

“meaning” represented by the least fixed point of WP, or the limit 1 m

described above; every positive literal denotes that its atom is true, every

negative literal denotes that its atom is false, and missing atoms have no truth

value assigned by the semantics.

LEMMA 3.5. Let I. be as defined in Definition 3.4. Then IU does not

weakly falsify (Definition 2.5) any instantiated rule of I-’.

PROOF. Let R be any instantiated rule with head p such that T p ~ I.. We

need to show that the body of R is false in la. By definition, p e UP( 16) for

some P < ~. By Lemma 3.4, lC G 16+1 G J.. Either the body of R is false in
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18, or some subgoal q of the body of R is in the greatest unfounded set with

respect to 16. In the latter case, lqe IP+l, so the body of R is false in 16+1. In

either case, it follows that the body of R is false in 1.. ❑

THEOREM 3.1. For each countable ordinaly a, I. in the sequence de-

scribed in Definition 3.4 is a partial model of P.

PROOF. Immediate by Lemmas 2.1 and 3.5. ❑

Definition 3.7. Suppose that for each p in the Herbrand Base I w contains

either p or 7p, that is, 1 m is a total interpretation. Then, by the above

theorem, 1 m is a total model, and we call this the well-founded model;

otherwise, we call I m the well-founded partial model.

THEOREM 3.2. Every Horn program has a well-founded model I m,

which is the minimum model in the sense of Van Emden and Ko walski

[39], that is, its positive Iiterals are contained in every Herbrand model.

PROOF. Let H be the Herbrand base and let Q be the set of positive literals

of 1 m. Q is a fixed point of TP [39]. In view of Theorem 3.6, it is sufficient to

show that H – Q G Up( I‘). Let p be any positive literal in H – Q. Each

rule for p must have a positive subgoal that is also in H – Q, which subgoal is

a witness of unusability for this rule. Thus, H – Q is unfounded with respect

to a, and a fortiori with respect to 1 Q. ❑

4. Three-Valued Models of the Program Completion

The relationship of the well-founded semantics to other methods based on

program completion and 3-valued logics is discussed in this section. Clark

introduced the completed program as a way of formalizing the notion that facts

not inferable from the rules in the program were to be regarded as false [6].

Fitting studied models of the completed program in a 3-valued logic, and

showed that all such models were fixed points of a certain operator [9]. We

show that the well-founded partial model is also a model in this logic, but often

not the least model.

The idea behind the Clark completion of a program is to collect all rules

having the same head predicate into a single rule whose body is a disjunction of

conjunctions, then replace the “if” symbol, “+- ,“ by “* .“ This states in

effect that the predicate is completely defined by the given rules. The formal

details, including handling of variables and introduction of axioms for equality,

are described in several places [2, 6, 9, 17, 20].

Example 4.1. Recall the last four rules of Example 3.1, whose atoms

formed an unfounded set:

p(d) + q(a), not q(b),

p(d) + q(b), not q(c),

q(a) -p(d),

q(b) +-q(a).

The Clark completion combines the rules for p into one rule, combines the

rules for q into another rule, then replaces ‘‘ ~ ‘‘ by ‘‘ * ‘‘. After some

simplifications to eliminate bound variables, there results:

p(d) ++ (q(a) A1q(b))V(q(b)A1 q(c))),

vX[q(X) ‘+ (( X=a)Ap(d))V((X= b) Aq(a))].
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The equality freeness axioms (often called the Clark Equality Theory or CET)

are also part of the completed program. Roughly, they require a one to one

interpretation of the terms, so that q(c) cannot be made true by setting c = a

orc=b.

The original “logical consequence” approach essentially declares that only

conclusions that are logical consequences (in the classical, 2-valued sense) of

the completed program should be inferred [6, 15, 20, 37]. When the completed

program is consistent, this approach implicitly defines a 3-valued interpretation:

Assign value true to instantiated atoms that are true in all (2-valued, not

necessarily Herbrand) models of the completed program, false to instantiated

atoms that are false in all models, and 1 (unknown) to all other instantiated

atoms. However, because the truth of each literal is based on tradi-

tional 2-valued logic, we call this the 2-valued program completion (2PC)

interpretation.

The 3-valued interpretations were made explicitly by Fitting [9] and Kunen

[17], who also used 3-valued logic to evaluate formulas. Whereas (p V T p)

must be true in 2-valued logic, in 3-valued logic, it may also be 1 . In

addition, the ‘‘ ~ ‘‘ produced by the program completion process was inter-

preted as Lukasiewicz’s operator of “having the same truth value,” so that

L ~ L evaluates to true. Fitting’s and Kunen’s treatments eliminated some

anomalies in the 2PC interpretation.

Example 4.2. Consider the single rule program

p+ not p, not q.

The Clark completion is

P*(l PA1q)>

q ~ false,

which has no 2-valued model. (The second rule derives from false representing

the empty disjunction of q‘s rule bodies.) However, if we add the “meaning-

less” rule, p ~ p, the completed program changes to:

P*(7PA7q)v P,

q ~ ~true,

which has the unique 2-valued model, { p, = q}. If, instead, we add the

“meaningless” rule, q ‘= q, the completed program changes to:

P*(l PA1q)>

q*q7

which has a different 2-valued model, { 7p, q}. However, all three versions

have 3-valued models in which p = 1 .

Finally, as suggested by a referee, if we add several rules, giving:

p+ not p, not q,
q+-r,
q+s,
r-r,
S*S,
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the completed program becomes:

P-(1 PA 19),

q-(rvs),

r~r,

s-s.

Now there are three 2-valued models, which vary on whether r or s or both are

true. Their common part (intersection) is the same 2PC interpretation as above,

{ 1P, q}. However, here the 2PC interpretation is not a 3-valued model.

One principal result in [9] is that the completion of every program has a

(unique) minimum 3-valued Herbrand model. Fitting suggests that this model

be taken for the semantics of the program, and hereafter we call it the Fitting

model. Thus, the Fitting model is sometimes “less defined” than the 2PC

interpretation, as in the previous example. However, Example A. 1 in Appendix

A shows that the 2PC interpretation can be “less defined” than the Fitting

model.

To any partial interpretation 1 (in 2-valued logic), there corresponds the

obvious 3-valued interpretation in which atoms missing from 1 are assigned the

truth value _L . In this setting, our partial interpretations are the same as

Fitting’s basic sets [9]. In 3-valued logic literals and conjunctions are true and

false in 1 as specified in Definition 2.4; in addition, the truth value -L may be

assigned:

Definition 4.1. Literal q is called undefined in I, denoted by ‘‘ _L ‘‘, if

neither q nor its complement is in 1. A conjunction of literals evaluates to

undefined in 1 if no literal in the conjunction is false in 1 and at least one is

undefined in I.

Definition 4.2. NP is defined as the transformation that, for I a 3-valued

interpretation, gives as NP( I) the set of atoms p such that for every rule in the

Herbrand instantiation of P with p as its head, the body is false in 1, that is,

some subgoal of the rule is false in 1. Note that NP is the portion of UP

produced by condition (1) of Definition 3.1.

Fitting also constructs 3-valued models with a fixed point operator [9]. For

positive inferences, TP is as in Definition 3.3. For negative inferences he uses

(in effect) the transformation NP( 1) defined above. A second main theorem of

that approach is:

THEOREM4.1. (Fitting). A 3-valued interpretation I is a 3-valued model

of the completed program if and only if I = TP( 1) U T “ NP( 1).

This immediately yields a fixed-point construction for 3-valued models, and

the Fitting model is the least fixed point. We now show that the well-founded

partial model is also a 3-valued model in Fitting’s sense.

THEOREM 4.2. Let I m be as defined in Definition 3.4. Then I w =

TP(lm) U -- NJ I‘). Hence, I w is a 3-valued model of the completion

of the logic program.

PROOF. Since ~m = TP( I@) U 1 “ UP( I ‘), it follows that
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(2) every positive literal in 1 m is in TP( 1‘),

It remains to show that every negative literal -p that is in 1 m is also

in -I oNP( l‘). But by Lemma 3.5 each instantiated rule with head p has its

body false in fm, so peNP(Zm). ❑

COROLLARY 4.3. The Fitting model is a subset of I w.

1 m can indeed differ from the smallest 3-valued model of the completion of

the program, and need not even be a subset of all 2-valued models, as shown by

the one-rule program, p -p, in which p is false in 1 a and is undefined in

the Fitting model.

Kunen describes a variant that differs from Fitting’s in two important ways:

(1) the iteration is always stopped at co, and (2) the Herbrand universe is

defined with respect to a language with an infinite set of function symbols,

which properly includes those that occur in the program [17]. The resulting

3-valued interpretation is recursively enumerable, but may not be a 3-valued

model. Kunen’s main theorem is that this interpretation characterizes the

3-valued logical consequences of the completed program.

5. Stable Models

Gelfond introduced an approach to negation through stable models [10], and

motivated it by appealing to autoepistemic logic, as developed by Moore [26].

The theory has been further developed by Gelfond and Lifschitz [1 1], and also

by Marek and Truszczynski [23, 24].

In this section we follow the definitionof[11], which defines stability without

reference to autoepistemic logic. We show that if a program has a total

well-founded model, that model is the unique stable model. We also discuss two

programs that do not have total well-founded models but do have unique stable

models. Whether inferring (or not inferring) the truth of these extra literals is

“a bug or a feature” of either approach we leave for the reader’s judgment.

Gelfond and Lifschitz [11] define a stable model to be one that reproduces

itself in a certain three stage transformation, which we call the stability

transformation. If a program has only one stable model, that is called its

unique stable model. Stable models refer to 2-valued logic. When speaking of

total, or 2-valued, interpretations, it is more common to represent models as

sets of ground atoms, with the understanding that missing atoms represent the

negative literals. In this context a “minimal model” is one that has a minimal

set of positive literals, and a “monotonic transformation” on total interpreta-

tions is one that is monotonic in terms of the positive literals alone. However,

for consistency with the rest of the paper, we shall represent models as sets of

literals, and use the following notation for sets of positive and negative atoms in

interpretations.

Definition 5.1. For any partial interpretation 1, let Pos( 1) be the set of

positive literals in 1, and let Neg( 1) be the set of atoms that represent negative

literals in 1. Thus, 1 = Pos( 1) U - - Neg( 1).

Definition 5.2. Given a general logic program P, and its Herbrand instanti-

ation, P~, we define S, the stability transformation from total interpretations

into total interpretations. Given a total interpretation 1, its transformation S(1)
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(1)

(2)

(3)

Define

p’ = ~I(pH ~)

where T, is the following transformation: For each rule instantiation, if it

contains a negative subgoal that is inconsistent with 1, then the rule

instantiation is discarded. The output of the transformation is the set of rule

instantiations that remain.

Define

P“ = Ta (P’),

where Tz is the transformation by which all negative subgoals are dropped

from rules of P’, leaving a Horn program. We call P“ the reduction of P

with respect to I.

Since P“ is a Horn program, we can form its minimum (2-valued) model as

in the standard Van Emden and Kowalski semantics [39]. In this context,

“minimum,” means that the set of positive literals is minimized, and hence

the set of negative Iiterals is maximized.

We define S(1) to be this minimum model of P“.

Example 5.1. Let P~ be

p~notp,
ae not b,

b -not a,

and let .Y = {a, 1 b, p}, which is a minimal model of PH. Then, P’ consists

only of

a-not b,

because the other rules contain negative subgoals

Now P“ is the Horn rule

a.

whose atoms are in Pos( ./if).

Thus, S( Jt ) = {a, 1 b, T p], which, incidentally, is not a model of PH.

The name “stability transformation” is justified in a sense by the following

lemma, which shows that S is a “shrinking” transformation (on positive

literals) when applied to total models. However, as shown above, it is possible

that .4[ is a model and S(J) is not a model; it may “shrink” too much.

LEMMA 5.1. Let ..4[ be a total model of general logic program P. Then,

Pos(s( Jz )) G Pos( J/ ) .

PROOF. Using the terminology of Definition 5.2, J4 is a total model of P’

and also of P“, by their construction. But S( J? ) is the minimum total model of
p,, ❑

The models that are fixed points of S are of special interest.

Definition 5.3. A total model Jii of general logic program P is stable if it

is a fixed point of S; that is, if .,4/ = S( ~{ ). If program P has exactly one

stable model, that model is called the unique stab/e model of P.
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It is immediate that a stable model is minimal (in terms of the set of positive

literals); but not every minimal model is stable, as shown in Example 5.1 above

and in Example 5.3 below.

Example 5.2. Let PI be

Both {a, - b} and {b, 1a} are stable models, so PI has no unique stable

model. Its Fitting model, 2PC interpretation, and well-founded partial model

are @.

Example 5.3. For another example, let Pz be

p~llot p.

The only model of Pz is Jt = { p}. The one rule in the program drops out of

the reduction, making S( J’ ) = { 1p} the minimum model of the reduction of

Pz. Hence, Pz has no stable model.

As discussed in Example 4.2, the completed program is p + = p. Its 2PC

interpretation in 2-valued logic is inconsistent. Its Fitting model and well-

founded partial model are @.

There is a close relationship between stable models and well-founded (partial

or total) models. As defined, a unique stable model is demonstrated only

through the explicit enumeration of all minimal models followed by testing each

for stability. We shall show that well-founded total models are unique stable

models. This offers a method to generate the unique stable model directly 3 in

such programs. The next lemmas illustrate the close relationship by showing

that, for total models, the negative part of the stability transformation S agrees

with the greatest unfounded set U ~, while the positive part of S is contained in

TP .

LEMMA 5.2. Let 4 be a total model of a program P. Then,

Neg(S( Y )) = UP( J1 ).

PROOF. Form Horn program P“ as in Definition 5.2, and let Ji’ = S( J1 )

be its minimum total model.

First, we show that UP( A? ) G Neg( ~{’). Since Ji” is total, it suffices to

show that, for any positive literal p, if p G Pos( MI’), then p # UP( J/ ). We

prove this by induction on the stages of the (Van Emden and Kowalski type)

comtruction of .X’. It is true vacuously for stage O, which is empty. For stage

k >0, suppose positive literal p is derived in stage k of the construction of

A‘. Then, there is a rule

in P“ such that the a,’s have been derived in stages less than k. This rule

corresponds to some rule in P’,

P+ al...., ak, not bl, . . .. not bn,

such that each bj e Neg( M ), which in turn corresponds to a rule in P~. By

Lemma 5.1, all the ai’s are also in Pos( J1 ). Since 4 is consistent, none of

3 If you consider possibly transfinite iteration direct!
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the subgoals, the al’s or the not b~’s, are false in 4. Finally, by the inductive

hypothesis, none of the ai’s are in UP(. Z ). Hence, by virtue of this P~ rule,

P+ UP(J().
We prove that Neg( 4‘) G UP(.4 ). It suffices to show that Neg(. #‘) is an

unfounded set of PH with respect to ..4?. Suppose some p E Neg( tiZ’) fails to

satisfy some condition of unfoundedness, as defined in Definition 3.1. Then,

there is a rule

p +-al,..., aknotbl, . . ..notb~

in PH such that the following facts hold:

(1) no aj is false in t?,

(2) no bj is true in ../,

(3) no a, is true in Neg( 4’),

the third fact being the negation of the “unfoundedness” condition. Since 4

is total, it follows from the second fact that each bj is in Neg( .4’ ). Hence,

is a rule in P“. Since ..1’ is total, it follows from the third fact that each

aj e Pos( d ‘). Hence, p e Pos(. / ‘), a contradiction. ❑

LEMMA 5.3. Let .1 be a total model of P. Then, Pos(S(./ )) s TP( ./[).

PROOF. Form program P’ and Horn program P“ as in Definition 5.2, and let

..4’ = S(W) be the minimum total model of P“. By Lemma 5.1, Pos( ..1’) G

Pos(.{ ), so we have

pos( ./’) = Pos(TP,r( J{’)) q pos(TP/,( ./ ))

by monotonicity of TP,, (on positive literals). Finally,

POS(TP( .4 )) = pos(TP/( ~~ )) = pos(TP( J/ ))

by construction. ❑

The preceding lemmas lead to the next theorem that being a fixed point of S

is equivalent to being a fixed point of WP for total models. In fact, this

equivalence extends to all total interpretations because being a fixed point of

either transformation ensures that the interpretation is a model. As shown in a

later example, it is possible that a fixed point of S is not the least fixed point of

WP, but if it is the least fixed point, that stable model is obviously unique.

THEOREM 5.4. Let ./ be a total model of P. Then, .Z is stable if and

only t~ it is a fixed point of WP.

PROOF . Form Horn program P“ as in Definition 5.2, and let .-.[’ = S( JL )

be its minimum total model.

(~) We suppose -~ is a fixed point of WP and prove it is stable. Since . [ is
a fixed point of W ~, we have Neg( Z ) = UP( X ). But, by Lemma 5.2,

Neg( 4’) = UP(./ ), also. Hence, .# = M’.

(-) We suppose .4? is stable and prove it is a fixed point of WP. Since

.4= .4’, by Lemma 5.3, Pos(ti{) = Pos(J7’) G TP(.iZ). But TP(.4t)

G Pos( .// ), since A is a model of P. So TP(./ ) = Pos(.1 ). Again,

since Jt = .4’, by Lemma 5.2, UP( .4’) = Neg( .4/). ❑
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COROLLARY 5.5. Let I be a total interpretation of P. Then I is a fixed

point of S if and only if it is a fixed point of WP.

PROOF. It is routine to show that if 1 is a fixed point of either S or WP, then

every instantiated rule is satisfied. Hence, 1 is a model, and Theorem 5.4

applies. ❑

COROLLARY 5.6. If P has a well-founded total model, then that model is

the unique stable model.

COROLLARY 5.7. The well-founded partial model of P is a subset of

every stable model of P.

PROOF. Every stable model is a fixed point of WP, and the well-founded

partial model is the least fixed point. El

In Examples 5.4 and 5.5 below, we show that the converse of Corollary 5.6

is not necessarily true.

We agree with Gelfond and Lifschitz [11] that a model that is intended to be

associated with a program should be able to “derive itself. ” However, as

shown in later examples, the sense of “deriving itself” differs slightly between

well-founded semantics and stable model semantics.

5.1 COMPARISON OF STABLE AND WELL-FOUNDED APPROACHES. We now com-

pare the well-founded semantics with the stable model semantics. On many

programs, they are identical, and at first it appeared that the only difference was

that the well-founded semantics defined a partial model when there were

multiple stable models. However, it turns out that there also are programs with

a unique stable model and only a partial well-founded model. In other words,

the converse of Corollary 5.6 is not necessarily true. These examples and others

show that awkward situations arise for well-founded models and unique stable

models when the factoring operation of resolution theorem proving (or the law

of the excluded middle, in natural deduction) plays a part. Recall that “factor-

ing” of a ground clause is simply the operation of merging two identical

literals.

Factoring enters the picture with a rule of the form

p+not p,”””

because, as a disjunctive clause, it can be rewritten as

pvp+ ...

and then the two p literals can be merged. Another manifestation of this

phenomenon occurs with a pair of rules,

p~a,-””,

p - not a,.””.

Again, as disjunctive clauses, they can be resolved on a, giving

p~p +...

and then the two p literals can be combined by factoring. Two-valued logical

consequences that can be derived only by using factoring cannot be derived in
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either the well-founded semantics or the 3-valued program completion

approaches (cf. Examples 4.2 and 5.3).

Example 5.4. Consider the program P~ given by the four rules:

a+not b,

b + not a,

p+ not p,

p+ not b.

Let us first consider P:, consisting of just the first three rules above (cf.

Example 5.1). The first two rules comprise PI of Example 5.2, which had two

stable models; the third is Pz of Example 5.3, which had no stable model.

Thus, the first three rules alone have two minimal models, neither of which is

stable:

{a, mb, p} and {Ta, b,p}.

The program completion of Pi is inconsistent. (Just turn each ‘‘’= ‘‘ into

‘‘ - ‘‘.) Not too surprisingly, the well-founded partial model and the Fitting

model are empty.

Adding the fourth rule would appear to be meaningless at first glance because

p is already a (2-valued) logical consequence of the first three rules, and there

is no apparent basis to conclude -b, anyway. Nevertheless, the fourth rule has

a strange effect: It stabilizes precisely one of the two models, and so produces a

unique stable model for the full program! Moreover, the program completion of

the full Pq,

p-(=pv -b),

now has a 2-valued model. Whereas its well-founded partial model and Fitting

model remain empty, the unique stable model of P~ is

d[= {a, -b, p}.

To verify this, we note that the reduction of Pq with respect to til? is

5.
This model is also the 2PC model.

Example 5.5. Consider the program P1 given by the four rules:

Again the Fitting model and well-founded partial model are a, while the

unique stable model exists and agrees with the 2PC model:

.4/= {a, lb, -c}.

To verify this, we note that the reduction of PA with respect to ~{ is simply

a,
C+a, b,
a.
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6. Stratified and Locally Stratified Programs

A program is stratified if all of its predicates can be assigned a rank such that

— no predicate depends positively on one of greater rank, and

—no predicate depends negatively on one of equal or greater rank

in any rule [1, 5, 19, 40]. In the context of an IDB and EDB, the EDB, being a

set of simple facts, has rank O. IDB predicates whose defining rules involve no

negation also have rank O. IDB predicates whose only negative dependencies

are on rank O predicates have rank 1, and so on. Stratifiability is easy to check

syntactically; in fact, it can be checked by examination of the IDB alone.

The stratified semantics of such a program is defined by first drawing all

rank O inferences in the normal way for Horn programs, and concluding = p

for all rank O atoms p that have not been inferred. Note that this is not the

usual “negation by failure” because some of these atoms may not have failed

finitely; cf. Example 7.2. The definition of stratified semantics is completed

inductively: After all atoms of ranks less than k have been classified as positive

or negative, use these literals to derive positive rank k atoms; conclude = q for

all rank k atoms q that have not been inferred. The result is called the

stratified model.

It is immediate from Theorem 3.7 that the stratified semantics agrees with the

well-founded semantics for rank O, and it is easy to see that the agreement

extends to all ranks. We shall prove a somewhat stronger result below. From

another point of view, Van Gelder has shown that stratified programs that

satisfy certain other conditions have a model based on “tight derivations” that

coincides with the stratified model [40].

Przymusinski carried the above idea to a finer grain by defining a program to

be locally stratified if each atom in its Herbrand base can be assigned a

countable ordinal rank such that no atom depends on an atom of greater rank

or depends negatively on one of equal or greater rank in any instantiated rule

[31]. Note that the program is stratified if all atoms with the same predicate

symbol can be assigned the same rank. The extension handles situations where

the “recursive negation” is apparent, but not real. A typical example is the

program

even(s(X)) +- not even(X),

even (0),

where each ground atom can be given a rank equal to the power of s in its

argument.

To give a semantics to locally stratified programs, Przymusinski [31] has

given a definition for perfect model. Essentially, Z is a perfect model (for a

given ranking of atoms) if for all other models .X’, if positive literal p is the

atom of least rank that is in one model, but not the other, then it is in ~‘. In

other words, the perfect model minimizes positive literals of low rank in

preference to positive literals of greater rank.

Przymusinslci has shown that all locally stratified programs have a perfect

model, and that it is independent of the ranking system chosen (within the

constraints mentioned); moreover, on stratified programs, the perfect model

agrees with the stratified model. We show that the well-founded semantics is an

extension of this approach in the following sense.
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THEOREM 6.1. If P is locally stratified, then it has a well-founded

model, which is identical to the perfect model.

PROOF. We take as the inductive hypothesis that for any atom p of rank k:

if p is in the perfect model, it is in the well-founded partial model 1 m; and if

p is not in the perfect model, then mp is in 1 m.

The basis, k = O, is immediate.

For k >0, first assume p is in the perfect model. Then, we claim that there

is an instantiated rule with p as head, say

p+ql, q2, . . ..notrl. notr2 ,. ...

such that all qi are in the perfect model and no r~ is in the perfect model. For if

this were not so, we could remove p from the (supposedly) perfect model, and

at worst have to add atoms of greater rank than p (because they have a rule

containing not p) to restore the model. Since the rj are of lower rank than p,

the inductive hypothesis asserts that 1 rj are in 1 m. Also, any q, of lower rank

than p are in 1 m.

Now consider a program consisting of all instantiated rules for atoms of rank

k whose subgoals of lower rank are true in 1 m. We modify the rules by

removing the subgoals of rank less than k, leaving a Horn program P“ (cf.

Definition 5.3). Clearly the minimum model of P“ will be precisely the atoms

of rank k in the perfect model. But all such atoms are also in 10. Moreover,

the atoms of rank k not in the minimum model of P“ form an unfounded set of

P“ with respect to a by Theorem 3.7. It follows from the construction of P“

that these atoms also form an unfounded set of P with respect to 1 m, so their

negations are in 1 m. ❑

7. Motivating Examples

Whether a particular model is the “right” one really depends on people’s

expectations. After all, programs are tools whose behavior needs to be under-

stood and manageable by people. In this section, we compare well-founded

semantics with some other recent approaches based on canonical models, the

stable model semantics outlined in Section 5, and stratified semantics, which

has been studied by many researchers. We present some examples to support

our position that well-founded models are natural and intuitive.

Example 7.1. This example is abstracted from the “Yale shootout” exam-

ple due to Hanks and McDermott [13]. The program P is

noise(T) - loaded(T), shoots(T),

loaded(0),

loaded(T) ~ SUCC(S, T), loaded(S), not shoots(S),

shoot,s(T) - triggers(T),

triggers(1),

Succ(o, 1).
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We regard triggers and succ as EDB predicates, and the others as IDB. The

Herbrand instantiation of P contains ground versions of the IDB rules as

follows:

noise(1) + loaded(l), shoots(l),

noise(0) ~ loaded(0), shoots(0).

loaded(l) + SUCC(O, 1), loaded(0), not shoots(0),

loaded(l) - SUCC(l, 1), loaded(l), not shoots(l),

loaded(0) - SUCC(O,O), loaded(0), not skoots(0),

loaded(0) ~ SUCC(l, O), loaded(l), not shoots(l).

shoots(l) + triggers(1),

slzoots(0) + triggers(0).

Intuitively, since we have no information that shoots(0) holds, we are led to

the (presumably) intended minimal model:

loaded(0), 7shoots(0), - noise(0),

loaded(l), shoots(l), noise(1).

However, an alternate minimal model exists:

loaded(0), s/toots(0), noise(0),

=Ioaded(l), shoots(l), 1 noise(1).

Since rzoise( 1) is not true in all minimal models, the circumscription approach

does not allow it to be concluded, which was a main point made in [13].

However, the well-founded model is the intended one.

To compare with other approaches: The 2PC model and Fitting model are

also the intended model here. The program is stratified, so the stratified

semantics agrees with the well-founded semantics. The intended model is also

the unique stable model, as the alternate is not stable.

In the preceding example, the 2PC and Fitting models were 2-valued, and

gave the intended model. The next example typifies the situation in which we

consider the 2PC and Fitting models to be too weak an approach.

Example 7.2. Consider a program with the rules:

p(x, Y)+ b(x, Y),

p(x, Y) + b(x, ?J), p(u, Y)

e(X, Y)+-g(X, Y),

e(X, Y) ~g(X, U), e(U, Y).

a(X, Y)+- e(X, Y), notp(X, Y),

and the facts about b and g:

b(l,2) g(2,3),

b(2, 1) g(3,2).
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Apparently, pisthetransitive closure of band eisthetransitive closure of g.

We expect a to be the difference of these two relations; in particular, it seems

that a(2, 3) is true. This appears to be the intended model, and is indeed the

well-founded model, as well as the stratified model.

There is another minimal model, in which P(2, 3) and P( 1, 3) are true and

a(2, 3) is false. Moreover, this alternate model satisfies the Clark completion of

the program as well. Thus, by the method of logical consequences of the

completion of the program, the status of a(2, 3) and other literals is either not

addressed (2PC interpretation) or declared undefined (Fitting model, Kunen

model).

The criterion of stability reinforces the choice of the well-founded model.

The alternate model is incapable of reproducing itself in the manner defined in

Definition 5.3, and the intended model emerges as the unique stable model.

In fact, Kunen has recently shown that in his 3-valued logical consequence

semantics, a “strict” logic program without function symbols cannot define a

predicate that is true in the transitive closure, false in its complement, and

nowhere undefined [18]. Informally, a “strict” program is one in which the

dependence of one predicate on another (or itself,) is either through an even

number of negations or through an odd number, but not both. Because Kunen’s

semantics is different from Fitting’s, even on programs without function

symbols (see Example A 1 in the appendix), the question of whether a “strict”

program is possible in the Fitting semantics is open. Nonstrict programs in the

Fitting semantics are known to exist, by the work of Immermann [14], but are

quite complicated; details are discussed elsewhere by Van Gelder [42].

As another motivational example, we consider a program that is not locally

stratified, as defined in Section 6, yet has a well-founded model when the EDB

relation is acyclic. A more involved example in which constraints on the EDB

can be specified to guarantee that the well-founded model is total is discussed

elsewhere [41].

Example 7.3. This example is essentially the same as one discussed by

Gelfond and Lifschitz [11], and is one of the examples that led to the

formulation of well-founded semantics, as well as stable models. Interestingly,

this program turns out to be closely related to a game described by Kolaitis, and

used to prove that there are queries in fixpoint logic that are not expressible by

stratified programs [16]. In this respect, the program can be viewed as

describing a game where one wins if the opponent has no moves, as in checkers

(draughts).

winrting(X) - move(X, Y),

not winning ( Y).

Some sample move graphs are shown in Figure 1. Whenever the move EDB

relation is acyclic (e.g., part (a) of the figure), the well-founded total model is

easily found, by proceeding “up” the directed graph. Part (b) shows a cyclic

case in which the well-founded model is partial, but even when a cycle is

present in the EDB, there may be a well-founded total model (part (c)). For this

program, the Fitting model and the 2PC interpretation agree with the well-

founded model.
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(a) (b) (c)

FIG. 1. Graphs for Example 7.3. (a) Acyclic. (b) Cyclic with partial model. (c) Cyclic with total

model. Entries T, F, and 1 in the nodes indicate whether winning is true, false, or undefined in the

well-founded (partial) model.

However, the program is not locally stratified because the Herbrand instantia-

tion contains a rule in which winning depends negatively upon itself, as in

winning(a) ~ nzove(a, a),

not winning (a).

This also destroys the perfect model even though move( a, a) does not occur in

the EDB.4 Recently, Przymusinska and Przmusinski have defined weakly

perfect models to handle programs such as this example [30].

The next example was inspired by an informal presentation by Morris of

Stanford University [27]. It shows how the negation issues addressed by this

paper might easily arise in practical settings.

Example 7.4. We imagine a logic program that might be part of a VLSI

CAD system, whose function is to display a VLSI chip that has been hierarchi-

cally defined. Each object is modeled as a series of layers, each layer being an

array of grid points. The hierarchical definition specifies basic and synthesized

objects: basic objects are distinguished by having base colors, while the colors

of synthesized objects are defined wholly in terms of their components, and can

vary from point to point. The entire chip is the “root” object. Figure 2 shows

an example in which root object a is synthesized from objects b, c, d, and e,

whose further details are not shown.

Assume the program uses these predicates, which may be treated as EDB

relations for our purposes.

— vecSum( PO, P 1, Pt) is true when PO + P 1 = Pt as two-dimensional vec-

tors, the details of whose representation do not concern us.

4 Except in the trivial case where the program has only one Herbrand model.
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FIG. 2. VLSI objects for Example 7.4:

Object a is synthesized from b and c at

level l, and eland eatleve12. The color of

object a is “inherited” from c at the point

represented by the lower dot: however this

does not hold atthe upper dot. because c IS

dominated by dthere.

n
—cornporzent( Obj, 01, PO, L) is true when object Obj has a component 01

whose origin, or reference point, is PO, and whose layer number is L. For

example, the chip might have many identical ALUs at different points; they

would all be the same 01, but would have various values of PO. The ALUs

might have adders as components, and the adders would have still smaller

components. Within the same Obj components might overlap, so the layer

number specifies their relative “vertical” order.

–baseColor( Obj, Pt, C) means that 10 is the color of basic object Obj at

point Pt.

To specify the color property in our rule syntax, we require two mutually

recursive IDB relations. The interested reader can work out the equivalent rules

using a single relation in a language that supports a richer syntax for rule bodies

[21, 28].

—color( Obj, Pt, C) means that the visible color of Obj at Pt is C (looking

down from above).

—domirzated( Obj, Pt, 01, L 1) holds when two objects that are components of

the same Obj overlap at point Pt and the object 01 is in the lower layer L 1.

For the object in the higher layer to actually overlap, it must have color

defined at that point.

We now formulate rules for determining the color C of a component Obj at a

grid point Pt:

color ( Obj, Pt, C) ~ baseCo/or ( Obj, Pt, C).

color(Obj, Pt, C) - conzporzent(Obj, 01, PO, Ll),

vecSw-n(PO, Pl,l%),

color (01, Pl, C),

not dorninated( Obj, Pt, 01, Ll).

dominated(Obj, Pt, 01, Ll) - component (Obj, 02, PO, L2),

LI <L2,

vecSum(PO, P2, Pt),

color(02, P2, C2).

Note that color depends on itself negatively through the rule for dominated, as

well as positively. The rule designer expects the component relation to be
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acyclic in its first and second arguments; that is, 01 is expected to be a

subcomponent of Obj.

When the expected acyclicity holds, the well-founded model is easily found,

just working up the data structure. In this case, the Fitting model is 2-valued, as

is the 2PC model. However, there is no perfect model for essentially the same

reason as in Example 7.3.

When a cycle is present in the EDB, color cannot be established for anything

in the cycle. For this application, the cycle presumably represents a design

error. However, the well-founded semantics still defines color correctly in

parts of the chip not affected by the error.

A theme that runs through these examples is that well-founded semantics

frequently agrees with other semantics, but seems to avoid their awkward cases.

In this sense, it seems quite robust.

8. Computational Complexity

Not only do we want to formulate a reasonable semantics for negation, we also

want the set of statements derivable to be “reasonably computable, ” as far as

possible. Unfortunately, the well-founded partial model is not necessarily

recursively enumerable, a difficulty it shares with most of the semantics

discussed here. However, for function-free logic programs (a class that has

come to be known as Datalog), the Herbrand universe is finite and the

construction is effective. In this section, we show that the data complexity of

the well-founded semantics, as defined by Vardi [43], is polynomial. From this

standpoint, it is competitive with other methods, such as stratified semantics,

whose data complexity has been studied elsewhere [4, 12, 14, 43], and the

Fitting model (as remarked below).

In this discussion of complexity, we restrict attention to function-free pro-

grams, so a program’s Herbrand universe is just the set of constants appearing

in it. We consider a fixed IDB, Pr (which we allow to be any general

function-free logic program). As discussed before, PI can be thought of as a set

of inference rules that might be applied to various EDB’s, or sets of facts. The

predicates that appear as subgoals in PI, but do not appear in the head of any

rule, constitute the EDB predicates. We represent an EDB, PE, as a set of

positive ground Iiterals ranging over the EDB predicates. (The constants in PE

may or may not appear in PI.) Given an EDB PE, we form a logic program

P(PE) = PI U PE, and we denote its well-founded partial model by 1 ‘(PE).

Finally, regard PI as defining the transformation from I’fi to I ‘(PJ.

Definition 8.1. The data complexity of an IDB is defined as the computa-

tional complexity of deciding the answer to a ground atomic query as a function

of the size of the EDB; in the context of well-founded semantics, this means

deciding whether the ground atom is positive in the well-founded partial model.

Since the IDB is fixed, the predicates in the well-founded model have fixed

number and arity (width, or number of argument places). Hence, the Herbrand

base has size that is polynomial in the size of the EDB. (Without function

symbols, we may add any constants appearing only in the query to the Herbrand

universe without having a significant effect on its size.) Also since the IDB is

fixed, the size of the Herbrand instantiation of the program is polynomial in the

size of the EDB.
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THEOREM 8.1. The data complexity of the well-founded semantics for

function-free programs is polynomial time.

PROOF. As usual in the proofs of such theorems, we shall show that the

entire well-founded (partial) model can be constructed in polynomial time, after

which any query can be answered immediately. The well-founded model is the

least fixed point of the construction of la, as described in Definition 3.4. At

each stage of the induction, until the fixed point is reached, at least one element

of the Herbrand base H is added to la+ ~, so the fixed point must be reached in

a number of steps polynomial in the size of the EDB. This sort of argument is

standard; see [4, 12, 14, 43], etc. Similar standard arguments show that

calculating Tp can be done in polynomial time. So we need only show that each

UP( 1.) can be found in polynomial time. Clearly, we may restrict attention to

finite a. We shall actually give a polynomial time construction of the set of

ground atoms in (H – UP(Ia)).

Define O(J) as the transformation on sets of ground atoms, with implicit

parameter la, such that: A ground atom p is in O(J) if and only if there is a

ground instance of a rule in P, say

p+ bl, . . .. b~. notcl, not, not cm,

such that

—no subgoal ( bi or not CJ) is false in 1., and

—all bi are in J.

Let Jy = @y(0). Clearly, ~ is monotonic, and J7 reaches a limit J m at a ~

that is polynomial in I H 1.

Suppose p =0( JY) due to the rule shown above. This rule shows that if p

were in UP( la), then some b, must also be in that set. Thus, by a trivial

induction on -y, no atom in U ~ Jy is in UP( la).

To show that the set of ground atoms in H – J a is unfounded with respect

to 1., let q be any such atom. Then, each rule with q as head has a subgoal

that violates the condition that would put q in O( Jy), for any ~. If the violation

is that some subgoal is false in la, this satisfies condition (1) for an unfounded

set (Definition 3.1 ); if the violation is that some positive subgoal is not in Jy

for any T, then that subgoal is in H – J m, satisfying condition (2) for an

unfounded set.

It follows that Jm = (H – UP(Ia)). El

The key idea in the above proof, to inductively construct the complement of

the greatest unfounded set, was first suggested to two of the authors by M. Y.

Vardi (personal communication), and later discovered independently by J. S.

Schlipf.

We remark that the Fitting model also has polynomial data complexity (for

function-free programs). The proof is identical to that of Theorem 8.1 above,

except that a polynomial calculation of NP (see Definition 4.2) must be

exhibited; but such a calculation is routine.

In contrast, Marek and Truszczynski [24] have shown that, even for proposi-

tional general logic programs P, determining whether P has a stable model at

all is NP-complete.
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9. The Final Frontier?

The major shortcoming of the well-founded semantics that we have found

concerns its inability to handle conclusions that can be reached only by using

factoring or a similar technique, such as “ancestor resolution. ” Such tech-

niques are known to be necessary for completeness of non-Horn proof systems,

but not for sets of Horn clauses. The need for factoring arises principally from

“proof by cases, ” and sometimes from “proof by contradiction. ”

However, factoring possibilities in the given program do not always carry

over to the completed program, and a V T a does not simplify to true in either

3-valued logic [9, 17] or intuitionistic logic [7]. Thus caution is needed to keep

a coherent system.

The overly trivial Pz in Example 5.3 might lead one to believe that a

factoring capability can be easily “patched in” by just checking for a negative

subgoal that complements the head of the rule; this conclusion would be

incorrect, as shown by

a4- not b,
b e nOt a,

Pba,

p~b,

in which we cannot choose between a and b, but might reasonably be expected

to notice that p must hold (in 2-valued logic). In general, recognizing that p is

a (2-valued) logical consequence of a finite set of instantiated rules is co-NP-

complete. Furthermore, we normally start with rules that contain variables.

Thus, any extension of logic program semantics that depends on “true non-Horn

reasoning” needs to be undertaken with great caution, and represents a signifi-

cant open problem.

10. Conclusion

We have presented a new semantics, the well-founded semantics, for general

logic programs that extends several earlier proposals, and has advantages over

them in that

(1) It is applicable to all programs,

(2) Compared to several other methods, a larger portion of the Herbrand base

tends to be classified as either true or false,

(3) Truth values are assigned (in the authors’ judgment) in a reasonably

predictable and intuitively satisfying way.

Elsewhere, the expressive power of the well-founded semantics has been

compared to several forms of fixpoint logic [42]. A corresponding procedural

semantics has been reported for some classes of programs [32, 34].

Appendix A: Augmented Programs

Certain programs exhibit undesirable behavior when interpreted in the Her-

brand universe, due to their containing what is called unsafe negation. A

simple way to remove this behavior is to augment the program, as described in

this appendix. We proceed informally here, and refer to [22] for a formal

discussion.
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Definition A 1. Any general logic program P has an associated augmented

program that is formed by adding the apparently nonsensical rule:

$P($f($c)) + $p($f($c)) .

where $p, $f, and $ c are symbols that do not occur elsewhere in the program.

Having the extra “$” terms in the augmented Herbrand universe adds

infinitely many elements to the Herbrand universe, elements that have no names

in the original program. This ensures that goals with free variables have “room

to fail” when they should, even in their instantiated versions. Augmenting

achieves an effect similar to Kunen’s embedding the program in a language with

infinitely many function and constant symbols.

Example A 1. In the following program, without inspecting the a relation,

we would expect p to hold wherever a does (Read d as “differs” and s as

“same’’.):

p(X) +a(X), d(X, Y),

d(X, Y) +-not s(X, Y),

S(u, u),

a(l).

The underlying idea is that, looking at the rule for S, we expect the formula v Y

S( X, Y) to be false. But in the unaugmented Herbrand universe of one element

there is no “room” for S( 1, Y) to fail because 1 is the only term. As a result,

P(1) fails. However, adding the apparently unrelated fact b(2) to the program

means that S(1, Y) can fail, by setting Y = 2. This, in turn, provides a true

instance d( 1, 2), allowing a proof of p(1). Augmenting the program avoids this

bizarre behavior; s(1, $c) fails in all cases, making p(1) always provable, as

intuition expects.

To see why this program has unsafe negation, consider a top-down sequence

of goal reductions, beginning with p(1). Using the rules, p(1) reduces to

(a(l), d(l, Y)), a(1) reduces to true, then d(l, Y) reduces to not s(1, Y). The

occurrence of a free variable Y in the negative subgoal is called “unsafe”

because it is not limited to any domain. This derivation is said to have

floundered [20].

Finally, let us note that in the unaugmented program P(1) is false in the

well-founded semantics and in the Fitting semantics, but not in the 2PC

semantics or Kunen semantics. Although p(1) is false in the only 2-valued

Herbrand model of the completed program, there are other 2-valued models in

which p(1) is true. All of these semantics agree that p(1) is true in the

augmented program.

As noted, the Herbrand universe for the augmented program is infinite. As a

result, our proof of polynomial data complexity (Theorem 8.1) fails for the

augmented program. But the result is still true for augmented programs; we

need only modify the proof slightly. The extra ground terms are all indis-

cernible with respect to the predicates of the original language, so we can carry

out the same construction using only a fixed, finite number (dependent upon the

IDB) of the extra ground terms. Essentially, we need as many distinct $-terms

as there are variables in a single rule.
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